Search results for: diurnal temperature cycle model
19644 Structural and Magnetic Properties of Mn-Doped 6H-SiC
Authors: M. Al Azri, M. Elzain, K. Bouziane, S. M. Chérif
Abstract:
n-Type 6H-SiC(0001) substrates were implanted with three fluencies of Mn+ 5x1015 Mn/cm2 (Mn content: 0.7%), 1x1016 (~2 %), and 5x1016 cm–2 (7%) with implantation energy of 80 keV and substrate temperature of 365ºC. The samples were characterized using Rutherford Backscattering and Channeling Spectroscopy (RBS/C), High-Resolution X-Ray Diffraction technique (HRXRD), micro-Raman Spectroscopy (μRS), and Superconducting Quantum Interference Device (SQUID) techniques. The aim of our work is to investigate implantation induced defects with dose and to study any correlation between disorder-composition and magnetic properties. In addition, ab-initio calculations were used to investigate the structural and magnetic properties of Mn-doped 6H-SiC. Various configurations of Mn sites and vacancy types were considered. The calculations showed that a substitutional Mn atom at Si site possesses larger magnetic moment than Mn atom at C site. A model is introduced to explain the dependence of the magnetic structure on site occupation. The magnetic properties of ferromagnetically (FM) and antiferromagnetically (AFM) coupled pairs of Mn atoms with and without neighboring vacancies have also been explored.Keywords: ab-initio calculations, diluted magnetic semiconductors, magnetic properties, silicon carbide
Procedia PDF Downloads 32519643 A Graph-Based Retrieval Model for Passage Search
Authors: Junjie Zhong, Kai Hong, Lei Wang
Abstract:
Passage Retrieval (PR) plays an important role in many Natural Language Processing (NLP) tasks. Traditional efficient retrieval models relying on exact term-matching, such as TF-IDF or BM25, have nowadays been exceeded by pre-trained language models which match by semantics. Though they gain effectiveness, deep language models often require large memory as well as time cost. To tackle the trade-off between efficiency and effectiveness in PR, this paper proposes Graph Passage Retriever (GraphPR), a graph-based model inspired by the development of graph learning techniques. Different from existing works, GraphPR is end-to-end and integrates both term-matching information and semantics. GraphPR constructs a passage-level graph from BM25 retrieval results and trains a GCN-like model on the graph with graph-based objectives. Passages were regarded as nodes in the constructed graph and were embedded in dense vectors. PR can then be implemented using embeddings and a fast vector-similarity search. Experiments on a variety of real-world retrieval datasets show that the proposed model outperforms related models in several evaluation metrics (e.g., mean reciprocal rank, accuracy, F1-scores) while maintaining a relatively low query latency and memory usage.Keywords: efficiency, effectiveness, graph learning, language model, passage retrieval, term-matching model
Procedia PDF Downloads 15019642 Evaluation of Low-Global Warming Potential Refrigerants in Vapor Compression Heat Pumps
Authors: Hamed Jafargholi
Abstract:
Global warming presents an immense environmental risk, causing detrimental impacts on ecological systems and putting coastal areas at risk. Implementing efficient measures to minimize greenhouse gas emissions and the use of fossil fuels is essential to reducing global warming. Vapor compression heat pumps provide a practical method for harnessing energy from waste heat sources and reducing energy consumption. However, traditional working fluids used in these heat pumps generally contain a significant global warming potential (GWP), which might cause severe greenhouse effects if they are released. The goal of the emphasis on low-GWP (below 150) refrigerants is to further the vapor compression heat pumps. A classification system for vapor compression heat pumps is offered, with different boundaries based on the needed heat temperature and advancements in heat pump technology. A heat pump could be classified as a low temperature heat pump (LTHP), medium temperature heat pump (MTHP), high temperature heat pump (HTHP), or ultra-high temperature heat pump (UHTHP). The HTHP/UHTHP border is 160 °C, the MTHP/HTHP and LTHP/MTHP limits are 100 and 60 °C, respectively. The refrigerant is one of the most important parts of a vapor compression heat pump system. Presently, the main ways to choose a refrigerant are based on ozone depletion potential (ODP) and GWP, with GWP being the lowest possible value and ODP being zero. Pure low-GWP refrigerants, such as natural refrigerants (R718 and R744), hydrocarbons (R290, R600), hydrofluorocarbons (R152a and R161), hydrofluoroolefins (R1234yf, R1234ze(E)), and hydrochlorofluoroolefin (R1233zd(E)), were selected as candidates for vapor compression heat pump systems based on these selection principles. The performance, characteristics, and potential uses of these low-GWP refrigerants in heat pump systems are investigated in this paper. As vapor compression heat pumps with pure low-GWP refrigerants become more common, more and more low-grade heat can be recovered. This means that energy consumption would decrease. The research outputs showed that the refrigerants R718 for UHTHP application, R1233zd(E) for HTHP application, R600, R152a, R161, R1234ze(E) for MTHP, and R744, R290, and R1234yf for LTHP application are appropriate. The selection of an appropriate refrigerant should, in fact, take into consideration two different environmental and thermodynamic points of view. It might be argued that, depending on the situation, a trade-off between these two groups should constantly be considered. The environmental approach is now far stronger than it was previously, according to the European Union regulations. This will promote sustainable energy consumption and social development in addition to assisting in the reduction of greenhouse gas emissions and the management of global warming.Keywords: vapor compression, global warming potential, heat pumps, greenhouse
Procedia PDF Downloads 3419641 Numerical Simulation and Experimental Validation of the Tire-Road Separation in Quarter-car Model
Authors: Quy Dang Nguyen, Reza Nakhaie Jazar
Abstract:
The paper investigates vibration dynamics of tire-road separation for a quarter-car model; this separation model is developed to be close to the real situation considering the tire is able to separate from the ground plane. A set of piecewise linear mathematical models is developed and matches the in-contact and no-contact states to be considered as mother models for further investigations. The bound dynamics are numerically simulated in the time response and phase portraits. The separation analysis may determine which values of suspension parameters can delay and avoid the no-contact phenomenon, which results in improving ride comfort and eliminating the potentially dangerous oscillation. Finally, model verification is carried out in the MSC-ADAMS environment.Keywords: quarter-car vibrations, tire-road separation, separation analysis, separation dynamics, ride comfort, ADAMS validation
