Search results for: Surface and interface recombination velocity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9020

Search results for: Surface and interface recombination velocity

5060 Comparison of Transparent Nickel Doped Cobalt Sulfide and Platinum Counter Electrodes Used in Quasi-Solid State Dye Sensitized Solar Cells

Authors: Dimitra Sygkridou, Dimitrios Karageorgopoulos, Elias Stathatos, Evangelos Vitoratos

Abstract:

Transparent nickel doped cobalt sulfide was fabricated on a SnO2:F electrode and tested as an efficient electrocatalyst and as an alternative to the expensive platinum counter electrode. In order to investigate how this electrode could affect the electrical characteristics of a dye-sensitized solar cell, we manufactured cells with the same TiO2 photoanode sensitized with dye (N719) and employing the same quasi-solid electrolyte, altering only the counter electrode used. The cells were electrically and electrochemically characterized and it was observed that the ones with the Ni doped CoS2 outperformed the efficiency of the cells with the Pt counter electrode (3.76% and 3.44% respectively). Particularly, the higher efficiency of the cells with the Ni doped CoS2 counter electrode (CE) is mainly because of the enhanced photocurrent density which is attributed to the enhanced electrocatalytic ability of the CE and the low charge transfer resistance at the CE/electrolyte interface.

Keywords: nickel doped cobalt sulfide, counter electrodes, dye-sensitized solar cells, quasi-solid state electrolyte, hybrid organic-inorganic materials

Procedia PDF Downloads 760
5059 Performance of Slot-Entry Hybrid Worn Journal Bearing under Turbulent Lubrication

Authors: Nathi Ram, Saurabh K. Yadav

Abstract:

In turbomachinery, the turbulent flow occurs due to the use of high velocity of low kinematic viscosity lubricants and used in many industrial applications. In the present work, the performance of symmetric slot-entry hybrid worn journal bearing under laminar and turbulent lubrication has been investigated. For turbulent lubrication, the Reynolds equation has been modified using Constantinescu turbulent model. This modified equation has been solved using the finite element method. The effect of turbulent lubrication on bearing’s performance has been presented for symmetric hybrid journal bearing. The slot-entry hybrid worn journal bearing under turbulent/laminar regimes have been investigated. It has been observed that the stiffness and damping coefficients are more for the bearing having slot width ratio (SWR) of 0.25 than the bearing with SWR of 0.5 and 0.75 under the turbulent regime. Further, it is also observed that for constant wear depth parameter, stability threshold speed gets increased for bearing operates at slot width ratio 0.25 under turbulent lubrication.

Keywords: hydrostatic bearings, journal bearings, restrictors, turbulent flow models, finite element technique

Procedia PDF Downloads 164
5058 Functionalized Magnetic Iron Oxide Nanoparticles for Extraction of Protein and Metal Nanoparticles from Complex Fluids

Authors: Meenakshi Verma, Mandeep Singh Bakshi, Kultar Singh

Abstract:

Magnetic nanoparticles have received incredible importance in view of their diverse applications, which arise primarily due to their response to the external magnetic field. The magnetic behaviour of magnetic nanoparticles (NPs) helps them in numerous different ways. The most important amongst them is the ease with which they can be purified and also can be separated from the media in which they are present merely by applying an external magnetic field. This exceptional ease of separation of the magnetic NPs from an aqueous media enables them to use for extracting/removing metal pollutants from complex aqueous medium. Functionalized magnetic NPs can be subjected for the metallic impurities extraction if are favourably adsorbed on the NPs surfaces. We have successfully used the magnetic NPs as vehicles for gold and silver NPs removal from the complex fluids. The NPs loaded with gold and silver NPs pollutant fractions has been easily removed from the aqueous media by using external magnetic field. Similarly, we have used the magnetic NPs for extraction of protein from complex media and then constantly washed with pure water to eliminate the unwanted surface adsorbed components for quantitative estimation. The purified and protein loaded magnetic NPs are best analyzed with SDS Page to not only for characterization but also for separating the protein fractions. A collective review of the results indicates that we have synthesized surfactant coated iron oxide NPs and then functionalized these with selected materials. These surface active magnetic NPs work very well for the extraction of metallic NPs from the aqueous bulk and make the whole process environmentally sustainable. Also, magnetic NPs-Au/Ag/Pd hybrids have excellent protein extracting properties. They are much easier to use in order to extract the magnetic impurities as well as protein fractions under the effect of external magnetic field without any complex conventional purification methods.

Keywords: magnetic nanoparticles, protein, functionalized, extraction

Procedia PDF Downloads 99
5057 Photophysics of a Coumarin Molecule in Graphene Oxide Containing Reverse Micelle

Authors: Aloke Bapli, Debabrata Seth

Abstract:

Graphene oxide (GO) is the two-dimensional (2D) nanoscale allotrope of carbon having several physiochemical properties such as high mechanical strength, high surface area, strong thermal and electrical conductivity makes it an important candidate in various modern applications such as drug delivery, supercapacitors, sensors etc. GO has been used in the photothermal treatment of cancers and Alzheimer’s disease etc. The main idea to choose GO in our work is that it is a surface active molecule, it has a large number of hydrophilic functional groups such as carboxylic acid, hydroxyl, epoxide on its surface and in basal plane. So it can easily interact with organic fluorophores through hydrogen bonding or any other kind of interaction and easily modulate the photophysics of the probe molecules. We have used different spectroscopic techniques for our work. The Ground-state absorption spectra and steady-state fluorescence emission spectra were measured by using UV-Vis spectrophotometer from Shimadzu (model-UV-2550) and spectrofluorometer from Horiba Jobin Yvon (model-Fluoromax 4P) respectively. All the fluorescence lifetime and anisotropy decays were collected by using time-correlated single photon counting (TCSPC) setup from Edinburgh instrument (model: LifeSpec-II, U.K.). Herein, we described the photophysics of a hydrophilic molecule 7-(n,n׀-diethylamino) coumarin-3-carboxylic acid (7-DCCA) in the reverse micelles containing GO. It was observed that photophysics of dye is modulated in the presence of GO compared to photophysics of dye in the absence of GO inside the reverse micelles. Here we have reported the solvent relaxation and rotational relaxation time in GO containing reverse micelle and compare our work with normal reverse micelle system by using 7-DCCA molecule. Normal reverse micelle means reverse micelle in the absence of GO. The absorption maxima of 7-DCCA were blue shifted and emission maxima were red shifted in GO containing reverse micelle compared to normal reverse micelle. The rotational relaxation time in GO containing reverse micelle is always faster compare to normal reverse micelle. Solvent relaxation time, at lower w₀ values, is always slower in GO containing reverse micelle compare to normal reverse micelle and at higher w₀ solvent relaxation time of GO containing reverse micelle becomes almost equal to normal reverse micelle. Here emission maximum of 7-DCCA exhibit bathochromic shift in GO containing reverse micelles compared to that in normal reverse micelles because in presence of GO the polarity of the system increases, as polarity increases the emission maxima was red shifted an average decay time of GO containing reverse micelle is less than that of the normal reverse micelle. In GO containing reverse micelle quantum yield, decay time, rotational relaxation time, solvent relaxation time at λₑₓ=375 nm is always higher than λₑₓ=405 nm, shows the excitation wavelength dependent photophysics of 7-DCCA in GO containing reverse micelles.

