Search results for: sustainable water management
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20008

Search results for: sustainable water management

16018 Effect of Convective Dryness Combined with Osmotic Dehydration, Blanching, Microwave and Ultrasonic Treatment on Bioactive Compounds and Rehydration Capacity of Dried Plums

Authors: Elena Corina Popescu, Magda Gabriela Bratu

Abstract:

Increasing interest in keeping bioactive compounds (anthocyanins, vitamin C) and dried fruit quality has motivated the researchers to investigate new combined drying technologies. The aim of this study was to evaluate the effects of convective dryness combined with osmotic dehydration, blanching, microwave treatment and ultrasonic treatment on the quality of dried plums. Osmotic dehydration was achieved by maintaining plums for 1 h in sucrose solution (300Brix). For microwave treatment, the plums were kept at 400 W for 80 sec. For ultrasonic treatment, plums were immersed in distilled water and sonicated for 30 minutes at 40 kHz and 200 W. The blanching consists of immersing plums in hot water at 90°C for 20 seconds and cooling them rapidly. Conventional drying was carried out at 70°C for 630 minutes. Drying curves, drying rate, anthocyanin and vitamin C stability, acidity variation (expressed as malic acid), reducing sugar content, and rehydration capacity of dried plums were analyzed. Blanching led to the largest amount of evaporated water. Blanched plums have had 13.36% less water than sonicated ones. The lowest anthocyanal loss of 34.5% was obtained in osmotically dehydrated plums, and 2.93% vitamin C is found in the plums sonicated. There were no significant differences in regards acidity and reducing sugar. The plums blanched before drying have had a high capacity of rehydration.

Keywords: anthocyanin, dried plums, pretreatments, vitamin C

Procedia PDF Downloads 238
16017 Influence of Humidity on Environmental Sustainability, Air Quality and Occupant Health

Authors: E. Cintura, M. I. Gomes

Abstract:

Nowadays, sustainable development issues have a key role in the planning of the man-made environment. Ensuring this development means limiting the impact of human activity on nature. It is essential to secure healthy places and good living conditions. For these reasons, indoor air quality and building materials play a fundamental role in sustainable architectural projects. These factors significantly affect human health: they can radically change the quality of the internal environment and energy consumption. The use of natural materials such as earth has many beneficial aspects in comfort and indoor air quality. As well as advantages in the environmental impact of the construction, they ensure a low energy consumption. Since they are already present in nature, their production and use do not require a high-energy consumption. Furthermore, they have a high thermo-hygrometric capacity, being able to absorb moisture, contributing positively to indoor conditions. Indoor air quality is closely related to relative humidity. For these reasons, it can be affirmed that the use of earth materials guarantees a sustainable development and at the same time improves the health of the building users. This paper summarizes several researches that demonstrate the importance of indoor air quality for human health and how it strictly depends on the building materials used. Eco-efficient plasters are also considered: earth and ash mortar. The bibliography consulted has the objective of supporting future experimental and laboratory analyzes. It is necessary to carry on with research by the use of simulations and testing to confirm the hygrothermal properties of eco-efficient plasters and therefore their ability to improve indoor air quality.

Keywords: hygroscopicity, hygrothermal comfort, mortar, plaster

Procedia PDF Downloads 142
16016 An Analysis of Employee Attitudes to Organisational Change Management Practices When Adopting New Technologies Within the Architectural, Engineering, and Construction Industry: A Case Study

Authors: Hannah O'Sullivan, Esther Quinn

Abstract:

Purpose: The Architectural, Engineering, and Construction (AEC) industry has historically struggled to adapt to change. Although the ability to innovate and successfully implement organizational change has been demonstrated to be critical in achieving a sustainable competitive advantage in the industry, many AEC organizations continue to struggle when affecting organizational change. One prominent area of organizational change that presents many challenges in the industry is the adoption of new forms of technology, for example, Building Information Modelling (BIM). Certain Organisational Change Management (OCM) practices have been proven to be effective in supporting organizations to adopt change, but little research has been carried out on diverging employee attitudes to change relative to their roles within the organization. The purpose of this research study is to examine how OCM practices influence employee attitudes to change when adopting new forms of technology and to analyze the diverging employee perspectives within an organization on the importance of different OCM strategies. Methodology: Adopting an interview-based approach, a case study was carried out on a large-sized, prominent Irish construction organization who are currently adopting a new technology platform for its projects. Qualitative methods were used to gain insight into differing perspectives on the utilization of various OCM practices and their efficacy when adopting a new form of technology on projects. Change agents implementing the organizational change gave insight into their intentions with the technology rollout strategy, while other employees were interviewed to understand how this rollout strategy was received and the challenges that were encountered. Findings: The results of this research study are currently being finalized. However, it is expected that employees in different roles will value different OCM practices above others. Findings and conclusions will be determined within the coming weeks. Value: This study will contribute to the body of knowledge relating to the introduction of new technologies, including BIM, to AEC organizations. It will also contribute to the field of organizational change management, providing insight into methods of introducing change that will be most effective for different employees based on their roles and levels of experience within the industry. The focus of this study steers away from traditional studies of the barriers to adopting BIM in its first instance at an organizational level and centers on the direct effect on employees when a company changes the technology platform being used.

Keywords: architectural, engineering, and construction (AEC) industry, Building Information Modelling, case study, challenges, employee perspectives, organisational change management.

Procedia PDF Downloads 71
16015 Human Activities Damaging the Ecosystem of Isheri Ogun River, South West Nigeria

Authors: N. B. Ikenweiwe, A. A. Alimi, N. A. Bamidele, O. A. Ewumi, K. Fasina, S. O. Otubusin

Abstract:

A study on the physical, chemical and biological parameters of the lower course of Ogun River, Isheri-Olofin was carried out between January and December 2014 in order to determine the effects of the anthropogenic activities of the Kara abattoir and domestic waste depositions on the quality of the water. Water samples were taken twice each month at three selected stations A, B and C (based on characteristic features or activity levels) along the water course. Samples were analysed using standard methods for chemical and biological parameters the same day in the laboratory while physical parameters were determined in-situ with water parameters kit. Generally, results of Transparency, Dissolved Oxygen, Nitrates, TDS and Alkalinity fall below the permissible limits of WHO and FEPA standards for drinking and fish production. Results of phosphates, lead and cadmium were also low but still within the permissible limit. Only Temperature and pH were within limit. Low plankton community, (phytoplankton, zooplankton), which ranges from 3, 5 to 40, 23 were as a result of low levels of DO, transparency and phosphate. The presence of coliform bacteria of public health importance like Escherichia coli, Proteus vulgaris, Aeromonas sp., Shigella sp, Enterobacter aerogenes as well as gram negative bacteria Proteus morganii are mainly indicators of faecal pollution. Fish and other resources obtained from this water stand the risk of being contaminated with these organisms and man is at the receiving end. The results of the physical, chemical and some biological parameters of Isheri, Ogun River, according to this study showed that the live forms of aquatic and fisheries resources there are dwelling under stress as a result of deposition of bones, horns, faecal components, slurry of suspended solids, fat and blood into the water. Government should therefore establish good monitoring system against illegal waste depositions and create education programmes that will enlighten the community on the social, ecological and economic values of the river.

