Search results for: well data integration
22797 Observatory of Sustainability of the Algarve Region for Tourism: Proposal for Environmental and Sociocultural Indicators
Authors: Miguel José Oliveira, Fátima Farinha, Elisa M. J. da Silva, Rui Lança, Manuel Duarte Pinheiro, Cátia Miguel
Abstract:
The Observatory of Sustainability of the Algarve Region for Tourism (OBSERVE) will be a valuable tool to assess the sustainability of this region. The OBSERVE tool is designed to provide data and maintain an up-to-date, consistent set of indicators defined to describe the region on the environmental, sociocultural, economic and institutional domains. This ongoing two-year project has the active participation of the Algarve’s stakeholders, since they were consulted and asked to participate in the discussion for the indicators proposal. The environmental and sociocultural indicators chosen must indicate the characteristics of the region and should be in alignment with other global systems used to monitor the sustainability. This paper presents a review of sustainability indicators systems that support the first proposal for the environmental and sociocultural indicators. Others constraints are discussed, namely the existing data and the data available in digital platforms in a format suitable for automatic importation to the platform of OBSERVE. It is intended that OBSERVE will be a valuable tool to assess the sustainability of the region of Algarve.Keywords: Algarve, development, environmental indicators, observatory, sociocultural indicators, sustainability, tourism
Procedia PDF Downloads 17622796 Emerging Cyber Threats and Cognitive Vulnerabilities: Cyberterrorism
Authors: Oludare Isaac Abiodun, Esther Omolara Abiodun
Abstract:
The purpose of this paper is to demonstrate that cyberterrorism is existing and poses a threat to computer security and national security. Nowadays, people have become excitedly dependent upon computers, phones, the Internet, and the Internet of things systems to share information, communicate, conduct a search, etc. However, these network systems are at risk from a different source that is known and unknown. These network systems risk being caused by some malicious individuals, groups, organizations, or governments, they take advantage of vulnerabilities in the computer system to hawk sensitive information from people, organizations, or governments. In doing so, they are engaging themselves in computer threats, crime, and terrorism, thereby making the use of computers insecure for others. The threat of cyberterrorism is of various forms and ranges from one country to another country. These threats include disrupting communications and information, stealing data, destroying data, leaking, and breaching data, interfering with messages and networks, and in some cases, demanding financial rewards for stolen data. Hence, this study identifies many ways that cyberterrorists utilize the Internet as a tool to advance their malicious mission, which negatively affects computer security and safety. One could identify causes for disparate anomaly behaviors and the theoretical, ideological, and current forms of the likelihood of cyberterrorism. Therefore, for a countermeasure, this paper proposes the use of previous and current computer security models as found in the literature to help in countering cyberterrorismKeywords: cyberterrorism, computer security, information, internet, terrorism, threat, digital forensic solution
Procedia PDF Downloads 9622795 Reliability Prediction of Tires Using Linear Mixed-Effects Model
Authors: Myung Hwan Na, Ho- Chun Song, EunHee Hong
Abstract:
We widely use normal linear mixed-effects model to analysis data in repeated measurement. In case of detecting heteroscedasticity and the non-normality of the population distribution at the same time, normal linear mixed-effects model can give improper result of analysis. To achieve more robust estimation, we use heavy tailed linear mixed-effects model which gives more exact and reliable analysis conclusion than standard normal linear mixed-effects model.Keywords: reliability, tires, field data, linear mixed-effects model
Procedia PDF Downloads 56422794 An Optimal Path for Virtual Reality Education using Association Rules
Authors: Adam Patterson
Abstract:
This study analyzes the self-reported experiences of virtual reality users to develop insight into an optimal learning path for education within virtual reality. This research uses a sample of 1000 observations to statistically define factors influencing (i) immersion level and (ii) motion sickness rating for virtual reality experience respondents of college age. This paper recommends an efficient duration for each virtual reality session, to minimize sickness and maximize engagement, utilizing modern machine learning methods such as association rules. The goal of this research, in augmentation with previous literature, is to inform logistical decisions relating to implementation of pilot instruction for virtual reality at the collegiate level. Future research will include a Randomized Control Trial (RCT) to quantify the effect of virtual reality education on student learning outcomes and engagement measures. Current research aims to maximize the treatment effect within the RCT by optimizing the learning benefits of virtual reality. Results suggest significant gender heterogeneity amongst likelihood of reporting motion sickness. Females are 1.7 times more likely, than males, to report high levels of motion sickness resulting from a virtual reality experience. Regarding duration, respondents were 1.29 times more likely to select the lowest level of motion sickness after an engagement lasting between 24.3 and 42 minutes. Conversely, respondents between 42 to 60 minutes were 1.2 times more likely to select the higher levels of motion sickness.Keywords: applications and integration of e-education, practices and cases in e-education, systems and technologies in e-education, technology adoption and diffusion of e-learning
Procedia PDF Downloads 6722793 Data Quality and Associated Factors on Regular Immunization Programme at Ararso District: Somali Region- Ethiopia
Authors: Eyob Seife, Molla Alemayaehu, Tesfalem Teshome, Bereket Seyoum, Behailu Getachew
Abstract:
Globally, immunization averts between 2 and 3 million deaths yearly, but Vaccine-Preventable Diseases still account for more in Sub-Saharan African countries and takes the majority of under-five deaths yearly, which indicates the need for consistent and on-time information to have evidence-based decision so as to save lives of these vulnerable groups. However, ensuring data of sufficient quality and promoting an information-use culture at the point of collection remains critical and challenging, especially in remote areas where the Ararso district is selected based on a hypothesis of there is a difference in reported and recounted immunization data consistency. Data quality is dependent on different factors where organizational, behavioral, technical and contextual factors are the mentioned ones. A cross-sectional quantitative study was conducted on September 2022 in the Ararso district. The study used the world health organization (WHO) recommended data quality self-assessment (DQS) tools. Immunization tally sheets, registers and reporting documents were reviewed at 4 health facilities (1 health center and 3 health posts) of primary health care units for one fiscal year (12 months) to determine the accuracy ratio, availability and timeliness of reports. The data was collected by trained DQS assessors to explore the quality of monitoring systems at health posts, health centers, and at the district health office. A quality index (QI), availability and timeliness of reports were assessed. Accuracy ratios formulated were: the first and third doses of pentavalent vaccines, fully immunized (FI), TT2+ and the first dose of measles-containing vaccines (MCV). In this study, facility-level results showed poor timeliness at all levels and both over-reporting and under-reporting were observed at all levels when computing the accuracy ratio of registration to health post reports found at health centers for almost all antigens verified. A quality index (QI) of all facilities also showed poor results. Most of the verified immunization data accuracy ratios were found to be relatively better than that of quality index and timeliness of reports. So attention should be given to improving the capacity of staff, timeliness of reports and quality of monitoring system components, namely recording, reporting, archiving, data analysis and using information for decisions at all levels, especially in remote and areas.Keywords: accuracy ratio, ararso district, quality of monitoring system, regular immunization program, timeliness of reports, Somali region-Ethiopia
Procedia PDF Downloads 7222792 Synergistic Effect of Zr-Modified Cu-ZnO-Al₂O₃ and Bio-Templated HZSM-5 Catalysts in CO₂ Hydrogenation to Methanol and DME
Authors: Abrar Hussain, Kuen-Song Lin, Sayed Maeen Badshah, Jamshid Hussain
Abstract:
The conversion of CO₂ into versatile, useful compounds such as fuels and other chemicals remains a challenging frontier in research, demanding the innovation of increasingly effective catalysts. In the present work, a catalyst-incorporating zirconium (Zr) modification within CuO–ZnO–Al₂O₃ (CZA) was synthesized via a co-precipitation method to convert CO₂ into methanol. Furthermore, bio-HZSM-5 was used to promote methanol dehydration to produce dimethyl ether (DME). We prepared the porous hierarchy bio-HZSM-5 with remarkable pore connectivity by utilizing an economical loofah sponge and rice husks as biotemplates. The synthesized catalysts were characterized using Field Emission Scanning Electron Microscopy (FE-SEM), X–ray diffraction (XRD), N₂ adsorption (BET), temperature-programmed desorption (NH₃-TPD) and thermogravimetric analysis (TGA). The Zr addition improved the performance of the CZZA catalyst as a structural promoter, leading to increased DME selectivity and total carbon conversion by enhancing active sites, surface area, and the synergistic interfaces between CuO and ZnO. The presence of silicon in the biomass, notably from the loofah sponge (0.016 wt %) and rice husks (8.3 wt %), also performed a pivotal role in the preparation of bio-HZSM-5. Furthermore, contrasted to the CZZA/com-ZSM-5 catalyst, the integration of CZZA with bio-HZSM-5-L bifunctional catalyst achieved the highest DME yield (12.1 %), DME selectivity (58.6%), CO₂ conversion (22.5%) at 280 °C and 30 bar. The payback time for 5 and 10-tons per day (5 and10-TPD) DME formation using the catalytic process of CO₂ from petrochemical refinery plant waste gas emissions was 2.98 and 2.44 years, respectively.Keywords: Cost assessment, Dimethyl ether, low-cost bio-HZSM-5, CZZA catalyst, CO₂ hydrogenation
Procedia PDF Downloads 1122791 Characterization of the Pore System and Gas Storage Potential in Unconventional Reservoirs: A Case of Study of the Cretaceous la Luna Formation, Middle Magdalena Valley Basin, Colombia
Authors: Carlos Alberto Ríos-Reyes, Efraín Casadiego-Quintero
Abstract:
We propose a generalized workflow for mineralogy investigation of unconventional reservoirs using multi-scale imaging and pore-scale analyses. This workflow can be used for the integral evaluation of these resources. The Cretaceous La Luna Formation´s mudstones in the Middle Magdalena Valley Basin (Colombia) inherently show a heterogeneous pore system with organic and inorganic pores. For this reason, it is necessary to carry out the integration of high resolution 2D images of mapping by conventional petrography, scanning electron microscopy and quantitative evaluation of minerals by scanning electron microscopy to describe their organic and inorganic porosity to understand the transport mechanism through pores. The analyzed rocks show several pore types, including interparticle pores, organoporosity, intraparticle pores, intraparticle pores, and microchannels and/or microfractures. The existence of interconnected pores in pore system of these rocks promotes effective pathways for primary gas migration and storage space for residual hydrocarbons in mudstones, which is very useful in this type of gas reservoirs. It is crucial to understand not only the porous system of these rocks and their mineralogy but also to project the gas flow in order to design the appropriate strategies for the stimulation of unconventional reservoirs. Keywords: mudstones; La Luna Formation; gas storage; migration; hydrocarbon.Keywords: mudstones, La luna formation, gas storage, migration, hydrocarbon
Procedia PDF Downloads 7622790 Study on the Demolition Waste Management in Malaysia Construction Industry
Authors: Gunalan Vasudevan
Abstract:
The Malaysia construction industry generates a large quantity of construction and demolition waste nowadays. In the handbook for demolition work only comprised small portion of demolition waste management. It is important to study and determine the ways to provide a practical guide for the professional in the building industry about handling the demolition waste. In general, demolition defined as tearing down or wrecking of structural work or architectural work of the building and other infrastructures work such as road, bridge and etc. It’s a common misconception that demolition is nothing more than taking down a structure and carrying the debris to a landfill. On many projects, 80-90% of the structure is kept for reuse or recycling which help the owner to save cost. Demolition contractors required a lot of knowledge and experience to minimize the impact of demolition work to the existing surrounding area. For data collecting method, postal questionnaires and interviews have been selected to collect data. Questionnaires have distributed to 80 respondents from the construction industry in Klang Valley. 67 of 80 respondents have replied the questionnaire while 4 people have interviewed. Microsoft Excel and Statistical Package for Social Science version 17.0 were used to analyze the data collected.Keywords: demolition, waste management, construction material, Malaysia