Keywords: photophysics, reverse micelle, rotational relaxation, solvent relaxation

Procedia PDF Downloads 155
5056 The Study of Stable Isotopes (18O, 2H & 13C) in Kardeh River and Dam Reservoir, North-Eastern Iran

Authors: Hossein Mohammadzadeh, Mojtaba Heydarizad

Abstract:

Among various water resources, the surface water has a dominant role in providing water supply in the arid and semi-arid region of Iran. Andarokh-Kardeh basin is located in 50 km from Mashhad city - the second biggest city of Iran (NE of Iran), draining by Kardeh river which provides a significant portion of potable and irrigation water needs for Mashhad. The stable isotopes (18O, 2H,13C-DIC, and 13C-DOC), as reliable and precious water fingerprints, have been measured in Kardeh river (Kharket, Mareshk, Jong, All and Kardeh stations) and in Kardeh dam reservoirs (at five different sites S1 to S5) during March to June 2011 and June 2012. On δ18O vs. δ2H diagram, the river samples were plotted between Global and Eastern Mediterranean Meteoric Water lines (GMWL and EMMWL) which demonstrate that various moisture sources are providing humidity for precipitation events in this area. The enriched δ18O and δ2H values (-6.5 ‰ and -44.5 ‰ VSMOW) of Kardeh dam reservoir are compared to Kardeh river (-8.6‰and-54.4‰), and its deviation from Mashhad meteoric water line (MMWL- δ2H=7.16δ18O+11.22) is due to evaporation from the open surface water body. The enriched value of δ 13C-DIC and high amount of DIC values (-7.9 ‰ VPDB and 57.23 ppm) in the river and Kardeh dam reservoir (-7.3 ‰ VPDB and 55.53 ppm) is due to dissolution of Mozdooran Carbonate Formation lithology (Jm1 to Jm3 units) (contains enriched δ13C DIC values of 9.2‰ to 27.7‰ VPDB) in the region. Because of the domination of C3 vegetations in Andarokh_Kardeh basin, the δ13C-DOC isotope of the river (-28.4‰ VPDB) and dam reservoir (-32.3‰ VPDB) demonstrate depleted values. Higher DOC concentration in dam reservoir (2.57 ppm) compared to the river (0.72 ppm) is due to more biologogical activities and organic matters in dam reservoir.

Keywords: Dam reservoir, Iran, Kardeh river, Khorasan razavi, Stable isotopes

Procedia PDF Downloads 270
5055 Temporal and Spacial Adaptation Strategies in Aerodynamic Simulation of Bluff Bodies Using Vortex Particle Methods

Authors: Dario Milani, Guido Morgenthal

Abstract:

Fluid dynamic computation of wind caused forces on bluff bodies e.g light flexible civil structures or high incidence of ground approaching airplane wings, is one of the major criteria governing their design. For such structures a significant dynamic response may result, requiring the usage of small scale devices as guide-vanes in bridge design to control these effects. The focus of this paper is on the numerical simulation of the bluff body problem involving multiscale phenomena induced by small scale devices. One of the solution methods for the CFD simulation that is relatively successful in this class of applications is the Vortex Particle Method (VPM). The method is based on a grid free Lagrangian formulation of the Navier-Stokes equations, where the velocity field is modeled by particles representing local vorticity. These vortices are being convected due to the free stream velocity as well as diffused. This representation yields the main advantages of low numerical diffusion, compact discretization as the vorticity is strongly localized, implicitly accounting for the free-space boundary conditions typical for this class of FSI problems, and a natural representation of the vortex creation process inherent in bluff body flows. When the particle resolution reaches the Kolmogorov dissipation length, the method becomes a Direct Numerical Simulation (DNS). However, it is crucial to note that any solution method aims at balancing the computational cost against the accuracy achievable. In the classical VPM method, if the fluid domain is discretized by Np particles, the computational cost is O(Np2). For the coupled FSI problem of interest, for example large structures such as long-span bridges, the aerodynamic behavior may be influenced or even dominated by small structural details such as barriers, handrails or fairings. For such geometrically complex and dimensionally large structures, resolving the complete domain with the conventional VPM particle discretization might become prohibitively expensive to compute even for moderate numbers of particles. It is possible to reduce this cost either by reducing the number of particles or by controlling its local distribution. It is also possible to increase the accuracy of the solution without increasing substantially the global computational cost by computing a correction of the particle-particle interaction in some regions of interest. In this paper different strategies are presented in order to extend the conventional VPM method to reduce the computational cost whilst resolving the required details of the flow. The methods include temporal sub stepping to increase the accuracy of the particles convection in certain regions as well as dynamically re-discretizing the particle map to locally control the global and the local amount of particles. Finally, these methods will be applied on a test case and the improvements in the efficiency as well as the accuracy of the proposed extension to the method are presented. The important benefits in terms of accuracy and computational cost of the combination of these methods will be thus presented as long as their relevant applications.

Keywords: adaptation, fluid dynamic, remeshing, substepping, vortex particle method

Procedia PDF Downloads 262
5054 An Approach to Study the Biodegradation of Low Density Polyethylene Using Microbial Strains of Bacillus subtilus, Aspergillus niger, Pseudomonas fluroscence in Different Media Form and Salt Condition

Authors: Monu Ojha, Rahul Rana, Satywati Sharma, Kavya Dashora

Abstract:

