Search results for: modified ground structure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11224

Search results for: modified ground structure

7324 A Phenomenological-Hermeneutic Account of Design Thinking by Way of an Exposition of Four Species of Negatite: 'Not Being', 'Non-Being', 'Absence', 'Non-Existence'

Authors: Soheil Ashrafi

Abstract:

In this paper, it is attempted to chart and exposit terra incognito of the transcendental intuition of ‘non-being’, a peculiar species of négatité and a form of consciousness which underpins the phenomenal capacity for design thinking, and which serves as the ground of the ‘designing being-relation to the world’. The paper’s contention is that the transcendental intuition of the non-being indwells the agent’s being-relation to the world as a continual tension in that neither does the agent relinquish its ontological leverage and submit altogether to the world’s curbs and dictates, nor is it able to subdue satisfactorily or settle into the world once and for all. By way of phenomenological-hermeneutic analysis, it is endeavoured to argue that design thinking occurs by virtue of a phenomenal transition between the a priori ‘not-being’, the basis of ‘that-which-is’, and the transcendental intuition of non-being through which that-which-is-not-yet announces itself. Along with this, the other two species of négatité as ‘absence’ and ‘non-existence’ are clarified and contrasted with not-being and non-being, which have widely been used in the literature interchangeably as identical terms. In conclusion, it is argued that not only has design thinking in its unadulterated, originary mode historically preceded scientific thinking, but it also has served as the foundation of its emergence. In short, scientific thinking is a derivative, reformed application of design thinking; it indeed supervenes upon it.

Keywords: design thinking, designing being-relation to the world, négatité, not-being, non-being

Procedia PDF Downloads 155
7323 The Effect of Silanization on Alumina for Improving the Compatibility with Poly(Methacrylic Acid) Matrix for Dental Restorative Materials

Authors: Andrei Tiberiu Cucuruz, Ecaterina Andronescu, Cristina Daniela Ghitulica, Andreia Cucuruz

Abstract:

In modern dentistry, the application of resin-based composites continues to increase and in the majority of countries has completely replaced mercury amalgams. Alumina (Al2O3) is a representative bioinert ceramic with a variety of applications in industry as well as in medicine. Alumina has the potential to improve electrical resistivity and thermal conductivity of polymers. The application of poly(methacrylic acid) (PMAA) in medicine was poorly investigated in the past but can lead to good results by the incorporation of alumina particles that can bring bioinertness to the composite. However, because of the differences related to chemical bonding of these materials, the interaction is very weak at the interface leading to no significant values in practical situations. The aim of this work was to modify the structure of alumina with silane coupling agents and to study the influence of silanization on the physicomechanical properties of the resulting composite materials. Two silanes were used in this study: 3-aminopropyl-trimethoxysilane (APTMS) and dichlorodimethylsilane (DCDMS). Both silanes proved to have a significant effect on the overall performance of composites by establishing bonds with the polymer matrix and the filler. All these improvements in dental adhesive systems made for bonding resin composites to tooth structure have enhanced the clinical application of polymeric restorative materials to the position that they are now considered the material of choice for esthetic restoration.

Keywords: alumina, compressive strength, dental materials, silane coupling agents, poly(methacrylic acid)

Procedia PDF Downloads 336
7322 The Production of Collagen and Collagen Peptides from Nile Tilapia Skin Using Membrane Technology

Authors: M. Thuanthong, W. Youravong, N. Sirinupong

Abstract:

Nile tilapia (Oreochromis niloticus) is one of fish species cultured in Thailand with a high production volume. A lot of skin is generated during fish processing. In addition, there are many research reported that fish skin contains abundant of collagen. Thus, the use of Nile tilapia skin as collagen source can increase the benefit of industrial waste. In this study, Acid soluble collagen (ASC) was extracted at 5, 15 or 25 ˚C with 0.5 M acetic acid then the acid was removed out and collagen was concentrated by ultrafiltration-diafiltration (UFDF). The triple helix collagen from UFDF process was used as substrate to produce collagen peptides by alcalase hydrolysis in an enzymatic membrane reactor (EMR) coupling with 1 kDa molecular weight cut off (MWCO) polysulfone hollow fiber membrane. The results showed that ASC extracted at high temperature (25 ˚C) with 0.5 M acetic acid for 5 h still preserved triple helix structure. In the UFDF process, the acid removal was higher than 90 % without any effect on ASC properties, particularly triple helix structure as indicated by circular dichroism spectrum. Moreover, Collagen from UFDF was used to produce collagen peptides by EMR. In EMR, collagen was pre-hydrolyzed by alcalase for 60 min before introduced to membrane separation. The EMR operation was operated for 10 h and provided a good of protein conversion stability. The results suggested that there is a successfulness of UF in application for acid removal to produce ASC with desirable preservation of its quality. In addition, the EMR was proven to be an effective process to produce low molecular weight peptides with ACE-inhibitory activity properties.