Procedia PDF Downloads 9219640 On Reliability of a Credit Default Swap Contract during the EMU Debt Crisis
Authors: Petra Buzkova, Milos Kopa
Abstract:
Reliability of the credit default swap market had been questioned repeatedly during the EMU debt crisis. The article examines whether this development influenced sovereign EMU CDS prices in general. We regress the CDS market price on a model risk neutral CDS price obtained from an adopted reduced form valuation model in the 2009-2013 period. We look for a break point in the single-equation and multi-equation econometric models in order to show the changes in relations between CDS market and model prices. Our results differ according to the risk profile of a country. We find that in the case of riskier countries, the relationship between the market and model price changed when market participants started to question the ability of CDS contracts to protect their buyers. Specifically, it weakened after the change. In the case of less risky countries, the change happened earlier and the effect of a weakened relationship is not observed.Keywords: chow stability test, credit default swap, debt crisis, reduced form valuation model, seemingly unrelated regression
Procedia PDF Downloads 26319639 Effect of Electromagnetic Fields at 27 GHz on Sperm Quality of Mytilus galloprovincialis
Authors: Carmen Sica, Elena M. Scalisi, Sara Ignoto, Ludovica Palmeri, Martina Contino, Greta Ferruggia, Antonio Salvaggio, Santi C. Pavone, Gino Sorbello, Loreto Di Donato, Roberta Pecoraro, Maria V. Brundo
Abstract:
Recently, a rise in the use of wireless internet technologies such as Wi-Fi and 5G routers/modems have been demonstrated. These devices emit a considerable amount of electromagnetic radiation (EMR), which could interact with the male reproductive system either by thermal or non-thermal mechanisms. The aim of this study was to investigate the direct in vitro influence of 5G radiation on sperm quality in Mytilus galloprovincialis, considered an excellent model for reproduction studies. The experiments at 27 GHz were conducted by using a no commercial high gain pyramidal horn antenna. To evaluate the specific absorption rate (SAR), a numerical simulation has been performed. The resulting incident power density was significantly lower than the power density limit of 10 mW/cm2 set by the international guidelines as a limit for nonthermal effects above 6 GHz. However, regarding temperature measurements of the aqueous sample, it has been verified an increase of 0.2°C, compared to the control samples. This very low-temperature increase couldn’t interfere with experiments. For experiments, sperm samples taken from sexually mature males of Mytilus galloprovincialis were placed in artificial seawater, salinity 30 + 1% and pH 8.3 filtered with a 0.2 m filter. After evaluating the number and quality of spermatozoa, sperm cells were exposed to electromagnetic fields a 27GHz. The effect of exposure on sperm motility and quality was evaluated after 10, 20, 30 and 40 minutes with a light microscope and also using the Eosin test to verify the vitality of the gametes. All the samples were performed in triplicate and statistical analysis was carried out using one-way analysis of variance (ANOVA) with Turkey test for multiple comparations of means to determine differences of sperm motility. A significant decrease (30%) in sperm motility was observed after 10 minutes of exposure and after 30 minutes, all sperms were immobile and not vital. Due to little literature data about this topic, these results could be useful for further studies concerning a great diffusion of these new technologies.Keywords: mussel, spermatozoa, sperm motility, millimeter waves
Procedia PDF Downloads 16919638 Dynamic Two-Way FSI Simulation for a Blade of a Small Wind Turbine
Authors: Alberto Jiménez-Vargas, Manuel de Jesús Palacios-Gallegos, Miguel Ángel Hernández-López, Rafael Campos-Amezcua, Julio Cesar Solís-Sanchez
Abstract:
An optimal wind turbine blade design must be able of capturing as much energy as possible from the wind source available at the area of interest. Many times, an optimal design means the use of large quantities of material and complicated processes that make the wind turbine more expensive, and therefore, less cost-effective. For the construction and installation of a wind turbine, the blades may cost up to 20% of the outline pricing, and become more important due to they are part of the rotor system that is in charge of transmitting the energy from the wind to the power train, and where the static and dynamic design loads for the whole wind turbine are produced. The aim of this work is the develop of a blade fluid-structure interaction (FSI) simulation that allows the identification of the major damage zones during the normal production situation, and thus better decisions for design and optimization can be taken. The simulation is a dynamic case, since we have a time-history wind velocity as inlet condition instead of a constant wind velocity. The process begins with the free-use software NuMAD (NREL), to model the blade and assign material properties to the blade, then the 3D model is exported to ANSYS Workbench platform where before setting the FSI system, a modal analysis is made for identification of natural frequencies and modal shapes. FSI analysis is carried out with the two-way technic which begins with a CFD simulation to obtain the pressure distribution on the blade surface, then these results are used as boundary condition for the FEA simulation to obtain the deformation levels for the first time-step. For the second time-step, CFD simulation is reconfigured automatically with the next time-step inlet wind velocity and the deformation results from the previous time-step. The analysis continues the iterative cycle solving time-step by time-step until the entire load case is completed. This work is part of a set of projects that are managed by a national consortium called “CEMIE-Eólico” (Mexican Center in Wind Energy Research), created for strengthen technological and scientific capacities, the promotion of creation of specialized human resources, and to link the academic with private sector in national territory. The analysis belongs to the design of a rotor system for a 5 kW wind turbine design thought to be installed at the Isthmus of Tehuantepec, Oaxaca, Mexico.Keywords: blade, dynamic, fsi, wind turbine
Procedia PDF Downloads 48219637 Microstructure, Mechanical, Electrical and Thermal Properties of the Al-Si-Ni Ternary Alloy
Authors: Aynur Aker, Hasan Kaya
Abstract:
In recent years, the use of the aluminum based alloys in the industry and technology are increasing. Alloying elements in aluminum have further been improving the strength and stiffness properties that provide superior compared to other metals. In this study, investigation of physical properties (microstructure, microhardness, tensile strength, electrical conductivity and thermal properties) in the Al-12.6wt.%Si-%2wt.Ni ternary alloy were investigated. Al-Si-Ni alloy was prepared in a graphite crucible under vacuum atmosphere. The samples were directionally solidified upwards with different growth rate (V) at constant temperature gradient G (7.73 K/mm). The microstructures (flake spacings, λ), microhardness (HV), ultimate tensile strength, electrical resistivity and thermal properties enthalpy of fusion and specific heat and melting temperature) of the samples were measured. Influence of the growth rate and flake spacings on microhardness, ultimate tensile strength and electrical resistivity were investigated and relationships between them were experimentally obtained by using regression analysis. According to results, λ values decrease with increasing V, but microhardness, ultimate tensile strength, electrical resistivity values increase with increasing V. Variations of electrical resistivity for cast samples with the temperature in the range of 300-1200 K were also measured by using a standard dc four-point probe technique. The enthalpy of fusion and specific heat for the same alloy was also determined by means of differential scanning calorimeter (DSC) from heating trace during the transformation from liquid to solid. The results obtained in this work were compared with the previous similar experimental results obtained for binary and ternary alloys.Keywords: electrical resistivity, enthalpy, microhardness, solidification, tensile stress
Procedia PDF Downloads 37619636 Effect of Lead Content on Physical Properties of the Al–Si Eutectic Alloys
Authors: Hasan Kaya
Abstract:
Effect of lead content on the microstructure, mechanical (microhardness, ultimate tensile strength) and electrical resistivity properties of Al–Si eutectic alloys has been investigated. Al–12.6 Si–xSn (x=1, 2, 4, 6 and 8 wt. %) were prepared using metals of 99.99% high purity in the vacuum atmosphere. These alloys were directionally solidified under constant temperature gradient (5.50 K/mm) and growth rate (8.25 μm/s) by using a Bridgman–type directional solidification furnace. Eutectic spacing, microhardness, ultimate tensile strength and electrical resistivity were expressed as functions of the composition by using a linear regression analysis. The dependency of the eutectic spacing, microhardness, tensile strength and electrical resistivity on the composition (Sn content) were determined. According to experimental results, the microhardness, ultimate tensile strength and electrical resistivity of the solidified samples increase with increasing the Sn content, but decrease eutectic spacing. Variation of electrical resistivity with the temperature in the range of 300-500 K for studied alloys was also measured by using a standard d.c. four-point probe technique.Keywords: content elements, solidification, microhardness, strength
Procedia PDF Downloads 29719635 Forecasting Thermal Energy Demand in District Heating and Cooling Systems Using Long Short-Term Memory Neural Networks
Authors: Kostas Kouvaris, Anastasia Eleftheriou, Georgios A. Sarantitis, Apostolos Chondronasios
Abstract:
To achieve the objective of almost zero carbon energy solutions by 2050, the EU needs to accelerate the development of integrated, highly efficient and environmentally friendly solutions. In this direction, district heating and cooling (DHC) emerges as a viable and more efficient alternative to conventional, decentralized heating and cooling systems, enabling a combination of more efficient renewable and competitive energy supplies. In this paper, we develop a forecasting tool for near real-time local weather and thermal energy demand predictions for an entire DHC network. In this fashion, we are able to extend the functionality and to improve the energy efficiency of the DHC network by predicting and adjusting the heat load that is distributed from the heat generation plant to the connected buildings by the heat pipe network. Two case-studies are considered; one for Vransko, Slovenia and one for Montpellier, France. The data consists of i) local weather data, such as humidity, temperature, and precipitation, ii) weather forecast data, such as the outdoor temperature and iii) DHC operational parameters, such as the mass flow rate, supply and return temperature. The external temperature is found to be the most important energy-related variable for space conditioning, and thus it is used as an external parameter for the energy demand models. For the development of the forecasting tool, we use state-of-the-art deep neural networks and more specifically, recurrent networks with long-short-term memory cells, which are able to capture complex non-linear relations among temporal variables. Firstly, we develop models to forecast outdoor temperatures for the next 24 hours using local weather data for each case-study. Subsequently, we develop models to forecast thermal demand for the same period, taking under consideration past energy demand values as well as the predicted temperature values from the weather forecasting models. The contributions to the scientific and industrial community are three-fold, and the empirical results are highly encouraging. First, we are able to predict future thermal demand levels for the two locations under consideration with minimal errors. Second, we examine the impact of the outdoor temperature on the predictive ability of the models and how the accuracy of the energy demand forecasts decreases with the forecast horizon. Third, we extend the relevant literature with a new dataset of thermal demand and examine the performance and applicability of machine learning techniques to solve real-world problems. Overall, the solution proposed in this paper is in accordance with EU targets, providing an automated smart energy management system, decreasing human errors and reducing excessive energy production.Keywords: machine learning, LSTMs, district heating and cooling system, thermal demand
Procedia PDF Downloads 14219634 Effect of Different Porous Media Models on Drug Delivery to Solid Tumors: Mathematical Approach
Authors: Mostafa Sefidgar, Sohrab Zendehboudi, Hossein Bazmara, Madjid Soltani
Abstract:
Based on findings from clinical applications, most drug treatments fail to eliminate malignant tumors completely even though drug delivery through systemic administration may inhibit their growth. Therefore, better understanding of tumor formation is crucial in developing more effective therapeutics. For this purpose, nowadays, solid tumor modeling and simulation results are used to predict how therapeutic drugs are transported to tumor cells by blood flow through capillaries and tissues. A solid tumor is investigated as a porous media for fluid flow simulation. Most of the studies use Darcy model for porous media. In Darcy model, the fluid friction is neglected and a few simplified assumptions are implemented. In this study, the effect of these assumptions is studied by considering Brinkman model. A multi scale mathematical method which calculates fluid flow to a solid tumor is used in this study to investigate how neglecting fluid friction affects the solid tumor simulation. In this work, the mathematical model in our previous studies is developed by considering two model of momentum equation for porous media: Darcy and Brinkman. The mathematical method involves processes such as fluid flow through solid tumor as porous media, extravasation of blood flow from vessels, blood flow through vessels and solute diffusion, convective transport in extracellular matrix. The sprouting angiogenesis model is used for generating capillary network and then fluid flow governing equations are implemented to calculate blood flow through the tumor-induced capillary network. Finally, the two models of porous media are used for modeling fluid flow in normal and tumor tissues in three different shapes of tumors. Simulations of interstitial fluid transport in a solid tumor demonstrate that the simplifications used in Darcy model affect the interstitial velocity and Brinkman model predicts a lower value for interstitial velocity than the values that Darcy model does.Keywords: solid tumor, porous media, Darcy model, Brinkman model, drug delivery