The global production rate of plastics has increased enormously and global demand for polyethylene resins –High-density polyethylene (HDPE), Linear low-density polyethylene (LLDPE) and Low-density polyethylene (LDPE) is expected to rise drastically, with very high value. These get accumulated in the environment, posing a potential ecological threat as they are degrading at a very slow rate and remain in the environment indefinitely. The aim of the present study was to investigate the potential of commonly found soil microbes like Bacillus subtilus, Aspergillus niger, Pseudomonas fluroscence for their ability to biodegrade LDPE in the lab on solid and liquid media conditions as well as in presence of 1% salt in the soil. This study was conducted at Indian Institute of Technology, Delhi, India from July to September where average temperature and RH (Relative Humidity) were 33 degrees Celcius and 80% respectively. It revealed that the weight loss of LDPE strip obtained from market of approximately 4x6 cm dimensions is more in liquid broth media than in solid agar media. The percentage weight loss by P. fluroscence, A. niger and B. subtilus observed after 80 days of incubation was 15.52, 9.24 and 8.99% respectively in broth media and 6.93, 2.18 and 4.76 % in agar media. The LDPE strips from same source and on the same were subjected to soil in presence of above microbes with 1% salt (NaCl: obtained from commercial table salt) with temperature and RH 33 degree Celcius and 80%. It was found that the rate of degradation increased in the soil than under lab conditions. The rate of weight loss of LDPE strips under same conditions given in lab was found to be 32.98, 15.01 and17.09 % by P. fluroscence, A. niger and B. subtilus respectively. The breaking strength was found to be 9.65N, 29N and 23.85 N for P. fluroscence, A. niger and B. subtilus respectively. SEM analysis conducted on Zeiss EVO 50 confirmed that surface of LDPE becomes physically weak after biological treatment. There was the increase in the surface roughness indicating Surface erosion of LDPE film. FTIR (Fourier-transform infrared spectroscopy) analysis of the degraded LDPE films showed stretching of aldehyde group at 3334.92 and 3228.84 cm-1,, C–C=C symmetric of aromatic ring at 1639.49 cm-1.There was also C=O stretching of aldehyde group at 1735.93 cm-1. N=O peak bend was also observed which corresponds to 1365.60 cm-1, C–O stretching of ether group at 1217.08 and 1078.21 cm-1.

Keywords: microbial degradation, LDPE, Aspergillus niger, Bacillus subtilus, Peudomonas fluroscence, common salt

Procedia PDF Downloads 165
5053 Sentinel-2 Based Burn Area Severity Assessment Tool in Google Earth Engine

Authors: D. Madhushanka, Y. Liu, H. C. Fernando

Abstract:

Fires are one of the foremost factors of land surface disturbance in diverse ecosystems, causing soil erosion and land-cover changes and atmospheric effects affecting people's lives and properties. Generally, the severity of the fire is calculated as the Normalized Burn Ratio (NBR) index. This is performed manually by comparing two images obtained afterward. Then by using the bitemporal difference of the preprocessed satellite images, the dNBR is calculated. The burnt area is then classified as either unburnt (dNBR<0.1) or burnt (dNBR>= 0.1). Furthermore, Wildfire Severity Assessment (WSA) classifies burnt areas and unburnt areas using classification levels proposed by USGS and comprises seven classes. This procedure generates a burn severity report for the area chosen by the user manually. This study is carried out with the objective of producing an automated tool for the above-mentioned process, namely the World Wildfire Severity Assessment Tool (WWSAT). It is implemented in Google Earth Engine (GEE), which is a free cloud-computing platform for satellite data processing, with several data catalogs at different resolutions (notably Landsat, Sentinel-2, and MODIS) and planetary-scale analysis capabilities. Sentinel-2 MSI is chosen to obtain regular processes related to burnt area severity mapping using a medium spatial resolution sensor (15m). This tool uses machine learning classification techniques to identify burnt areas using NBR and to classify their severity over the user-selected extent and period automatically. Cloud coverage is one of the biggest concerns when fire severity mapping is performed. In WWSAT based on GEE, we present a fully automatic workflow to aggregate cloud-free Sentinel-2 images for both pre-fire and post-fire image compositing. The parallel processing capabilities and preloaded geospatial datasets of GEE facilitated the production of this tool. This tool consists of a Graphical User Interface (GUI) to make it user-friendly. The advantage of this tool is the ability to obtain burn area severity over a large extent and more extended temporal periods. Two case studies were carried out to demonstrate the performance of this tool. The Blue Mountain national park forest affected by the Australian fire season between 2019 and 2020 is used to describe the workflow of the WWSAT. This site detected more than 7809 km2, using Sentinel-2 data, giving an error below 6.5% when compared with the area detected on the field. Furthermore, 86.77% of the detected area was recognized as fully burnt out, of which high severity (17.29%), moderate-high severity (19.63%), moderate-low severity (22.35%), and low severity (27.51%). The Arapaho and Roosevelt National Forest Park, California, the USA, which is affected by the Cameron peak fire in 2020, is chosen for the second case study. It was found that around 983 km2 had burned out, of which high severity (2.73%), moderate-high severity (1.57%), moderate-low severity (1.18%), and low severity (5.45%). These spots also can be detected through the visual inspection made possible by cloud-free images generated by WWSAT. This tool is cost-effective in calculating the burnt area since satellite images are free and the cost of field surveys is avoided.

Keywords: burnt area, burnt severity, fires, google earth engine (GEE), sentinel-2

Procedia PDF Downloads 235
5052 Towards the Integration of a Micro Pump in μTAS

Authors: Y. Haik

Abstract:

The objective of this study is to present a micro mechanical pump that was fabricated using SwIFT™ microfabrication surface micromachining process and to demonstrate the feasibility of integrating such micro pump into a micro analysis system. The micropump circulates the bio-sample and magnetic nanoparticles through different compartments to separate and purify the targeted bio-sample. This article reports the flow characteristics in the microchannels and in a crescent micro pump.

Keywords: crescent micropumps, microanalysis, nanoparticles, MEMS

Procedia PDF Downloads 215
5051 Comprehensive Experimental Study to Determine Energy Dissipation of Nappe Flows on Stepped Chutes

Authors: Abdollah Ghasempour, Mohammad Reza Kavianpour, Majid Galoie

Abstract:

This study has investigated the fundamental parameters which have effective role on energy dissipation of nappe flows on stepped chutes in order to estimate an empirical relationship using dimensional analysis. To gain this goal, comprehensive experimental study on some large-scale physical models with various step geometries, slopes, discharges, etc. were carried out. For all models, hydraulic parameters such as velocity, pressure, water depth, flow regime and etc. were measured precisely. The effective parameters, then, could be determined by analysis of experimental data. Finally, a dimensional analysis was done in order to estimate an empirical relationship for evaluation of energy dissipation of nappe flows on stepped chutes. Because of using the large-scale physical models in this study, the empirical relationship is in very good agreement with the experimental results.