Keywords: acid soluble collagen, ultrafiltration-diafiltration, enzymatic membrane reactor, ace-inhibitory activity

Procedia PDF Downloads 460
7321 Seismic Behavior of Concrete Filled Steel Tube Reinforced Concrete Column

Authors: Raghabendra Yadav, Baochun Chen, Huihui Yuan, Zhibin Lian

Abstract:

Pseudo-dynamic test (PDT) method is an advanced seismic test method that combines loading technology with computer technology. Large-scale models or full scale seismic tests can be carried out by using this method. CFST-RC columns are used in civil engineering structures because of their better seismic performance. A CFST-RC column is composed of four CFST limbs which are connected with RC web in longitudinal direction and with steel tube in transverse direction. For this study, a CFST-RC pier is tested under Four different earthquake time histories having scaled PGA of 0.05g. From the experiment acceleration, velocity, displacement and load time histories are observed. The dynamic magnification factors for acceleration due to Elcentro, Chi-Chi, Imperial Valley and Kobe ground motions are observed as 15, 12, 17 and 14 respectively. The natural frequency of the pier is found to be 1.40 Hz. The result shows that this type of pier has excellent static and earthquake resistant properties.

Keywords: bridge pier, CFST-RC pier, pseudo dynamic test, seismic performance, time history

Procedia PDF Downloads 169
7320 The Temperature Effects on the Microstructure and Profile in Laser Cladding

Authors: P. C. Chiu, Jehnming Lin

Abstract:

In this study, a 50-W CO2 laser was used for the clad of 304L powders on the stainless steel substrate with a temperature sensor and image monitoring system. The laser power and cladding speed and focal position were modified to achieve the requirement of the workpiece flatness and mechanical properties. The numerical calculation is based on ANSYS to analyze the temperature change of the moving heat source at different surface positions when coating the workpiece, and the effect of the process parameters on the bath size was discussed. The temperature of stainless steel powder in the nozzle outlet reacting with the laser was simulated as a process parameter. In the experiment, the difference of the thermal conductivity in three-dimensional space is compared with single-layer cladding and multi-layer cladding. The heat dissipation pattern of the single-layer cladding is the steel plate and the multi-layer coating is the workpiece itself. The relationship between the multi-clad temperature and the profile was analyzed by the temperature signal from an IR pyrometer.

Keywords: laser cladding, temperature, profile, microstructure

Procedia PDF Downloads 213
7319 Monitoring and Evaluation of Master Science Trainee Educational Students to their Practicum in Teaching Physics for Improving and Creating Attitude Skills for Sustainable Developing Upper Secondary Students in Thailand

Authors: T. Santiboon, S. Tongbu, P. S. Saihong

Abstract:

This study focuses on investigating students' perceptions of their physics classroom learning environments of their individualizations and their interactions with the instructional practicum in teaching physics of the master science trainee educational students for improving and creating attitude skills’ sustainable development toward physics for upper secondary educational students in Thailand. Associations between these perceptions and students' attitudes toward physics were also determined. The learning environment perceptions were obtained using the 35-item Physics Laboratory Environment Inventory (PLEI) modified from the original Science Laboratory Environment Inventory. The 25-item Individualized Classroom Environment Questionnaire (ICEQ) was assessed those dimensions which distinguish individualized physics classrooms from convention on individualized open and inquiry-based education Teacher-student interactions were assessed with the 48-item Questionnaires on Teacher Interaction (QTI). Both these questionnaires have an Actual Form (assesses the class as it actually is) and a Preferred Form (asks the students what they would prefer their class to be like - the ideal situation). Students’ creating attitude skills’ sustainable development toward physics were assessed with the Test Of Physics-Related Attitude (TOPRA) modified from the original Test Of Science-Related Attitude (TOSRA) The questionnaires were administered in three phases with the Custer Random Sampling technique to a sample consisted of 989 students in 28 physics classes from 10 schools at the grade 10, 11, and 12 levels in the Secondary Educational Service Area 26 (Maha Sarakham Province) and Area 27 (Roi-Et). Statistically significant differences were found between the students' perceptions of actual-1, actual-2 and preferred environments of their physics laboratory and distinguish individualized classrooms, and teacher interpersonal behaviors with their improving and creating attitudes skills’ sustainable development to their physics classes also were found. Predictions of the monitoring and evaluation of master science trainee educational students of their practicum in teaching physics; students’ skills developments of their physics achievements’ sustainable for the set of actual and preferred environments as a whole and physics related attitudes also were correlated. The R2 values indicate that 58%, 67%, and 84% of the variances in students’ attitudes to their actuale-1, actual-2 and preferred for the PLEI; 42%,science trainee educational students of their practicum in teaching physics; students’ skill developments of their physics achievements’ sustainable for the set of actual and preferred environments as a whole and physics related attitudes also were correlated. The R2 values indicate that 58%, 67%, and 84% of the variances in students’ attitudes to their actuale-1, actual-2 and preferred for the PLEI; 42%, 63%, and 72% for the ICEQ, and 38%, 59%, and 68% for the QTI in physics environment classes were attributable to their perceptions of their actual and preferred physics environments and their developing creative science skills’ sustainable toward physics, consequently. Based on all the findings, suggestions for improving the physics laboratory and individualized classes and teacher interpersonal behaviors with students' perceptions are provided of their improving and creating attitude skills’ sustainable development by the master science trainee educational students ’ instructional administrations.