Keywords: damage, ecosystem, human activities, Isheri ogun river

Procedia PDF Downloads 549
16014 Building Up a Sustainable, Future-Proof, Export-Orientated Chili Value Chain in Bugesera District, Rwanda

Authors: Akingeneye Liliane

Abstract:

The value chain concept in recent times is being used by businesses and organizations to develop and implement their businesses. Chili farming has been identified as a significant contributor to the economic growth of Bugesera district. However, numerous challenges have led to a decrease in production. The primary objective of this research was to assess the current Bugesera chili value chain, identify the bottlenecks in the value chain, and come up with interventions that can help increase the output of the Bugesera chili value chain, in a climate-smart way and enhance Long-term sustainability of the value chain. The research used a case study approach to fulfill its objectives, utilizing primary and secondary data sources. Data, both qualitative and quantitative, were gathered through semi-structured interviews conducted with 22 individual farmers, five exporters, and five supporters within the Bugesera district. A focus group discussion (FGD) with seven stakeholders was also conducted to validate the research findings. The study's results underscore the challenges faced by chili farmers and other actors in the chain, the perceptions of different stakeholders to contribute to chili production, and the importance of promoting strong collaboration among stakeholders in the chili value chain to establish a sustainable framework. Based on these findings, the study puts forward recommendations that aim to address the identified challenges and improve the chili farming sector in Bugesera. The business canvas model, as a proposed recommendation, once implemented, is believed to represent the most effective approach to enhancing chili productivity in Bugesera and securing the long-term sustainability of an export-oriented chili value chain in the district.

Keywords: building, sustainable, chili, value chain

Procedia PDF Downloads 59
16013 Wheat Yield and Yield Components under Raised Bed Planting System

Authors: Hamidreza Miri, Farahnaz Momtazi

Abstract:

Wheat is one of the most important crops in Fars province, and because of water shortage, there is a great emphasis on its water use efficiency in the production field. A field experiment was conducted in 2021 and 2022 in order to evaluate wheat yield and its components in raised planting system in Arsanjan, Fars province. The experiment was conducted as a split plot with three irrigation treatments (irrigation equal to evapotranspiration, 80% of evapotranspiration irrigation (moderate drought stress), and 60% of evapotranspiration irrigation (severe drought stress)) as the main plot and three planting methods (conventional flat planting, 60 cm raised bed planting and 120 cm raised bed planting) as a subplot. The results indicated that drought stress significantly decreased traits such as plant height, grain yield, ear number, seed number, and biological yield while increasing seed protein. Raised bed planting significantly increased the traits in comparison with conventional flat planting. So that plating with a 120 cm raised bed increased grain yield by 22.1% and 25.9% in the first and second years, respectively. This increase was 17% for biological, 75 for ear number, and 21% for seed number. Planting in raised bed system reduced the adverse effect of drought stress on wheat traits. In conclusion, based on the observed results planting in raised bed system can be adopted as an appropriate planting pattern for improving yield and water productivity in experimental regions and similar climates.

Keywords: wheat, raised bed planting, drought stress, yield, water use

Procedia PDF Downloads 68
16012 Potentials of Ecotourism to Nature Conservation and Improvement of Livelihood of People around Ayikunnugba Waterfalls, Oke-Ila Orangun, Nigeria

Authors: Funmilola Ajani, I. A. Ayodele, O.A. Filade

Abstract:

Tourism has direct, indirect and induced impacts on economic development and the industry is one of the most crucial tradable sectors in the world. The study was therefore carried out to assess the potentials of ecotourism to nature conservation and its contributions to the improvement of the livelihood of Oke- Ila Orangun community. One hundred and fifty residents were chosen by stratified random sampling as respondents. Respondents awareness of ecotourism was assessed using an 8-point scale while respondents acceptance of ecotourism was assessed using a 14-point scale. Contributions to improvement of livelihood of residents and perceived constraints identified by residents to the development of the water fall and socio-economic variables among others were also obtained. Also, in-depth interview was conducted with the king of Ayikunnugba. The data was analyzed using descriptive statistics such as frequency count, mean and percentages. Correlation analysis was used to determine whether or not a relationship exists between two variables at 0.05 level of significance. Perception of respondents based on the awareness of ecotourism and contributions to livelihood development was high (78.3%). A significant relationship exists between acceptance of ecotourism and its contributions to peoples’ livelihood. Also, relationship between constraints encountered by respondents and its contributions to peoples livelihood is highly significant(r =0.546; P =0.00). Majority (71.3%) of the respondents believed that the development of the area will not lead to environmental pollution. Public- Private- Partnership (PPP) is therefore recommended so as to enable the recreation site to meet international standard in terms of development and management.

