Search results for: learning management
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15943

Search results for: learning management

11953 Prevention of Road Accidents by Computerized Drowsiness Detection System

Authors: Ujjal Chattaraj, P. C. Dasbebartta, S. Bhuyan

Abstract:

This paper aims to propose a method to detect the action of the driver’s eyes, using the concept of face detection. There are three major key contributing methods which can rapidly process the framework of the facial image and hence produce results which further can program the reactions of the vehicles as pre-programmed for the traffic safety. This paper compares and analyses the methods on the basis of their reaction time and their ability to deal with fluctuating images of the driver. The program used in this study is simple and efficient, built using the AdaBoost learning algorithm. Through this program, the system would be able to discard background regions and focus on the face-like regions. The results are analyzed on a common computer which makes it feasible for the end users. The application domain of this experiment is quite wide, such as detection of drowsiness or influence of alcohols in drivers or detection for the case of identification.

Keywords: AdaBoost learning algorithm, face detection, framework, traffic safety

Procedia PDF Downloads 157
11952 A Time-Varying and Non-Stationary Convolution Spectral Mixture Kernel for Gaussian Process

Authors: Kai Chen, Shuguang Cui, Feng Yin

Abstract:

Gaussian process (GP) with spectral mixture (SM) kernel demonstrates flexible non-parametric Bayesian learning ability in modeling unknown function. In this work a novel time-varying and non-stationary convolution spectral mixture (TN-CSM) kernel with a significant enhancing of interpretability by using process convolution is introduced. A way decomposing the SM component into an auto-convolution of base SM component and parameterizing it to be input dependent is outlined. Smoothly, performing a convolution between two base SM component yields a novel structure of non-stationary SM component with much better generalized expression and interpretation. The TN-CSM perfectly allows compatibility with the stationary SM kernel in terms of kernel form and spectral base ignored and confused by previous non-stationary kernels. On synthetic and real-world datatsets, experiments show the time-varying characteristics of hyper-parameters in TN-CSM and compare the learning performance of TN-CSM with popular and representative non-stationary GP.

Keywords: Gaussian process, spectral mixture, non-stationary, convolution

Procedia PDF Downloads 196
11951 The Significance of Computer Assisted Language Learning in Teaching English Grammar in Tribal Zone of Chhattisgarh

Authors: Yogesh Kumar Tiwari

Abstract:

Chhattisgarh has realized the fundamental role of information and communication technology in the globalized world where knowledge is at the top for the growth and intellectual development. They are spreading so widely that one feels lagging behind if not using them. The influence of these radiating and technological tools has encompassed all aspects of the educational, business, and economic sectors of our world. Undeniably the computer has not only established itself globally in all walks of life but has acquired a fundamental role of paramount importance in the educational process also. This role is getting all pervading and more powerful as computers are being manufactured to be cheaper, smaller in size, adaptable and easy to handle. Computers are becoming indispensable to teachers because of their enormous capabilities and extensive competence. This study aims at observing the effect of using computer based software program of English language on the achievement of undergraduate level students studying in tribal area like Sarguja Division, Chhattisgarh, India. To testify the effect of an innovative teaching in the graduate classroom in tribal area 50 students were randomly selected and separated into two groups. The first group of 25 students were taught English grammar i.e., passive voice/narration, through traditional method using chalk and blackboard asking some formal questions. The second group, the experimental one, was taught English grammar i.e., passive voice/narration, using computer, projector with power point presentation of grammatical items. The statistical analysis was done on the students’ learning capacities and achievement. The result was extremely mesmerizing not only for the teacher but for taught also. The process of the recapitulation demonstrated that the students of experimental group responded the answers of the questions enthusiastically with innovative sense of learning. In light of the findings of the study, it was recommended that teachers and professors of English ought to use self-made instructional program in their teaching process particularly in tribal areas.

Keywords: achievement computer assisted language learning, use of instructional program

Procedia PDF Downloads 149
11950 Algorithm for Predicting Cognitive Exertion and Cognitive Fatigue Using a Portable EEG Headset for Concussion Rehabilitation

Authors: Lou J. Pino, Mark Campbell, Matthew J. Kennedy, Ashleigh C. Kennedy

Abstract:

A concussion is complex and nuanced, with cognitive rest being a key component of recovery. Cognitive overexertion during rehabilitation from a concussion is associated with delayed recovery. However, daily living imposes cognitive demands that may be unavoidable and difficult to quantify. Therefore, a portable tool capable of alerting patients before cognitive overexertion occurs could allow patients to maintain their quality of life while preventing symptoms and recovery setbacks. EEG allows for a sensitive measure of cognitive exertion. Clinical 32-lead EEG headsets are not practical for day-to-day concussion rehabilitation management. However, there are now commercially available and affordable portable EEG headsets. Thus, these headsets can potentially be used to continuously monitor cognitive exertion during mental tasks to alert the wearer of overexertion, with the aim of preventing the occurrence of symptoms to speed recovery times. The objective of this study was to test an algorithm for predicting cognitive exertion from EEG data collected from a portable headset. EEG data were acquired from 10 participants (5 males, 5 females). Each participant wore a portable 4 channel EEG headband while completing 10 tasks: rest (eyes closed), rest (eyes open), three levels of the increasing difficulty of logic puzzles, three levels of increasing difficulty in multiplication questions, rest (eyes open), and rest (eyes closed). After each task, the participant was asked to report their perceived level of cognitive exertion using the NASA Task Load Index (TLX). Each participant then completed a second session on a different day. A customized machine learning model was created using data from the first session. The performance of each model was then tested using data from the second session. The mean correlation coefficient between TLX scores and predicted cognitive exertion was 0.75 ± 0.16. The results support the efficacy of the algorithm for predicting cognitive exertion. This demonstrates that the algorithms developed in this study used with portable EEG devices have the potential to aid in the concussion recovery process by monitoring and warning patients of cognitive overexertion. Preventing cognitive overexertion during recovery may reduce the number of symptoms a patient experiences and may help speed the recovery process.