Keywords: nappe flow, energy dissipation, stepped chute, dimensional analysis

Procedia PDF Downloads 361
5050 Runoff Simulation by Using WetSpa Model in Garmabrood Watershed of Mazandaran Province, Iran

Authors: Mohammad Reza Dahmardeh Ghaleno, Mohammad Nohtani, Saeedeh Khaledi

Abstract:

Hydrological models are applied to simulation and prediction floods in watersheds. WetSpa is a distributed, continuous and physically model with daily or hourly time step that explains of precipitation, runoff and evapotranspiration processes for both simple and complex contexts. This model uses a modified rational method for runoff calculation. In this model, runoff is routed along the flow path using Diffusion-Wave Equation which depend on the slope, velocity and flow route characteristics. Garmabrood watershed located in Mazandaran province in Iran and passing over coordinates 53° 10´ 55" to 53° 38´ 20" E and 36° 06´ 45" to 36° 25´ 30"N. The area of the catchment is about 1133 km2 and elevations in the catchment range from 213 to 3136 m at the outlet, with average slope of 25.77 %. Results of the simulations show a good agreement between calculated and measured hydrographs at the outlet of the basin. Drawing upon Nash-Sutcliffe Model Efficiency Coefficient for calibration periodic model estimated daily hydrographs and maximum flow rate with an accuracy up to 61% and 83.17 % respectively.

Keywords: watershed simulation, WetSpa, runoff, flood prediction

Procedia PDF Downloads 336
5049 Velocity Logs Error Reduction for In-Service Calibration of Vessel Performance Indicators

Authors: Maria Tsompanoglou, Dimitris Armenis

Abstract:

Vessel behavior in different operational and weather conditions constitutes the main area of interest for the ship operator. Ship speed and fuel consumption are the most decisive parameters in this respect, as their correlation provides information about the economic and environmental efficiency of the vessel, becoming the basis of decision making in terms of maintenance and trading. In the analysis of vessel operational profile for the evaluation of fuel consumption and the equivalent CO2 emissions footprint, the indications of Speed Through Water are widely used. The seasonal and regional variations in seawater characteristics, which are available nowadays, can provide the basis for accurate estimation of the errors in Speed Through Water indications at any time. Accuracy in the speed value on a route basis can enable operator identify the ship fuel and propulsion efficiency and proceed with improvements. This paper discusses case studies, where the actual vessel speed was corrected by a post-processing algorithm. The effects of the vessel correction to standard Key Performance Indicators, as well as operational findings not identified earlier, are also discussed.

Keywords: data analytics, MATLAB, vessel performance monitoring, speed through water

Procedia PDF Downloads 300
5048 Realization of Wearable Inertial Measurement Units-Sensor-Fusion Harness to Control Therapeutic Smartphone Applications

Authors: Svilen Dimitrov, Manthan Pancholi, Norbert Schmitz, Didier Stricker

Abstract:

This paper presents the end-to-end development of a wearable motion sensing harness consisting of computational unit and four inertial measurement units to control three smartphone therapeutic games for children. The inertial data is processed in real time to obtain lower body motion information like knee raises, feet taps and squads. By providing a Wi-Fi connection interface the sensor harness acts wireless remote control for smartphone applications. By performing various lower body movements the users provoke corresponding game state changes. In contrary to the current similar offers, like Nintendo Wii Remote, Xbox Kinect and Playstation Move, this product, consisting of the sensor harness and the applications on top of it, are fully wearable, which means they do not rely on the user to be bound to concrete soft- or hardwareequipped space.

Keywords: wearable harness, inertial measurement units, smartphone therapeutic games, motion tracking, lower-body activity monitoring

Procedia PDF Downloads 403
5047 Autonomous Rendezvous for Underactuated Spacecraft

Authors: Espen Oland

Abstract:

This paper presents a solution to the problem of autonomous rendezvous for spacecraft equipped with one main thruster for translational control and three reaction wheels for rotational control. With fewer actuators than degrees of freedom, this constitutes an underactuated control problem, requiring a coupling between the translational and rotational dynamics to facilitate control. This paper shows how to obtain this coupling, and applies the results to autonomous rendezvous between a follower spacecraft and a leader spacecraft. Additionally, since the thrust is constrained between zero and an upper bound, no negative forces can be generated to slow down the speed of the spacecraft. A combined speed and attitude control logic is therefore created that can be divided into three main phases: 1) The orbital velocity vector is pointed towards the desired position and the thrust is used to obtain the desired speed, 2) during the coasting phase, the attitude is changed to facilitate deceleration using the main thruster, 3) the speed is decreased as the spacecraft reaches its desired position. The results are validated through simulations, showing the capabilities of the proposed approach.

Keywords: attitude control, spacecraft rendezvous, translational control, underactuated rigid body

Procedia PDF Downloads 292
5046 Finite Element Simulation of Embankment Bumps at Bridge Approaches, Comparison Study

Authors: F. A. Hassona, M. D. Hashem, R. I. Melek, B. M. Hakeem

Abstract:

A differential settlement at the end of a bridge near the interface between the abutment and the embankment is a persistent problem for highway agencies. The differential settlement produces the common ‘bump at the end of the bridge’. Reduction in steering response, distraction to the driver, added risk and expense to maintenance operation, and reduction in a transportation agency’s public image are all undesirable effects of these uneven and irregular transitions. This paper attempts to simulate the bump at the end of the bridge using PLAXIS finite element 2D program. PLAXIS was used to simulate a laboratory model called Bridge to Embankment Simulator of Transition (B.E.S.T.) device which was built by others to investigate this problem. A total of six numerical simulations were conducted using hardening- soil model with rational assumptions of missing soil parameters to estimate the bump at the end of the bridge. The results show good agreements between the numerical and the laboratory models. Important factors influencing bumps at bridge ends were also addressed in light of the model results.

Keywords: bridge approach slabs, bridge bump, hardening-soil, PLAXIS 2D, settlement

Procedia PDF Downloads 348
5045 Suitability Assessment of Water Harvesting and Land Restoration in Catchment Comprising Abandoned Quarry Site in Addis Ababa, Ethiopia

Authors: Rahel Birhanu Kassaye, Ralf Otterpohl, Kumelachew Yeshitila

Abstract:

Water resource management and land degradation are among the critical issues threatening the suitable livability of many cities in developing countries such as Ethiopia. Rapid expansion of urban areas and fast growing population has increased the pressure on water security. On the other hand, the large transformation of natural green cover and agricultural land loss to settlement and industrial activities such as quarrying is contributing to environmental concerns. Integrated water harvesting is considered to play a crucial role in terms of providing alternative water source to insure water security and helping to improve soil condition, agricultural productivity and regeneration of ecosystem. Moreover, it helps to control stormwater runoff, thus reducing flood risks and pollution, thereby improving the quality of receiving water bodies and the health of inhabitants. The aim of this research was to investigate the potential of applying integrated water harvesting approaches as a provision for water source and enabling land restoration in Jemo river catchment consisting of abandoned quarry site adjacent to a settlement area that is facing serious water shortage in western hilly part of Addis Ababa city, Ethiopia. The abandoned quarry site, apart from its contribution to the loss of aesthetics, has resulted in poor water infiltration and increase in stormwater runoff leading to land degradation and flooding in the downstream. Application of GIS and multi-criteria based analysis are used for the assessment of potential water harvesting technologies considering the technology features and site characteristics of the case study area. Biophysical parameters including precipitation, surrounding land use, surface gradient, soil characteristics and geological aspects are used as site characteristic indicators and water harvesting technologies including retention pond, check dam, agro-forestation employing contour trench system were considered for evaluation with technical and socio-economic factors used as parameters in the assessment. The assessment results indicate the different suitability potential among the analyzed water harvesting and restoration techniques with respect to the abandoned quarry site characteristics. Application of agro-forestation with contour trench system with the revegetation of indigenous plants is found to be the most suitable option for reclamation and restoration of the quarry site. Successful application of the selected technologies and strategies for water harvesting and restoration is considered to play a significant role to provide additional water source, maintain good water quality, increase agricultural productivity at urban peri-urban interface scale and improve biodiversity in the catchment. The results of the study provide guideline for decision makers and contribute to the integration of decentralized water harvesting and restoration techniques in the water management and planning of the case study area.

Keywords: abandoned quarry site, land reclamation and restoration, multi-criteria assessment, water harvesting

Procedia PDF Downloads 216
5044 Interesting Behavior of Non-Thermal Plasma Photonic Crystals

Authors: A. Mousavi, S. Sadegzadeh

Abstract:

In this research, the effect of non-thermal micro plasma with non-Maxwellian distribution function on the one dimensional plasma photonic crystals containing alternate plasma-dielectric layers, has been studied. By using Kronig Penny model, the dispersion relation of electromagnetic modes for such a periodic structure is obtained. In this study we take two plasma photonic crystals with different dielectric layers: the first one with Silicon monoxide named PPCI, and the second one with Tellurium dioxide named PPCII. The effects of the plasma layer thickness and the material of the dielectric layer on the plasma photonic crystal band gaps have been illustrated in the dispersion relation and the group velocity figures. Results revealed that in such a system, the non-thermal plasma exerts stronger limit on the wave’s propagation. In another word, for the non-thermal plasma photonic crystals (NPPC), there are two distinct regions in the dispersion plot. The upper region consists of alternate band gaps in such a way that both width and length of the bands decrease gradually as the band gaps order increases. Whereas in the lower region where v_ph > 20 c (for PPCI), waves will not be allowed to propagate.

Keywords: band gap, dispersion relation, non-thermal plasma, plasma photonic crystal

Procedia PDF Downloads 539
5043 Application of Response Surface Methodology to Optimize the Factor Influencing the Wax Deposition of Malaysian Crude Oil

Authors: Basem Elarbe, Ibrahim Elganidi, Norida Ridzuan, Norhyati Abdullah

Abstract:

Wax deposition in production pipelines and transportation tubing from offshore to onshore is critical in the oil and gas industry due to low-temperature conditions. It may lead to a reduction in production, shut-in, plugging of pipelines and increased fluid viscosity. The most significant popular approach to solve this issue is by injection of a wax inhibitor into the channel. This research aims to determine the amount of wax deposition of Malaysian crude oil by estimating the effective parameters using (Design-Expert version 7.1.6) by response surface methodology (RSM) method. Important parameters affecting wax deposition such as cold finger temperature, inhibitor concentration and experimental duration were investigated. It can be concluded that SA-co-BA copolymer had a higher capability of reducing wax in different conditions where the minimum point of wax reduction was found at 300 rpm, 14℃, 1h, 1200 ppmThe amount of waxes collected for each parameter were 0.12g. RSM approach was applied using rotatable central composite design (CCD) to minimize the wax deposit amount. The regression model’s variance (ANOVA) results revealed that the R2 value of 0.9906, indicating that the model can be clarified 99.06% of the data variation, and just 0.94% of the total variation were not clarified by the model. Therefore, it indicated that the model is extremely significant, confirming a close agreement between the experimental and the predicted values. In addition, the result has shown that the amount of wax deposit decreased significantly with the increase of temperature and the concentration of poly (stearyl acrylate-co-behenyl acrylate) (SABA), which were set at 14°C and 1200 ppm, respectively. The amount of wax deposit was successfully reduced to the minimum value of 0.01 g after the optimization.

Keywords: wax deposition, SABA inhibitor, RSM, operation factors

Procedia PDF Downloads 285
5042 The Effect of General Corrosion on the Guided Wave Inspection of the Pipeline

Authors: Shiuh-Kuang Yang, Sheam-Chyun Lin, Jyin-Wen Cheng, Deng-Guei Hsu

Abstract:

The torsional mode of guided wave, T(0,1), has been applied to detect characteristics and defects in pipelines, especially in the cases of coated, elevated and buried pipes. The signals of minor corrosions would be covered by the noise, unfortunately, because the coated material and buried medium always induce a strong attenuation of the guided wave. Furthermore, the guided wave would be attenuated more seriously and make the signals hard to be identified when setting the array ring of the transducers on a general corrosion area of the pipe. The objective of this study is then to discuss the effects of the above-mentioned general corrosion on guided wave tests by experiments and signal processing techniques, based on the use of the finite element method, the two-dimensional Fourier transform and the continuous wavelet transform. Results show that the excitation energy would be reduced when the array ring set on the pipe surface having general corrosion. The non-uniformed contact surface also produces the unwanted asymmetric modes of the propagating guided wave. Some of them are even mixing together with T(0,1) mode and increase the difficulty of measurements, especially when a defect or local corrosion merged in the general corrosion area. It is also showed that the guided waves attenuation are increasing with the increasing corrosion depth or the rising inspection frequency. However, the coherent signals caused by the general corrosion would be decayed with increasing frequency. The results obtained from this research should be able to provide detectors to understand the impact when the array ring set on the area of general corrosion and the way to distinguish the localized corrosion which is inside the area of general corrosion.