Keywords: promotion, instructional model, qualitative method, reflective thinking, trainee teacher student

Procedia PDF Downloads 255
7318 High Performance Wood Shear Walls and Dissipative Anchors for Damage Limitation

Authors: Vera Wilden, Benno Hoffmeister, Georgios Balaskas, Lukas Rauber, Burkhard Walter

Abstract:

Light-weight timber frame elements represent an efficient structural solution for wooden multistory buildings. The wall elements of such buildings – which act as shear diaphragms- provide lateral stiffness and resistance to wind and seismic loads. The tendency towards multi-story structures leads to challenges regarding the prediction of stiffness, strength and ductility of the buildings. Lightweight timber frame elements are built up of several structural parts (sheeting, fasteners, frame, support and anchorages); each of them contributing to the dynamic response of the structure. This contribution describes the experimental and numerical investigation and development of enhanced lightweight timber frame buildings. These developments comprise high-performance timber frame walls with the variable arrangements of sheathing planes and dissipative anchors at the base of the timber buildings, which reduce damages to the timber structure and can be exchanged after significant earthquakes. In order to prove the performance of the developed elements in the context of a real building a full-scale two-story building core was designed and erected in the laboratory and tested experimentally for its seismic performance. The results of the tests and a comparison of the test results to the predicted behavior are presented. Observation during the test also reveals some aspects of the design and details which need to consider in the application of the timber walls in the context of the complete building.

Keywords: dissipative anchoring, full scale test, push-over-test, wood shear walls

Procedia PDF Downloads 227
7317 A Gyro-stabilized Autonomous Multi-terrain Quadrupedal-wheeled Robot: Towards Edge-enabled Self-balancing, Autonomy, and Terramechanical Efficiency of Unmanned Off-road Vehicles

Authors: Mbadiwe S. Benyeogor, Oladayo O. Olakanmi, Kosisochukwu P. Nnoli, Olusegun I. Lawal, Eric JJ. Gratton

Abstract:

For a robot or any vehicular system to navigate in off-road terrain, its driving mechanisms and the electro-software system must be capable of generating, controlling, and moderating sufficient mechanical power with precision. This paper proposes an autonomous robot with a gyro-stabilized active suspension system in form of a hybrid quadrupedal wheel drive mechanism. This system is to serve as a miniature model for demonstrating how off-road vehicles can be robotized into efficient terramechanical mobile platforms that are capable of self-balanced autonomous navigation and maneuvering on rough and uneven topographies. Results from tests and analysis show that the developed system performs as expected. Therefore, our model and control devices can be adapted to computerizing, automating, and upgrading the operation of unmanned ground vehicles for off-road navigation.

Keywords: active suspension, autonomous robots, edge computing, navigational sensors, terramechanics

Procedia PDF Downloads 140
7316 A Semi-Implicit Phase Field Model for Droplet Evolution

Authors: M. H. Kazemi, D. Salac

Abstract:

A semi-implicit phase field method for droplet evolution is proposed. Using the phase field Cahn-Hilliard equation, we are able to track the interface in multiphase flow. The idea of a semi-implicit finite difference scheme is reviewed and employed to solve two nonlinear equations, including the Navier-Stokes and the Cahn-Hilliard equations. The use of a semi-implicit method allows us to have larger time steps compared to explicit schemes. The governing equations are coupled and then solved by a GMRES solver (generalized minimal residual method) using modified Gram-Schmidt orthogonalization. To show the validity of the method, we apply the method to the simulation of a rising droplet, a leaky dielectric drop and the coalescence of drops. The numerical solutions to the phase field model match well with existing solutions over a defined range of variables.

Keywords: coalescence, leaky dielectric, numerical method, phase field, rising droplet, semi-implicit method

Procedia PDF Downloads 458
7315 Analysis of Influence of Intrinsic Motivation on Employee Affective Commitment

Authors: Yashar Ibragimov, Nino Berishvili

Abstract:

Technological, economic and other innovation-related advances of the 21st century have influenced the old, traditional business models. Presently, organizational change has become an integral part of corporate strategy for the majority of businesses. Such shifts have resulted in both new challenges and opportunities. The expansion of the use of information and communication technologies has driven fundamental shifts towards digital change. Organizations are being forced to revise processes, goals and overall mission in order to stay competitive in the marketplace. However, the implementation of digital transformation brings uncertainty, causes stress and raises concerns about future jobs. The study employs systematic literature review to fill the gap in understanding relationship between employee motivation and commitment during the transformation. A conceptual model proposes the antecedents (OCB and Leader Member Exchange) of employee motivation and investigates its impact on employee commitment to change. The utilized model elucidates how to maintain employee motivation and commitment in the context of organizational transformation and sets the ground for future research.

Keywords: employee motivation, change commitment, change management, leader member exchange, organizational citizenship behavior

Procedia PDF Downloads 63
7314 Insight into the Binding Theme of CA-074Me to Cathepsin B: Molecular Dynamics Simulations and Scaffold Hopping to Identify Potential Analogues as Anti-Neurodegenerative Diseases

Authors: Tivani Phosa Mashamba-Thompson, Mahmoud E. S. Soliman

Abstract:

To date, the cause of neurodegeneration is not well understood and diseases that stem from neurodegeneration currently have no known cures. Cathepsin B (CB) enzyme is known to be involved in the production of peptide neurotransmitters and toxic peptides in neurodegenerative diseases (NDs). CA-074Me is a membrane-permeable irreversible selective cathepsin B (CB) inhibitor as confirmed by in vivo studies. Due to the lack of the crystal structure, the binding mode of CA-074Me with the human CB at molecular level has not been previously reported. The main aim of this study is to gain an insight into the binding mode of CB CA-074Me to human CB using various computational tools. Herein, molecular dynamics simulations, binding free energy calculations and per-residue energy decomposition analysis were employed to accomplish the aim of the study. Another objective was to identify novel CB inhibitors based on the structure of CA-074Me using fragment based drug design using scaffold hoping drug design approach. Results showed that two of the designed ligands (hit 1 and hit 2) were found to have better binding affinities than the prototype inhibitor, CA-074Me, by ~2-3 kcal/mol. Per-residue energy decomposition showed that amino acid residues Cys29, Gly196, His197 and Val174 contributed the most towards the binding. The Van der Waals binding forces were found to be the major component of the binding interactions. The findings of this study should assist medicinal chemist towards the design of potential irreversible CB inhibitors.