Procedia PDF Downloads 44322789 LTE Performance Analysis in the City of Bogota Northern Zone for Two Different Mobile Broadband Operators over Qualipoc
Authors: Víctor D. Rodríguez, Edith P. Estupiñán, Juan C. Martínez
Abstract:
The evolution in mobile broadband technologies has allowed to increase the download rates in users considering the current services. The evaluation of technical parameters at the link level is of vital importance to validate the quality and veracity of the connection, thus avoiding large losses of data, time and productivity. Some of these failures may occur between the eNodeB (Evolved Node B) and the user equipment (UE), so the link between the end device and the base station can be observed. LTE (Long Term Evolution) is considered one of the IP-oriented mobile broadband technologies that work stably for data and VoIP (Voice Over IP) for those devices that have that feature. This research presents a technical analysis of the connection and channeling processes between UE and eNodeB with the TAC (Tracking Area Code) variables, and analysis of performance variables (Throughput, Signal to Interference and Noise Ratio (SINR)). Three measurement scenarios were proposed in the city of Bogotá using QualiPoc, where two operators were evaluated (Operator 1 and Operator 2). Once the data were obtained, an analysis of the variables was performed determining that the data obtained in transmission modes vary depending on the parameters BLER (Block Error Rate), performance and SNR (Signal-to-Noise Ratio). In the case of both operators, differences in transmission modes are detected and this is reflected in the quality of the signal. In addition, due to the fact that both operators work in different frequencies, it can be seen that Operator 1, despite having spectrum in Band 7 (2600 MHz), together with Operator 2, is reassigning to another frequency, a lower band, which is AWS (1700 MHz), but the difference in signal quality with respect to the establishment with data by the provider Operator 2 and the difference found in the transmission modes determined by the eNodeB in Operator 1 is remarkable.Keywords: BLER, LTE, network, qualipoc, SNR.
Procedia PDF Downloads 11522788 Management and Marketing Implications of Tourism Gravity Models
Authors: Clive L. Morley
Abstract:
Gravity models and panel data modelling of tourism flows are receiving renewed attention, after decades of general neglect. Such models have quite different underpinnings from conventional demand models derived from micro-economic theory. They operate at a different level of data and with different theoretical bases. These differences have important consequences for the interpretation of the results and their policy and managerial implications. This review compares and contrasts the two model forms, clarifying the distinguishing features and the estimation requirements of each. In general, gravity models are not recommended for use to address specific management and marketing purposes.Keywords: gravity models, micro-economics, demand models, marketing
Procedia PDF Downloads 43922787 Indigenous Women and Intimate Partner Homicide in Australia: Preventing Future Deaths through Law, Policy and Practice Change
Authors: Kyllie Cripps
Abstract:
In Australia, not dissimilar to other jurisdictions with indigenous populations, indigenous women are more likely to experience violence than any other section of society. In recent years in response to horrific examples of Indigenous women’s deaths, Australian Coronial courts have investigated, wanting to know more about the circumstances that led to the deaths. This paper critically examined 12 Coronial Court investigations from around Australia, analyzing them thematically. The analysis highlighted the differential vulnerability of indigenous women to intimate partner homicides. In all the cases reviewed, it was evident that the women’s deaths, in most instances were entirely preventable. Evidence was also presented demonstrating that services were aware of the women’s heightened risks but were unable to sufficiently coordinate themselves to provide wrap around support to minimise the risk of violence and to maximise the women’s safety. Consequently, putting the women in environments where their deaths were both predictable and inevitable. The profound system failings at the intersections of law, policy, and practice have ultimately cost indigenous women their lives. This paper firstly explores the nuances of the Coronial Court findings – demonstrating the similarities and differences present within the cases. Part two interrogates the reported system failings, and part three considers potential improvements in system integration to prevent future deaths. The paper concludes recognizing that Indigenous women play important valued roles in indigenous communities, their loss has profound costs and consequences, and to honor their memory, we must learn from their deaths and improve responses to intimate partner violence.Keywords: homicide, intimate partner violence, indigenous women
Procedia PDF Downloads 18122786 Stem Cell Fate Decision Depending on TiO2 Nanotubular Geometry
Authors: Jung Park, Anca Mazare, Klaus Von Der Mark, Patrik Schmuki
Abstract:
In clinical application of TiO2 implants on tooth and hip replacement, migration, adhesion and differentiation of neighboring mesenchymal stem cells onto implant surfaces are critical steps for successful bone regeneration. In a recent decade, accumulated attention has been paid on nanoscale electrochemical surface modifications on TiO2 layer for improving bone-TiO2 surface integration. We generated, on titanium surfaces, self-assembled layers of vertically oriented TiO2 nanotubes with defined diameters between 15 and 100 nm and here we show that mesenchymal stem cells finely sense TiO2 nanotubular geometry and quickly decide their cell fate either to differentiation into osteoblasts or to programmed cell death (apoptosis) on TiO2 nanotube layers. These cell fate decisions are critically dependent on nanotube size differences (15-100nm in diameters) of TiO2 nanotubes sensing by integrin clustering. We further demonstrate that nanoscale topography-sensing is feasible not only in mesenchymal stem cells but rather seems as generalized nanoscale microenvironment-cell interaction mechanism in several cell types composing bone tissue network including osteoblasts, osteoclast, endothelial cells and hematopoietic stem cells. Additionally we discuss the synergistic effect of simultaneous stimulation by nanotube-bound growth factor and nanoscale topographic cues on enhanced bone regeneration.Keywords: TiO2 nanotube, stem cell fate decision, nano-scale microenvironment, bone regeneration