Keywords: cognitive activity, EEG, machine learning, personalized recovery

Procedia PDF Downloads 220
11949 Artificial Intelligence in Enterprise Information Systems: A Review

Authors: Danah S. Alabdulmohsin

Abstract:

Due to the fast growth of organizational data as well as the emergence of new technologies such as artificial intelligence (AI), organizations tend to utilize these new technologies in their enterprise information systems (EIS) either to overcome the issues they struggle with or to enhance their functions. The aim of this paper is to review the potential role of AI technologies in EIS, namely: enterprise resource planning systems (ERP), customer relation management systems (CRM), supply chain management systems (SCM), knowledge systems (KM), and human resources management systems (HRM). The paper provided the definitions of these systems as well as the definitions of AI technologies that have been used in EIS. In addition, the paper discussed the challenges that organizations might face while integrating AI with their information systems and explained why some organizations fail in achieving successful implementations of the integration.

Keywords: artificial intelligence, AI, enterprise information system, EIS, integration

Procedia PDF Downloads 97
11948 Mechanism of Religion on Community Movement for Solid Waste Management

Authors: Sophaphan Intahphuak, Narong Pamala, Boonyaporn Yodkhong, Samuhavitayaa

Abstract:

The amount of solid waste increases each year as a result of population growth, urbanization and economic expansion; however, there was little public cooperation in the segregation of solid waste due to the lack of awareness. This study aims to encourage all sectors in the community to participate in the development of a suitable model to reduce environmental waste by emerging the cultural context that bares a close relationship with Buddhism through faith and merit-making. The monks, involving stakeholder in the entire waste management system, help publicize the campaign on Buddhist holy days, religious ceremonies and they also teach people to be responsible for the garbage problem in the community. As for the garbage brought for merit-making, they are sold and the money is used to help build the pavilion. It was found that people can separate recycled garbage and the amount of solid waste slightly decrease. The results obtained suggest that the religion is not only the moral center of the community, it is also the center of community empowerment to consciousness in waste management.

Keywords: community empowerment, religion’s role, waste management, recycled garbage

Procedia PDF Downloads 477
11947 An Optimization Model for Waste Management in Demolition Works

Authors: Eva Queheille, Franck Taillandier, Nadia Saiyouri

Abstract:

Waste management has become a major issue in demolition works, because of its environmental impact (energy consumption, resource consumption, pollution…). However, improving waste management requires to take also into account the overall demolition process and to consider demolition main objectives (e.g. cost, delay). Establishing a strategy with these conflicting objectives (economic and environment) remains complex. In order to provide a decision-support for demolition companies, a multi-objective optimization model was developed. In this model, a demolition strategy is computed from a set of 80 decision variables (worker team composition, machines, treatment for each type of waste, choice of treatment platform…), which impacts the demolition objectives. The model has experimented on a real-case study (demolition of several buildings in France). To process the optimization, different optimization algorithms (NSGA2, MOPSO, DBEA…) were tested. Results allow the engineer in charge of this case, to build a sustainable demolition strategy without affecting cost or delay.

Keywords: deconstruction, life cycle assessment, multi-objective optimization, waste management

Procedia PDF Downloads 152
11946 Environmental and Health Risks Associated with Dental Waste Management: A Review

Authors: Y. Y. Babanyara, B. A. Gana, T. Garba, M. A. Batari

Abstract:

Proper management of dental waste is a crucial issue for maintaining human health and the environment. The waste generated in the dental clinics has the potential for spreading infections and causing diseases, so improper disposal of these dental wastes can cause harm to the dentist, the people in immediate vicinity of the dentist, waste handlers, general public and the environment through production of toxins or as by-products of the destruction process. Staff that provide dental healthcare ought to be aware of the proper handling and the system of management of dental waste used by different dental hospitals. The method of investigation adopted in the paper involved a desk study in which documents and records relating to dental waste handling were studied to obtain background information on existing dental waste management in Nigeria other countries of the world are also mentioned as examples. Additionally, information on generation, handling, segregation, risk associated during handling and treatment of dental medical waste were sought in order to determine the best method for safe disposal. This article provides dentists with the information they need to properly dispose of mercury and amalgam waste, and provides suggestions for managing the other wastes that result from the day-to-day activities of a dental office such as: used X-ray fixers and developers; cleaners for X-ray developer systems; lead foils, shields and aprons; chemiclave/chemical sterilant solutions; disinfectants, cleaners, and other chemicals; and, general office waste. Additionally, this study may be beneficial for authorities and researchers of developing countries to work towards improving their present dental waste management system.