Keywords: cathepsin B, scaffold hopping, docking, molecular dynamics, binding-free energy, neurodegerative diseases

Procedia PDF Downloads 361
7313 Impedance Matching of Axial Mode Helical Antennas

Authors: Hossein Mardani, Neil Buchanan, Robert Cahill, Vincent Fusco

Abstract:

In this paper, we study the input impedance characteristics of axial mode helical antennas to find an effective way for matching it to 50 Ω. The study is done on the important matching parameters such as like wire diameter and helix to the ground plane gap. It is intended that these parameters control the matching without detrimentally affecting the radiation pattern. Using transmission line theory, a simple broadband technique is proposed, which is applicable for perfect matching of antennas with similar design parameters. We provide design curves to help to choose the proper dimensions of the matching section based on the antenna’s unmatched input impedance. Finally, using the proposed technique, a 4-turn axial mode helix is designed at 2.5 GHz center frequency and the measurement results of the manufactured antenna will be included. This parametric study gives a good insight into the input impedance characteristics of axial mode helical antennas and the proposed impedance matching approach provides a simple, useful method for matching these types of antennas.

Keywords: antenna, helix, helical, axial mode, wireless power transfer, impedance matching

Procedia PDF Downloads 296
7312 Adsorption of Lead and Zinc Ions Onto Chemical Activated Millet Husk: Equilibrium and Kinetics Studies

Authors: Hilary Rutto, Linda Sibali

Abstract:

In this study, the adsorption of lead and zinc ions from aqueous solutions by modified millet husk has been investigated. The effects of different parameters, such as pH, adsorbent dosage, concentration, temperature, and contact time, have been investigated. The results of the experiments showed that the adsorption of both metal ions increased by increasing pH values up to 11. Adsorption process was initially fast. The adsorption rate decreased then until it reached to equilibrium time of 120 min for both lead and zinc ions. The Langmuir, Freundlich, Dubinin-Radushkevich (D-R), and thermodynamic models (Gibbs free energy) were used to determine the isotherm parameters associated with the adsorption process. The positive values of Gibbs free energy change indicated that reaction is not spontaneous. Experimental data were also evaluated in terms of kinetic characteristics of adsorption, and it was found that adsorption process for both metal ions followed pseudo-first order for zinc and pseudo-second-order for lead.

Keywords: zinc, lead, adsorption, millet husks

Procedia PDF Downloads 151
7311 Environmental Interactions in Riparian Vegetation Cover in an Urban Stream Corridor: A Case Study of Duzce Asar Suyu

Authors: Engin Eroğlu, Oktay Yıldız, Necmi Aksoy, Akif Keten, Mehmet Kıvanç Ak, Şeref Keskin, Elif Atmaca, Sertaç Kaya

Abstract:

Nowadays, green spaces in urban areas are under threat and decreasing their percentages in the urban areas because of increasing population, urbanization, migration, and some cultural changes in quality. An important element of the natural landscape water and water-related natural ecosystems are exposed to corruption due to these pressures. A landscape has owned many different types of elements or units, a more dominant structure than other landscapes as good or bad perceptible extent different direction and variable reveals a unique structure and character of the landscape. Whereas landscapes deal with two main groups as urban and rural according to their location on the world, especially intersection areas of urban and rural named semi-urban or semi-rural present variety landscape features. The main components of the landscape are defined as patch-matrix-corridor. The corridors include quite various vegetation types such as riparian, wetland and the others. In urban areas, natural water corridors are an important elements of the diversity of the riparian vegetation cover. In particular, water corridors attract attention with a natural diversity and lack of fragmentation, degradation and artificial results. Thanks to these features, without a doubt, water corridors are the important component of all cities in the world. These corridors not only divide the city into two separate sides, but also assured the ecological connectivity between the two sides of the city. The main objective of this study is to determine the vegetation and habitat features of urban stream corridor according to environmental interactions. Within this context, this study will be realized that 'Asar Suyu' is an important component of the city of Düzce. Moreover, the riparian zone touched contiguous area borders of the city and overlaid the urban development limits of the city, determining of characteristics of the corridor will be carried out as floristic and habitat analysis. Consequently, vegetation structure and habitat features which play an important role between riparian zone vegetation covers and environmental interaction will be determined. This study includes first results of The Scientific and Technological Research Council of Turkey (TUBITAK-116O596; 'Determining of Landscape Character of Urban Water Corridors as Visual and Ecological; A Case Study of Asar Suyu in Duzce').