Keywords: guided wave, finite element method, two-dimensional fourier transform, wavelet transform, general corrosion, localized corrosion

Procedia PDF Downloads 404
5041 Using the Micro Computed Tomography to Study the Corrosion Behavior of Magnesium Alloy at Different pH Values

Authors: Chia-Jung Chang, Sheng-Che Chen, Ming-Long Yeh, Chih-Wei Wang, Chih-Han Chang

Abstract:

Introduction and Motivation: In recent years, magnesium alloy is used to be a kind of medical biodegradable materials. Magnesium is an essential element in the body and is efficiently excreted by the kidneys. Furthermore, the mechanical properties of magnesium alloy is closest to human bone. However, in some cases magnesium alloy corrodes so quickly that it would release hydrogen on surface of implant. The other product is hydroxide ion, it can significantly increase the local pH value. The above situations may have adverse effects on local cell functions. On the other hand, nowadays magnesium alloy corrode too fast to maintain the function of implant until the healing of tissue. Therefore, much recent research about magnesium alloy has focused on controlling the corrosion rate. The in vitro corrosion behavior of magnesium alloys is affected by many factors, and pH value is one of factors. In this study, we will study on the influence of pH value on the corrosion behavior of magnesium alloy by the Micro-CT (micro computed tomography) and other instruments.Material and methods: In the first step, we make some guiding plates for specimens of magnesium alloy AZ91 by Rapid Prototyping. The guiding plates are able to be a standard for the degradation of specimen, so that we can use it to make sure the position of specimens in the CT image. We can also simplify the conditions of degradation by the guiding plates.In the next step, we prepare the solution with different pH value. And then we put the specimens into the solution to start the corrosion test. The CT image, surface photographs and weigh are measured on every twelve hours. Results: In the primary results of the test, we make sure that CT image can be a way to quantify the corrosion behavior of magnesium alloy. Moreover we can observe the phenomenon that corrosion always start from some erosion point. It’s possibly based on some defect like dislocations and the voids with high strain energy in the materials. We will deal with the raw data into Mass Loss (ML) and corrosion rate by CT image, surface photographs and weigh in the near future. Having a simple prediction, the pH value and degradation rate will be negatively correlated. And we want to find out the equation of the pH value and corrosion rate. We also have a simple test to simulate the change of the pH value in the local region. In this test the pH value will rise to 10 in a short time. Conclusion: As a biodegradable implant for the area with stagnating body fluid flow in the human body, magnesium alloy can cause the increase of local pH values and release the hydrogen. Those may damage the human cell. The purpose of this study is finding out the equation of the pH value and corrosion rate. After that we will try to find the ways to overcome the limitations of medical magnesium alloy.

Keywords: magnesium alloy, biodegradable materials, corrosion, micro-CT

Procedia PDF Downloads 457
5040 The Effect of Transparent Oil Wood Stain on the Colour Stability of Spruce Wood during Weathering

Authors: Eliska Oberhofnerova, Milos Panek, Stepan Hysek, Martin Lexa

Abstract:

Nowadays the use of wood, both indoors and outdoors, is constantly increasing. However wood is a natural organic material and in the exterior is subjected to a degradation process caused by abiotic factors (solar radiation, rain, moisture, wind, dust etc.). This process affects only surface layers of wood but neglecting some of the basic rules of wood protection leads to increased possibility of biological agents attack and thereby influences a function of the wood element. The process of wood degradation can be decreased by proper surface treatment, especially in the case of less naturally durable wood species, as spruce. Modern coating systems are subjected to many requirements such as colour stability, hydrophobicity, low volatile organic compound (VOC) content, long service life or easy maintenance. The aim of this study is to evaluate the colour stability of spruce wood (Picea abies), as the basic parameter indicating the coating durability, treated with two layers of transparent natural oil wood stain and exposed to outdoor conditions. The test specimens were exposed for 2 years to natural weathering and 2000 hours to artificial weathering in UV-chamber. The colour parameters were measured before and during exposure to weathering by the spectrophotometer according to CIELab colour space. The comparison between untreated and treated wood and both testing procedures was carried out. The results showed a significant effect of coating on the colour stability of wood, as expected. Nevertheless, increasing colour changes of wood observed during the exposure to weathering differed according to applied testing procedure - natural and artificial.

Keywords: colour stability, natural and artificial weathering, spruce wood, transparent coating

Procedia PDF Downloads 220
5039 Estimation of Damping Force of Double Ended Shear Mode Magnetorheological Damper Using Computational Analysis

Authors: Gurubasavaraju T. M.

Abstract:

The magnetorheological (MR) damper could provide variable damping force with respect to the different input magnetic field. The damping force could be estimated through computational analysis using finite element and computational fluid dynamics analysis. The double-ended damper operates without changing the total volume of fluid. In this paper, damping force of double ended damper under different magnetic field is computed. Initially, the magneto-statics analysis carried out to evaluate the magnetic flux density across the fluid flow gap. The respective change in the rheology of the MR fluid is computed by using the experimentally fitted polynomial equation of shear stress versus magnetic field plot of MR fluid. The obtained values are substituted in the Herschel Buckley model to express the non-Newtonian behavior of MR fluid. Later, using computational fluid dynamic (CFD) analysis damping characteristics in terms of force versus velocity and force versus displacement for the respective magnetic field is estimated. The purpose of the present approach is to characterize the preliminary designed MR damper before fabricating.

Keywords: MR fluid, double ended MR damper, CFD, FEA

Procedia PDF Downloads 180
5038 Surface-Enhanced Raman Spectroscopy on Gold Nanoparticles in the Kidney Disease

Authors: Leonardo C. Pacheco-Londoño, Nataly J Galan-Freyle, Lisandro Pacheco-Lugo, Antonio Acosta-Hoyos, Elkin Navarro, Gustavo Aroca-Martinez, Karin Rondón-Payares, Alberto C. Espinosa-Garavito, Samuel P. Hernández-Rivera

Abstract:

At the Life Science Research Center at Simon Bolivar University, a primary focus is the diagnosis of various diseases, and the use of gold nanoparticles (Au-NPs) in diverse biomedical applications is continually expanding. In the present study, Au-NPs were employed as substrates for Surface-Enhanced Raman Spectroscopy (SERS) aimed at diagnosing kidney diseases arising from Lupus Nephritis (LN), preeclampsia (PC), and Hypertension (H). Discrimination models were developed for distinguishing patients with and without kidney diseases based on the SERS signals from urine samples by partial least squares-discriminant analysis (PLS-DA). A comparative study of the Raman signals across the three conditions was conducted, leading to the identification of potential metabolite signals. Model performance was assessed through cross-validation and external validation, determining parameters like sensitivity and specificity. Additionally, a secondary analysis was performed using machine learning (ML) models, wherein different ML algorithms were evaluated for their efficiency. Models’ validation was carried out using cross-validation and external validation, and other parameters were determined, such as sensitivity and specificity; the models showed average values of 0.9 for both parameters. Additionally, it is not possible to highlight this collaborative effort involved two university research centers and two healthcare institutions, ensuring ethical treatment and informed consent of patient samples.