Keywords: clinic, dental, disposal, environment, waste management

Procedia PDF Downloads 319
11945 Learning, Teaching and Assessing Students’ ESP Skills via Exe and Hot Potatoes Software Programs

Authors: Naira Poghosyan

Abstract:

In knowledge society the content of the studies, the methods used and the requirements for an educator’s professionalism regularly undergo certain changes. It follows that in knowledge society the aim of education is not only to educate professionals for a certain field but also to help students to be aware of cultural values, form human mutual relationship, collaborate, be open, adapt to the new situation, creatively express their ideas, accept responsibility and challenge. In this viewpoint, the development of communicative language competence requires a through coordinated approach to ensure proper comprehension and memorization of subject-specific words starting from high school level. On the other hand, ESP (English for Specific Purposes) teachers and practitioners are increasingly faced with the task of developing and exploiting new ways of assessing their learners’ literacy while learning and teaching ESP. The presentation will highlight the latest achievements in this field. The author will present some practical methodological issues and principles associated with learning, teaching and assessing ESP skills of the learners, using the two software programs of EXE 2.0 and Hot Potatoes 6. On the one hand the author will display the advantages of the two programs as self-learning and self-assessment interactive tools in the course of academic study and professional development of the CLIL learners, on the other hand, she will comprehensively shed light upon some methodological aspects of working out appropriate ways of selection, introduction, consolidation of subject specific materials via EXE 2.0 and Hot Potatoes 6. Then the author will go further to distinguish ESP courses by the general nature of the learners’ specialty identifying three large categories of EST (English for Science and Technology), EBE (English for Business and Economics) and ESS (English for the Social Sciences). The cornerstone of the presentation will be the introduction of the subject titled “The methodology of teaching ESP in non-linguistic institutions”, where a unique case of teaching ESP on Architecture and Construction via EXE 2.0 and Hot Potatoes 6 will be introduced, exemplifying how the introduction, consolidation and assessment can be used as a basis for feedback to the ESP learners in a particular professional field.

Keywords: ESP competences, ESP skill assessment/ self-assessment tool, eXe 2.0 / HotPotatoes software program, ESP teaching strategies and techniques

Procedia PDF Downloads 378
11944 Peace through Environmental Stewardship

Authors: Elizabeth D. Ramos

Abstract:

Peace education supports a holistic appreciation for the value of life and the interdependence of all living systems. Peace education aims to build a culture of peace. One way of building a culture of peace is through environmental stewardship. This study sought to find out the environmental stewardship practices in selected Higher Education Institutions (HEIs) in the Philippines and how these environmental stewardship practices lead to building a culture of peace. The findings revealed that there is still room for improvement in implementing environmental stewardship in schools through academic service learning. In addition, the following manifestations are implemented very satisfactorily in schools: 1) waste reduction, reuse, and recycling, 2) community service, 3) clean and green surroundings. Administrators of schools in the study lead their staff and students in implementing environmental stewardship. It could be concluded that those involved in environmental stewardship display an acceptable culture of peace, particularly, solidarity, respect for persons, and inner peace.

Keywords: academic service learning, environmental stewardship, leadership support, peace, solidarity

Procedia PDF Downloads 508
11943 Machine Learning Techniques in Seismic Risk Assessment of Structures

Authors: Farid Khosravikia, Patricia Clayton

Abstract:

The main objective of this work is to evaluate the advantages and disadvantages of various machine learning techniques in two key steps of seismic hazard and risk assessment of different types of structures. The first step is the development of ground-motion models, which are used for forecasting ground-motion intensity measures (IM) given source characteristics, source-to-site distance, and local site condition for future events. IMs such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available. Second, it is investigated how machine learning techniques could be beneficial for developing probabilistic seismic demand models (PSDMs), which provide the relationship between the structural demand responses (e.g., component deformations, accelerations, internal forces, etc.) and the ground motion IMs. In the risk framework, such models are used to develop fragility curves estimating exceeding probability of damage for pre-defined limit states, and therefore, control the reliability of the predictions in the risk assessment. In this study, machine learning algorithms like artificial neural network, random forest, and support vector machine are adopted and trained on the demand parameters to derive PSDMs for them. It is observed that such models can provide more accurate estimates of prediction in relatively shorter about of time compared to conventional methods. Moreover, they can be used for sensitivity analysis of fragility curves with respect to many modeling parameters without necessarily requiring more intense numerical response-history analysis.

Keywords: artificial neural network, machine learning, random forest, seismic risk analysis, seismic hazard analysis, support vector machine

Procedia PDF Downloads 106
11942 Preparation of Papers - Developing a Leukemia Diagnostic System Based on Hybrid Deep Learning Architectures in Actual Clinical Environments

Authors: Skyler Kim

Abstract:

An early diagnosis of leukemia has always been a challenge to doctors and hematologists. On a worldwide basis, it was reported that there were approximately 350,000 new cases in 2012, and diagnosing leukemia was time-consuming and inefficient because of an endemic shortage of flow cytometry equipment in current clinical practice. As the number of medical diagnosis tools increased and a large volume of high-quality data was produced, there was an urgent need for more advanced data analysis methods. One of these methods was the AI approach. This approach has become a major trend in recent years, and several research groups have been working on developing these diagnostic models. However, designing and implementing a leukemia diagnostic system in real clinical environments based on a deep learning approach with larger sets remains complex. Leukemia is a major hematological malignancy that results in mortality and morbidity throughout different ages. We decided to select acute lymphocytic leukemia to develop our diagnostic system since acute lymphocytic leukemia is the most common type of leukemia, accounting for 74% of all children diagnosed with leukemia. The results from this development work can be applied to all other types of leukemia. To develop our model, the Kaggle dataset was used, which consists of 15135 total images, 8491 of these are images of abnormal cells, and 5398 images are normal. In this paper, we design and implement a leukemia diagnostic system in a real clinical environment based on deep learning approaches with larger sets. The proposed diagnostic system has the function of detecting and classifying leukemia. Different from other AI approaches, we explore hybrid architectures to improve the current performance. First, we developed two independent convolutional neural network models: VGG19 and ResNet50. Then, using both VGG19 and ResNet50, we developed a hybrid deep learning architecture employing transfer learning techniques to extract features from each input image. In our approach, fusing the features from specific abstraction layers can be deemed as auxiliary features and lead to further improvement of the classification accuracy. In this approach, features extracted from the lower levels are combined into higher dimension feature maps to help improve the discriminative capability of intermediate features and also overcome the problem of network gradient vanishing or exploding. By comparing VGG19 and ResNet50 and the proposed hybrid model, we concluded that the hybrid model had a significant advantage in accuracy. The detailed results of each model’s performance and their pros and cons will be presented in the conference.