Keywords: corridor, Duzce, landscape ecology, riparian vegetation

Procedia PDF Downloads 326
7310 Targeted Delivery of Novel Copper-Based Nanoparticles for Advance Cancer Therapeutics

Authors: Arindam Pramanik, Parimal Karmakar

Abstract:

We have explored the synergistic anti-cancer activity of copper ion and acetylacetone complex containing 1,3 diketone group (like curcumin) in metallorganic compound “Copper acetylacetonate” (CuAA). The cytotoxicity mechanism of CuAA complex was evaluated on various cancer cell lines in vitro. Among these, reactive oxygen species (ROS), glutathione level (GSH) in the cell was found to increase. Further mitochondrial membrane damage was observed. The fate of cell death was found to be induced by apoptosis. For application purpose, we have developed a novel biodegradable, non-toxic polymer-based nanoparticle which has hydrophobically modified core for loading of the CuAA. Folic acid is conjugated on the surface of the polymer (chitosan) nanoparticle for targeting to cancer cells for minimizing toxicity to normal cells in-vivo. Thus, this novel drug CuAA has an efficient anticancer activity which has been targeted specifically to cancer cells through polymer nanoparticle.

Keywords: anticancer, apoptosis, copper nanoparticle, targeted drug delivery

Procedia PDF Downloads 469
7309 Chemical Reaction Algorithm for Expectation Maximization Clustering

Authors: Li Ni, Pen ManMan, Li KenLi

Abstract:

Clustering is an intensive research for some years because of its multifaceted applications, such as biology, information retrieval, medicine, business and so on. The expectation maximization (EM) is a kind of algorithm framework in clustering methods, one of the ten algorithms of machine learning. Traditionally, optimization of objective function has been the standard approach in EM. Hence, research has investigated the utility of evolutionary computing and related techniques in the regard. Chemical Reaction Optimization (CRO) is a recently established method. So the property embedded in CRO is used to solve optimization problems. This paper presents an algorithm framework (EM-CRO) with modified CRO operators based on EM cluster problems. The hybrid algorithm is mainly to solve the problem of initial value sensitivity of the objective function optimization clustering algorithm. Our experiments mainly take the EM classic algorithm:k-means and fuzzy k-means as an example, through the CRO algorithm to optimize its initial value, get K-means-CRO and FKM-CRO algorithm. The experimental results of them show that there is improved efficiency for solving objective function optimization clustering problems.

Keywords: chemical reaction optimization, expection maimization, initia, objective function clustering

Procedia PDF Downloads 694
7308 Ferroelectricity in Nano-Composite Films of Sodium Nitrite: Starch Prepared by Drop Cast Technique

Authors: Navneet Dabra, Baljinder Kaur, Lakhbir Singh, V. Annapu Reddy, R. Nath, Dae-Yong Jeong, Jasbir S. Hundal

Abstract:

Nano-composite films of sodium nitrite (NaNO2): Starch with different proportions of NaNO2 and Starch have been prepared by drop cast technique. The ferroelectric hysteresis loops (P-V) have been traced using modified Sawyar-Tower circuit. The films containing equal proportions of NaNO2 and Starch exhibit optimized ferroelectric properties. The stability of the remanent polarization, Pr in the optimized nano-composite films exhibit improved stability over the pure NaNO2 films. The Atomic Force Microscopy (AFM) has been employed to investigate the surface morphology. AFM images clearly reveal the nano sized particles of NaNO2 dispersed in starch with small value of surface roughness.

Keywords: ferroelectricity, nano-composite films, Atomic Force Microscopy (AFM), nano composite film

Procedia PDF Downloads 497
7307 Hybrid Fuzzy Weighted K-Nearest Neighbor to Predict Hospital Readmission for Diabetic Patients

Authors: Soha A. Bahanshal, Byung G. Kim

Abstract:

Identification of patients at high risk for hospital readmission is of crucial importance for quality health care and cost reduction. Predicting hospital readmissions among diabetic patients has been of great interest to many researchers and health decision makers. We build a prediction model to predict hospital readmission for diabetic patients within 30 days of discharge. The core of the prediction model is a modified k Nearest Neighbor called Hybrid Fuzzy Weighted k Nearest Neighbor algorithm. The prediction is performed on a patient dataset which consists of more than 70,000 patients with 50 attributes. We applied data preprocessing using different techniques in order to handle data imbalance and to fuzzify the data to suit the prediction algorithm. The model so far achieved classification accuracy of 80% compared to other models that only use k Nearest Neighbor.

Keywords: machine learning, prediction, classification, hybrid fuzzy weighted k-nearest neighbor, diabetic hospital readmission

Procedia PDF Downloads 171
7306 A Quinary Coding and Matrix Structure Based Channel Hopping Algorithm for Blind Rendezvous in Cognitive Radio Networks

Authors: Qinglin Liu, Zhiyong Lin, Zongheng Wei, Jianfeng Wen, Congming Yi, Hai Liu

Abstract:

The multi-channel blind rendezvous problem in distributed cognitive radio networks (DCRNs) refers to how users in the network can hop to the same channel at the same time slot without any prior knowledge (i.e., each user is unaware of other users' information). The channel hopping (CH) technique is a typical solution to this blind rendezvous problem. In this paper, we propose a quinary coding and matrix structure-based CH algorithm called QCMS-CH. The QCMS-CH algorithm can guarantee the rendezvous of users using only one cognitive radio in the scenario of the asynchronous clock (i.e., arbitrary time drift between the users), heterogeneous channels (i.e., the available channel sets of users are distinct), and symmetric role (i.e., all users play a same role). The QCMS-CH algorithm first represents a randomly selected channel (denoted by R) as a fixed-length quaternary number. Then it encodes the quaternary number into a quinary bootstrapping sequence according to a carefully designed quaternary-quinary coding table with the prefix "R00". Finally, it builds a CH matrix column by column according to the bootstrapping sequence and six different types of elaborately generated subsequences. The user can access the CH matrix row by row and accordingly perform its channel, hoping to attempt rendezvous with other users. We prove the correctness of QCMS-CH and derive an upper bound on its Maximum Time-to-Rendezvous (MTTR). Simulation results show that the QCMS-CH algorithm outperforms the state-of-the-art in terms of the MTTR and the Expected Time-to-Rendezvous (ETTR).

