Search results for: teacher learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7765

Search results for: teacher learning

3805 New Advanced Medical Software Technology Challenges and Evolution of the Regulatory Framework in Expert Software, Artificial Intelligence, and Machine Learning

Authors: Umamaheswari Shanmugam, Silvia Ronchi, Radu Vornicu

Abstract:

Software, artificial intelligence, and machine learning can improve healthcare through innovative and advanced technologies that are able to use the large amount and variety of data generated during healthcare services every day. As we read the news, over 500 machine learning or other artificial intelligence medical devices have now received FDA clearance or approval, the first ones even preceding the year 2000. One of the big advantages of these new technologies is the ability to get experience and knowledge from real-world use and to continuously improve their performance. Healthcare systems and institutions can have a great benefit because the use of advanced technologies improves the same time efficiency and efficacy of healthcare. Software-defined as a medical device, is stand-alone software that is intended to be used for patients for one or more of these specific medical intended uses: - diagnosis, prevention, monitoring, prediction, prognosis, treatment or alleviation of a disease, any other health conditions, replacing or modifying any part of a physiological or pathological process–manage the received information from in vitro specimens derived from the human samples (body) and without principal main action of its principal intended use by pharmacological, immunological or metabolic definition. Software qualified as medical devices must comply with the general safety and performance requirements applicable to medical devices. These requirements are necessary to ensure high performance and quality and also to protect patients’ safety. The evolution and the continuous improvement of software used in healthcare must take into consideration the increase in regulatory requirements, which are becoming more complex in each market. The gap between these advanced technologies and the new regulations is the biggest challenge for medical device manufacturers. Regulatory requirements can be considered a market barrier, as they can delay or obstacle the device approval, but they are necessary to ensure performance, quality, and safety, and at the same time, they can be a business opportunity if the manufacturer is able to define in advance the appropriate regulatory strategy. The abstract will provide an overview of the current regulatory framework, the evolution of the international requirements, and the standards applicable to medical device software in the potential market all over the world.

Keywords: artificial intelligence, machine learning, SaMD, regulatory, clinical evaluation, classification, international requirements, MDR, 510k, PMA, IMDRF, cyber security, health care systems.

Procedia PDF Downloads 89
3804 A Machine Learning-Based Model to Screen Antituberculosis Compound Targeted against LprG Lipoprotein of Mycobacterium tuberculosis

Authors: Syed Asif Hassan, Syed Atif Hassan

Abstract:

Multidrug-resistant Tuberculosis (MDR-TB) is an infection caused by the resistant strains of Mycobacterium tuberculosis that do not respond either to isoniazid or rifampicin, which are the most important anti-TB drugs. The increase in the occurrence of a drug-resistance strain of MTB calls for an intensive search of novel target-based therapeutics. In this context LprG (Rv1411c) a lipoprotein from MTB plays a pivotal role in the immune evasion of Mtb leading to survival and propagation of the bacterium within the host cell. Therefore, a machine learning method will be developed for generating a computational model that could predict for a potential anti LprG activity of the novel antituberculosis compound. The present study will utilize dataset from PubChem database maintained by National Center for Biotechnology Information (NCBI). The dataset involves compounds screened against MTB were categorized as active and inactive based upon PubChem activity score. PowerMV, a molecular descriptor generator, and visualization tool will be used to generate the 2D molecular descriptors for the actives and inactive compounds present in the dataset. The 2D molecular descriptors generated from PowerMV will be used as features. We feed these features into three different classifiers, namely, random forest, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model based on the accuracy of predicting novel antituberculosis compound with an anti LprG activity. Additionally, the efficacy of predicted active compounds will be screened using SMARTS filter to choose molecule with drug-like features.

Keywords: antituberculosis drug, classifier, machine learning, molecular descriptors, prediction

Procedia PDF Downloads 391
3803 Efficient Chiller Plant Control Using Modern Reinforcement Learning

Authors: Jingwei Du

Abstract:

The need of optimizing air conditioning systems for existing buildings calls for control methods designed with energy-efficiency as a primary goal. The majority of current control methods boil down to two categories: empirical and model-based. To be effective, the former heavily relies on engineering expertise and the latter requires extensive historical data. Reinforcement Learning (RL), on the other hand, is a model-free approach that explores the environment to obtain an optimal control strategy often referred to as “policy”. This research adopts Proximal Policy Optimization (PPO) to improve chiller plant control, and enable the RL agent to collaborate with experienced engineers. It exploits the fact that while the industry lacks historical data, abundant operational data is available and allows the agent to learn and evolve safely under human supervision. Thanks to the development of language models, renewed interest in RL has led to modern, online, policy-based RL algorithms such as the PPO. This research took inspiration from “alignment”, a process that utilizes human feedback to finetune the pretrained model in case of unsafe content. The methodology can be summarized into three steps. First, an initial policy model is generated based on minimal prior knowledge. Next, the prepared PPO agent is deployed so feedback from both critic model and human experts can be collected for future finetuning. Finally, the agent learns and adapts itself to the specific chiller plant, updates the policy model and is ready for the next iteration. Besides the proposed approach, this study also used traditional RL methods to optimize the same simulated chiller plants for comparison, and it turns out that the proposed method is safe and effective at the same time and needs less to no historical data to start up.

Keywords: chiller plant, control methods, energy efficiency, proximal policy optimization, reinforcement learning

Procedia PDF Downloads 30
3802 Elaboration and Validation of a Survey about Research on the Characteristics of Mentoring of University Professors’ Lifelong Learning

Authors: Nagore Guerra Bilbao, Clemente Lobato Fraile

Abstract:

This paper outlines the design and development of the MENDEPRO questionnaire, designed to analyze mentoring performance within a professional development process carried out with professors at the University of the Basque Country, Spain. The study took into account the international research carried out over the past two decades into teachers' professional development, and was also based on a thorough review of the most common instruments used to identify and analyze mentoring styles, many of which fail to provide sufficient psychometric guarantees. The present study aimed to gather empirical data in order to verify the metric quality of the questionnaire developed. To this end, the process followed to validate the theoretical construct was as follows: The formulation of the items and indicators in accordance with the study variables; the analysis of the validity and reliability of the initial questionnaire; the review of the second version of the questionnaire and the definitive measurement instrument. Content was validated through the formal agreement and consensus of 12 university professor training experts. A reduced sample of professors who had participated in a lifelong learning program was then selected for a trial evaluation of the instrument developed. After the trial, 18 items were removed from the initial questionnaire. The final version of the instrument, comprising 33 items, was then administered to a sample group of 99 participants. The results revealed a five-dimensional structure matching theoretical expectations. Also, the reliability data for both the instrument as a whole (.98) and its various dimensions (between .91 and .97) were very high. The questionnaire was thus found to have satisfactory psychometric properties and can therefore be considered apt for studying the performance of mentoring in both induction programs for young professors and lifelong learning programs for senior faculty members.