Procedia PDF Downloads 43222785 The Forensic Swing of Things: The Current Legal and Technical Challenges of IoT Forensics
Authors: Pantaleon Lutta, Mohamed Sedky, Mohamed Hassan
Abstract:
The inability of organizations to put in place management control measures for Internet of Things (IoT) complexities persists to be a risk concern. Policy makers have been left to scamper in finding measures to combat these security and privacy concerns. IoT forensics is a cumbersome process as there is no standardization of the IoT products, no or limited historical data are stored on the devices. This paper highlights why IoT forensics is a unique adventure and brought out the legal challenges encountered in the investigation process. A quadrant model is presented to study the conflicting aspects in IoT forensics. The model analyses the effectiveness of forensic investigation process versus the admissibility of the evidence integrity; taking into account the user privacy and the providers’ compliance with the laws and regulations. Our analysis concludes that a semi-automated forensic process using machine learning, could eliminate the human factor from the profiling and surveillance processes, and hence resolves the issues of data protection (privacy and confidentiality).Keywords: cloud forensics, data protection Laws, GDPR, IoT forensics, machine Learning
Procedia PDF Downloads 15022784 Internal and External Overpressure Calculation for Vented Gas Explosion by Using a Combined Computational Fluid Dynamics Approach
Abstract:
Recent oil and gas accidents have reminded us the severe consequences of gas explosion on structure damage and financial loss. In order to protect the structures and personnel, engineers and researchers have been working on numerous different explosion mitigation methods. Amongst, venting is the most economical approach to mitigate gas explosion overpressure. In this paper, venting is used as the overpressure alleviation method. A theoretical method and a numerical technique are presented to predict the internal and external pressure from vented gas explosion in a large enclosure. Under idealized conditions, a number of experiments are used to calibrate the accuracy of the theoretically calculated data. A good agreement between the theoretical results and experimental data is seen. However, for realistic scenarios, the theoretical method over-estimates internal pressures and is incapable of predicting external pressures. Therefore, a CFD simulation procedure is proposed in this study to estimate both the internal and external overpressure from a large-scale vented explosion. Satisfactory agreement between CFD simulation results and experimental data is achieved.Keywords: vented gas explosion, internal pressure, external pressure, CFD simulation, FLACS, ANSYS Fluent
Procedia PDF Downloads 16122783 Investigation and Estimation of State of Health of Battery Pack in Battery Electric Vehicles-Online Battery Characterization
Authors: Ali Mashayekh, Mahdiye Khorasani, Thomas Weyh
Abstract:
The tendency to use the Battery-Electric vehicle (BEV) for the low and medium driving range or even high driving range has been growing more and more. As a result, higher safety, reliability, and durability of the battery pack as a component of electric vehicles, which has a great share of cost and weight of the final product, are the topics to be considered and investigated. Battery aging can be considered as the predominant factor regarding the reliability and durability of BEV. To better understand the aging process, offline battery characterization has been widely used, which is time-consuming and needs very expensive infrastructures. This paper presents the substitute method for the conventional battery characterization methods, which is based on battery Modular Multilevel Management (BM3). According to this Topology, the battery cells can be drained and charged concerning their capacity, which allows varying battery pack structures. Due to the integration of the power electronics, the output voltage of the battery pack is no longer fixed but can be dynamically adjusted in small steps. In other words, each cell can have three different states, namely series, parallel, and bypass in connection with the neighbor cells. With the help of MATLAB/Simulink and by using the BM3 modules, the battery string model is created. This model allows us to switch two cells with the different SoC as parallel, which results in the internal balancing of the cells. But if the parallel switching lasts just for a couple of ms, we can have a perturbation pulse which can stimulate the cells out of the relaxation phase. With the help of modeling the voltage response pulse of the battery, it would be possible to characterize the cell. The Online EIS method, which is discussed in this paper, can be a robust substitute for the conventional battery characterization methods.Keywords: battery characterization, SoH estimation, RLS, BEV
Procedia PDF Downloads 14922782 A Deep Learning Approach for the Predictive Quality of Directional Valves in the Hydraulic Final Test
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
The increasing use of deep learning applications in production is becoming a competitive advantage. Predictive quality enables the assurance of product quality by using data-driven forecasts via machine learning models as a basis for decisions on test results. The use of real Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the leakage of directional valves.Keywords: artificial neural networks, classification, hydraulics, predictive quality, deep learning
Procedia PDF Downloads 24422781 Contemporary Challenges in Public Relations in the Context of Globalization
Authors: Marine Kobalava, Eter Narimanishvili, Nino Grigolaia
Abstract:
The paper analyzes the contemporary problems of public relations in Georgia. The approaches to public attitudes towards the relationship with the population of the country are studied on a global scale, the importance of forming the concept of public relations in Georgia in terms of globalization is justified. The basic components of public relations are characterized by the RACE system, namely analyzing research, action, communication, evaluation. The main challenges of public relations are identified in the research process; taking into consideration the scope of globalization, the influence of social, economic, and political changes in Georgia on PR development are identified. The article discusses the public relations as the strategic management function that facilitates communication with the society, recognition of public interests, and their prediction. In addition, the feminization of the sector is considered to be the most important achievement of public relations in the modern world. The conclusion is that the feminization indicator of the field is an unconditional increase in the employment rates of women. In the paper, the problems of globalization and public relations in the industrial countries are studied, the directions of improvement of public relations with the background of peculiarities of different countries and globalization process are proposed. Public relations under globalization are assessed in accordance with the theory of benefits and requirements, and the requirements are classified according to informational, self-identification, integration, social interaction, and other types of signs. In the article, conclusions on the current challenges of public relations in Georgia are made, and the recommendations for their solution, taking into consideration globalization processes in the world, are proposed.Keywords: public relations, globalization, RACE system, public relationship concept, feminization
Procedia PDF Downloads 17122780 A Study of Various Ontology Learning Systems from Text and a Look into Future
Authors: Fatima Al-Aswadi, Chan Yong
Abstract:
With the large volume of unstructured data that increases day by day on the web, the motivation of representing the knowledge in this data in the machine processable form is increased. Ontology is one of the major cornerstones of representing the information in a more meaningful way on the semantic Web. The goal of Ontology learning from text is to elicit and represent domain knowledge in the machine readable form. This paper aims to give a follow-up review on the ontology learning systems from text and some of their defects. Furthermore, it discusses how far the ontology learning process will enhance in the future.Keywords: concept discovery, deep learning, ontology learning, semantic relation, semantic web
Procedia PDF Downloads 52222779 Stature Prediction from Anthropometry of Extremities among Jordanians
Authors: Amal A. Mashali, Omar Eltaweel, Elerian Ekladious
Abstract:
Stature of an individual has an important role in identification, which is often required in medico-legal practice. The estimation of stature is an important step in the identification of dismembered remains or when only a part of a skeleton is only available as in major disasters or with mutilation. There is no published data on anthropological data among Jordanian population. The present study was designed in order to find out relationship of stature to some anthropometric measures among a sample of Jordanian population and to determine the most accurate and reliable one in predicting the stature of an individual. A cross sectional study was conducted on 336 adult healthy volunteers , free of bone diseases, nutritional diseases and abnormalities in the extremities after taking their consent. Students of Faculty of Medicine, Mutah University helped in collecting the data. The anthropometric measurements (anatomically defined) were stature, humerus length, hand length and breadth, foot length and breadth, foot index and knee height on both right and left sides of the body. The measurements were typical on both sides of the bodies of the studied samples. All the anthropologic data showed significant relation with age except the knee height. There was a significant difference between male and female measurements except for the foot index where F= 0.269. There was a significant positive correlation between the different measures and the stature of the individuals. Three equations were developed for estimation of stature. The most sensitive measure for prediction of a stature was found to be the humerus length.Keywords: foot index, foot length, hand length, humerus length, stature
Procedia PDF Downloads 30622778 Internalizing and Externalizing Problems as Predictors of Student Wellbeing
Authors: Nai-Jiin Yang, Tyler Renshaw
Abstract:
Prior research has suggested that youth internalizing and externalizing problems significantly correlate with student subjective wellbeing (SSW) and achievement problems (SAP). Yet, only a few studies have used data from mental health screener based on the dual-factor model to explore the empirical relationships among internalizing problems, externalizing problems, academic problems, and student wellbeing. This study was conducted through a secondary analysis of previously collected data in school-wide mental health screening activities across secondary schools within a suburban school district in the western United States. The data set included 1880 student responses from a total of two schools. Findings suggest that both internalizing and externalizing problems are substantial predictors of both student wellbeing and academic problems. However, compared to internalizing problems, externalizing problems were a much stronger predictor of academic problems. Moreover, this study did not support academic problems that moderate the relationship between SSW and youth internalizing problems (YIP) and between youth externalizing problems (YEP) and SSW. Lastly, SAP is the strongest predictor of SSW than YIP and YEP.Keywords: academic problems, externalizing problems, internalizing problems, school mental health, student wellbeing, universal mental health screening
Procedia PDF Downloads 8422777 A Generative Adversarial Framework for Bounding Confounded Causal Effects
Authors: Yaowei Hu, Yongkai Wu, Lu Zhang, Xintao Wu
Abstract:
Causal inference from observational data is receiving wide applications in many fields. However, unidentifiable situations, where causal effects cannot be uniquely computed from observational data, pose critical barriers to applying causal inference to complicated real applications. In this paper, we develop a bounding method for estimating the average causal effect (ACE) under unidentifiable situations due to hidden confounders. We propose to parameterize the unknown exogenous random variables and structural equations of a causal model using neural networks and implicit generative models. Then, with an adversarial learning framework, we search the parameter space to explicitly traverse causal models that agree with the given observational distribution and find those that minimize or maximize the ACE to obtain its lower and upper bounds. The proposed method does not make any assumption about the data generating process and the type of the variables. Experiments using both synthetic and real-world datasets show the effectiveness of the method.Keywords: average causal effect, hidden confounding, bound estimation, generative adversarial learning