Keywords: channel hopping, blind rendezvous, cognitive radio networks, quaternary-quinary coding

Procedia PDF Downloads 75
7305 Influences of Plunge Speed on Axial Force and Temperature of Friction Stir Spot Welding in Thin Aluminum A1100

Authors: Suwarsono, Ario S. Baskoro, Gandjar Kiswanto, Budiono

Abstract:

Friction Stir Welding (FSW) is a relatively new technique for joining metal. In some cases on aluminum joining, FSW gives better results compared with the arc welding processes, including the quality of welds and produces less distortion.FSW welding process for a light structure and thin materials requires small forces as possible, to avoid structure deflection. The joining process on FSW occurs because of melting temperature and compressive forces, the temperature generation of caused by material deformation and friction between the cutting tool and material. In this research, High speed rotation of spindle was expected to reduce the force required for deformation. The welding material was Aluminum A1100, with thickness of 0.4 mm. The tool was made of HSS material which was shaped by micro grinding process. Tool shoulder diameter is 4 mm, and the length of pin was 0.6 mm (with pin diameter= 1.5 mm). The parameters that varied were the plunge speed (2 mm/min, 3 mm/min, 4 mm/min). The tool speed is fixed at 33,000 rpm. Responses of FSSW parameters to analyze were Axial Force (Z-Force), Temperature and the Shear Strength of welds. Research found the optimum µFSSW parameters, it can be concluded that the most important parameters in the μFSSW process was plunge speed. lowest plunge speed (2 mm / min) causing the lowest axial force (110.40 Newton). The increases of plunge speed will increase the axial force (maximum Z-Farce= 236.03 Newton), and decrease the shear strength of welds.

Keywords: friction stir spot welding, aluminum A1100, plunge speed, axial force, shear strength

Procedia PDF Downloads 299
7304 Pyroelectric Effect on Thermoelectricity of AlInN/GaN Heterostructures

Authors: B. K. Sahoo

Abstract:

Superior thermoelectric (TE) efficiency of AlₓIn₁₋ₓN /GaN heterostructure (HS) requires a minimum value of thermal conductivity (k). A smaller k would lead to even further increase of TE figure of merit (ZT). The built-in polarization (BIP) electric field of AlₓIn₁₋ₓN /GaN HS enhances S, and σ of the HS, however, the effect of BIP field on k of the HS has not been explored. Study of thermal conductivities (k: without BIP and kp: including BIP) vs temperature predicts pyroelectric behavior of HS. Both k and kp show crossover at a temperature Tp. The result shows that below Tp, kp < k due to negative thermal expansion coefficient (TEC). However, above Tp, kp > k. Above Tp, piezoelectric polarization dominates over spontaneous polarization due to positive TEC. This generates more lattice mismatch resulting in the significant contribution of BIP field to thermal conductivity. Thus, Tp can be considered as primary pyroelectric transition temperature of the material as above Tp thermal expansion takes place which is the reason for the secondary pyroelectric effect. It is found that below Tp, kp is decreased; thus enhancing TE efficiency. For x=0.1, 0.2 and 0.3; Tp are close to 200, 210 and 260 K, respectively. Thus, k of the HS can be modified as per requirement by tailoring the Al composition; making it suitable simultaneously for the design of high-temperature pyroelectric sensors and TE module for maximum power production.

Keywords: AlₓIn₁₋ₓN/GaN heterostructure, built in polarization, pyroelectric behavior, thermoelectric efficiency

Procedia PDF Downloads 102
7303 Resolving Partisan Conflict: A Dialectical Approach

Authors: Michael F. Mascolo

Abstract:

Western democratic traditions are being strained. Western nations are losing the common agonistic ground needed to engage in traditional forms of democracy – adversarial debate, voting, and the peaceful transfer of power. Political polarization among party elites has become commonplace. Because it seeks to resolve conflict through the integration of opposites, a dialectical approach to resolving partisan conflict offers the promise of helping political partisans bridge ideological divides. This paper contains an analysis of dialectical engagement as a collaborative alternative to adversarial politics. Dialectical engagement involves two broad phases: collaborative political problem-solving and dialectical problem-solving. The paper contains a description of an 18-month longitudinal study assessing the effectiveness of dialectical engagement as a method for bridging divides on contentious socio-political issues. The study shows how dialectical engagement produced dramatic consensus among a small group of individuals from different political orientations as they worked together to resolve the issue of capital punishment.