Keywords: higher education, mentoring, professional development, university teaching

Procedia PDF Downloads 180
3801 Digital Platform of Crops for Smart Agriculture

Authors: Pascal François Faye, Baye Mor Sall, Bineta Dembele, Jeanne Ana Awa Faye

Abstract:

In agriculture, estimating crop yields is key to improving productivity and decision-making processes such as financial market forecasting and addressing food security issues. The main objective of this paper is to have tools to predict and improve the accuracy of crop yield forecasts using machine learning (ML) algorithms such as CART , KNN and SVM . We developed a mobile app and a web app that uses these algorithms for practical use by farmers. The tests show that our system (collection and deployment architecture, web application and mobile application) is operational and validates empirical knowledge on agro-climatic parameters in addition to proactive decision-making support. The experimental results obtained on the agricultural data, the performance of the ML algorithms are compared using cross-validation in order to identify the most effective ones following the agricultural data. The proposed applications demonstrate that the proposed approach is effective in predicting crop yields and provides timely and accurate responses to farmers for decision support.

Keywords: prediction, machine learning, artificial intelligence, digital agriculture

Procedia PDF Downloads 80
3800 Evaluation of the CRISP-DM Business Understanding Step: An Approach for Assessing the Predictive Power of Regression versus Classification for the Quality Prediction of Hydraulic Test Results

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

Digitalisation in production technology is a driver for the application of machine learning methods. Through the application of predictive quality, the great potential for saving necessary quality control can be exploited through the data-based prediction of product quality and states. However, the serial use of machine learning applications is often prevented by various problems. Fluctuations occur in real production data sets, which are reflected in trends and systematic shifts over time. To counteract these problems, data preprocessing includes rule-based data cleaning, the application of dimensionality reduction techniques, and the identification of comparable data subsets to extract stable features. Successful process control of the target variables aims to centre the measured values around a mean and minimise variance. Competitive leaders claim to have mastered their processes. As a result, much of the real data has a relatively low variance. For the training of prediction models, the highest possible generalisability is required, which is at least made more difficult by this data availability. The implementation of a machine learning application can be interpreted as a production process. The CRoss Industry Standard Process for Data Mining (CRISP-DM) is a process model with six phases that describes the life cycle of data science. As in any process, the costs to eliminate errors increase significantly with each advancing process phase. For the quality prediction of hydraulic test steps of directional control valves, the question arises in the initial phase whether a regression or a classification is more suitable. In the context of this work, the initial phase of the CRISP-DM, the business understanding, is critically compared for the use case at Bosch Rexroth with regard to regression and classification. The use of cross-process production data along the value chain of hydraulic valves is a promising approach to predict the quality characteristics of workpieces. Suitable methods for leakage volume flow regression and classification for inspection decision are applied. Impressively, classification is clearly superior to regression and achieves promising accuracies.

Keywords: classification, CRISP-DM, machine learning, predictive quality, regression

Procedia PDF Downloads 144
3799 Transfer Learning for Protein Structure Classification at Low Resolution

Authors: Alexander Hudson, Shaogang Gong

Abstract:

Structure determination is key to understanding protein function at a molecular level. Whilst significant advances have been made in predicting structure and function from amino acid sequence, researchers must still rely on expensive, time-consuming analytical methods to visualise detailed protein conformation. In this study, we demonstrate that it is possible to make accurate (≥80%) predictions of protein class and architecture from structures determined at low (>3A) resolution, using a deep convolutional neural network trained on high-resolution (≤3A) structures represented as 2D matrices. Thus, we provide proof of concept for high-speed, low-cost protein structure classification at low resolution, and a basis for extension to prediction of function. We investigate the impact of the input representation on classification performance, showing that side-chain information may not be necessary for fine-grained structure predictions. Finally, we confirm that high resolution, low-resolution and NMR-determined structures inhabit a common feature space, and thus provide a theoretical foundation for boosting with single-image super-resolution.

Keywords: transfer learning, protein distance maps, protein structure classification, neural networks

Procedia PDF Downloads 136
3798 Development and Implementation of Early Childhood Media Literacy Education Program

Authors: Kim Haekyoung, Au Yunkyoung

Abstract:

As digital technology continues to advance and become more widely accessible, young children are also growing up experiencing various media from infancy. In this changing environment, educating young children on media literacy has become an increasingly important task. With the diversification of media, it has become more necessary for children to understand, utilize, and critically explore the meaning of multimodal texts, which include text, images, and sounds connected to each other. Early childhood is a period when media literacy can bloom, and educational and policy support are needed to enable young children to express their opinions, communicate, and participate fully. However, most current media literacy education for young children focuses solely on teaching how to use media, with limited practical application and utilization. Therefore, this study aims to develop an inquiry-based media literacy education program for young children using topic-specific media content and explore the program's potential and impact on children's media literacy learning. Based on a theoretical and literature review on media literacy education, analysis of existing educational programs, and a survey on the current status and teacher perception of media literacy education for young children, this study developed a media literacy education program for young children considering the components of media literacy (understanding media characteristics, self-regulation, self-expression, critical understanding, ethical norms, social communication). To verify the effectiveness of the program, it was implemented with 20 five-year-old children from C City S Kindergarten, starting from March 24 to May 26, 2022, once a week for a total of 6 sessions. To explore quantitative changes before and after program implementation, repeated-measures analysis of variance was conducted, and qualitative analysis was used to analyze observed changes in the process. significant improvement in media literacy levels, such as understanding media characteristics, self-regulation, self-expression, critical understanding, ethical norms, and social communication. The developed inquiry-based media literacy education program for young children in this study can be effectively applied to enhance children's media literacy education and help improve their media literacy levels. Observed changes in the process also confirmed that children improved their ability to learn various topics, express their thoughts, and communicate with others using media content. These findings emphasize the importance of developing and implementing media literacy education programs and can help children develop the ability to safely and effectively use media in their media environment. Based on exploring the potential and impact of the inquiry-based media literacy education program for young children, this study confirmed positive changes in children's media literacy levels as a result of the program's implementation. These findings suggest that beyond education on how to use media, it can help develop children's ability to safely and effectively use media in their media environment. Furthermore, to improve children's media literacy levels and create a safe media environment, a variety of content and methodologies are needed, and continuous development and evaluation of educational programs are anticipated.