Procedia PDF Downloads 30719633 Synthesis and Characterization of Model Amines for Corrosion Applications
Authors: John Vergara, Giuseppe Palmese
Abstract:
Fundamental studies aimed at elucidating the key contributions to corrosion performance are needed to make progress toward effective and environmentally compliant corrosion control. Epoxy/amine systems are typically employed as barrier coatings for corrosion control. However, the hardening agents used for coating applications can be very complex, making fundamental studies of water and oxygen permeability challenging to carry out. Creating model building blocks for epoxy/amine coatings is the first step in carrying out these studies. We will demonstrate the synthesis and characterization of model amine building blocks from saturated fatty acids and simple amines such as diethylenetriamine (DETA) and Bis(3-aminopropyl)amine. The structure-property relationship of thermosets made from these model amines and Diglycidyl ether of bisphenol A (DGBEA) will be discussed.Keywords: building block, amine, synthesis, characterization
Procedia PDF Downloads 54119632 Aerothermal Analysis of the Brazilian 14-X Hypersonic Aerospace Vehicle at Mach Number 7
Authors: Felipe J. Costa, João F. A. Martos, Ronaldo L. Cardoso, Israel S. Rêgo, Marco A. S. Minucci, Antonio C. Oliveira, Paulo G. P. Toro
Abstract:
The Prof. Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics, at the Institute for Advanced Studies designed the Brazilian 14-X Hypersonic Aerospace Vehicle, which is a technological demonstrator endowed with two innovative technologies: waverider technology, to obtain lift from conical shockwave during the hypersonic flight; and uses hypersonic airbreathing propulsion system called scramjet that is based on supersonic combustion, to perform flights on Earth's atmosphere at 30 km altitude at Mach numbers 7 and 10. The scramjet is an aeronautical engine without moving parts that promote compression and deceleration of freestream atmospheric air at the inlet through the conical/oblique shockwaves generated during the hypersonic flight. During high speed flight, the shock waves and the viscous forces yield the phenomenon called aerodynamic heating, where this physical meaning is the friction between the fluid filaments and the body or compression at the stagnation regions of the leading edge that converts the kinetic energy into heat within a thin layer of air which blankets the body. The temperature of this layer increases with the square of the speed. This high temperature is concentrated in the boundary-layer, where heat will flow readily from the boundary-layer to the hypersonic aerospace vehicle structure. Fay and Riddell and Eckert methods are applied to the stagnation point and to the flat plate segments in order to calculate the aerodynamic heating. On the understanding of the aerodynamic heating it is important to analyze the heat conduction transfer to the 14-X waverider internal structure. ANSYS Workbench software provides the Thermal Numerical Analysis, using Finite Element Method of the 14-X waverider unpowered scramjet at 30 km altitude at Mach number 7 and 10 in terms of temperature and heat flux. Finally, it is possible to verify if the internal temperature complies with the requirements for embedded systems, and, if is necessary to do modifications on the structure in terms of wall thickness and materials.Keywords: aerodynamic heating, hypersonic, scramjet, thermal analysis
Procedia PDF Downloads 45219631 Estimation of Transition and Emission Probabilities
Authors: Aakansha Gupta, Neha Vadnere, Tapasvi Soni, M. Anbarsi
Abstract:
Protein secondary structure prediction is one of the most important goals pursued by bioinformatics and theoretical chemistry; it is highly important in medicine and biotechnology. Some aspects of protein functions and genome analysis can be predicted by secondary structure prediction. This is used to help annotate sequences, classify proteins, identify domains, and recognize functional motifs. In this paper, we represent protein secondary structure as a mathematical model. To extract and predict the protein secondary structure from the primary structure, we require a set of parameters. Any constants appearing in the model are specified by these parameters, which also provide a mechanism for efficient and accurate use of data. To estimate these model parameters there are many algorithms out of which the most popular one is the EM algorithm or called the Expectation Maximization Algorithm. These model parameters are estimated with the use of protein datasets like RS126 by using the Bayesian Probabilistic method (data set being categorical). This paper can then be extended into comparing the efficiency of EM algorithm to the other algorithms for estimating the model parameters, which will in turn lead to an efficient component for the Protein Secondary Structure Prediction. Further this paper provides a scope to use these parameters for predicting secondary structure of proteins using machine learning techniques like neural networks and fuzzy logic. The ultimate objective will be to obtain greater accuracy better than the previously achieved.Keywords: model parameters, expectation maximization algorithm, protein secondary structure prediction, bioinformatics
Procedia PDF Downloads 48119630 Copper Price Prediction Model for Various Economic Situations
Authors: Haidy S. Ghali, Engy Serag, A. Samer Ezeldin
Abstract:
Copper is an essential raw material used in the construction industry. During the year 2021 and the first half of 2022, the global market suffered from a significant fluctuation in copper raw material prices due to the aftermath of both the COVID-19 pandemic and the Russia-Ukraine war, which exposed its consumers to an unexpected financial risk. Thereto, this paper aims to develop two ANN-LSTM price prediction models, using Python, that can forecast the average monthly copper prices traded in the London Metal Exchange; the first model is a multivariate model that forecasts the copper price of the next 1-month and the second is a univariate model that predicts the copper prices of the upcoming three months. Historical data of average monthly London Metal Exchange copper prices are collected from January 2009 till July 2022, and potential external factors are identified and employed in the multivariate model. These factors lie under three main categories: energy prices and economic indicators of the three major exporting countries of copper, depending on the data availability. Before developing the LSTM models, the collected external parameters are analyzed with respect to the copper prices using correlation and multicollinearity tests in R software; then, the parameters are further screened to select the parameters that influence the copper prices. Then, the two LSTM models are developed, and the dataset is divided into training, validation, and testing sets. The results show that the performance of the 3-Month prediction model is better than the 1-Month prediction model, but still, both models can act as predicting tools for diverse economic situations.Keywords: copper prices, prediction model, neural network, time series forecasting