Keywords: collaborative democracy, dialectical thinking, capital punishment, partisan conflict

Procedia PDF Downloads 61
7302 Mobile Wireless Investigation Platform

Authors: Dimitar Karastoyanov, Todor Penchev

Abstract:

The paper presents the research of a kind of autonomous mobile robots, intended for work and adaptive perception in unknown and unstructured environment. The objective are robots, dedicated for multi-sensory environment perception and exploration, like measurements and samples taking, discovering and putting a mark on the objects as well as environment interactions–transportation, carrying in and out of equipment and objects. At that ground classification of the different types mobile robots in accordance with the way of locomotion (wheel- or chain-driven, walking, etc.), used drive mechanisms, kind of sensors, end effectors, area of application, etc. is made. Modular system for the mechanical construction of the mobile robots is proposed. Special PLC on the base of AtMega128 processor for robot control is developed. Electronic modules for the wireless communication on the base of Jennic processor as well as the specific software are developed. The methods, means and algorithms for adaptive environment behaviour and tasks realization are examined. The methods of group control of mobile robots and for suspicious objects detecting and handling are discussed too.

Keywords: mobile robots, wireless communications, environment investigations, group control, suspicious objects

Procedia PDF Downloads 335
7301 A Modified Decoupled Semi-Analytical Approach Based On SBFEM for Solving 2D Elastodynamic Problems

Authors: M. Fakharian, M. I. Khodakarami

Abstract:

In this paper, a new trend for improvement in semi-analytical method based on scale boundaries in order to solve the 2D elastodynamic problems is provided. In this regard, only the boundaries of the problem domain discretization are by specific sub-parametric elements. Mapping functions are uses as a class of higher-order Lagrange polynomials, special shape functions, Gauss-Lobatto -Legendre numerical integration, and the integral form of the weighted residual method, the matrix is diagonal coefficients in the equations of elastodynamic issues. Differences between study conducted and prior research in this paper is in geometry production procedure of the interpolation function and integration of the different is selected. Validity and accuracy of the present method are fully demonstrated through two benchmark problems which are successfully modeled using a few numbers of DOFs. The numerical results agree very well with the analytical solutions and the results from other numerical methods.

Keywords: 2D elastodynamic problems, lagrange polynomials, G-L-Lquadrature, decoupled SBFEM

Procedia PDF Downloads 422
7300 Evaluation of Synthesis and Structure Elucidation of Some Benzimidazoles as Antimicrobial Agents

Authors: Ozlem Temiz Arpaci, Meryem Tasci, Hakan Goker

Abstract:

Benzimidazole, a structural isostere of indol and purine nuclei that can interact with biopolymers, can be identified as master key. So that benzimidazole compounds are important fragments in medicinal chemistry because of their wide range of biological activities including antimicrobial activity. We planned to synthesize some benzimidazole compounds for developing new antimicrobial drug candidates. In this study, we put some heterocyclic rings on second position and an amidine group on the fifth position of benzimidazole ring and synthesized them using a multiple step procedure. For the synthesis of the compounds, as the first step, 4-chloro-3-nitrobenzonitrile was reacted with cyclohexylamine in dimethyl formamide. Imidate esters (compound 2) were then prepared with absolute ethanol saturated with dry HCl gas. These imidate esters which were not too stable were converted to compound 3 by passing ammonia gas through ethanol. At the Pd / C catalyst, the nitro group is reduced to the amine group (compound 4). Finally, various aldehyde derivatives were reacted with sodium metabisulfite addition products to give compound 5-20. Melting points were determined on a Buchi B-540 melting point apparatus in open capillary tubes and are uncorrected. Elemental analyses were done a Leco CHNS 932 elemental analyzer. 1H-NMR and 13C-NMR spectra were recorded on a Varian Mercury 400 MHz spectrometer using DMSO-d6. Mass spectra were acquired on a Waters Micromass ZQ using the ESI(+) method. The structures of them were supported by spectral data. The 1H-NMR, 13C NMR and mass spectra and elemental analysis results agree with those of the proposed structures. Antimicrobial activity studies of the synthesized compounds are under the investigation.

Keywords: benzimidazoles, synthesis, structure elucidation, antimicrobial

Procedia PDF Downloads 140
7299 Development, Characterization and Properties of Novel Quaternary Rubber Nanocomposites

Authors: Kumar Sankaran, Santanu Chattopadhyay, Golok Behari Nando, Sujith Nair, Sreejesh Arayambath, Unnikrishnan Govindan

Abstract:

Rubber nanocomposites based on Bromobutyl rubber (BIIR), Polyepichlorohydrin rubber (CO), Carbon black (CB) and organically modified montmorillonite clay (NC) were prepared via melt compounding technique. The developed quaternary nanocomposites were characterized analytically and their properties were compared against the standard BIIR compound. BIIR-CO nanocomposites showed improved physico-mechanical properties as compared to that of the standard BIIR compound. Hybrid microstructure (NC-CB) development, clay exfoliation and better filler dispersion in the quaternary nanocomposite significantly contributed to the overall enhancement of properties. Introduction of CO in the system increased the specific gravity and hardness of the compound as compared to that of the standard compound. XRD analysis, AFM imaging and HR-TEM measurements confirmed exfoliation and a good level of dispersion of the NC in the composites. Permeability of developed BIIR-CO nanocomposites decreases significantly as compared to that of the standard BIIR compound.