Keywords: acute lymphoblastic leukemia, hybrid model, leukemia diagnostic system, machine learning

Procedia PDF Downloads 187
11941 Delay Studies in Construction: Synthesis, Critical Evaluation, and the Way Forward

Authors: Abdullah Alsehaimi

Abstract:

Over decades, there have been many studies of delay in construction, and this type of study continues to be popular in construction management research. A synthesis and critical evaluation of delay studies in developing countries reveals that poor project management is cited as one of the main causes of delay. However, despite such consensus, most of the previous studies fall short in providing clear recommendations demonstrating how project management practice could be improved. Moreover, the majority of recommendations are general and not devoted to solving the difficulties associated with particular delay causes. This paper aims to demonstrate that the root cause of this state of affairs is that typical research into delay tends to be descriptive and explanatory, making it inadequate for solving persistent managerial problems in construction. It is contended that many problems in construction could be mitigated via alternative research approaches, i.e. action and constructive research. Such prescriptive research methods can assist in the development and implementation of innovative tools tackling managerial problems of construction, including that of delay. In so doing, those methods will better connect research and practice, and thus strengthen the relevance of academic construction management.

Keywords: construction delay, action research, constructive research, industrial engineering

Procedia PDF Downloads 423
11940 Facial Emotion Recognition with Convolutional Neural Network Based Architecture

Authors: Koray U. Erbas

Abstract:

Neural networks are appealing for many applications since they are able to learn complex non-linear relationships between input and output data. As the number of neurons and layers in a neural network increase, it is possible to represent more complex relationships with automatically extracted features. Nowadays Deep Neural Networks (DNNs) are widely used in Computer Vision problems such as; classification, object detection, segmentation image editing etc. In this work, Facial Emotion Recognition task is performed by proposed Convolutional Neural Network (CNN)-based DNN architecture using FER2013 Dataset. Moreover, the effects of different hyperparameters (activation function, kernel size, initializer, batch size and network size) are investigated and ablation study results for Pooling Layer, Dropout and Batch Normalization are presented.

Keywords: convolutional neural network, deep learning, deep learning based FER, facial emotion recognition

Procedia PDF Downloads 274
11939 Evaluating and Prioritizing the Effective Management Factors of Human Resources Empowerment and Efficiency in Manufacturing Companies: A Case Study on Fars’ Livestock and Poultry Manufacturing Companies

Authors: Mohsen Yaghmor, Sima Radmanesh

Abstract:

Rapid environmental changes have been threatening the life of many organizations. Enabling and productivity of human resource should be considered as the most important issue in order to increase performance and ensure survival of the organizations. In this research, the effectiveness of management factory in productivity and inability of human resource have been identified and reviewed at glance. Afterwards, answers were sought to questions "What are the factors effecting productivity and enabling of human resource?" and "What are the priority order based on effective management of human resource in Fars Poultry Complex?". A specified questionnaire has been designed regarding the priorities and effectiveness of the identified factors. Six factors were specified consisting of: individual characteristics, teaching, motivation, partnership management, authority or power submission and job development that have most effect on organization. Then a questionnaire was specified for priority and effect measurement of specified factors that were reached after collecting information and using statistical tests of Keronchbakh alpha coefficient r = 0.792, so that we can say the questionnaire has sufficient reliability. After information analysis of specified six factors by Friedman test their effects were categorized. Measurement on organization respectively consists of individual characteristics, job development or enrichment, authority submission, partnership management, teaching and motivation. Lastly, approaches has been introduced to increase productivity of manpower.

Keywords: productivity, empowerment, enrichment, authority submission, partnership management, teaching, motivation

Procedia PDF Downloads 265
11938 The Pro-Active Public Relations of Faculty of Management Science, Suan Sunandha Rajabhat University

Authors: Kanyakorn Sujarittnetikarn, Surangkana Pipatchokchaiyo

Abstract:

The objective of this research was to study the pro-active public relations of according to the characteristic of Faculty of Management Science, Suan Sunandha Rajabhat University. The sample group for this research report was students from 4 year curriculum and continued / extended curriculum, made a random distribution proportion as follows: a group of 400 students who are working while studying and a group of non – working students. The tools used in this research were questionnaires, asking about the acknowledgement of public relations information of Faculty of Management Science in the academic year 2007. The result found that friends were the most influential in choosing the education institute. The differences of method to receive information of non-working student and working student were the entertainment magazine which was interested mostly by working students and they preferred to search the information on the website after 24:00 O’clock. However, the non-working students preferred 21:00-24:00 O’clock the most.