Procedia PDF Downloads 11319629 Water Footprint for the Palm Oil Industry in Malaysia
Authors: Vijaya Subramaniam, Loh Soh Kheang, Astimar Abdul Aziz
Abstract:
Water footprint (WFP) has gained importance due to the increase in water scarcity in the world. This study analyses the WFP for an agriculture sector, i.e., the oil palm supply chain, which produces oil palm fresh fruit bunch (FFB), crude palm oil, palm kernel, and crude palm kernel oil. The water accounting and vulnerability evaluation (WAVE) method was used. This method analyses the water depletion index (WDI) based on the local blue water scarcity. The main contribution towards the WFP at the plantation was the production of FFB from the crop itself at 0.23m³/tonne FFB. At the mill, the burden shifts to the water added during the process, which consists of the boiler and process water, which accounted for 6.91m³/tonne crude palm oil. There was a 33% reduction in the WFP when there was no dilution or water addition after the screw press at the mill. When allocation was performed, the WFP reduced by 42% as the burden was shared with the palm kernel and palm kernel shell. At the kernel crushing plant (KCP), the main contributor towards the WFP 4.96 m³/tonne crude palm kernel oil which came from the palm kernel which carried the burden from upstream followed by electricity, 0.33 m³/tonne crude palm kernel oil used for the process and 0.08 m³/tonne crude palm kernel oil for transportation of the palm kernel. A comparison was carried out for mills with biogas capture versus no biogas capture, and the WFP had no difference for both scenarios. The comparison when the KCPs operate in the proximity of mills as compared to those operating in the proximity of ports only gave a reduction of 6% for the WFP. Both these scenarios showed no difference and insignificant difference, which differed from previous life cycle assessment studies on the carbon footprint, which showed significant differences. This shows that findings change when only certain impact categories are focused on. It can be concluded that the impact from the water used by the oil palm tree is low due to the practice of no irrigation at the plantations and the high availability of water from rainfall in Malaysia. This reiterates the importance of planting oil palm trees in regions with high rainfall all year long, like the tropics. The milling stage had the most significant impact on the WFP. Mills should avoid dilution to reduce this impact.Keywords: life cycle assessment, water footprint, crude palm oil, crude palm kernel oil, WAVE method
Procedia PDF Downloads 17519628 Optimizing the Capacity of a Convolutional Neural Network for Image Segmentation and Pattern Recognition
Authors: Yalong Jiang, Zheru Chi
Abstract:
In this paper, we study the factors which determine the capacity of a Convolutional Neural Network (CNN) model and propose the ways to evaluate and adjust the capacity of a CNN model for best matching to a specific pattern recognition task. Firstly, a scheme is proposed to adjust the number of independent functional units within a CNN model to make it be better fitted to a task. Secondly, the number of independent functional units in the capsule network is adjusted to fit it to the training dataset. Thirdly, a method based on Bayesian GAN is proposed to enrich the variances in the current dataset to increase its complexity. Experimental results on the PASCAL VOC 2010 Person Part dataset and the MNIST dataset show that, in both conventional CNN models and capsule networks, the number of independent functional units is an important factor that determines the capacity of a network model. By adjusting the number of functional units, the capacity of a model can better match the complexity of a dataset.Keywords: CNN, convolutional neural network, capsule network, capacity optimization, character recognition, data augmentation, semantic segmentation
Procedia PDF Downloads 15319627 Numerical Simulation on Bacteria-Carrying Particles Transport and Deposition in an Open Surgical Wound
Authors: Xiuguo Zhao, He Li, Alireza Yazdani, Xiaoning Zheng, Xinxi Xu
Abstract:
Wound infected poses a serious threat to the surgery on the patient during the process of surgery. Understanding the bacteria-carrying particles (BCPs) transportation and deposition in the open surgical wound model play essential role in protecting wound against being infected. Therefore BCPs transportation and deposition in the surgical wound model were investigated using force-coupling method (FCM) based computational fluid dynamics. The BCPs deposition in the wound was strongly associated with BCPs diameter and concentration. The results showed that the rise on the BCPs deposition was increasing not only with the increase of BCPs diameters but also with the increase of the BCPs concentration. BCPs deposition morphology was impacted by the combination of size distribution, airflow patterns and model geometry. The deposition morphology exhibited the characteristic with BCPs deposition on the sidewall in wound model and no BCPs deposition on the bottom of the wound model mainly because the airflow movement in one direction from up to down and then side created by laminar system constructing airflow patterns and then made BCPs hard deposit in the bottom of the wound model due to wound geometry limit. It was also observed that inertial impact becomes a main mechanism of the BCPs deposition. This work may contribute to next study in BCPs deposition limit, as well as wound infected estimation in surgical-site infections.Keywords: BCPs deposition, computational fluid dynamics, force-coupling method (FCM), numerical simulation, open surgical wound model
Procedia PDF Downloads 28919626 Dissolved Oxygen Prediction Using Support Vector Machine
Authors: Sorayya Malek, Mogeeb Mosleh, Sharifah M. Syed
Abstract:
In this study, Support Vector Machine (SVM) technique was applied to predict the dichotomized value of Dissolved oxygen (DO) from two freshwater lakes namely Chini and Bera Lake (Malaysia). Data sample contained 11 parameters for water quality features from year 2005 until 2009. All data parameters were used to predicate the dissolved oxygen concentration which was dichotomized into 3 different levels (High, Medium, and Low). The input parameters were ranked, and forward selection method was applied to determine the optimum parameters that yield the lowest errors, and highest accuracy. Initial results showed that pH, water temperature, and conductivity are the most important parameters that significantly affect the predication of DO. Then, SVM model was applied using the Anova kernel with those parameters yielded 74% accuracy rate. We concluded that using SVM models to predicate the DO is feasible, and using dichotomized value of DO yields higher prediction accuracy than using precise DO value.Keywords: dissolved oxygen, water quality, predication DO, support vector machine
Procedia PDF Downloads 29019625 Dielectric Properties of Ternary Composite Based on Complex Perovskite Oxides Synthesized by Semi-Wet Route
Authors: K. D. Mandal, Anil Kumar Mourya, Ankur Khare
Abstract:
Ceramics of 0.6 CaCu3TiO12 – 0.2 Bi2/3Cu3TiO12 – 0.2 Y2/3Cu3TiO12 (i.e. 0.6CCTO-0.2BCTO-0.2 YCTO) were prepared via semi - wet route. The phase structure of the sample was identified by X-Ray diffraction. The micro structure of the sample was observed by SEM, which displays grains of different shapes having diameter in range of 2 µm–4 µm. We have studied the frequency and temperature dependence of permittivity and impedance of the compound with LCR Meter in the range of 100 Hz–1 MHz and 300–500 K. The material shows its highest dielectric constant (428000) at 100 Hz and 368 K. The material shows Debye–like relaxation and their dielectric constant are independent of frequency and temperature over a wide range. The sample shows two electrical responses in impedance formalism, indicating that there are two distinct contributions. We attribute them to grain and grain boundaries in the ceramic sample and explain the dielectric behaviors by Maxwell–Wagner relaxation arising at the interfaces between grain and their boundaries.Keywords: complex perovskite, ceramics composite, impedance study, SEM
Procedia PDF Downloads 44519624 Towards a Simulation Model to Ensure the Availability of Machines in Maintenance Activities
Authors: Maryam Gallab, Hafida Bouloiz, Youness Chater, Mohamed Tkiouat
Abstract:
The aim of this paper is to present a model based on multi-agent systems in order to manage the maintenance activities and to ensure the reliability and availability of machines just with the required resources (operators, tools). The interest of the simulation is to solve the complexity of the system and to find results without cost or wasting time. An implementation of the model is carried out on the AnyLogic platform to display the defined performance indicators.Keywords: maintenance, complexity, simulation, multi-agent systems, AnyLogic platform
Procedia PDF Downloads 30519623 Recycling of Sintered Neodymium-Iron-Boron (NdFeB) Magnet Waste via Oxidative Roasting and Selective Leaching
Authors: Woranittha Kritsarikan
Abstract:
Neodymium-iron-boron (NdFeB) magnets classified as high-power magnets are widely used in various applications such as electrical and medical devices and account for 13.5 % of the permanent magnet’s market. Since its typical composition of 29 - 32 % Nd, 64.2 – 68.5 % Fe and 1 – 1.2 % B contains a significant amount of rare earth metals and will be subjected to shortages in the future. Domestic NdFeB magnet waste recycling should therefore be developed in order to reduce social, environmental impacts toward the circular economy. Most research works focus on recycling the magnet wastes, both from the manufacturing process and end of life. Each type of wastes has different characteristics and compositions. As a result, these directly affect recycling efficiency as well as the types and purity of the recyclable products. This research, therefore, focused on the recycling of manufacturing NdFeB magnet waste obtained from the sintering stage of magnet production and the waste contained 23.6% Nd, 60.3% Fe and 0.261% B in order to recover high purity neodymium oxide (Nd₂O₃) using hybrid metallurgical process via oxidative roasting and selective leaching techniques. The sintered NdFeB waste was first ground to under 70 mesh prior to oxidative roasting at 550 - 800 ᵒC to enable selective leaching of neodymium in the subsequent leaching step using H₂SO₄ at 2.5 M over 24 hours. The leachate was then subjected to drying and roasting at 700 – 800 ᵒC prior to precipitation by oxalic acid and calcination to obtain neodymium oxide as the recycling product. According to XRD analyses, it was found that increasing oxidative roasting temperature led to the increasing amount of hematite (Fe₂O₃) as the main composition with a smaller amount of magnetite (Fe3O4) found. Peaks of neodymium oxide (Nd₂O₃) were also observed in a lesser amount. Furthermore, neodymium iron oxide (NdFeO₃) was present and its XRD peaks were pronounced at higher oxidative roasting temperature. When proceeded to acid leaching and drying, iron sulfate and neodymium sulfate were mainly obtained. After the roasting step prior to water leaching, iron sulfate was converted to form hematite as the main compound, while neodymium sulfate remained in the ingredient. However, a small amount of magnetite was still detected by XRD. The higher roasting temperature at 800 ᵒC resulted in a greater Fe2O3 to Nd2(SO4)3 ratio, indicating a more effective roasting temperature. Iron oxides were subsequently water leached and filtered out while the solution contained mainly neodymium sulfate. Therefore, low oxidative roasting temperature not exceeding 600 ᵒC followed by acid leaching and roasting at 800 ᵒC gave the optimum condition for further steps of precipitation and calcination to finally achieve neodymium oxide.Keywords: NdFeB magnet waste, oxidative roasting, recycling, selective leaching
Procedia PDF Downloads 17719622 Estimation of State of Charge, State of Health and Power Status for the Li-Ion Battery On-Board Vehicle
Authors: S. Sabatino, V. Calderaro, V. Galdi, G. Graber, L. Ippolito
Abstract:
Climate change is a rapidly growing global threat caused mainly by increased emissions of carbon dioxide (CO₂) into the atmosphere. These emissions come from multiple sources, including industry, power generation, and the transport sector. The need to tackle climate change and reduce CO₂ emissions is indisputable. A crucial solution to achieving decarbonization in the transport sector is the adoption of electric vehicles (EVs). These vehicles use lithium (Li-Ion) batteries as an energy source, making them extremely efficient and with low direct emissions. However, Li-Ion batteries are not without problems, including the risk of overheating and performance degradation. To ensure its safety and longevity, it is essential to use a battery management system (BMS). The BMS constantly monitors battery status, adjusts temperature and cell balance, ensuring optimal performance and preventing dangerous situations. From the monitoring carried out, it is also able to optimally manage the battery to increase its life. Among the parameters monitored by the BMS, the main ones are State of Charge (SoC), State of Health (SoH), and State of Power (SoP). The evaluation of these parameters can be carried out in two ways: offline, using benchtop batteries tested in the laboratory, or