Keywords: young children, media literacy, media literacy education program, media content

Procedia PDF Downloads 71
3797 Task Based Language Learning: A Paradigm Shift in ESL/EFL Teaching and Learning: A Case Study Based Approach

Authors: Zehra Sultan

Abstract:

The study is based on the task-based language teaching approach which is found to be very effective in the EFL/ESL classroom. This approach engages learners to acquire the usage of authentic language skills by interacting with the real world through sequence of pedagogical tasks. The use of technology enhances the effectiveness of this approach. This study throws light on the historical background of TBLT and its efficacy in the EFL/ESL classroom. In addition, this study precisely talks about the implementation of this approach in the General Foundation Programme of Muscat College, Oman. It furnishes the list of the pedagogical tasks embedded in the language curriculum of General Foundation Programme (GFP) which are skillfully allied to the College Graduate Attributes. Moreover, the study also discusses the challenges pertaining to this approach from the point of view of teachers, students, and its classroom application. Additionally, the operational success of this methodology is gauged through formative assessments of the GFP, which is apparent in the students’ progress.

Keywords: task-based language teaching, authentic language, communicative approach, real world activities, ESL/EFL activities

Procedia PDF Downloads 124
3796 Manage an Acute Pain Unit based on the Balanced Scorecard

Authors: Helena Costa Oliveira, Carmem Oliveira, Rita Moutinho

Abstract:

The Balanced Scorecard (BSC) is a continuous strategic monitoring model focused not only on financial issues but also on internal processes, patients/users, and learning and growth. Initially dedicated to business management, it currently serves organizations of other natures - such as hospitals. This paper presents a BSC designed for a Portuguese Acute Pain Unit (APU). This study is qualitative and based on the experience of collaborators at the APU. The management of APU is based on four perspectives – users, internal processes, learning and growth, and financial and legal. For each perspective, there were identified strategic objectives, critical factors, lead indicators and initiatives. The strategic map of the APU outlining sustained strategic relations among strategic objectives. This study contributes to the development of research in the health management area as it explores how organizational insufficiencies and inconsistencies in this particular case can be addressed, through the identification of critical factors, to clearly establish core outcomes and initiatives to set up.

Keywords: acute pain unit, balanced scorecard, hospital management, organizational performance, Portugal

Procedia PDF Downloads 148
3795 A Scalable Model of Fair Socioeconomic Relations Based on Blockchain and Machine Learning Algorithms-1: On Hyperinteraction and Intuition

Authors: Merey M. Sarsengeldin, Alexandr S. Kolokhmatov, Galiya Seidaliyeva, Alexandr Ozerov, Sanim T. Imatayeva

Abstract:

This series of interdisciplinary studies is an attempt to investigate and develop a scalable model of fair socioeconomic relations on the base of blockchain using positive psychology techniques and Machine Learning algorithms for data analytics. In this particular study, we use hyperinteraction approach and intuition to investigate their influence on 'wisdom of crowds' via created mobile application which was created for the purpose of this research. Along with the public blockchain and private Decentralized Autonomous Organization (DAO) which were elaborated by us on the base of Ethereum blockchain, a model of fair financial relations of members of DAO was developed. We developed a smart contract, so-called, Fair Price Protocol and use it for implementation of model. The data obtained from mobile application was analyzed by ML algorithms. A model was tested on football matches.

Keywords: blockchain, Naïve Bayes algorithm, hyperinteraction, intuition, wisdom of crowd, decentralized autonomous organization

Procedia PDF Downloads 169
3794 Representational Issues in Learning Solution Chemistry at Secondary School

Authors: Lam Pham, Peter Hubber, Russell Tytler

Abstract:

Students’ conceptual understandings of chemistry concepts/phenomena involve capability to coordinate across the three levels of Johnston’s triangle model. This triplet model is based on reasoning about chemical phenomena across macro, sub-micro and symbolic levels. In chemistry education, there is a need for further examining inquiry-based approaches that enhance students’ conceptual learning and problem solving skills. This research adopted a directed inquiry pedagogy based on students constructing and coordinating representations, to investigate senior school students’ capabilities to flexibly move across Johnston’ levels when learning dilution and molar concentration concepts. The participants comprise 50 grade 11 and 20 grade 10 students and 4 chemistry teachers who were selected from 4 secondary schools located in metropolitan Melbourne, Victoria. This research into classroom practices used ethnographic methodology, involved teachers working collaboratively with the research team to develop representational activities and lesson sequences in the instruction of a unit on solution chemistry. The representational activities included challenges (Representational Challenges-RCs) that used ‘representational tools’ to assist students to move across Johnson’s three levels for dilution phenomena. In this report, the ‘representational tool’ called ‘cross and portion’ model was developed and used in teaching and learning the molar concentration concept. Students’ conceptual understanding and problem solving skills when learning with this model are analysed through group case studies of year 10 and 11 chemistry students. In learning dilution concepts, students in both group case studies actively conducted a practical experiment, used their own language and visualisation skills to represent dilution phenomena at macroscopic level (RC1). At the sub-microscopic level, students generated and negotiated representations of the chemical interactions between solute and solvent underpinning the dilution process. At the symbolic level, students demonstrated their understandings about dilution concepts by drawing chemical structures and performing mathematical calculations. When learning molar concentration with a ‘cross and portion’ model (RC2), students coordinated across visual and symbolic representational forms and Johnson’s levels to construct representations. The analysis showed that in RC1, Year 10 students needed more ‘scaffolding’ in inducing to representations to explicit the form and function of sub-microscopic representations. In RC2, Year 11 students showed clarity in using visual representations (drawings) to link to mathematics to solve representational challenges about molar concentration. In contrast, year 10 students struggled to get match up the two systems, symbolic system of mole per litre (‘cross and portion’) and visual representation (drawing). These conceptual problems do not lie in the students’ mathematical calculation capability but rather in students’ capability to align visual representations with the symbolic mathematical formulations. This research also found that students in both group case studies were able to coordinate representations when probed about the use of ‘cross and portion’ model (in RC2) to demonstrate molar concentration of diluted solutions (in RC1). Students mostly succeeded in constructing ‘cross and portion’ models to represent the reduction of molar concentration of the concentration gradients. In conclusion, this research demonstrated how the strategic introduction and coordination of chemical representations across modes and across the macro, sub-micro and symbolic levels, supported student reasoning and problem solving in chemistry.