Keywords: development guidelines systems, faculty of management science, public relation planning, proactive public relations

Procedia PDF Downloads 288
11937 Learning from Flood: A Case Study of a Frequently Flooded Village in Hubei, China

Authors: Da Kuang

Abstract:

Resilience is a hotly debated topic in many research fields (e.g., engineering, ecology, society, psychology). In flood management studies, we are experiencing the paradigm shift from flood resistance to flood resilience. Flood resilience refers to tolerate flooding through adaptation or transformation. It is increasingly argued that our city as a social-ecological system holds the ability to learn from experience and adapt to flood rather than simply resist it. This research aims to investigate what kinds of adaptation knowledge the frequently flooded village learned from past experience and its advantages and limitations in coping with floods. The study area – Xinnongcun village, located in the west of Wuhan city, is a linear village and continuously suffered from both flash flood and drainage flood during the past 30 years. We have a field trip to the site in June 2017 and conducted semi-structured interviews with local residents. Our research summarizes two types of adaptation knowledge that people learned from the past floods. Firstly, at the village scale, it has formed a collective urban form which could help people live during both flood and dry season. All houses and front yards were elevated about 2m higher than the road. All the front yards in the village are linked and there is no barrier. During flooding time, people walk to neighbors through houses yards and boat to outside village on the lower road. Secondly, at individual scale, local people learned tacit knowledge of preparedness and emergency response to flood. Regarding the advantages and limitations, the adaptation knowledge could effectively help people to live with flood and reduce the chances of getting injuries. However, it cannot reduce local farmers’ losses on their agricultural land. After flood, it is impossible for local people to recover to the pre-disaster state as flood emerges during June and July will result in no harvest. Therefore, we argue that learning from past flood experience could increase people’s adaptive capacity. However, once the adaptive capacity cannot reduce people’s losses, it requires a transformation to a better regime.

Keywords: adaptation, flood resilience, tacit knowledge, transformation

Procedia PDF Downloads 334
11936 Utilization of Cloud-Based Learning Platform for the Enhancement of IT Onboarding System

Authors: Christian Luarca

Abstract:

The study aims to define the efficiency of e-Trainings by the use of cloud platform as part of the onboarding process for IT support engineers. Traditional lecture based trainings involves human resource to guide and assist new hires as part of onboarding which takes time and effort. The use of electronic medium as a platform for training provides a two-way basic communication that can be done in a repetitive manner. The study focuses on determining the most efficient manner of learning the basic knowledge on IT support in the shortest time possible. This was determined by conducting the same set of knowledge transfer categories in two different approaches, one being the e-Training and the other using the traditional method. Performance assessment will be done by the use of Service Tracker Assessment (STA) Tool and Service Manager. Data gathered from this ongoing study will promote the utilization of e-Trainings in the IT onboarding process.

Keywords: cloud platform, e-Training, efficiency, onboarding

Procedia PDF Downloads 150
11935 Process Safety Management Digitalization via SHEQTool based on Occupational Safety and Health Administration and Center for Chemical Process Safety, a Case Study in Petrochemical Companies

Authors: Saeed Nazari, Masoom Nazari, Ali Hejazi, Siamak Sanoobari Ghazi Jahani, Mohammad Dehghani, Javad Vakili

Abstract:

More than ever, digitization is an imperative for businesses to keep their competitive advantages, foster innovation and reduce paperwork. To design and successfully implement digital transformation initiatives within process safety management system, employees need to be equipped with the right tool, frameworks, and best practices. we developed a unique full stack application so-called SHEQTool which is entirely dynamic based on our extensive expertise, experience, and client feedback to help business processes particularly operations safety management. We use our best knowledge and scientific methodologies published by CCPS and OSHA Guidelines to streamline operations and integrated them into task management within Petrochemical Companies. We digitalize their main process safety management system elements and their sub elements such as hazard identification and risk management, training and communication, inspection and audit, critical changes management, contractor management, permit to work, pre-start-up safety review, incident reporting and investigation, emergency response plan, personal protective equipment, occupational health, and action management in a fully customizable manner with no programming needs for users. We review the feedback from main actors within petrochemical plant which highlights improving their business performance and productivity as well as keep tracking their functions’ key performance indicators (KPIs) because it; 1) saves time, resources, and costs of all paperwork on our businesses (by Digitalization); 2) reduces errors and improve performance within management system by covering most of daily software needs of the organization and reduce complexity and associated costs of numerous tools and their required training (One Tool Approach); 3) focuses on management systems and integrate functions and put them into traceable task management (RASCI and Flowcharting); 4) helps the entire enterprise be resilient to any change of your processes, technologies, assets with minimum costs (through Organizational Resilience); 5) reduces significantly incidents and errors via world class safety management programs and elements (by Simplification); 6) gives the companies a systematic, traceable, risk based, process based, and science based integrated management system (via proper Methodologies); 7) helps business processes complies with ISO 9001, ISO 14001, ISO 45001, ISO 31000, best practices as well as legal regulations by PDCA approach (Compliance).

Keywords: process, safety, digitalization, management, risk, incident, SHEQTool, OSHA, CCPS

Procedia PDF Downloads 67
11934 Effectiveness of Lean Manufacturing Technologies on Improving Business Performance: A Study of Indian Manufacturing Industries

Authors: Saumyaranjan Sahoo, Sudhir Yadav

Abstract:

Indian manufacturing firms operating in rapidly changing and highly competitive market, over the last few decades, have embraced organization-wide transformation to achieve cultural and operational excellence. In recent years, numerous approaches have been proposed to improve business and manufacturing performance. Lean practices in particular, Total Productive Management (TPM) and Total Quality Management (TQM) have received considerable attention, as they being adopted and adapted for raising the performance standard of Indian manufacturing firms to world class levels. The complementary nature of TPM and TQM is being practiced in many companies to achieve synergy. Specifically, this research investigates whether joint TPM-TQM implementation contribute to higher business performance when compared to individual implementation. Data from 160 manufacturing firms were analyzed that demonstrate synergetic implementation of both TPM-TQM practices over a reasonable period of time, contributed in delivering better business performance as compared to individual implementation strategy.