online, using batteries installed in moving vehicles. Online estimation is the preferred approach, as it relies on capturing real-time data from batteries while operating in real-life situations, such as in everyday EV use. Actual battery usage conditions are highly variable. Moving vehicles are exposed to a wide range of factors, including temperature variations, different driving styles, and complex charge/discharge cycles. This variability is difficult to replicate in a controlled laboratory environment and can greatly affect performance and battery life. Online estimation captures this variety of conditions, providing a more accurate assessment of battery behavior in real-world situations. In this article, a hybrid approach based on a neural network and a statistical method for real-time estimation of SoC, SoH, and SoP parameters of interest is proposed. These parameters are estimated from the analysis of a one-day driving profile of an electric vehicle, assumed to be divided into the following four phases: (i) Partial discharge (SoC 100% - SoC 50%), (ii) Partial discharge (SoC 50% - SoC 80%), (iii) Deep Discharge (SoC 80% - SoC 30%) (iv) Full charge (SoC 30% - SoC 100%). The neural network predicts the values of ohmic resistance and incremental capacity, while the statistical method is used to estimate the parameters of interest. This reduces the complexity of the model and improves its prediction accuracy. The effectiveness of the proposed model is evaluated by analyzing its performance in terms of square mean error (RMSE) and percentage error (MAPE) and comparing it with the reference method found in the literature.Keywords: electric vehicle, Li-Ion battery, BMS, state-of-charge, state-of-health, state-of-power, artificial neural networks
Procedia PDF Downloads 6719621 Numerical Simulation of the Air Pollutants Dispersion Emitted by CPH Using ANSYS CFX
Authors: Oliver Mărunţălu, Gheorghe Lăzăroiu, Elena Elisabeta Manea, Dana Andreya Bondrea, Lăcrămioara Diana Robescu
Abstract:
This paper presents the results obtained by numerical simulation of the pollutants dispersion in the atmosphere coming from the evacuation of combustion gases resulting from the fuel combustion used by electric thermal power plant using the software ANSYS CFX-CFD. The model uses the Navier-Stokes equation to simulate the dispersion of pollutants in the atmosphere. We considered as important factors in elaboration of simulation the atmospheric conditions (pressure, temperature, wind speed, wind direction), the exhaust velocity of the combustion gases, chimney height and the obstacles (buildings). Using the air quality monitoring stations we have measured the concentrations of main pollutants (SO2, NOx and PM). The pollutants were monitored over a period of 3 months, after that we calculated the average concentration, which is used by the software. The concentrations are: 8.915 μg/m3 (NOx), 9.587 μg/m3 (SO2) and 42 μg/m3 (PM). A comparison of test data with simulation results demonstrated that CFX was able to describe the dispersion of the pollutant as well the concentration of this pollutants in the atmosphere.Keywords: air pollutants, computational fluid dynamics, dispersion, simulation
Procedia PDF Downloads 45719620 Automata-Based String Analysis for Detecting Malware in Android Programs
Authors: Assad Maalouf, Lunjin Lu, James Lynott
Abstract:
We design and implement a precise model of string operations using finite state machine transformers and state transformers to approximate the values string variables can take throughout the execution of the program.We use our model to analyze Android program string variables. Our experimental results show that our string analysis is very efficient at detecting the contextual effect of string operations on the string variables. Our model proved to be very useful when it came to verifying statements about the string variables of the program.Keywords: abstract interpretation, android, static analysis, string analysis
Procedia PDF Downloads 17919619 Effects of Variable Viscosity on Radiative MHD Flow in a Porous Medium Between Twovertical Wavy Walls
Authors: A. B. Disu, M. S. Dada
Abstract:
This study was conducted to investigate two dimensional heat transfer of a free convective-radiative MHD (Magneto-hydrodynamics) flow with temperature dependent viscosity and heat source of a viscous incompressible fluid in a porous medium between two vertical wavy walls. The fluid viscosity is assumed to vary as an exponential function of temperature. The flow is assumed to consist of a mean part and a perturbed part. The perturbed quantities were expressed in terms of complex exponential series of plane wave equation. The resultant differential equations were solved by Differential Transform Method (DTM). The numerical computations were presented graphically to show the salient features of the fluid flow and heat transfer characteristics. The skin friction and Nusselt number were also analyzed for various governing parameters.Keywords: differential transform method, MHD free convection, porous medium, two dimensional radiation, two wavy walls
Procedia PDF Downloads 44719618 Dependence of Densification, Hardness and Wear Behaviors of Ti6Al4V Powders on Sintering Temperature
Authors: Adewale O. Adegbenjo, Elsie Nsiah-Baafi, Mxolisi B. Shongwe, Mercy Ramakokovhu, Peter A. Olubambi
Abstract:
The sintering step in powder metallurgy (P/M) processes is very sensitive as it determines to a large extent the properties of the final component produced. Spark plasma sintering over the past decade has been extensively used in consolidating a wide range of materials including metallic alloy powders. This novel, non-conventional sintering method has proven to be advantageous offering full densification of materials, high heating rates, low sintering temperatures, and short sintering cycles over conventional sintering methods. Ti6Al4V has been adjudged the most widely used α+β alloy due to its impressive mechanical performance in service environments, especially in the aerospace and automobile industries being a light metal alloy with the capacity for fuel efficiency needed in these industries. The P/M route has been a promising method for the fabrication of parts made from Ti6Al4V alloy due to its cost and material loss reductions and the ability to produce near net and intricate shapes. However, the use of this alloy has been largely limited owing to its relatively poor hardness and wear properties. The effect of sintering temperature on the densification, hardness, and wear behaviors of spark plasma sintered Ti6Al4V powders was investigated in this present study. Sintering of the alloy powders was performed in the 650–850°C temperature range at a constant heating rate, applied pressure and holding time of 100°C/min, 50 MPa and 5 min, respectively. Density measurements were carried out according to Archimedes’ principle and microhardness tests were performed on sectioned as-polished surfaces at a load of 100gf and dwell time of 15 s. Dry sliding wear tests were performed at varied sliding loads of 5, 15, 25 and 35 N using the ball-on-disc tribometer configuration with WC as the counterface material. Microstructural characterization of the sintered samples and wear tracks were carried out using SEM and EDX techniques. The density and hardness characteristics of sintered samples increased with increasing sintering temperature. Near full densification (99.6% of the theoretical density) and Vickers’ micro-indentation hardness of 360 HV were attained at 850°C. The coefficient of friction (COF) and wear depth improved significantly with increased sintering temperature under all the loading conditions examined, except at 25 N indicating better mechanical properties at high sintering temperatures. Worn surface analyses showed the wear mechanism was a synergy of adhesive and abrasive wears, although the former was prevalent.Keywords: hardness, powder metallurgy, spark plasma sintering, wear