Keywords: cross and portion, dilution, Johnston's triangle, molar concentration, representations

Procedia PDF Downloads 137
3793 The Impact of Step-By-Step Program in the Public Preschool Institutions in Kosova

Authors: Rozafa Shala

Abstract:

Development of preschool education in Kosovo has passed through several periods. The period after the 1999 war was very intensive period when preschool education started to change. Step-by-step program was one of the programs which were very well extended during the period after the 1999 war until now. The aim of this study is to present the impact of the step-by-step program in the preschool education. This research is based on the hypothesis that: Step-by-step program continues to be present with its elements, in all other programs that the teachers can use. For data collection a questionnaire is constructed which was distributed to 25 teachers of preschool education who work in public preschool institutions. All the teachers have finished the training for step by step program. To support the data from the questionnaire a focus group is also organized with whom the critical issues of the program were discussed. From the results obtained we can conclude that the step-by-step program has a very strong impact in the preschool level. Many specific elements such as: circle time, weather calendar, environment inside the class, portfolios and many other elements are present in most of the preschool classes. The teacher's approach also has many elements of the step-by-step program.

Keywords: preschool education, step-by-step program, impact, teachers

Procedia PDF Downloads 350
3792 Development and Validation of a Quantitative Measure of Engagement in the Analysing Aspect of Dialogical Inquiry

Authors: Marcus Goh Tian Xi, Alicia Chua Si Wen, Eunice Gan Ghee Wu, Helen Bound, Lee Liang Ying, Albert Lee

Abstract:

The Map of Dialogical Inquiry provides a conceptual look at the underlying nature of future-oriented skills. According to the Map, learning is learner-oriented, with conversational time shifted from teachers to learners, who play a strong role in deciding what and how they learn. For example, in courses operating on the principles of Dialogical Inquiry, learners were able to leave the classroom with a deeper understanding of the topic, broader exposure to differing perspectives, and stronger critical thinking capabilities, compared to traditional approaches to teaching. Despite its contributions to learning, the Map is grounded in a qualitative approach both in its development and its application for providing feedback to learners and educators. Studies hinge on openended responses by Map users, which can be time consuming and resource intensive. The present research is motivated by this gap in practicality by aiming to develop and validate a quantitative measure of the Map. In addition, a quantifiable measure may also strengthen applicability by making learning experiences trackable and comparable. The Map outlines eight learning aspects that learners should holistically engage. This research focuses on the Analysing aspect of learning. According to the Map, Analysing has four key components: liking or engaging in logic, using interpretative lenses, seeking patterns, and critiquing and deconstructing. Existing scales of constructs (e.g., critical thinking, rationality) related to these components were identified so that the current scale could adapt items from. Specifically, items were phrased beginning with an “I”, followed by an action phrase, to fulfil the purpose of assessing learners' engagement with Analysing either in general or in classroom contexts. Paralleling standard scale development procedure, the 26-item Analysing scale was administered to 330 participants alongside existing scales with varying levels of association to Analysing, to establish construct validity. Subsequently, the scale was refined and its dimensionality, reliability, and validity were determined. Confirmatory factor analysis (CFA) revealed if scale items loaded onto the four factors corresponding to the components of Analysing. To refine the scale, items were systematically removed via an iterative procedure, according to their factor loadings and results of likelihood ratio tests at each step. Eight items were removed this way. The Analysing scale is better conceptualised as unidimensional, rather than comprising the four components identified by the Map, for three reasons: 1) the covariance matrix of the model specified for the CFA was not positive definite, 2) correlations among the four factors were high, and 3) exploratory factor analyses did not yield an easily interpretable factor structure of Analysing. Regarding validity, since the Analysing scale had higher correlations with conceptually similar scales than conceptually distinct scales, with minor exceptions, construct validity was largely established. Overall, satisfactory reliability and validity of the scale suggest that the current procedure can result in a valid and easy-touse measure for each aspect of the Map.

Keywords: analytical thinking, dialogical inquiry, education, lifelong learning, pedagogy, scale development

Procedia PDF Downloads 91
3791 The Effectiveness of Video Modeling Procedures on Request an Item Behavior Children with Autism Spectrum Disorders

Authors: Melih Cattik

Abstract:

The present study investigate effectiveness of video modeling procedures on request an item behavior of children with ASD. Two male and a female children with ASD participated in the study. A multiple baseline across participant single-subject design was used to evaluate the effects of the video modeling procedures on request an item behavior. During baseline, no prompts were presented to participants. In the intervention phase, the teacher gave video model to the participant and than created opportunity for request an item to him/her. When the first participant reached to criterion, the second participant began intervention. This procedure continued till all participants completed intervention. Finally, all three participants learned to request an item behavior. Based upon findings of this study, it will make suggestions to future researches.

Keywords: autism spectrum disorders, video modeling procedures, request an item behavior, single subject design

Procedia PDF Downloads 409
3790 A Comparative Study of Optimization Techniques and Models to Forecasting Dengue Fever

Authors: Sudha T., Naveen C.

Abstract:

Dengue is a serious public health issue that causes significant annual economic and welfare burdens on nations. However, enhanced optimization techniques and quantitative modeling approaches can predict the incidence of dengue. By advocating for a data-driven approach, public health officials can make informed decisions, thereby improving the overall effectiveness of sudden disease outbreak control efforts. The National Oceanic and Atmospheric Administration and the Centers for Disease Control and Prevention are two of the U.S. Federal Government agencies from which this study uses environmental data. Based on environmental data that describe changes in temperature, precipitation, vegetation, and other factors known to affect dengue incidence, many predictive models are constructed that use different machine learning methods to estimate weekly dengue cases. The first step involves preparing the data, which includes handling outliers and missing values to make sure the data is prepared for subsequent processing and the creation of an accurate forecasting model. In the second phase, multiple feature selection procedures are applied using various machine learning models and optimization techniques. During the third phase of the research, machine learning models like the Huber Regressor, Support Vector Machine, Gradient Boosting Regressor (GBR), and Support Vector Regressor (SVR) are compared with several optimization techniques for feature selection, such as Harmony Search and Genetic Algorithm. In the fourth stage, the model's performance is evaluated using Mean Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) as assistance. Selecting an optimization strategy with the least number of errors, lowest price, biggest productivity, or maximum potential results is the goal. In a variety of industries, including engineering, science, management, mathematics, finance, and medicine, optimization is widely employed. An effective optimization method based on harmony search and an integrated genetic algorithm is introduced for input feature selection, and it shows an important improvement in the model's predictive accuracy. The predictive models with Huber Regressor as the foundation perform the best for optimization and also prediction.