Procedia PDF Downloads 19122776 Measurement of Operational and Environmental Performance of the Coal-Fired Power Plants in India by Using Data Envelopment Analysis
Authors: Vijay Kumar Bajpai, Sudhir Kumar Singh
Abstract:
In this study, the performance analyses of the twenty five coal-fired power plants (CFPPs) used for electricity generation are carried out through various data envelopment analysis (DEA) models. Three efficiency indices are defined and pursued. During the calculation of the operational performance, energy and non-energy variables are used as input, and net electricity produced is used as desired output. CO2 emitted to the environment is used as the undesired output in the computation of the pure environmental performance while in Model-3 CO2 emissions is considered as detrimental input in the calculation of operational and environmental performance. Empirical results show that most of the plants are operating in increasing returns to scale region and Mettur plant is efficient one with regards to energy use and environment. The result also indicates that the undesirable output effect is insignificant in the research sample. The present study will provide clues to plant operators towards raising the operational and environmental performance of CFPPs.Keywords: coal fired power plants, environmental performance, data envelopment analysis, operational performance
Procedia PDF Downloads 45522775 A Model for Academic Coaching for Success and Inclusive Excellence in Science, Technology, Engineering, and Mathematics Education
Authors: Sylvanus N. Wosu
Abstract:
Research shows that factors, such as low motivation, preparation, resources, emotional and social integration, and fears of risk-taking, are the most common barriers to access, matriculation, and retention into science, technology, engineering, and mathematics (STEM) disciplines for underrepresented (URM) students. These factors have been shown to impact students’ attraction and success in STEM fields. Standardized tests such as the SAT and ACT often used as predictor of success, are not always true predictors of success for African and Hispanic American students. Without an adequate academic support environment, even a high SAT score does not guarantee academic success in science and engineering. This paper proposes a model for Academic Coaching for building success and inclusive excellence in STEM education. Academic coaching is framed as a process of motivating students to be independent learners through relational mentorship, facilitating learning supports inside and outside of the classroom or school environment, and developing problem-solving skills and success attitudes that lead to higher performance in the specific subjects. The model is formulated based on best strategies and practices for enriching Academic Performance Impact skills and motivating students’ interests in STEM. A scaled model for measuring the Academic Performance Impact (API) index and STEM is discussed. The study correlates API with state standardized test and shows that the average impact of those skills can be predicted by the Academic Performance Impact (API) index or Academic Preparedness Index.Keywords: diversity, equity, graduate education, inclusion, inclusive excellence, model
Procedia PDF Downloads 20122774 Optimizing Multimodal Teaching Strategies for Enhanced Engagement and Performance
Authors: Victor Milanes, Martha Hubertz
Abstract:
In the wake of COVID-19, all aspects of life have been estranged, and humanity has been forced to shift toward a more technologically integrated mode of operation. Essential work such as Healthcare, business, and public policy are a few notable industries that were initially dependent upon face-to-face modality but have completely reimagined their operation style. Unique to these fields, education was particularly strained because academics, teachers, and professors alike were obligated to shift their curriculums online over the course of a few weeks while also maintaining the expectation that they were educating their students to a similar level accomplished pre-pandemic. This was notable as research indicates two key concepts: Students prefer face-to-face modality, and due to the disruption in academic continuity/style, there was a negative impact on student's overall education and performance. With these two principles in mind, this study aims to inquire what online strategies could be best employed by teachers to educate their students, as well as what strategies could be adopted in a multimodal setting if deemed necessary by the instructor or outside convoluting factors (Such as the case of COVID-19, or a personal matter that demands the teacher's attention away from the classroom). Strategies and methods will be cross-analyzed via a ranking system derived from various recognized teaching assessments, in which engagement, retention, flexibility, interest, and performance are specifically accounted for. We expect to see an emphasis on positive social pressure as a dominant factor in the improved propensity for education, as well as a preference for visual aids across platforms, as research indicates most individuals are visual learners.Keywords: technological integration, multimodal teaching, education, student engagement
Procedia PDF Downloads 6122773 Estimation of Maize Yield by Using a Process-Based Model and Remote Sensing Data in the Northeast China Plain
Authors: Jia Zhang, Fengmei Yao, Yanjing Tan
Abstract:
The accurate estimation of crop yield is of great importance for the food security. In this study, a process-based mechanism model was modified to estimate yield of C4 crop by modifying the carbon metabolic pathway in the photosynthesis sub-module of the RS-P-YEC (Remote-Sensing-Photosynthesis-Yield estimation for Crops) model. The yield was calculated by multiplying net primary productivity (NPP) and the harvest index (HI) derived from the ratio of grain to stalk yield. The modified RS-P-YEC model was used to simulate maize yield in the Northeast China Plain during the period 2002-2011. The statistical data of maize yield from study area was used to validate the simulated results at county-level. The results showed that the Pearson correlation coefficient (R) was 0.827 (P < 0.01) between the simulated yield and the statistical data, and the root mean square error (RMSE) was 712 kg/ha with a relative error (RE) of 9.3%. From 2002-2011, the yield of maize planting zone in the Northeast China Plain was increasing with smaller coefficient of variation (CV). The spatial pattern of simulated maize yield was consistent with the actual distribution in the Northeast China Plain, with an increasing trend from the northeast to the southwest. Hence the results demonstrated that the modified process-based model coupled with remote sensing data was suitable for yield prediction of maize in the Northeast China Plain at the spatial scale.Keywords: process-based model, C4 crop, maize yield, remote sensing, Northeast China Plain