Keywords: Ayikunnugba water fall, ecotourism constraints, nature conservation, awareness

Procedia PDF Downloads 161
16011 Corrosion Protection and Failure Mechanism of ZrO₂ Coating on Zirconium Alloy Zry-4 under Varied LiOH Concentrations in Lithiated Water at 360°C and 18.5 MPa

Authors: Guanyu Jiang, Donghai Xu, Huanteng Liu

Abstract:

After the Fukushima-Daiichi accident, the development of accident tolerant fuel cladding materials to improve reactor safety has become a hot topic in the field of nuclear industry. ZrO₂ has a satisfactory neutron economy and can guarantee the fission chain reaction process, which enables it to be a promising coating for zirconium alloy cladding. Maintaining a good corrosion resistance in primary coolant loop during normal operations of Pressurized Water Reactors is a prerequisite for ZrO₂ as a protective coating on zirconium alloy cladding. Research on the corrosion performance of ZrO₂ coating in nuclear water chemistry is relatively scarce, and existing reports failed to provide an in-depth explanation for the failure causes of ZrO₂ coating. Herein, a detailed corrosion process of ZrO₂ coating in lithiated water at 360 °C and 18.5 MPa was proposed based on experimental research and molecular dynamics simulation. Lithiated water with different LiOH solutions in the present work was deaerated and had a dissolved oxygen concentration of < 10 ppb. The concentration of Li (as LiOH) was determined to be 2.3 ppm, 70 ppm, and 500 ppm, respectively. Corrosion tests were conducted in a static autoclave. Modeling and corresponding calculations were operated on Materials Studio software. The calculation of adsorption energy and dynamics parameters were undertaken by the Energy task and Dynamics task of the Forcite module, respectively. The protective effect and failure mechanism of ZrO₂ coating on Zry-4 under varied LiOH concentrations was further revealed by comparison with the coating corrosion performance in pure water (namely 0 ppm Li). ZrO₂ coating provided a favorable corrosion protection with the occurrence of localized corrosion at low LiOH concentrations. Factors influencing corrosion resistance mainly include pitting corrosion extension, enhanced Li+ permeation, short-circuit diffusion of O²⁻ and ZrO₂ phase transformation. In highly-concentrated LiOH solutions, intergranular corrosion, internal oxidation, and perforation resulted in coating failure. Zr ions were released to coating surface to form flocculent ZrO₂ and ZrO₂ clusters due to the strong diffusion and dissolution tendency of α-Zr in the Zry-4 substrate. Considering that primary water of Pressurized Water Reactors usually includes 2.3 ppm Li, the stability of ZrO₂ make itself a candidate fuel cladding coating material. Under unfavorable conditions with high Li concentrations, more boric acid should be added to alleviate caustic corrosion of ZrO₂ coating once it is used. This work can provide some references to understand the service behavior of nuclear coatings under variable water chemistry conditions and promote the in-pile application of ZrO₂ coating.

Keywords: ZrO₂ coating, Zry-4, corrosion behavior, failure mechanism, LiOH concentration

Procedia PDF Downloads 90
16010 The Trial Using Bio-Product for Reducing Arsenic Heavy Metal in Soil in Grow Organic Vegetables

Authors: Nittaya Nokham, Nattaphon Kamon, Pipatpong Pimkhot, Pedcharada Yusuk

Abstract:

Testing efficacy of a bio-product (bp) to reduce amount of arsenic was carried out in soil which were used for cultivation of organic vegetables, at Watchan Royal Project Development Center, Kulayaniwattana district, Chiang Mai. The test consists of 6 treatments e.g. Tr.1) Control: To underlie the planting pits (pp)with compost; Tr.2) Using bp: To underlie thepp with compost mixed with (+) bp at 100 g/pit; Tr.3) Using bp: To underlie the pp with compost + bp at 100 g/pit and to spray the vegetables with bp at 2 l/20 l of water, once a week; Tr.4) Using bp: To spread the compost bp on the planting area at 3 kg/1 m2 ; Tr.5) Using bp: To spread the compost + bp on the planting area at 3 kg/1 m2and to spray vegetables with bp at 2 l/20 l of water; Tr.6) Using bp: To spray vegetables with bp at 2 l/20 l of water. Result showed that after first trial of pointed cabbage cultivation, only Tr.6 had a small reduction of arsenic; while the others had higher amount of the metal. After second trial of growing red oak leaf, Tr.6 had more reduction of arsenic while Tr.5 and Tr.3 had less reduction compared to Tr.6 but more reduction than the others. In the third trial of growing mustard, very small reduction could be found on Tr.6 and Tr.5 but more reduction in Tr.3. For the fourth (last) trial with cos romaine lettuce: Tr.6, Tr.5 showed most reduction of arsenic to about half of the original amount. So, it can be concluded that this bio-product can help reducing arsenic when using this product by spraying the bp to vegetables at concentration of 2 l/20 l of water once week (Tr.6), or using the bio-product mixed with compost to spread on the planting area at 3 kg/1 m2 together with spraying the product (Tr.5). The results obtained from continuous planting 4 kinds of vegetables at the same area. The amount of arsenic found in roots and stem is very small in the 4 vegetables.

Keywords: organic vegetables, bio-product, arsenic, soil

Procedia PDF Downloads 284
16009 Role of Senior Management in Implementing Lean Manufacturing Practices: A Study of Manufacturing Companies of Pakistan

Authors: Saima Yaqoob

Abstract:

Due to advancement in technologies and cutting cost competition, especially in manufacturing business, organizations are now becoming more focused toward achieving exceptional quality standards with low manufacturing cost. In this concern, many process improvement strategies are becoming popular in the way of increasing productivity and output. Lean manufacturing principles are among one of them, increasingly used for improving productivity by reducing wastages. Many success factors are involved in lean implementation. But, the role of senior management is most important in developing the lean culture in an organization. Purpose of this study is to investigate the perception of executive level management related to the successful implementation of lean practices and its comparison with the existing practices in the organization. In order to collect data, survey questionnaire comprised of eight statements rendering the critical success factors were sent to the top management of fifty (50) automotive manufacturing companies of Karachi. After analyzing their feedbacks, the trend of lean manufacturing principles and the commitment of senior management toward its implementation was identified in the manufacturing industries of Karachi, Pakistan.

Keywords: lean manufacturing, process improvement, senior management, perception, involvement, waste reduction

Procedia PDF Downloads 193
16008 DC/DC Boost Converter Applied to Photovoltaic Pumping System Application

Authors: S. Abdourraziq, M. A. Abdourraziq

Abstract:

One of the most famous and important applications of solar energy systems is water pumping. It is often used for irrigation or to supply water in countryside or private firm. However, the cost and the efficiency are still a concern, especially with a continued variation of solar radiation and temperature throughout the day. Then, the improvement of the efficiency of the system components is one of the different solutions to reducing the cost. In this paper, we will present a detailed definition of each element of a PV pumping system, and we will present the different MPPT algorithm used in the literature. Our system consists of a PV panel, a boost converter, a motor-pump set, and a storage tank.