Keywords: deep learning model, dengue fever, prediction, optimization

Procedia PDF Downloads 65
3789 Modeling Floodplain Vegetation Response to Groundwater Variability Using ArcSWAT Hydrological Model, Moderate Resolution Imaging Spectroradiometer - Normalised Difference Vegetation Index Data, and Machine Learning

Authors: Newton Muhury, Armando A. Apan, Tek Maraseni

Abstract:

This study modelled the relationships between vegetation response and available water below the soil surface using the Terra’s Moderate Resolution Imaging Spectroradiometer (MODIS) generated Normalised Difference Vegetation Index (NDVI) and soil water content (SWC) data. The Soil & Water Assessment Tool (SWAT) interface known as ArcSWAT was used in ArcGIS for the groundwater analysis. The SWAT model was calibrated and validated in SWAT-CUP software using 10 years (2001-2010) of monthly streamflow data. The average Nash-Sutcliffe Efficiency during the calibration and validation was 0.54 and 0.51, respectively, indicating that the model performances were good. Twenty years (2001-2020) of monthly MODIS NDVI data for three different types of vegetation (forest, shrub, and grass) and soil water content for 43 sub-basins were analysed using the WEKA, machine learning tool with a selection of two supervised machine learning algorithms, i.e., support vector machine (SVM) and random forest (RF). The modelling results show that different types of vegetation response and soil water content vary in the dry and wet season. For example, the model generated high positive relationships (r=0.76, 0.73, and 0.81) between the measured and predicted NDVI values of all vegetation in the study area against the groundwater flow (GW), soil water content (SWC), and the combination of these two variables, respectively, during the dry season. However, these relationships were reduced by 36.8% (r=0.48) and 13.6% (r=0.63) against GW and SWC, respectively, in the wet season. On the other hand, the model predicted a moderate positive relationship (r=0.63) between shrub vegetation type and soil water content during the dry season, which was reduced by 31.7% (r=0.43) during the wet season. Our models also predicted that vegetation in the top location (upper part) of the sub-basin is highly responsive to GW and SWC (r=0.78, and 0.70) during the dry season. The results of this study indicate the study region is suitable for seasonal crop production in dry season. Moreover, the results predicted that the growth of vegetation in the top-point location is highly dependent on groundwater flow in both dry and wet seasons, and any instability or long-term drought can negatively affect these floodplain vegetation communities. This study has enriched our knowledge of vegetation responses to groundwater in each season, which will facilitate better floodplain vegetation management.

Keywords: ArcSWAT, machine learning, floodplain vegetation, MODIS NDVI, groundwater

Procedia PDF Downloads 119
3788 Classification of Health Risk Factors to Predict the Risk of Falling in Older Adults

Authors: L. Lindsay, S. A. Coleman, D. Kerr, B. J. Taylor, A. Moorhead

Abstract:

Cognitive decline and frailty is apparent in older adults leading to an increased likelihood of the risk of falling. Currently health care professionals have to make professional decisions regarding such risks, and hence make difficult decisions regarding the future welfare of the ageing population. This study uses health data from The Irish Longitudinal Study on Ageing (TILDA), focusing on adults over the age of 50 years, in order to analyse health risk factors and predict the likelihood of falls. This prediction is based on the use of machine learning algorithms whereby health risk factors are used as inputs to predict the likelihood of falling. Initial results show that health risk factors such as long-term health issues contribute to the number of falls. The identification of such health risk factors has the potential to inform health and social care professionals, older people and their family members in order to mitigate daily living risks.

Keywords: classification, falls, health risk factors, machine learning, older adults

Procedia PDF Downloads 148
3787 Feature-Based Summarizing and Ranking from Customer Reviews

Authors: Dim En Nyaung, Thin Lai Lai Thein

Abstract:

Due to the rapid increase of Internet, web opinion sources dynamically emerge which is useful for both potential customers and product manufacturers for prediction and decision purposes. These are the user generated contents written in natural languages and are unstructured-free-texts scheme. Therefore, opinion mining techniques become popular to automatically process customer reviews for extracting product features and user opinions expressed over them. Since customer reviews may contain both opinionated and factual sentences, a supervised machine learning technique applies for subjectivity classification to improve the mining performance. In this paper, we dedicate our work is the task of opinion summarization. Therefore, product feature and opinion extraction is critical to opinion summarization, because its effectiveness significantly affects the identification of semantic relationships. The polarity and numeric score of all the features are determined by Senti-WordNet Lexicon. The problem of opinion summarization refers how to relate the opinion words with respect to a certain feature. Probabilistic based model of supervised learning will improve the result that is more flexible and effective.

Keywords: opinion mining, opinion summarization, sentiment analysis, text mining

Procedia PDF Downloads 332
3786 Weed Classification Using a Two-Dimensional Deep Convolutional Neural Network

Authors: Muhammad Ali Sarwar, Muhammad Farooq, Nayab Hassan, Hammad Hassan

Abstract:

Pakistan is highly recognized for its agriculture and is well known for producing substantial amounts of wheat, cotton, and sugarcane. However, some factors contribute to a decline in crop quality and a reduction in overall output. One of the main factors contributing to this decline is the presence of weed and its late detection. This process of detection is manual and demands a detailed inspection to be done by the farmer itself. But by the time detection of weed, the farmer will be able to save its cost and can increase the overall production. The focus of this research is to identify and classify the four main types of weeds (Small-Flowered Cranesbill, Chick Weed, Prickly Acacia, and Black-Grass) that are prevalent in our region’s major crops. In this work, we implemented three different deep learning techniques: YOLO-v5, Inception-v3, and Deep CNN on the same Dataset, and have concluded that deep convolutions neural network performed better with an accuracy of 97.45% for such classification. In relative to the state of the art, our proposed approach yields 2% better results. We devised the architecture in an efficient way such that it can be used in real-time.