Keywords: total productive management, total quality management, Indian manufacturing firms, business performance

Procedia PDF Downloads 271
11933 Investigating the Potential of a Blended Format for the Academic Reading Module Course Redesign

Authors: Reham Niazi, Marwa Helmy, Susanne Rizzo

Abstract:

This classroom action research is designed to explore the possibility of adding effective online content to supplement and add learning value to the current reading module. The aim of this research was two-fold, first to investigate students’ acceptance of and interactivity with online components, chosen to orient students with the content, and to pave the way for more in-class activities and skill practice. Secondly, the instructor aimed to examine students’ willingness to have the course contact hours remain the same with some online components to be done at home (flipped approach) or if students were open to turn the class into a blended format with two scenarios; either to have the current contact hours and apply the blended and in this case the face to face component will be less or keep the number of face to face classes the same and add more online structured classes as part of the course hours.

Keywords: blended learning, flipped classroom, graduate students, education

Procedia PDF Downloads 185
11932 A Risk-Based Approach to Construction Management

Authors: Chloe E. Edwards, Yasaman Shahtaheri

Abstract:

Risk management plays a fundamental role in project planning and delivery. The purpose of incorporating risk management into project management practices is to identify and address uncertainties related to key project-related activities. The uncertainties, known as risk events, can relate to project deliverables that are quantifiable and are often measured by impact to project schedule, cost, or environmental impact. Risk management should be incorporated as an iterative practice throughout the planning, execution, and commissioning phases of a project. This paper specifically examines how risk management contributes to effective project planning and delivery through a case study of a transportation project. This case study focused solely on impacts to project schedule regarding three milestones: readiness for delivery, readiness for testing and commissioning, and completion of the facility. The case study followed the ISO 31000: Risk Management – Guidelines. The key factors that are outlined by these guidelines include understanding the scope and context of the project, conducting a risk assessment including identification, analysis, and evaluation, and lastly, risk treatment through mitigation measures. This process requires continuous consultation with subject matter experts and monitoring to iteratively update the risks accordingly. The risk identification process led to a total of fourteen risks related to design, permitting, construction, and commissioning. The analysis involved running 1,000 Monte Carlo simulations through @RISK 8.0 Industrial software to determine potential milestone completion dates based on the project baseline schedule. These dates include the best case, most likely case, and worst case to provide an estimated delay for each milestone. Evaluation of these results provided insight into which risks were the highest contributors to the projected milestone completion dates. Based on the analysis results, the risk management team was able to provide recommendations for mitigation measures to reduce the likelihood of risks occurring. The risk management team also provided recommendations for managing the identified risks and project activities moving forward to meet the most likely or best-case milestone completion dates.

Keywords: construction management, monte carlo simulation, project delivery, risk assessment, transportation engineering

Procedia PDF Downloads 107
11931 Soybean Seed Composition Prediction From Standing Crops Using Planet Scope Satellite Imagery and Machine Learning

Authors: Supria Sarkar, Vasit Sagan, Sourav Bhadra, Meghnath Pokharel, Felix B.Fritschi

Abstract:

Soybean and their derivatives are very important agricultural commodities around the world because of their wide applicability in human food, animal feed, biofuel, and industries. However, the significance of soybean production depends on the quality of the soybean seeds rather than the yield alone. Seed composition is widely dependent on plant physiological properties, aerobic and anaerobic environmental conditions, nutrient content, and plant phenological characteristics, which can be captured by high temporal resolution remote sensing datasets. Planet scope (PS) satellite images have high potential in sequential information of crop growth due to their frequent revisit throughout the world. In this study, we estimate soybean seed composition while the plants are in the field by utilizing PlanetScope (PS) satellite images and different machine learning algorithms. Several experimental fields were established with varying genotypes and different seed compositions were measured from the samples as ground truth data. The PS images were processed to extract 462 hand-crafted vegetative and textural features. Four machine learning algorithms, i.e., partial least squares (PLSR), random forest (RFR), gradient boosting machine (GBM), support vector machine (SVM), and two recurrent neural network architectures, i.e., long short-term memory (LSTM) and gated recurrent unit (GRU) were used in this study to predict oil, protein, sucrose, ash, starch, and fiber of soybean seed samples. The GRU and LSTM architectures had two separate branches, one for vegetative features and the other for textures features, which were later concatenated together to predict seed composition. The results show that sucrose, ash, protein, and oil yielded comparable prediction results. Machine learning algorithms that best predicted the six seed composition traits differed. GRU worked well for oil (R-Squared: of 0.53) and protein (R-Squared: 0.36), whereas SVR and PLSR showed the best result for sucrose (R-Squared: 0.74) and ash (R-Squared: 0.60), respectively. Although, the RFR and GBM provided comparable performance, the models tended to extremely overfit. Among the features, vegetative features were found as the most important variables compared to texture features. It is suggested to utilize many vegetation indices for machine learning training and select the best ones by using feature selection methods. Overall, the study reveals the feasibility and efficiency of PS images and machine learning for plot-level seed composition estimation. However, special care should be given while designing the plot size in the experiments to avoid mixed pixel issues.