Procedia PDF Downloads 37522772 Application of Artificial Intelligence to Schedule Operability of Waterfront Facilities in Macro Tide Dominated Wide Estuarine Harbour
Authors: A. Basu, A. A. Purohit, M. M. Vaidya, M. D. Kudale
Abstract:
Mumbai, being traditionally the epicenter of India's trade and commerce, the existing major ports such as Mumbai and Jawaharlal Nehru Ports (JN) situated in Thane estuary are also developing its waterfront facilities. Various developments over the passage of decades in this region have changed the tidal flux entering/leaving the estuary. The intake at Pir-Pau is facing the problem of shortage of water in view of advancement of shoreline, while jetty near Ulwe faces the problem of ship scheduling due to existence of shallower depths between JN Port and Ulwe Bunder. In order to solve these problems, it is inevitable to have information about tide levels over a long duration by field measurements. However, field measurement is a tedious and costly affair; application of artificial intelligence was used to predict water levels by training the network for the measured tide data for one lunar tidal cycle. The application of two layered feed forward Artificial Neural Network (ANN) with back-propagation training algorithms such as Gradient Descent (GD) and Levenberg-Marquardt (LM) was used to predict the yearly tide levels at waterfront structures namely at Ulwe Bunder and Pir-Pau. The tide data collected at Apollo Bunder, Ulwe, and Vashi for a period of lunar tidal cycle (2013) was used to train, validate and test the neural networks. These trained networks having high co-relation coefficients (R= 0.998) were used to predict the tide at Ulwe, and Vashi for its verification with the measured tide for the year 2000 & 2013. The results indicate that the predicted tide levels by ANN give reasonably accurate estimation of tide. Hence, the trained network is used to predict the yearly tide data (2015) for Ulwe. Subsequently, the yearly tide data (2015) at Pir-Pau was predicted by using the neural network which was trained with the help of measured tide data (2000) of Apollo and Pir-Pau. The analysis of measured data and study reveals that: The measured tidal data at Pir-Pau, Vashi and Ulwe indicate that there is maximum amplification of tide by about 10-20 cm with a phase lag of 10-20 minutes with reference to the tide at Apollo Bunder (Mumbai). LM training algorithm is faster than GD and with increase in number of neurons in hidden layer and the performance of the network increases. The predicted tide levels by ANN at Pir-Pau and Ulwe provides valuable information about the occurrence of high and low water levels to plan the operation of pumping at Pir-Pau and improve ship schedule at Ulwe.Keywords: artificial neural network, back-propagation, tide data, training algorithm
Procedia PDF Downloads 48322771 Algorithm Development of Individual Lumped Parameter Modelling for Blood Circulatory System: An Optimization Study
Authors: Bao Li, Aike Qiao, Gaoyang Li, Youjun Liu
Abstract:
Background: Lumped parameter model (LPM) is a common numerical model for hemodynamic calculation. LPM uses circuit elements to simulate the human blood circulatory system. Physiological indicators and characteristics can be acquired through the model. However, due to the different physiological indicators of each individual, parameters in LPM should be personalized in order for convincing calculated results, which can reflect the individual physiological information. This study aimed to develop an automatic and effective optimization method to personalize the parameters in LPM of the blood circulatory system, which is of great significance to the numerical simulation of individual hemodynamics. Methods: A closed-loop LPM of the human blood circulatory system that is applicable for most persons were established based on the anatomical structures and physiological parameters. The patient-specific physiological data of 5 volunteers were non-invasively collected as personalized objectives of individual LPM. In this study, the blood pressure and flow rate of heart, brain, and limbs were the main concerns. The collected systolic blood pressure, diastolic blood pressure, cardiac output, and heart rate were set as objective data, and the waveforms of carotid artery flow and ankle pressure were set as objective waveforms. Aiming at the collected data and waveforms, sensitivity analysis of each parameter in LPM was conducted to determine the sensitive parameters that have an obvious influence on the objectives. Simulated annealing was adopted to iteratively optimize the sensitive parameters, and the objective function during optimization was the root mean square error between the collected waveforms and data and simulated waveforms and data. Each parameter in LPM was optimized 500 times. Results: In this study, the sensitive parameters in LPM were optimized according to the collected data of 5 individuals. Results show a slight error between collected and simulated data. The average relative root mean square error of all optimization objectives of 5 samples were 2.21%, 3.59%, 4.75%, 4.24%, and 3.56%, respectively. Conclusions: Slight error demonstrated good effects of optimization. The individual modeling algorithm developed in this study can effectively achieve the individualization of LPM for the blood circulatory system. LPM with individual parameters can output the individual physiological indicators after optimization, which are applicable for the numerical simulation of patient-specific hemodynamics.Keywords: blood circulatory system, individual physiological indicators, lumped parameter model, optimization algorithm
Procedia PDF Downloads 13722770 Estimating Water Balance at Beterou Watershed, Benin Using Soil and Water Assessment Tool (SWAT) Model
Authors: Ella Sèdé Maforikan
Abstract:
Sustained water management requires quantitative information and the knowledge of spatiotemporal dynamics of hydrological system within the basin. This can be achieved through the research. Several studies have investigated both surface water and groundwater in Beterou catchment. However, there are few published papers on the application of the SWAT modeling in Beterou catchment. The objective of this study was to evaluate the performance of SWAT to simulate the water balance within the watershed. The inputs data consist of digital elevation model, land use maps, soil map, climatic data and discharge records. The model was calibrated and validated using the Sequential Uncertainty Fitting (SUFI2) approach. The calibrated started from 1989 to 2006 with four years warming up period (1985-1988); and validation was from 2007 to 2020. The goodness of the model was assessed using five indices, i.e., Nash–Sutcliffe efficiency (NSE), the ratio of the root means square error to the standard deviation of measured data (RSR), percent bias (PBIAS), the coefficient of determination (R²), and Kling Gupta efficiency (KGE). Results showed that SWAT model successfully simulated river flow in Beterou catchment with NSE = 0.79, R2 = 0.80 and KGE= 0.83 for the calibration process against validation process that provides NSE = 0.78, R2 = 0.78 and KGE= 0.85 using site-based streamflow data. The relative error (PBIAS) ranges from -12.2% to 3.1%. The parameters runoff curve number (CN2), Moist Bulk Density (SOL_BD), Base Flow Alpha Factor (ALPHA_BF), and the available water capacity of the soil layer (SOL_AWC) were the most sensitive parameter. The study provides further research with uncertainty analysis and recommendations for model improvement and provision of an efficient means to improve rainfall and discharges measurement data.Keywords: watershed, water balance, SWAT modeling, Beterou
Procedia PDF Downloads 5522769 South African Multiple Deprivation-Concentration Index Quantiles Differentiated by Components of Success and Impediment to Tuberculosis Control Programme Using Mathematical Modelling in Rural O. R. Tambo District Health Facilities
Authors: Ntandazo Dlatu, Benjamin Longo-Mbenza, Andre Renzaho, Ruffin Appalata, Yolande Yvonne Valeria Matoumona Mavoungou, Mbenza Ben Longo, Kenneth Ekoru, Blaise Makoso, Gedeon Longo Longo
Abstract:
Background: The gap between complexities related to the integration of Tuberculosis /HIV control and evidence-based knowledge motivated the initiation of the study. Therefore, the objective of this study was to explore correlations between national TB management guidelines, multiple deprivation indexes, quantiles, components and levels of Tuberculosis control programme using mathematical modeling in rural O.R. Tambo District Health Facilities, South Africa. Methods: The study design used mixed secondary data analysis and cross-sectional analysis between 2009 and 2013 across O.R Tambo District, Eastern Cape, South Africa using univariate/ bivariate analysis, linear multiple regression models, and multivariate discriminant analysis. Health inequalities indicators and component of an impediment to the tuberculosis control programme were evaluated. Results: In total, 62 400 records for TB notification were analyzed for the period 2009-2013. There was a significant but negative between Financial Year Expenditure (r= -0.894; P= 0.041) Seropositive HIV status(r= -0.979; P= 0.004), Population Density (r = -0.881; P= 0.048) and the number of TB defaulter in all TB cases. It was shown unsuccessful control of TB management program through correlations between numbers of new PTB smear positive, TB defaulter new smear-positive, TB failure all TB, Pulmonary Tuberculosis case finding index and deprivation-concentration-dispersion index. It was shown successful TB program control through significant and negative associations between declining numbers of death in co-infection of HIV and TB, TB deaths all TB and SMIAD gradient/ deprivation-concentration-dispersion index. The multivariate linear model was summarized by unadjusted r of 96%, adjusted R2 of 95 %, Standard Error of estimate of 0.110, R2 changed of 0.959 and significance for variance change for P=0.004 to explain the prediction of TB defaulter in all TB with equation y= 8.558-0.979 x number of HIV seropositive. After adjusting for confounding factors (PTB case finding the index, TB defaulter new smear-positive, TB death in all TB, TB defaulter all TB, and TB failure in all TB). The HIV and TB death, as well as new PTB smear positive, were identified as the most important, significant, and independent indicator to discriminate most deprived deprivation index far from other deprivation quintiles 2-5 using discriminant analysis. Conclusion: Elimination of poverty such as overcrowding, lack of sanitation and environment of highest burden of HIV might end the TB threat in O.R Tambo District, Eastern Cape, South Africa. Furthermore, ongoing adequate budget comprehensive, holistic and collaborative initiative towards Sustainable Developmental Goals (SDGs) is necessary for complete elimination of TB in poor O.R Tambo District.Keywords: tuberculosis, HIV/AIDS, success, failure, control program, health inequalities, South Africa
Procedia PDF Downloads 17022768 iCount: An Automated Swine Detection and Production Monitoring System Based on Sobel Filter and Ellipse Fitting Model
Authors: Jocelyn B. Barbosa, Angeli L. Magbaril, Mariel T. Sabanal, John Paul T. Galario, Mikka P. Baldovino
Abstract:
The use of technology has become ubiquitous in different areas of business today. With the advent of digital imaging and database technology, business owners have been motivated to integrate technology to their business operation ranging from small, medium to large enterprises. Technology has been found to have brought many benefits that can make a business grow. Hog or swine raising, for example, is a very popular enterprise in the Philippines, whose challenges in production monitoring can be addressed through technology integration. Swine production monitoring can become a tedious task as the enterprise goes larger. Specifically, problems like delayed and inconsistent reports are most likely to happen if counting of swine per pen of which building is done manually. In this study, we present iCount, which aims to ensure efficient swine detection and counting that hastens the swine production monitoring task. We develop a system that automatically detects and counts swine based on Sobel filter and ellipse fitting model, given the still photos of the group of swine captured in a pen. We improve the Sobel filter detection result through 8-neigbhorhood rule implementation. Ellipse fitting technique is then employed for proper swine detection. Furthermore, the system can generate periodic production reports and can identify the specific consumables to be served to the swine according to schedules. Experiments reveal that our algorithm provides an efficient way for detecting swine, thereby providing a significant amount of accuracy in production monitoring.Keywords: automatic swine counting, swine detection, swine production monitoring, ellipse fitting model, sobel filter
Procedia PDF Downloads 311