Keywords: deep convolution networks, Yolo, machine learning, agriculture

Procedia PDF Downloads 118
3785 A Focus Group Study of Student's Attitude towards University Teachers and Semester System

Authors: Sehrish Khan

Abstract:

The present study investigated the attitude of university students towards semester system and teachers with a specific objective of finding problems faced by students in semester system. 10 focus group discussions were conducted among students in five Universities of Hazara Division of KPK regarding their knowledge and attitudes about semester system and problems they faced due to this system and teacher’s attitude. The key findings were the problems like favoritism, gender biased ness, racial biased ness, biased ness in marking, relative marking, harassment, using students for personal tasks and authoritarian attitude from teachers’ side and the heavy tasks in less time which are causing stress among students. It was recommended that proper training and monitoring system should be maintained for evaluation of teachers to minimize the corruption in this sacred profession and maximize the optimal functioning. The information gathered in this research can be used to develop training modules for University teachers.

Keywords: university teachers, favoritism, biasedness, harassment

Procedia PDF Downloads 362
3784 Native Speaker's Role in Improving the Speaking Skills of Second Language Learners

Authors: May George

Abstract:

Native speakers can play a significant role in improving second language learners speaking skills through weekly interaction. Speaking is one of the important skills that second language learners need to practice in order to be able to communicate the language. This study will examine Talkaboard as an important tool to achieve better outcomes in speaking a language. The subject of the study will be 16 advanced Arabic language learners at the college level. There will be a pre-test and post-test to examine the conversation outcomes using the Talkaborad tool. The students will be asked to write a summary and talk about their weekly conversation experience with the native speaker in class. The teacher will use a check list to determine the progress made in speaking the Arabic language. The results of this study will provide language teachers with information related to the native speakers’ role in language and the progress the second language learners made after interacting with native speakers.

Keywords: speaking, language, interaction, culture

Procedia PDF Downloads 487
3783 Outcomes-Based Qualification Design and Vocational Subject Literacies: How Compositional Fallacy Short-Changes School-Leavers’ Literacy Development

Authors: Rose Veitch

Abstract:

Learning outcomes-based qualifications have been heralded as the means to raise vocational education and training (VET) standards, meet the needs of the changing workforce, and establish equivalence with existing academic qualifications. Characterized by explicit, measurable performance statements and atomistically specified assessment criteria, the outcomes model has been adopted by many VET systems worldwide since its inception in the United Kingdom in the 1980s. Debate to date centers on how the outcomes model treats knowledge. Flaws have been identified in terms of the overemphasis of end-points, neglect of process and a failure to treat curricula coherently. However, much of this censure has evaluated the outcomes model from a theoretical perspective; to date, there has been scant empirical research to support these criticisms. Various issues therefore remain unaddressed. This study investigates how the outcomes model impacts the teaching of subject literacies. This is of particular concern for subjects on the academic-vocational boundary such as Business Studies, since many of these students progress to higher education in the United Kingdom. This study also explores the extent to which the outcomes model is compatible with borderline vocational subjects. To fully understand if this qualification model is fit for purpose in the 16-18 year-old phase, it is necessary to investigate how teachers interpret their qualification specifications in terms of curriculum, pedagogy and assessment. Of particular concern is the nature of the interaction between the outcomes model and teachers’ understandings of their subject-procedural knowledge, and how this affects their capacity to embed literacy into their teaching. This present study is part of a broader doctoral research project which seeks to understand if and how content-area, disciplinary literacy and genre approaches can be adapted to outcomes-based VET qualifications. This qualitative research investigates the ‘what’ and ‘how’ of literacy embedding from the perspective of in-service teacher development in the 16-18 phase of education. Using ethnographic approaches, it is based on fieldwork carried out in one Further Education college in the United Kingdom. Emergent findings suggest that the outcomes model is not fit for purpose in the context of borderline vocational subjects. It is argued that the outcomes model produces inferior qualifications due to compositional fallacy; the sum of a subject’s components do not add up to the whole. Findings indicate that procedural knowledge, largely unspecified by some outcomes-based qualifications, is where subject-literacies are situated, and that this often gets lost in ‘delivery’. It seems that the outcomes model provokes an atomistic treatment of knowledge amongst teachers, along with the privileging of propositional knowledge over procedural knowledge. In other words, outcomes-based VET is a hostile environment for subject-literacy embedding. It is hoped that this research will produce useful suggestions for how this problem can be ameliorated, and will provide an empirical basis for the potential reforms required to address these issues in vocational education.

Keywords: literacy, outcomes-based, qualification design, vocational education

Procedia PDF Downloads 14
3782 The Integration of Apps for Communicative Competence in English Teaching

Authors: L. J. de Jager

Abstract:

In the South African English school curriculum, one of the aims is to achieve communicative competence, the knowledge of using language competently and appropriately in a speech community. Communicatively competent speakers should not only produce grammatically correct sentences but also produce contextually appropriate sentences for various purposes and in different situations. As most speakers of English are non-native speakers, achieving communicative competence remains a complex challenge. Moreover, the changing needs of society necessitate not merely language proficiency, but also technological proficiency. One of the burning issues in the South African educational landscape is the replacement of the standardised literacy model by the pedagogy of multiliteracies that incorporate, by default, the exploration of technological text forms that are part of learners’ everyday lives. It foresees learners as decoders, encoders, and manufacturers of their own futures by exploiting technological possibilities to constantly create and recreate meaning. As such, 21st century learners will feel comfortable working with multimodal texts that are intrinsically part of their lives and by doing so, become authors of their own learning experiences while teachers may become agents supporting learners to discover their capacity to acquire new digital skills for the century of multiliteracies. The aim is transformed practice where learners use their skills, ideas, and knowledge in new contexts. This paper reports on a research project on the integration of technology for language learning, based on the technological pedagogical content knowledge framework, conceptually founded in the theory of multiliteracies, and which aims to achieve communicative competence. The qualitative study uses the community of inquiry framework to answer the research question: How does the integration of technology transform language teaching of preservice teachers? Pre-service teachers in the Postgraduate Certificate of Education Programme with English as methodology were purposively selected to source and evaluate apps for teaching and learning English. The participants collaborated online in a dedicated Blackboard module, using discussion threads to sift through applicable apps and develop interactive lessons using the Apps. The selected apps were entered on to a predesigned Qualtrics form. Data from the online discussions, focus group interviews, and reflective journals were thematically and inductively analysed to determine the participants’ perceptions and experiences when integrating technology in lesson design and the extent to which communicative competence was achieved when using these apps. Findings indicate transformed practice among participants and research team members alike with a better than average technology acceptance and integration. Participants found value in online collaboration to develop and improve their own teaching practice by experiencing directly the benefits of integrating e-learning into the teaching of languages. It could not, however, be clearly determined whether communicative competence was improved. The findings of the project may potentially inform future e-learning activities, thus supporting student learning and development in follow-up cycles of the project.