Keywords: PV cell, converter, MPPT, MPP, PV pumping system

Procedia PDF Downloads 162
16007 Lead Removal From Ex- Mining Pond Water by Electrocoagulation: Kinetics, Isotherm, and Dynamic Studies

Authors: Kalu Uka Orji, Nasiman Sapari, Khamaruzaman W. Yusof

Abstract:

Exposure of galena (PbS), tealite (PbSnS2), and other associated minerals during mining activities release lead (Pb) and other heavy metals into the mining water through oxidation and dissolution. Heavy metal pollution has become an environmental challenge. Lead, for instance, can cause toxic effects to human health, including brain damage. Ex-mining pond water was reported to contain lead as high as 69.46 mg/L. Conventional treatment does not easily remove lead from water. A promising and emerging treatment technology for lead removal is the application of the electrocoagulation (EC) process. However, some of the problems associated with EC are systematic reactor design, selection of maximum EC operating parameters, scale-up, among others. This study investigated an EC process for the removal of lead from synthetic ex-mining pond water using a batch reactor and Fe electrodes. The effects of various operating parameters on lead removal efficiency were examined. The results obtained indicated that the maximum removal efficiency of 98.6% was achieved at an initial PH of 9, the current density of 15mA/cm2, electrode spacing of 0.3cm, treatment time of 60 minutes, Liquid Motion of Magnetic Stirring (LM-MS), and electrode arrangement = BP-S. The above experimental data were further modeled and optimized using a 2-Level 4-Factor Full Factorial design, a Response Surface Methodology (RSM). The four factors optimized were the current density, electrode spacing, electrode arrangements, and Liquid Motion Driving Mode (LM). Based on the regression model and the analysis of variance (ANOVA) at 0.01%, the results showed that an increase in current density and LM-MS increased the removal efficiency while the reverse was the case for electrode spacing. The model predicted the optimal lead removal efficiency of 99.962% with an electrode spacing of 0.38 cm alongside others. Applying the predicted parameters, the lead removal efficiency of 100% was actualized. The electrode and energy consumptions were 0.192kg/m3 and 2.56 kWh/m3 respectively. Meanwhile, the adsorption kinetic studies indicated that the overall lead adsorption system belongs to the pseudo-second-order kinetic model. The adsorption dynamics were also random, spontaneous, and endothermic. The higher temperature of the process enhances adsorption capacity. Furthermore, the adsorption isotherm fitted the Freundlish model more than the Langmuir model; describing the adsorption on a heterogeneous surface and showed good adsorption efficiency by the Fe electrodes. Adsorption of Pb2+ onto the Fe electrodes was a complex reaction, involving more than one mechanism. The overall results proved that EC is an efficient technique for lead removal from synthetic mining pond water. The findings of this study would have application in the scale-up of EC reactor and in the design of water treatment plants for feed-water sources that contain lead using the electrocoagulation method.

Keywords: ex-mining water, electrocoagulation, lead, adsorption kinetics

Procedia PDF Downloads 150
16006 Monitoring Soil Moisture Dynamic in Root Zone System of Argania spinosa Using Electrical Resistivity Imaging

Authors: F. Ainlhout, S. Boutaleb, M. C. Diaz-Barradas, M. Zunzunegui

Abstract:

Argania spinosa is an endemic tree of the southwest of Morocco, occupying 828,000 Ha, distributed mainly between Mediterranean vegetation and the desert. This tree can grow in extremely arid regions in Morocco, where annual rainfall ranges between 100-300 mm where no other tree species can live. It has been designated as a UNESCO Biosphere reserve since 1998. Argania tree is of great importance in human and animal feeding of rural population as well as for oil production, it is considered as a multi-usage tree. Admine forest located in the suburbs of Agadir city, 5 km inland, was selected to conduct this work. The aim of the study was to investigate the temporal variation in root-zone moisture dynamic in response to variation in climatic conditions and vegetation water uptake, using a geophysical technique called Electrical resistivity imaging (ERI). This technique discriminates resistive woody roots, dry and moisture soil. Time-dependent measurements (from April till July) of resistivity sections were performed along the surface transect (94 m Length) at 2 m fixed electrode spacing. Transect included eight Argan trees. The interactions between the tree and soil moisture were estimated by following the tree water status variations accompanying the soil moisture deficit. For that purpose we measured midday leaf water potential and relative water content during each sampling day, and for the eight trees. The first results showed that ERI can be used to accurately quantify the spatiotemporal distribution of root-zone moisture content and woody root. The section obtained shows three different layers: middle conductive one (moistured); a moderately resistive layer corresponding to relatively dry soil (calcareous formation with intercalation of marly strata) on top, this layer is interspersed by very resistant layer corresponding to woody roots. Below the conductive layer, we find the moderately resistive layer. We note that throughout the experiment, there was a continuous decrease in soil moisture at the different layers. With the ERI, we can clearly estimate the depth of the woody roots, which does not exceed 4 meters. In previous work on the same species, analyzing the δ18O in water of xylem and in the range of possible water sources, we argued that rain is the main water source in winter and spring, but not in summer, trees are not exploiting deep water from the aquifer as the popular assessment, instead of this they are using soil water at few meter depth. The results of the present work confirm the idea that the roots of Argania spinosa are not growing very deep.

Keywords: Argania spinosa, electrical resistivity imaging, root system, soil moisture

Procedia PDF Downloads 330
16005 Development and Validation of the Circular Economy Scale

Authors: Yu Fang Chen, Jeng Fung Hung

Abstract:

This study aimed to develop a circular economy scale to assess the level of recognition among high-level executives in businesses regarding the circular economy. The circular economy is crucial for global ESG sustainable development and poses a challenge for corporate social responsibility. The aim of promoting the circular economy is to reduce resource consumption, move towards sustainable development, reduce environmental impact, maintain ecological balance, increase economic value, and promote employment. This study developed a 23-item Circular Economy Scale, which includes three subscales: "Understanding of Circular Economy by Enterprises" (8 items), "Attitudes" (9 items), and "Behaviors" (6 items). The Likert 5-point scale was used to measure responses, with higher scores indicating higher levels of agreement among senior executives with regard to the circular economy. The study tested 105 senior executives and used a structural equation model (SEM) as a measurement indicator to determine the extent to which potential variables were measured. The standard factor loading of the measurement indicator needs to be higher than 0.7, and the average variance explained (AVE) represents the index of convergent validity, which should be greater than 0.5 or at least 0.45 to be acceptable. Out of the 23 items, 12 did not meet the standard, so they were removed, leaving 5 items, 3 items, and 3 items for each of the three subscales, respectively, all with a factor loading greater than 0.7. The AVE for all three subscales was greater than 0.45, indicating good construct validity. The Cronbach's α reliability values for the three subscales were 0.887, 0.787, and 0.734, respectively, and the total scale was 0.860, all of which were higher than 0.7, indicating good reliability. The Circular Economy Scale developed in this study measures three conceptual components that align with the theoretical framework of the literature review and demonstrate good reliability and validity. It can serve as a measurement tool for evaluating the degree of acceptance of the circular economy among senior executives in enterprises. In the future, this scale can be used by senior executives in enterprises as an evaluation tool to further explore its impact on sustainable development and to promote circular economy and sustainable development based on the reference provided.