Keywords: agriculture, computer vision, data science, geospatial technology

Procedia PDF Downloads 138
11930 Springback Prediction for Sheet Metal Cold Stamping Using Convolutional Neural Networks

Authors: Lei Zhu, Nan Li

Abstract:

Cold stamping has been widely applied in the automotive industry for the mass production of a great range of automotive panels. Predicting the springback to ensure the dimensional accuracy of the cold-stamped components is a critical step. The main approaches for the prediction and compensation of springback in cold stamping include running Finite Element (FE) simulations and conducting experiments, which require forming process expertise and can be time-consuming and expensive for the design of cold stamping tools. Machine learning technologies have been proven and successfully applied in learning complex system behaviours using presentative samples. These technologies exhibit the promising potential to be used as supporting design tools for metal forming technologies. This study, for the first time, presents a novel application of a Convolutional Neural Network (CNN) based surrogate model to predict the springback fields for variable U-shape cold bending geometries. A dataset is created based on the U-shape cold bending geometries and the corresponding FE simulations results. The dataset is then applied to train the CNN surrogate model. The result shows that the surrogate model can achieve near indistinguishable full-field predictions in real-time when compared with the FE simulation results. The application of CNN in efficient springback prediction can be adopted in industrial settings to aid both conceptual and final component designs for designers without having manufacturing knowledge.

Keywords: springback, cold stamping, convolutional neural networks, machine learning

Procedia PDF Downloads 149
11929 Using Demonstration Method of Teaching Sewing to Improve the Skills of Form 3 Fashion Designing Students: A Case of Baworo Integrated Community Center for Employable Skills (Bicces)

Authors: Aboagye Boye Gilbert

Abstract:

Teaching and learning (Education), not only in Ghana but the whole world is regarded as the (Stepping stone) vehicle to accelerate the country’s economy, development and social growth. Basically the ingredients for human development and the country in general is Vocational and Technical education and this has been stressed in Ghana’s education system since Pre-independence. To this effect, this research seeks to determine using demonstration method of Teachings sewing to improve the skills of form 3 Fashion Designing students of Baworo Integrated Community Centre for Employable Skills. In this research, reviewed literature on opinions of other researchers and what other people have done and said on related articles or topics, analyzed the research design used, translate the data gathered in the study. The study was design to gather information from the school on how they use Teaching methods to teach sewing. The targeted respondent contacted to give assistance Consist of students from BICCES, fashion teachers and tailored garment makers. The sample size consisted of 5 teachers, 20 students and 5 tailors were selected to answer questionnaire items that were used to gather the data for the study. The study revealed that most teachers and students agreed to the fact that demonstration, teaching and learning materials had a positive attitude towards the students in learning sewing. The study recommends that there should be more mechanisms in place to serve as a guide.

Keywords: VOTEC, BECE, BICCES, SHS

Procedia PDF Downloads 74
11928 Predictive Analysis of Chest X-rays Using NLP and Large Language Models with the Indiana University Dataset and Random Forest Classifier

Authors: Azita Ramezani, Ghazal Mashhadiagha, Bahareh Sanabakhsh

Abstract:

This study researches the combination of Random. Forest classifiers with large language models (LLMs) and natural language processing (NLP) to improve diagnostic accuracy in chest X-ray analysis using the Indiana University dataset. Utilizing advanced NLP techniques, the research preprocesses textual data from radiological reports to extract key features, which are then merged with image-derived data. This improved dataset is analyzed with Random Forest classifiers to predict specific clinical results, focusing on the identification of health issues and the estimation of case urgency. The findings reveal that the combination of NLP, LLMs, and machine learning not only increases diagnostic precision but also reliability, especially in quickly identifying critical conditions. Achieving an accuracy of 99.35%, the model shows significant advancements over conventional diagnostic techniques. The results emphasize the large potential of machine learning in medical imaging, suggesting that these technologies could greatly enhance clinician judgment and patient outcomes by offering quicker and more precise diagnostic approximations.

Keywords: natural language processing (NLP), large language models (LLMs), random forest classifier, chest x-ray analysis, medical imaging, diagnostic accuracy, indiana university dataset, machine learning in healthcare, predictive modeling, clinical decision support systems

Procedia PDF Downloads 46
11927 Designing for Sustainable Public Housing from Property Management and Financial Feasibility Perspectives

Authors: Kung-Jen Tu

Abstract:

Many public housing properties developed by local governments in Taiwan in the 1980s have deteriorated severely as these rental apartment buildings aged. The lack of building maintainability considerations during project design phase as well as insufficient maintenance funds have made it difficult and costly for local governments to maintain and keep public housing properties in good shape. In order to assist the local governments in achieving and delivering sustainable public housing, this paper intends to present a developed design evaluation method to be used to evaluate the presented design schemes from property management and financial feasibility perspectives during project design phase of public housing projects. The design evaluation results, i.e. the property management and financial implications of presented design schemes that could occur later during the building operation and maintenance phase, will be reported to the client (the government) and design schemes revised consequently. It is proposed that the design evaluation be performed from two main perspectives: (1) Operation and property management perspective: Three criteria such as spatial appropriateness, people and vehicle circulation and control, property management working spaces are used to evaluate the ‘operation and PM effectiveness’ of a design scheme. (2) Financial feasibility perspective: Four types of financial analyses are performed to assess the long term financial feasibility of a presented design scheme, such as operational and rental income analysis, management fund analysis, regular operational and property management service expense analysis, capital expense analysis. The ongoing Chung-Li Public Housing Project developed by the Taoyuan City Government will be used as a case to demonstrate how the presented design evaluation method is implemented. The results of property management assessment as well as the annual operational and capital expenses of a proposed design scheme are presented.