Keywords: apps, communicative competence, English teaching, technology integration, technological pedagogical content knowledge

Procedia PDF Downloads 164
3781 Robotics Education Continuity from Diaper Age to Doctorate

Authors: Vesa Salminen, Esa Santakallio, Heikki Ruohomaa

Abstract:

Introduction: The city of Riihimäki has decided robotics on well-being, service and industry as the main focus area on their ecosystem strategy. Robotics is going to be an important part of the everyday life of citizens and present in the working day of the average citizen and employee in the future. For that reason, also education system and education programs on all levels of education from diaper age to doctorate have been directed to fulfill this ecosystem strategy. Goal: The objective of this activity has been to develop education continuity from diaper age to doctorate. The main target of the development activity is to create a unique robotics study entity that enables ongoing robotics studies from preprimary education to university. The aim is also to attract students internationally and supply a skilled workforce to the private sector, capable of the challenges of the future. Methodology: Education instances (high school, second grade, Universities on all levels) in a large area of Tavastia Province have gradually directed their education programs to support this goal. On the other hand, applied research projects have been created to make proof of concept- phases on areal real environment field labs to test technology opportunities and digitalization to change business processes by applying robotic solutions. Customer-oriented applied research projects offer for students in robotics education learning environments to learn new knowledge and content. That is also a learning environment for education programs to adapt and co-evolution. New content and problem-based learning are used in future education modules. Major findings: Joint robotics education entity is being developed in cooperation with the city of Riihimäki (primary education), Syria Education (secondary education) and HAMK (bachelor and master education). The education modules have been developed to enable smooth transitioning from one institute to another. This article is introduced a case study of the change of education of wellbeing education because of digitalization and robotics. Riihimäki's Elderly citizen's service house, Riihikoti, has been working as a field lab for proof-of-concept phases on testing technology opportunities. According to successful case studies also education programs on various levels of education have been changing. Riihikoti has been developed as a physical learning environment for home care and robotics, investigating and developing a variety of digital devices and service opportunities and experimenting and learn the use of equipment. The environment enables the co-development of digital service capabilities in the authentic environment for all interested groups in transdisciplinary cooperation.

Keywords: ecosystem strategy, digitalization and robotics, education continuity, learning environment, transdisciplinary co-operation

Procedia PDF Downloads 176
3780 Implications of Optimisation Algorithm on the Forecast Performance of Artificial Neural Network for Streamflow Modelling

Authors: Martins Y. Otache, John J. Musa, Abayomi I. Kuti, Mustapha Mohammed

Abstract:

The performance of an artificial neural network (ANN) is contingent on a host of factors, for instance, the network optimisation scheme. In view of this, the study examined the general implications of the ANN training optimisation algorithm on its forecast performance. To this end, the Bayesian regularisation (Br), Levenberg-Marquardt (LM), and the adaptive learning gradient descent: GDM (with momentum) algorithms were employed under different ANN structural configurations: (1) single-hidden layer, and (2) double-hidden layer feedforward back propagation network. Results obtained revealed generally that the gradient descent with momentum (GDM) optimisation algorithm, with its adaptive learning capability, used a relatively shorter time in both training and validation phases as compared to the Levenberg- Marquardt (LM) and Bayesian Regularisation (Br) algorithms though learning may not be consummated; i.e., in all instances considering also the prediction of extreme flow conditions for 1-day and 5-day ahead, respectively especially using the ANN model. In specific statistical terms on the average, model performance efficiency using the coefficient of efficiency (CE) statistic were Br: 98%, 94%; LM: 98 %, 95 %, and GDM: 96 %, 96% respectively for training and validation phases. However, on the basis of relative error distribution statistics (MAE, MAPE, and MSRE), GDM performed better than the others overall. Based on the findings, it is imperative to state that the adoption of ANN for real-time forecasting should employ training algorithms that do not have computational overhead like the case of LM that requires the computation of the Hessian matrix, protracted time, and sensitivity to initial conditions; to this end, Br and other forms of the gradient descent with momentum should be adopted considering overall time expenditure and quality of the forecast as well as mitigation of network overfitting. On the whole, it is recommended that evaluation should consider implications of (i) data quality and quantity and (ii) transfer functions on the overall network forecast performance.

Keywords: streamflow, neural network, optimisation, algorithm

Procedia PDF Downloads 152
3779 Chinese Sentence Level Lip Recognition

Authors: Peng Wang, Tigang Jiang

Abstract:

The computer based lip reading method of different languages cannot be universal. At present, for the research of Chinese lip reading, whether the work on data sets or recognition algorithms, is far from mature. In this paper, we study the Chinese lipreading method based on machine learning, and propose a Chinese Sentence-level lip-reading network (CNLipNet) model which consists of spatio-temporal convolutional neural network(CNN), recurrent neural network(RNN) and Connectionist Temporal Classification (CTC) loss function. This model can map variable-length sequence of video frames to Chinese Pinyin sequence and is trained end-to-end. More over, We create CNLRS, a Chinese Lipreading Dataset, which contains 5948 samples and can be shared through github. The evaluation of CNLipNet on this dataset yielded a 41% word correct rate and a 70.6% character correct rate. This evaluation result is far superior to the professional human lip readers, indicating that CNLipNet performs well in lipreading.