Keywords: circular economy, corporate social responsibility, scale development, structural equation model

Procedia PDF Downloads 87
16004 Architectural Building Safety and Health Performance Model for Stratified Low-Cost Housing: Education and Management Tool for Building Managers

Authors: Zainal Abidin Akasah, Maizam Alias, Azuin Ramli

Abstract:

The safety and health performances aspects of a building are the most challenging aspect of facility management. It requires a deep understanding by the building managers on the factors that contribute to health and safety performances. This study attempted to develop an explanatory architectural safety performance model for stratified low-cost housing in Malaysia. The proposed Building Safety and Health Performance (BSHP) model was tested empirically through a survey on 308 construction practitioners using Partial Least Squares (PLS) and Structural Equation Modelling (SEM) tool. Statistical analysis results supports the conclusion that architecture, building services, external environment, management approaches and maintenance management have positive influence on safety and health performance of stratified low-cost housing in Malaysia. The findings provide valuable insights for construction industry to introduce BSHP model in the future where the model could be used as a guideline for training purposes of managers and better planning and implementation of building management.

Keywords: building management, stratified low-cost housing, safety, health model

Procedia PDF Downloads 560
16003 Groundwater Quality Assessment Using Water Quality Index and Geographical Information System Techniques: A Case Study of Busan City, South Korea

Authors: S. Venkatramanan, S. Y. Chung, S. Selvam, E. E. Hussam, G. Gnanachandrasamy

Abstract:

The quality of groundwater was evaluated by major ions concentration around Busan city, South Korea. The groundwater samples were collected from 40 wells. The order of abundance of major cations concentration in groundwater is Na > Ca > Mg > K, in case of anions are Cl > HCO₃ > SO₄ > NO₃ > F. Based on Piper’s diagram Ca (HCO₃)₂, CaCl₂, and NaCl are the leading groundwater types. While Gibbs diagram suggested that most of groundwater samples belong to rock-weathering zone. Hydrogeochemical condition of groundwater in this city is influenced by evaporation, ion exchange and dissolution of minerals. Water Quality Index (WQI) revealed that 86 % of the samples belong to excellent, 2 % good, 4 % poor to very poor and 8 % unsuitable categories. The results of sodium absorption ratio (SAR), Permeability Index (PI), Residual Sodium Carbonate (RSC) and Magnesium Hazard (MH) exhibit that most of the groundwater samples are suitable for domestic and irrigation purposes.

Keywords: WQI (Water Quality Index), saturation index, groundwater types, ion exchange

Procedia PDF Downloads 265
16002 Planning for Brownfield Regeneration in Malaysia: An Integrated Approach in Creating Sustainable Ex-Landfill Redevelopment

Authors: Mazifah Simis, Azahan Awang, Kadir Arifin

Abstract:

The brownfield regeneration is being implemented in developped countries. However, as a group 1 developing country in the South East Asia, the rapid development and increasing number of urban population in Malaysia have urged the needs to incorporate the brownfield regeneration into its physical planning development. The increasing number of urban ex-landfills is seen as a new resource that could overcome the issues of inadequate urban green space provisions. With regards to the new development approach in urban planning, this perception study aims to identify the sustainable planning approach based on what the stakeholders have in mind. Respondents consist of 375 local communities within four urban ex-landfill areas and 61 landscape architect and town planner officers in the Malaysian Local Authorities. Three main objectives are set to be achieved, which are (i) to identify ex-landfill issues that need to be overcome prior to the ex-landfill redevelopment (ii) to identify the most suitable types of ex-landfill redevelopment, and (iii) to identify the priority function for ex-landfill redevelopment as the public parks. From the data gathered through the survey method, the order of priorities based on stakeholders' perception was produced. The results show different perception among the stakeholders, but they agreed to the development of the public park as the main development. Hence, this study attempts to produce an integrated approach as a model for sustainable ex-landfill redevelopment that could be accepted by the stakeholders as a beneficial future development that could change the image of 296 ex-landfills in Malaysia into the urban public parks by the year 2020.

Keywords: brownfield regeneration, ex-landfill redevelopment, integrated approach, stakeholders' perception

Procedia PDF Downloads 355
16001 Determinants of Diarrhoea Prevalence Variations in Mountainous Informal Settlements of Kigali City, Rwanda

Authors: Dieudonne Uwizeye

Abstract:

Introduction: Diarrhoea is one of the major causes of morbidity and mortality among communities living in urban informal settlements of developing countries. It is assumed that mountainous environment introduces variations of the burden among residents of the same settlements. Design and Objective: A cross-sectional study was done in Kigali to explore the effect of mountainous informal settlements on diarrhoea risk variations. Data were collected among 1,152 households through household survey and transect walk to observe the status of sanitation. The outcome variable was the incidence of diarrhoea among household members of any age. The study used the most knowledgeable person in the household as the main respondent. Mostly this was the woman of the house as she was more likely to know the health status of every household member as she plays various roles: mother, wife, and head of the household among others. The analysis used cross tabulation and logistic regression analysis. Results: Results suggest that risks for diarrhoea vary depending on home location in the settlements. Diarrhoea risk increased as the distance from the road increased. The results of the logistic regression analysis indicate the adjusted odds ratio of 2.97 with 95% confidence interval being 1.35-6.55 and 3.50 adjusted odds ratio with 95% confidence interval being 1.61-7.60 in level two and three respectively compared with level one. The status of sanitation within and around homes was also significantly associated with the increase of diarrhoea. Equally, it is indicated that stable households were less likely to have diarrhoea. The logistic regression analysis indicated the adjusted odds ratio of 0.45 with 95% confidence interval being 0.25-0.81. However, the study did not find evidence for a significant association between diarrhoea risks and household socioeconomic status in the multivariable model. It is assumed that environmental factors in mountainous settings prevailed. Households using the available public water sources were more likely to have diarrhoea in their households. Recommendation: The study recommends the provision and extension of infrastructure for improved water, drainage, sanitation and wastes management facilities. Equally, studies should be done to identify the level of contamination and potential origin of contaminants for water sources in the valleys to adequately control the risks for diarrhoea in mountainous urban settings.