Procedia PDF Downloads 27319617 Forecasting of Scaffolding Work Comfort Parameters Based on Data from Meteorological Stations
Authors: I. Szer, J. Szer, M. Pieńko, A. Robak, P. Jamińska-Gadomska
Abstract:
Work at height, such as construction works on scaffoldings, is associated with a considerable risk. Scaffolding workers are usually exposed to changing weather conditions what can additionally increase the risk of dangerous situations. Therefore, it is very important to foresee the risk of adverse conditions to which the worker may be exposed. The data from meteorological stations may be used to asses this risk. However, the dependency between weather conditions on a scaffolding and in the vicinity of meteorological station, should be determined. The paper presents an analysis of two selected environmental parameters which have influence on the behavior of workers – air temperature and wind speed. Measurements of these parameters were made between April and November of 2016 on ten scaffoldings located in different parts of Poland. They were compared with the results taken from the meteorological stations located closest to the studied scaffolding. The results gathered from the construction sites and meteorological stations were not the same, but statistical analyses have shown that they were correlated.Keywords: scaffolding, health and safety at work, temperature, wind velocity
Procedia PDF Downloads 17319616 Peculiarities of Internal Friction and Shear Modulus in 60Co γ-Rays Irradiated Monocrystalline SiGe Alloys
Authors: I. Kurashvili, G. Darsavelidze, T. Kimeridze, G. Chubinidze, I. Tabatadze
Abstract:
At present, a number of modern semiconductor devices based on SiGe alloys have been created in which the latest achievements of high technologies are used. These devices might cause significant changes to networking, computing, and space technology. In the nearest future new materials based on SiGe will be able to restrict the A3B5 and Si technologies and firmly establish themselves in medium frequency electronics. Effective realization of these prospects requires the solution of prediction and controlling of structural state and dynamical physical –mechanical properties of new SiGe materials. Based on these circumstances, a complex investigation of structural defects and structural-sensitive dynamic mechanical characteristics of SiGe alloys under different external impacts (deformation, radiation, thermal cycling) acquires great importance. Internal friction (IF) and shear modulus temperature and amplitude dependences of the monocrystalline boron-doped Si1-xGex(x≤0.05) alloys grown by Czochralski technique is studied in initial and 60Co gamma-irradiated states. In the initial samples, a set of dislocation origin relaxation processes and accompanying modulus defects are revealed in a temperature interval of 400-800 ⁰C. It is shown that after gamma-irradiation intensity of relaxation internal friction in the vicinity of 280 ⁰C increases and simultaneously activation parameters of high temperature relaxation processes reveal clear rising. It is proposed that these changes of dynamical mechanical characteristics might be caused by a decrease of the dislocation mobility in the Cottrell atmosphere enriched by the radiation defects.Keywords: internal friction, shear modulus, gamma-irradiation, SiGe alloys
Procedia PDF Downloads 14319615 Predicting Loss of Containment in Surface Pipeline using Computational Fluid Dynamics and Supervised Machine Learning Model to Improve Process Safety in Oil and Gas Operations
Authors: Muhammmad Riandhy Anindika Yudhy, Harry Patria, Ramadhani Santoso
Abstract:
Loss of containment is the primary hazard that process safety management is concerned within the oil and gas industry. Escalation to more serious consequences all begins with the loss of containment, starting with oil and gas release from leakage or spillage from primary containment resulting in pool fire, jet fire and even explosion when reacted with various ignition sources in the operations. Therefore, the heart of process safety management is avoiding loss of containment and mitigating its impact through the implementation of safeguards. The most effective safeguard for the case is an early detection system to alert Operations to take action prior to a potential case of loss of containment. The detection system value increases when applied to a long surface pipeline that is naturally difficult to monitor at all times and is exposed to multiple causes of loss of containment, from natural corrosion to illegal tapping. Based on prior researches and studies, detecting loss of containment accurately in the surface pipeline is difficult. The trade-off between cost-effectiveness and high accuracy has been the main issue when selecting the traditional detection method. The current best-performing method, Real-Time Transient Model (RTTM), requires analysis of closely positioned pressure, flow and temperature (PVT) points in the pipeline to be accurate. Having multiple adjacent PVT sensors along the pipeline is expensive, hence generally not a viable alternative from an economic standpoint.A conceptual approach to combine mathematical modeling using computational fluid dynamics and a supervised machine learning model has shown promising results to predict leakage in the pipeline. Mathematical modeling is used to generate simulation data where this data is used to train the leak detection and localization models. Mathematical models and simulation software have also been shown to provide comparable results with experimental data with very high levels of accuracy. While the supervised machine learning model requires a large training dataset for the development of accurate models, mathematical modeling has been shown to be able to generate the required datasets to justify the application of data analytics for the development of model-based leak detection systems for petroleum pipelines. This paper presents a review of key leak detection strategies for oil and gas pipelines, with a specific focus on crude oil applications, and presents the opportunities for the use of data analytics tools and mathematical modeling for the development of robust real-time leak detection and localization system for surface pipelines. A case study is also presented.Keywords: pipeline, leakage, detection, AI
Procedia PDF Downloads 191