Keywords: SERS, Raman, PLS-DA, kidney diseases

Procedia PDF Downloads 45
5037 Rapid, Direct, Real-Time Method for Bacteria Detection on Surfaces

Authors: Evgenia Iakovleva, Juha Koivisto, Pasi Karppinen, J. Inkinen, Mikko Alava

Abstract:

Preventing the spread of infectious diseases throughout the worldwide is one of the most important tasks of modern health care. Infectious diseases not only account for one fifth of the deaths in the world, but also cause many pathological complications for the human health. Touch surfaces pose an important vector for the spread of infections by varying microorganisms, including antimicrobial resistant organisms. Further, antimicrobial resistance is reply of bacteria to the overused or inappropriate used of antibiotics everywhere. The biggest challenges in bacterial detection by existing methods are non-direct determination, long time of analysis, the sample preparation, use of chemicals and expensive equipment, and availability of qualified specialists. Therefore, a high-performance, rapid, real-time detection is demanded in rapid practical bacterial detection and to control the epidemiological hazard. Among the known methods for determining bacteria on the surfaces, Hyperspectral methods can be used as direct and rapid methods for microorganism detection on different kind of surfaces based on fluorescence without sampling, sample preparation and chemicals. The aim of this study was to assess the relevance of such systems to remote sensing of surfaces for microorganisms detection to prevent a global spread of infectious diseases. Bacillus subtilis and Escherichia coli with different concentrations (from 0 to 10x8 cell/100µL) were detected with hyperspectral camera using different filters as visible visualization of bacteria and background spots on the steel plate. A method of internal standards was applied for monitoring the correctness of the analysis results. Distances from sample to hyperspectral camera and light source are 25 cm and 40 cm, respectively. Each sample is optically imaged from the surface by hyperspectral imaging system, utilizing a JAI CM-140GE-UV camera. Light source is BeamZ FLATPAR DMX Tri-light, 3W tri-colour LEDs (red, blue and green). Light colors are changed through DMX USB Pro interface. The developed system was calibrated following a standard procedure of setting exposure and focused for light with λ=525 nm. The filter is ThorLabs KuriousTM hyperspectral filter controller with wavelengths from 420 to 720 nm. All data collection, pro-processing and multivariate analysis was performed using LabVIEW and Python software. The studied human eye visible and invisible bacterial stains clustered apart from a reference steel material by clustering analysis using different light sources and filter wavelengths. The calculation of random and systematic errors of the analysis results proved the applicability of the method in real conditions. Validation experiments have been carried out with photometry and ATP swab-test. The lower detection limit of developed method is several orders of magnitude lower than for both validation methods. All parameters of the experiments were the same, except for the light. Hyperspectral imaging method allows to separate not only bacteria and surfaces, but also different types of bacteria, such as Gram-negative Escherichia coli and Gram-positive Bacillus subtilis. Developed method allows skipping the sample preparation and the use of chemicals, unlike all other microbiological methods. The time of analysis with novel hyperspectral system is a few seconds, which is innovative in the field of microbiological tests.

Keywords: Escherichia coli, Bacillus subtilis, hyperspectral imaging, microorganisms detection

Procedia PDF Downloads 224
5036 Application of Micro-Tunneling Technique to Rectify Tilted Structures Constructed on Cohesive Soil

Authors: Yasser R. Tawfic, Mohamed A. Eid

Abstract:

Foundation differential settlement and supported structure tilting is an occasionally occurred engineering problem. This may be caused by overloading, changes in ground soil properties or unsupported nearby excavations. Engineering thinking points directly toward the logic solution for such problem by uplifting the settled side. This can be achieved with deep foundation elements such as micro-piles and macro-piles™, jacked piers and helical piers, jet grouted soil-crete columns, compaction grout columns, cement grouting or with chemical grouting, or traditional pit underpinning with concrete and mortar. Although, some of these techniques offer economic, fast and low noise solutions, many of them are quite the contrary. For tilted structures, with limited inclination, it may be much easier to cause a balancing settlement on the less-settlement side which shall be done carefully in a proper rate. This principal has been applied in Leaning Tower of Pisa stabilization with soil extraction from the ground surface. In this research, the authors attempt to introduce a new solution with a different point of view. So, micro-tunneling technique is presented in here as an intended ground deformation cause. In general, micro-tunneling is expected to induce limited ground deformations. Thus, the researchers propose to apply the technique to form small size ground unsupported holes to produce the target deformations. This shall be done in four phases: •Application of one or more micro-tunnels, regarding the existing differential settlement value, under the raised side of the tilted structure. •For each individual tunnel, the lining shall be pulled out from both sides (from jacking and receiving shafts) in slow rate. •If required, according to calculations and site records, an additional surface load can be applied on the raised foundation side. •Finally, a strengthening soil grouting shall be applied for stabilization after adjustment. A finite element based numerical model is presented to simulate the proposed construction phases for different tunneling positions and tunnels group. For each case, the surface settlements are calculated and induced plasticity points are checked. These results show the impact of the suggested procedure on the tilted structure and its feasibility. Comparing results also show the importance of the position selection and tunnels group gradual effect. Thus, a new engineering solution is presented to one of the structural and geotechnical engineering challenges.

Keywords: differential settlement, micro-tunneling, soil-structure interaction, tilted structures

Procedia PDF Downloads 208
5035 Canned Sealless Pumps for Hazardous Applications

Authors: Shuja Alharbi

Abstract:

Oil and Gas industry has many applications considered as toxic or hazardous, where process fluid leakage is not permitted and leads to health, safety, and environmental impacts. Caustic/Acidic applications, High Benzene Concentrations, Hydrogen sulfide rich oil/gas as well as liquids operating above their auto-ignition temperatures are examples of such liquids that pose as a risk to the industry operation, and for those, special arrangements are in place to allow for the safe operation environment. Pumps in the industry requires special attention, specifically in the interface between the fluid and the environment, where the potential of leakages are foreseen. Mechanical Seals are used to contain the fluid within the equipment, but the prices are ever increasing for such seals, along with maintenance, design, and operating requirements. Several alternatives to seals are being employed nowadays, such as Sealless systems, which is hermitically sealed from the atmosphere and does not require sealing. This technology is considered relatively new and requires more studies to understand the limitations and factors associated from an owner and design perspective. Things like financial factors, maintenance factors, and design limitation should be studies further in order to have a mature and reliable technical solution available to end users.