Keywords: urbanisation, diarrhoea risk, mountainous environment, urban informal settlements in Rwanda

Procedia PDF Downloads 175
16000 Synthesis of Magnetic Plastic Waste-Reduced Graphene Oxide Composite and Its Application in Dye Adsorption from Aqueous Solution

Authors: Pamphile Ndagijimana, Xuejiao Liu, Zhiwei Li, Yin Wang

Abstract:

The valorization of plastic wastes, as a mitigation strategy, is attracting the researchers’ attention since these wastes have raised serious environmental concerns. Plastic wastes have been reported to adsorb the organic pollutants in the water environment and to be the main vector of those pollutants in the aquatic environment, especially dyes, as a serious water pollution concern. Recycling technologies of plastic wastes such as landfills, incineration, and energy recovery have been adopted to manage those wastes before getting exposed to the environment. However, they are far from being widely accepted due to their related environmental pollution, lack of space for the landfill as well as high cost. Therefore, modification is necessary for green plastic adsorbent in water applications. Current routes for plastic modification into adsorbents are based on the combustion method, but they have weaknesses of air pollution as well as high cost. Thus, the green strategy for plastic modification into adsorbents is highly required. Furthermore, recent researchers recommended that if plastic wastes are combined with other solid carbon materials, they could promote their application in water treatment. Herein, we present new insight into using plastic waste-based materials as future green adsorbents. Magnetic plastic-reduced graphene oxide (MPrGO) composite was synthesized by cross-linking method and applied in removing methylene blue (MB) from an aqueous solution. Furthermore, the following advantages have been achieved: (i) The density of plastic and reduced graphene oxide were enhanced, (ii) no second pollution of black color in solution, (iii) small amount of graphene oxide (1%) was linked on 10g of plastic waste, and the composite presented the high removal efficiency, (iv) easy recovery of adsorbent from water. The low concentration of MB (10-30mg/L) was all removed by 0.3g of MPrGO. Different characterization techniques such as XRD, SEM, FTIR, BET, XPS, and Raman spectroscopy were performed, and the results confirmed a conjugation between plastic waste and graphene oxide. This MPrGO composite presented a good prospect for the valorization of plastic waste, and it is a promising composite material in water treatment.

Keywords: plastic waste, graphene oxide, dye, adsorption

Procedia PDF Downloads 93
15999 Peculiarities of Snow Cover in Belarus

Authors: Aleh Meshyk, Anastasiya Vouchak

Abstract:

On the average snow covers Belarus for 75 days in the south-west and 125 days in the north-east. During the cold season snowpack often destroys due to thaws, especially at the beginning and end of winter. Over 50% of thawing days have a positive mean daily temperature, which results in complete snow melting. For instance, in December 10% of thaws occur at 4 С mean daily temperature. Stable snowpack lying for over a month forms in the north-east in the first decade of December but in the south-west in the third decade of December. The cover disappears in March: in the north-east in the last decade but in the south-west in the first decade. This research takes into account that precipitation falling during a cold season could be not only liquid and solid but also a mixed type (about 10-15 % a year). Another important feature of snow cover is its density. In Belarus, the density of freshly fallen snow ranges from 0.08-0.12 g/cm³ in the north-east to 0.12-0.17 g/cm³ in the south-west. Over time, snow settles under its weight and after melting and refreezing. Averaged annual density of snow at the end of January is 0.23-0.28 g/сm³, in February – 0.25-0.30 g/сm³, in March – 0.29-0.36 g/сm³. Sometimes it can be over 0.50 g/сm³ if the snow melts too fast. The density of melting snow saturated with water can reach 0.80 g/сm³. Average maximum of snow depth is 15-33 cm: minimum is in Brest, maximum is in Lyntupy. Maximum registered snow depth ranges within 40-72 cm. The water content in snowpack, as well as its depth and density, reaches its maximum in the second half of February – beginning of March. Spatial distribution of the amount of liquid in snow corresponds to the trend described above, i.e. it increases in the direction from south-west to north-east and on the highlands. Average annual value of maximum water content in snow ranges from 35 mm in the south-west to 80-100 mm in the north-east. The water content in snow is over 80 mm on the central Belarusian highland. In certain years it exceeds 2-3 times the average annual values. Moderate water content in snow (80-95 mm) is characteristic of western highlands. Maximum water content in snow varies over the country from 107 mm (Brest) to 207 mm (Novogrudok). Maximum water content in snow varies significantly in time (in years), which is confirmed by high variation coefficient (Cv). Maximums (0.62-0.69) are in the south and south-west of Belarus. Minimums (0.42-0.46) are in central and north-eastern Belarus where snow cover is more stable. Since 1987 most gauge stations in Belarus have observed a trend to a decrease in water content in snow. It is confirmed by the research. The biggest snow cover forms on the highlands in central and north-eastern Belarus. Novogrudok, Minsk, Volkovysk, and Sventayny highlands are a natural orographic barrier which prevents snow-bringing air masses from penetrating inside the country. The research is based on data from gauge stations in Belarus registered from 1944 to 2014.

Keywords: density, depth, snow, water content in snow

Procedia PDF Downloads 162
15998 GIS Based Project Management Information System for Infrastructure Projects

Authors: Riki Panchal, Debasis Sarkar

Abstract:

This paper describes the work done for the GIS-based project management for different infrastructure projects. It is a review paper which gives the idea of the trends in the construction project management and various models adopted for the betterment of the project planning and execution. Traditional scheduling and progress control techniques such as bar charts and the critical path method fail to provide information pertaining to the spatial aspects of a construction project. An integrated system was developed to represent construction progress not only in terms of a CPM schedule but also in terms of a graphical representation of the construction that is synchronized with the work schedule. Hence, it is suggested to work on the common platform from where all the data can be shared and analyzed.