Keywords: design evaluation method, management fund, operational and capital expenses, rental apartment buildings

Procedia PDF Downloads 308
11926 Sterilization Incident Analysis by the Association of Litigation and Risk Management Method

Authors: Souhir Chelly, Asma Ben Cheikh, Hela Ghali, Salwa Khefacha, Lamine Dhidah, Mohamed Ben Rejeb, Houyem Said Latiri

Abstract:

The hospital risk management department is firstly involved in the methodological analysis of grade zero sterilization incidents. The system is based on a subsequent analysis process in compliance with the ongoing requirements of the Haute Autorité de santé (HAS) for a reactive approach to risk, allowing to identify failures and start the appropriate preventive and corrective measures. The use of the association of litigation and risk management (ALARM) method makes easier the grade zero analysis and brings to light the team or institutional, organizational, temporal, individual factors representative of undesirable effects. Two main factors come out again from this analysis, pre-disinfection step of the emergency block unsupervised instrumentalist intern was poorly done since she did not remove the battery from micro air motor. At the sterilization unit, the worker who was not supervised by the nurse did the conditioning of the motor without having checked it if it still contained the battery. The main cause is that the management of human resources was inadequate at both levels, the instrumental trainee in the block who was not supervised by his supervisor and the worker of the sterilization unit who was not supervised by the responsible nurse. There is a lack of research help, advice, and collaboration. The difficulties encountered during this type of analysis are multiple. The first is based on its necessary acceptance by the various actors of care involved, which should not perceive it as a tool leading to individual punishment, but rather as a means to improve their practices.

Keywords: ALARM (Association of Litigation and Risk Management Method), incident, risk management, sterilization

Procedia PDF Downloads 214
11925 Downscaling Seasonal Sea Surface Temperature Forecasts over the Mediterranean Sea Using Deep Learning

Authors: Redouane Larbi Boufeniza, Jing-Jia Luo

Abstract:

This study assesses the suitability of deep learning (DL) for downscaling sea surface temperature (SST) over the Mediterranean Sea in the context of seasonal forecasting. We design a set of experiments that compare different DL configurations and deploy the best-performing architecture to downscale one-month lead forecasts of June–September (JJAS) SST from the Nanjing University of Information Science and Technology Climate Forecast System version 1.0 (NUIST-CFS1.0) for the period of 1982–2020. We have also introduced predictors over a larger area to include information about the main large-scale circulations that drive SST over the Mediterranean Sea region, which improves the downscaling results. Finally, we validate the raw model and downscaled forecasts in terms of both deterministic and probabilistic verification metrics, as well as their ability to reproduce the observed precipitation extreme and spell indicator indices. The results showed that the convolutional neural network (CNN)-based downscaling consistently improves the raw model forecasts, with lower bias and more accurate representations of the observed mean and extreme SST spatial patterns. Besides, the CNN-based downscaling yields a much more accurate forecast of extreme SST and spell indicators and reduces the significant relevant biases exhibited by the raw model predictions. Moreover, our results show that the CNN-based downscaling yields better skill scores than the raw model forecasts over most portions of the Mediterranean Sea. The results demonstrate the potential usefulness of CNN in downscaling seasonal SST predictions over the Mediterranean Sea, particularly in providing improved forecast products.

Keywords: Mediterranean Sea, sea surface temperature, seasonal forecasting, downscaling, deep learning

Procedia PDF Downloads 76
11924 An Exploration of the Integration of Guided Play With Explicit Instruction in Early Childhood Mathematics

Authors: Anne Tan, Kok-Sing Tang, Audrey Cooke

Abstract:

Play has always been a prominent pedagogy in early childhood. However, there is growing evidence of success in students’ learning using explicit instruction, especially in literacy in the early years. There is also limited research using explicit instruction in early childhood mathematics, and play is usually prominently mentioned. This proposed research aims to investigate the possibilities and benefits of integrating guided play with explicit instruction in early childhood mathematics education. While play has traditionally been a prominent pedagogy in early childhood, there is growing evidence of success in student learning through explicit instruction, particularly in literacy. However, limited research exists on the integration of explicit instruction in early childhood mathematics, where play remains prominently mentioned. This study utilises a multiple case study methodology to gather data and provide immediate opportunities for curriculum improvement. The research will commence with semi-structured interviews to gain insights into educators' background knowledge. Highly structured observations will be conducted to record the frequency and manner in which guided play is integrated with specific elements of explicit instruction during mathematics teaching in early childhood. To enhance the observations, video recordings will be made using cameras with video settings and Microsoft Teams meeting recordings. In addition to interviews and observations, educators will maintain journals and use the Microsoft Teams platform for self-reflection on the integration of guided play and explicit instruction in their classroom practices and experiences. The study participants will include educators with early childhood degrees and students in years one and two. The primary goal of this research is to inform the benefits of integrating two high-impact pedagogies, guided play, and explicit instruction, for enhancing student learning outcomes in mathematics education. By exploring the integration of these pedagogical approaches, this study aims to contribute to the development of effective instructional strategies in early childhood mathematics education.

Keywords: early childhood, early childhood mathematics, early childhood numbers, guided play, play-based learning, explicit instruction

Procedia PDF Downloads 65