Keywords: lipreading, machine learning, spatio-temporal, convolutional neural network, recurrent neural network

Procedia PDF Downloads 128
3778 Investigation of Different Machine Learning Algorithms in Large-Scale Land Cover Mapping within the Google Earth Engine

Authors: Amin Naboureh, Ainong Li, Jinhu Bian, Guangbin Lei, Hamid Ebrahimy

Abstract:

Large-scale land cover mapping has become a new challenge in land change and remote sensing field because of involving a big volume of data. Moreover, selecting the right classification method, especially when there are different types of landscapes in the study area is quite difficult. This paper is an attempt to compare the performance of different machine learning (ML) algorithms for generating a land cover map of the China-Central Asia–West Asia Corridor that is considered as one of the main parts of the Belt and Road Initiative project (BRI). The cloud-based Google Earth Engine (GEE) platform was used for generating a land cover map for the study area from Landsat-8 images (2017) by applying three frequently used ML algorithms including random forest (RF), support vector machine (SVM), and artificial neural network (ANN). The selected ML algorithms (RF, SVM, and ANN) were trained and tested using reference data obtained from MODIS yearly land cover product and very high-resolution satellite images. The finding of the study illustrated that among three frequently used ML algorithms, RF with 91% overall accuracy had the best result in producing a land cover map for the China-Central Asia–West Asia Corridor whereas ANN showed the worst result with 85% overall accuracy. The great performance of the GEE in applying different ML algorithms and handling huge volume of remotely sensed data in the present study showed that it could also help the researchers to generate reliable long-term land cover change maps. The finding of this research has great importance for decision-makers and BRI’s authorities in strategic land use planning.

Keywords: land cover, google earth engine, machine learning, remote sensing

Procedia PDF Downloads 113
3777 AI-Based Information System for Hygiene and Safety Management of Shared Kitchens

Authors: Jongtae Rhee, Sangkwon Han, Seungbin Ji, Junhyeong Park, Byeonghun Kim, Taekyung Kim, Byeonghyeon Jeon, Jiwoo Yang

Abstract:

The shared kitchen is a concept that transfers the value of the sharing economy to the kitchen. It is a type of kitchen equipped with cooking facilities that allows multiple companies or chefs to share time and space and use it jointly. These shared kitchens provide economic benefits and convenience, such as reduced investment costs and rent, but also increase the risk of safety management, such as cross-contamination of food ingredients. Therefore, to manage the safety of food ingredients and finished products in a shared kitchen where several entities jointly use the kitchen and handle various types of food ingredients, it is critical to manage followings: the freshness of food ingredients, user hygiene and safety and cross-contamination of cooking equipment and facilities. In this study, it propose a machine learning-based system for hygiene safety and cross-contamination management, which are highly difficult to manage. User clothing management and user access management, which are most relevant to the hygiene and safety of shared kitchens, are solved through machine learning-based methodology, and cutting board usage management, which is most relevant to cross-contamination management, is implemented as an integrated safety management system based on artificial intelligence. First, to prevent cross-contamination of food ingredients, we use images collected through a real-time camera to determine whether the food ingredients match a given cutting board based on a real-time object detection model, YOLO v7. To manage the hygiene of user clothing, we use a camera-based facial recognition model to recognize the user, and real-time object detection model to determine whether a sanitary hat and mask are worn. In addition, to manage access for users qualified to enter the shared kitchen, we utilize machine learning based signature recognition module. By comparing the pairwise distance between the contract signature and the signature at the time of entrance to the shared kitchen, access permission is determined through a pre-trained signature verification model. These machine learning-based safety management tasks are integrated into a single information system, and each result is managed in an integrated database. Through this, users are warned of safety dangers through the tablet PC installed in the shared kitchen, and managers can track the cause of the sanitary and safety accidents. As a result of system integration analysis, real-time safety management services can be continuously provided by artificial intelligence, and machine learning-based methodologies are used for integrated safety management of shared kitchens that allows dynamic contracts among various users. By solving this problem, we were able to secure the feasibility and safety of the shared kitchen business.

Keywords: artificial intelligence, food safety, information system, safety management, shared kitchen

Procedia PDF Downloads 69
3776 Teaching about Justice With Justice: How Using Experiential, Learner Centered Literacy Methodology Enhances Learning of Justice Related Competencies for Young Children

Authors: Bruna Azzari Puga, Richard Roe, Andre Pagani de Souza

Abstract:

abstract outlines a proposed study to examine how and to what extent interactive, experiential, learner centered methodology develops learning of basic civic and democratic competencies among young children. It stems from the Literacy and Law course taught at Georgetown University Law Center in Washington, DC, since 1998. Law students, trained in best literacy practices and legal cases affecting literacy development, read “law related” children’s books and engage in interactive and extension activities with emerging readers. The law students write a monthly journal describing their experiences and a final paper: a conventional paper or a children’s book illuminating some aspect of literacy and law. This proposal is based on the recent adaptation of Literacy and Law to Brazil at Mackenzie Presbyterian University in São Paulo in three forms: first, a course similar to the US model, often conducted jointly online with Brazilian and US law students; second, a similar course that combines readings of children’s literature with activity based learning, with law students from a satellite Mackenzie campus, for young children from a vulnerable community near the city; and third, a course taught by law students at the main Mackenzie campus for 4th grade students at the Mackenzie elementary school, that is wholly activity and discourse based. The workings and outcomes of these courses are well documented by photographs, reports, lesson plans, and law student journals. The authors, faculty who teach the above courses at Mackenzie and Georgetown, observe that literacy, broadly defined as cognitive and expressive development through reading and discourse-based activities, can be influential in developing democratic civic skills, identifiable by explicit civic competencies. For example, children experience justice in the classroom through cooperation, creativity, diversity, fairness, systemic thinking, and appreciation for rules and their purposes. Moreover, the learning of civic skills as well as the literacy skills is enhanced through interactive, learner centered practices in which the learners experience literacy and civic development. This study will develop rubrics for individual and classroom teaching and supervision by examining 1) the children’s books and students diaries of participating law students and 2) the collection of photos and videos of classroom activities, and 3) faculty and supervisor observations and reports. These rubrics, and the lesson plans and activities which are employed to advance the higher levels of performance outcomes, will be useful in training and supervision and in further replication and promotion of this form of teaching and learning. Examples of outcomes include helping, cooperating and participating; appreciation of viewpoint diversity; knowledge and utilization of democratic processes, including due process, advocacy, individual and shared decision making, consensus building, and voting; establishing and valuing appropriate rules and a reasoned approach to conflict resolution. In conclusion, further development and replication of the learner centered literacy and law practices outlined here can lead to improved qualities of democratic teaching and learning supporting mutual respect, positivity, deep learning, and the common good – foundation qualities of a sustainable world.

Keywords: democracy, law, learner-centered, literacy

Procedia PDF Downloads 126