Keywords: GIS, project management, integrated model, infrastructure project

Procedia PDF Downloads 522
15997 Theoretical Model of a Flat Plate Solar Collector Integrated with Phase Change Material

Authors: Mouna Hamed, Ammar B. Brahim

Abstract:

The objective of this work was to develop a theoretical model to study the dynamic thermal behavior of a flat plate solar collector integrated with a phase change material (PCM). The PCM acted as a heat source for the solar system during low intensity solar radiation and night. The energy balance equations for the various components of the collector as well as for the PCM were formulated and numerically solved using MATLAB computational program. The effect of natural convection on heat during the melting process was taken into account by using an effective thermal conductivity. The model was used to investigate the effect of inlet water temperature, water mass flow rate, and PCM thickness on the outlet water temperature and the melt fraction during charging and discharging modes. A comparison with a collector without PCM was made. Results showed that charging and discharging processes of PCM have six stages. The adding of PCM caused a decrease in temperature during charge and an increase during discharge. The rise was most enhanced for higher inlet water temperature, PCM thickness and for lower mass flow rate. Analysis indicated that the complete melting time was shorter than the solidification time due to the high heat transfer coefficient during melting. The increases in PCM height and mass flow rate were not linear with the melting and solidification times.

Keywords: thermal energy storage, phase change material, melting, solidification

Procedia PDF Downloads 349
15996 Overview of Cage Aquaculture Practices, Benefits and Challenges on Africa Waters Bodies

Authors: Mekonen Hailu, Liu Liping

Abstract:

Cage aquaculture is highly preferred due to higher production per unit volume of water, lower costs of investment, and simpler routine farm management procedures compared to pond systems. In the 1980s, cage culture was first used on a trial basis in sub-Saharan Africa. Over the past 20 years, a small number of prosperous freshwater cage culture operations have started to emerge in Egypt, Rwanda, Kenya, Uganda, Tanzania, Ghana, Malawi, Zambia and Zimbabwe. Brackish and marine cage culture also offers a lot of potential, although this subsector hasn't seen any significant commercial growth to date. In 2019, 263 cage aquaculture installations on the African inland waters on 18 water bodies within eight countries with an estimated 20,114 cages were reported. The lakes Victoria, Kariba, Volta, and River Volta, which together account for 82.9% of all cage aquaculture installations regarded as sub-Saharan Africa's principal cage aquaculture regions (Fig 1). Except few small-scale trials with North African catfish (Clarias gariepinus), almost all farms in Sub-Saharan Africa and Egypt grow Nile tilapia (Oreochromis niloticus). More than 247,398 tonnes of fish are produced yearly from ten African countries through cage aquaculture. The expansion of cage culture in Africa provides job opportunities for both skilled and unskilled workers, nutritious food and foreign currency. The escaping non-native strains of tilapia in Lake Volta and the occurrence of a risky Tilapia lake virus (syncytial hepatitis), which has the potential to wipe out entire populations in both wild and farmed Nile tilapia on Lake Victoria, are threats coming with the expansion of cage aquaculture in Africa. In addition, the installations of 138 cage aquacultures were found in contrary to best cage culture practices. To sustain cage aquaculture development and maintain harmony with other water uses, developers must strictly abide by best practices. Hence, the exclusion of protected areas and small lakes (average depth 5 m or less) should be done, as well an Environmental Impact Assessment should be conducted before establishing the cage farms.

Keywords: Africa, cage aquaculture, production, threats

Procedia PDF Downloads 75
15995 Comparison of Finite Difference Schemes for Numerical Study of Ripa Model

Authors: Sidrah Ahmed

Abstract:

The river and lakes flows are modeled mathematically by shallow water equations that are depth-averaged Reynolds Averaged Navier-Stokes equations under Boussinesq approximation. The temperature stratification dynamics influence the water quality and mixing characteristics. It is mainly due to the atmospheric conditions including air temperature, wind velocity, and radiative forcing. The experimental observations are commonly taken along vertical scales and are not sufficient to estimate small turbulence effects of temperature variations induced characteristics of shallow flows. Wind shear stress over the water surface influence flow patterns, heat fluxes and thermodynamics of water bodies as well. Hence it is crucial to couple temperature gradients with shallow water model to estimate the atmospheric effects on flow patterns. The Ripa system has been introduced to study ocean currents as a variant of shallow water equations with addition of temperature variations within the flow. Ripa model is a hyperbolic system of partial differential equations because all the eigenvalues of the system’s Jacobian matrix are real and distinct. The time steps of a numerical scheme are estimated with the eigenvalues of the system. The solution to Riemann problem of the Ripa model is composed of shocks, contact and rarefaction waves. Solving Ripa model with Riemann initial data with the central schemes is difficult due to the eigen structure of the system.This works presents the comparison of four different finite difference schemes for the numerical solution of Riemann problem for Ripa model. These schemes include Lax-Friedrichs, Lax-Wendroff, MacCormack scheme and a higher order finite difference scheme with WENO method. The numerical flux functions in both dimensions are approximated according to these methods. The temporal accuracy is achieved by employing TVD Runge Kutta method. The numerical tests are presented to examine the accuracy and robustness of the applied methods. It is revealed that Lax-Freidrichs scheme produces results with oscillations while Lax-Wendroff and higher order difference scheme produce quite better results.

Keywords: finite difference schemes, Riemann problem, shallow water equations, temperature gradients

Procedia PDF Downloads 205
15994 Application of Customer Relationship Management Systems in Business: Challenges and Opportunities

Authors: K. Liagkouras, K. Metaxiotis

Abstract:

Customer relationship management (CRM) systems in business are a reality of the contemporary business world for the last decade or so. Still, there are grey areas regarding the successful implementation and operation of CRM systems in business. This paper, through the systematic study of the CRM implementation paradigm, attempts to identify the most important challenges and opportunities that the CRM systems face in a rapidly changing business world.