Keywords: pump, sealless, selection, failure

Procedia PDF Downloads 100
5034 Optimization of Adsorption Performance of Lignocellulosic Waste Pretreatment and Chemical Modification

Authors: Bendjelloul Meriem, Elandaloussi El Hadj

Abstract:

In this work, we studied the effectiveness of a lignocellulosic waste (wood sawdust) for the removal of cadmium Cd (II) in aqueous solution. The adsorbent material SBO-CH2-CO2Na has been prepared by alkaline pretreatment of wood sawdust followed by a chemical modification with sodium salt of chloroacetic acid. The characterization of the as-prepared material by FTIR has proven that the grafting of acetate spacer took actually place in the lignocellulosic backbone by the appearance of characteristic band of carboxylic groups in the IR spectrum. The removal study of Cd2+ by SBO-CH2-CO2Na material at the solid-liquid interface was carried out by kinetics, sorption isotherms, effect of temperature and thermodynamic parameters were evaluated. The last part of this work was dedicated to assess the regenerability of the adsorbent material after three reuse cycles. The results indicate that SBO-CH2-CO2Na matrix possesses a high effectiveness in removing Cd (II) with an adsorption capacity of 222.22 mg/g, yet a better value that those of many low-cost adsorbents so far reported in the literature. The results found in the course of this study suggest that ionic exchange is the most appropriate mechanism involved in the removal of cadmium ions.

Keywords: adsorption, cadmium, isotherms, lignocellulosic, regenerability

Procedia PDF Downloads 331
5033 Seismic Behavior of Concrete Filled Steel Tube Reinforced Concrete Column

Authors: Raghabendra Yadav, Baochun Chen, Huihui Yuan, Zhibin Lian

Abstract:

Pseudo-dynamic test (PDT) method is an advanced seismic test method that combines loading technology with computer technology. Large-scale models or full scale seismic tests can be carried out by using this method. CFST-RC columns are used in civil engineering structures because of their better seismic performance. A CFST-RC column is composed of four CFST limbs which are connected with RC web in longitudinal direction and with steel tube in transverse direction. For this study, a CFST-RC pier is tested under Four different earthquake time histories having scaled PGA of 0.05g. From the experiment acceleration, velocity, displacement and load time histories are observed. The dynamic magnification factors for acceleration due to Elcentro, Chi-Chi, Imperial Valley and Kobe ground motions are observed as 15, 12, 17 and 14 respectively. The natural frequency of the pier is found to be 1.40 Hz. The result shows that this type of pier has excellent static and earthquake resistant properties.

Keywords: bridge pier, CFST-RC pier, pseudo dynamic test, seismic performance, time history

Procedia PDF Downloads 185
5032 Unifying RSV Evolutionary Dynamics and Epidemiology Through Phylodynamic Analyses

Authors: Lydia Tan, Philippe Lemey, Lieselot Houspie, Marco Viveen, Darren Martin, Frank Coenjaerts

Abstract:

Introduction: Human respiratory syncytial virus (hRSV) is the leading cause of severe respiratory tract infections in infants under the age of two. Genomic substitutions and related evolutionary dynamics of hRSV are of great influence on virus transmission behavior. The evolutionary patterns formed are due to a precarious interplay between the host immune response and RSV, thereby selecting the most viable and less immunogenic strains. Studying genomic profiles can teach us which genes and consequent proteins play an important role in RSV survival and transmission dynamics. Study design: In this study, genetic diversity and evolutionary rate analysis were conducted on 36 RSV subgroup B whole genome sequences and 37 subgroup A genome sequences. Clinical RSV isolates were obtained from nasopharyngeal aspirates and swabs of children between 2 weeks and 5 years old of age. These strains, collected during epidemic seasons from 2001 to 2011 in the Netherlands and Belgium by either conventional or 454-sequencing. Sequences were analyzed for genetic diversity, recombination events, synonymous/non-synonymous substitution ratios, epistasis, and translational consequences of mutations were mapped to known 3D protein structures. We used Bayesian statistical inference to estimate the rate of RSV genome evolution and the rate of variability across the genome. Results: The A and B profiles were described in detail and compared to each other. Overall, the majority of the whole RSV genome is highly conserved among all strains. The attachment protein G was the most variable protein and its gene had, similar to the non-coding regions in RSV, more elevated (two-fold) substitution rates than other genes. In addition, the G gene has been identified as the major target for diversifying selection. Overall, less gene and protein variability was found within RSV-B compared to RSV-A and most protein variation between the subgroups was found in the F, G, SH and M2-2 proteins. For the F protein mutations and correlated amino acid changes are largely located in the F2 ligand-binding domain. The small hydrophobic phosphoprotein and nucleoprotein are the most conserved proteins. The evolutionary rates were similar in both subgroups (A: 6.47E-04, B: 7.76E-04 substitution/site/yr), but estimates of the time to the most recent common ancestor were much lower for RSV-B (B: 19, A: 46.8 yrs), indicating that there is more turnover in this subgroup. Conclusion: This study provides a detailed description of whole RSV genome mutations, the effect on translation products and the first estimate of the RSV genome evolution tempo. The immunogenic G protein seems to require high substitution rates in order to select less immunogenic strains and other conserved proteins are most likely essential to preserve RSV viability. The resulting G gene variability makes its protein a less interesting target for RSV intervention methods. The more conserved RSV F protein with less antigenic epitope shedding is, therefore, more suitable for developing therapeutic strategies or vaccines.

Keywords: drug target selection, epidemiology, respiratory syncytial virus, RSV

Procedia PDF Downloads 413
5031 Evaluation of Current Methods in Modelling and Analysis of Track with Jointed Rails

Authors: Hossein Askarinejad, Manicka Dhanasekar

Abstract:

In railway tracks, two adjacent rails are either welded or connected using bolted jointbars. In recent years the number of bolted rail joints is reduced by introduction of longer rail sections and by welding the rails at location of some joints. However, significant number of bolted rail joints remains in railways around the world as they are required to allow for rail thermal expansion or to provide electrical insulation in some sections of track. Regardless of the quality and integrity of the jointbar and bolt connections, the bending stiffness of jointbars is much lower than the rail generating large deflections under the train wheels. In addition, the gap or surface discontinuity on the rail running surface leads to generation of high wheel-rail impact force at the joint gap. These fundamental weaknesses have caused high rate of failure in track components at location of rail joints resulting in significant economic and safety issues in railways. The mechanical behavior of railway track at location of joints has not been fully understood due to various structural and material complexities. Although there have been some improvements in the methods for analysis of track at jointed rails in recent years, there are still uncertainties concerning the accuracy and reliability of the current methods. In this paper the current methods in analysis of track with a rail joint are critically evaluated and the new advances and recent research outcomes in this area are discussed. This research is part of a large granted project on rail joints which was defined by Cooperative Research Centre (CRC) for Rail Innovation with supports from Australian Rail Track Corporation (ARTC) and Queensland Rail (QR).

Keywords: jointed rails, railway mechanics, track dynamics, wheel-rail interaction

Procedia PDF Downloads 350