Keywords: customer relationship management, CRM, business, literature review

Procedia PDF Downloads 514
15993 Preparation of Water Hyacinth and Oil Palm Fiber for Plastic Waste Composite

Authors: Pattamaphorn Phuangngamphan, Rewadee Anuwattana, Narumon Soparatana, Nestchanok Yongpraderm, Atiporn Jinpayoon, Supinya Sutthima, Saroj Klangkongsub, Worapong Pattayawan

Abstract:

This research aims to utilize the agricultural waste and plastic waste in Thailand in a study of the optimum conditions for preparing composite materials from water hyacinth and oil palm fiber and plastic waste in landfills. The water hyacinth and oil palm fiber were prepared by alkaline treatment with NaOH (5, 15 wt%) at 25-60 °C for 1 h. The treated fiber (5 and 10 phr) was applied to plastic waste composite. The composite was prepared by using a screw extrusion process from 185 °C to 200 °C with a screw speed of 60 rpm. The result confirmed that alkaline treatment can remove lignin, hemicellulose and other impurities on the fiber surface and also increase the cellulose content. The optimum condition of composite material is 10 phr of fiber coupling with 3 wt% PE-g-MA as compatibilizer. The composite of plastic waste and oil palm fiber has good adhesion between fiber and plastic matrix. The PE-g-MA has improved fiber-plastic interaction. The results suggested that the composite material from plastic waste and agricultural waste has the potential to be used as value-added products.

Keywords: agricultural waste, waste utilization, biomaterials, cellulose fiber, composite material

Procedia PDF Downloads 425
15992 Assessing Green Metrics of Cement Supply Chain in Iran: A Fuzzy DEMATEL Approach

Authors: Hadi Badri Ahmadi, Xuping Wang

Abstract:

Due to strict regulations and public awareness, corporations should develop policies to effectively decrease the negative environmental effects of their products and enhance their supply chain environmental sustainability. Assessment of environmental issues in the context of many industries has been studied in the previous literature. However, Iran cement industry has received less attention from researchers. Therefore, in this paper, we apply a Decision-Making Trial and Evaluation Laboratory (DEMATEL) approach to assess the relationships among green metrics of Iran cement industry supply chain under fuzzy environment. The study findings provide considerable insight for cement industry managers and experts in order to enhance the environmental sustainability of their supply chain and move towards sustainable development.

Keywords: green supply chain, DEMATEL, fuzzy set theory, environmental sustainability, sustainable development, cement industry

Procedia PDF Downloads 415
15991 Effects of Effort and Water Quality on Productivity (CPUE) of Hampal (Hampala macrolepidota) Resources in Jatiluhur Dam, West Java

Authors: Ririn Marinasari, S. Pi

Abstract:

Hampal (Hampala macrolepidota) is one of Citarum river indigenous fishes that still find in Jatiluhur dam. IUCN at 2013 said that hampal listed on redlist species category, this species was rare in Jatiluhur dam. This species more and more decreasing because change of habitats characteristic such as water quality and fishing effort. This study aims to determine and identify the influence of fishing effort and the quality of water on the productivity of fish resources hampal (Hampala macrolepidota) in Jatiluhur. The study was conducted from October to November 2013. Zones of research include lacustrine zone, transition and Riverin. Hampal fish productivity value computed by Hampal’s CPUE values. The results showed that fish MSY hampal obtained from surplus production model of Schaefer is equal to 0.2045 tons / quarterly. In the years 2011-2012 have occurred over fishing in 2013 while still under fishing. Total catches have exceeded the MSY during the year 2011 and the third quarterly of 2012 tons of fish that exceed 0.2045 hampal. The rate of utilization of fish resources hampal is equal to 80% of MSY or equal to the allowable catch (Total Allowable Catch) for fish in Jatiluhur hampal based Schaefer surplus production theory. Fishing effort, water quality parameters such as DO, turbidity and negatively correlated sulfide as H2S, while the temperature and pH positively correlated to productivity or unit catches fish hampal efforts in quarterly time series in the period 2011-2013. Shows that the higher fishing effort, DO, turbidity and sulfide in H2S and diminishing the temperature and pH of the productivity decreases. Variables that affect the productivity of fishing hampal only H2S only factor beta coefficient -0.834 which indicates a negative effect. It can be caused by H2S levels are toxic and have already exceeded the quality standard, while for other water quality parameters are still below the maximum standards allowed in the waters. Result of the study can be a reference of fishing regulation for hampal conservation in Jatiluhur dam.

Keywords: effort, hampal, productivity, water quality

Procedia PDF Downloads 301
15990 Numerical Investigation of the Performance of a Vorsyl Separator Using a Euler-Lagrange Approach

Authors: Guozhen Li, Philip Hall, Nick Miles, Tao Wu, Jie Dong

Abstract:

This paper presents a Euler-Lagrange model of the water-particles multiphase flows in a Vorsyl separator where particles with different densities are separated. A series of particles with their densities ranging from 760 kg/m3 to 1380 kg/m3 were fed into the Vorsyl separator with water by means of tangential inlet. The simulation showed that the feed materials acquired centrifugal force which allows most portion of the particles with a density less than water to move to the center of the separator, enter the vortex finder and leave the separator through the bottom outlet. While the particles heavier than water move to the wall, reach the throat area and leave the separator through the side outlet. The particles were thus separated and particles collected at the bottom outlet are pure and clean. The influence of particle density on separation efficiency was investigated which demonstrated a positive correlation of the separation efficiency with increasing density difference between medium liquid and the particle. In addition, the influence of the split ratio on the performance was studied which showed that the separation efficiency of the Vorsyl separator can be improved by the increase of split ratio. The simulation also suggested that the Vorsyl separator may not function when the feeding velocity is smaller than a certain critical feeding in velocity. In addition, an increasing feeding velocity gives rise to increased pressure drop, however does not necessarily increase the separation efficiency.

Keywords: Vorsyl separator, separation efficiency, CFD, split ratio

Procedia PDF Downloads 356
15989 The Rail Traffic Management with Usage of C-OTDR Monitoring Systems

Authors: Andrey V. Timofeev, Dmitry V. Egorov

Abstract:

This paper presents development results of usage of C-OTDR monitoring systems for rail traffic management. The C-OTDR method is based on vibrosensitive properties of optical fibers. Analysis of Rayleigh backscattering radiation parameters changes which take place due to microscopic seismoacoustic impacts on the optical fiber allows to determine seismoacoustic emission source positions and to identify their types. This approach proved successful for rail traffic management (moving block system, weigh- in-motion system etc).

Keywords: C-OTDR systems, moving block-sections, rail traffic management, Rayleigh backscattering, weigh-in-motion

Procedia PDF Downloads 584