Keywords: rubber nanocomposites, morphology, permeability, BIIR

Procedia PDF Downloads 420
7298 Achievement Goal Orientations of Schooling Adolescents in Bayelsa State, Nigeria: Implications for Sustainable Development

Authors: Iniye Irene Wodi, Allen A. Agih

Abstract:

Goal theory perspective as an emerging trend in students’ motivation explores reasons why students engage in achievement related behaviour. While previous research typifies students’ goal orientations into two dimensions of mastery and performance orientations in various other parts of the world, not much has been done in this regard in Nigeria and specifically in Bayelsa state to the best of the researcher’s knowledge. To this end, the study explores the achievement goal orientations of schooling adolescents in Bayelsa State. The sample of the study consists of 220 schooling adolescents drawn from four urban schools in the state. A modified form of the Patterns of Adaptive learning survey (PALS) questionnaire was used to elicit data. Results indicated that schooling adolescents in Bayelsa state are mastery as well as performance oriented. The students also did not differ in goal orientations by gender. The implications of this for sustainable development were highlighted.

Keywords: achievement goals, goal orientations, schooling adolescents, sustainable development

Procedia PDF Downloads 258
7297 Landslide Hazard Zonation and Risk Studies Using Multi-Criteria Decision-Making and Slope Stability Analysis

Authors: Ankit Tyagi, Reet Kamal Tiwari, Naveen James

Abstract:

In India, landslides are the most frequently occurring disaster in the regions of the Himalayas and the Western Ghats. The steep slopes and land use in these areas are quite apprehensive. In the recent past, many landslide hazard zonation (LHZ) works have been carried out in the Himalayas. However, the preparation of LHZ maps considering temporal factors such as seismic ground shaking, seismic amplification at surface level, and rainfall are limited. Hence this study presents a comprehensive use of the multi-criteria decision-making (MCDM) method in landslide risk assessment. In this research, we conducted both geospatial and geotechnical analysis to minimize the danger of landslides. Geospatial analysis is performed using high-resolution satellite data to produce landslide causative factors which were given weightage using the MCDM method. The geotechnical analysis includes a slope stability check, which was done to determine the potential landslide slope. The landslide risk map can provide useful information which helps people to understand the risk of living in an area.

Keywords: landslide hazard zonation, PHA, AHP, GIS

Procedia PDF Downloads 176
7296 The Markers -mm and dämmo in Amharic: Developmental Approach

Authors: Hayat Omar

Abstract:

Languages provide speakers with a wide range of linguistic units to organize and deliver information. There are several ways to verbally express the mental representations of events. According to the linguistic tools they have acquired, speakers select the one that brings out the most communicative effect to convey their message. Our study focuses on two markers, -mm and dämmo, in Amharic (Ethiopian Semitic language). Our aim is to examine, from a developmental perspective, how they are used by speakers. We seek to distinguish the communicative and pragmatic functions indicated by means of these markers. To do so, we created a corpus of sixty narrative productions of children from 5-6, 7-8 to 10-12 years old and adult Amharic speakers. The experimental material we used to collect our data is a series of pictures without text 'Frog, Where are you?'. Although -mm and dämmo are each used in specific contexts, they are sometimes analyzed as being interchangeable. The suffix -mm is complex and multifunctional. It marks the end of the negative verbal structure, it is found in the relative structure of the imperfect, it creates new words such as adverbials or pronouns, it also serves to coordinate words, sentences and to mark the link between macro-propositions within a larger textual unit. -mm was analyzed as marker of insistence, topic shift marker, element of concatenation, contrastive focus marker, 'bisyndetic' coordinator. On the other hand, dämmo has limited function and did not attract the attention of many authors. The only approach we could find analyzes it in terms of 'monosyndetic' coordinator. The paralleling of these two elements made it possible to understand their distinctive functions and refine their description. When it comes to marking a referent, the choice of -mm or dämmo is not neutral, depending on whether the tagged argument is newly introduced, maintained, promoted or reintroduced. The presence of these morphemes explains the inter-phrastic link. The information is seized by anaphora or presupposition: -mm goes upstream while dämmo arrows downstream, the latter requires new information. The speaker uses -mm or dämmo according to what he assumes to be known to his interlocutors. The results show that -mm and dämmo, although all the speakers use them both, do not always have the same scope according to the speaker and vary according to the age. dämmo is mainly used to mark a contrastive topic to signal the concomitance of events. It is more commonly used in young children’s narratives (F(3,56) = 3,82, p < .01). Some values of -mm (additive) are acquired very early while others are rather late and increase with age (F(3,56) = 3,2, p < .03). The difficulty is due not only because of its synthetic structure but primarily because it is multi-purpose and requires a memory work. It highlights the constituent on which it operates to clarify how the message should be interpreted.

Keywords: acquisition, cohesion, connection, contrastive topic, contrastive focus, discourse marker, pragmatics

Procedia PDF Downloads 125
7295 Limited Component Evaluation of the Effect of Regular Cavities on the Sheet Metal Element of the Steel Plate Shear Wall

Authors: Seyyed Abbas Mojtabavi, Mojtaba Fatzaneh Moghadam, Masoud Mahdavi

Abstract:

Steel Metal Shear Wall is one of the most common and widely used energy dissipation systems in structures, which is used today as a damping system due to the increase in the construction of metal structures. In the present study, the shear wall of the steel plate with dimensions of 5×3 m and thickness of 0.024 m was modeled with 2 floors of total height from the base level with finite element method in Abaqus software. The loading is done as a concentrated load at the upper point of the shear wall on the second floor based on step type buckle. The mesh in the model is applied in two directions of length and width of the shear wall, equal to 0.02 and 0.033, respectively, and the mesh in the models is of sweep type. Finally, it was found that the steel plate shear wall with cavity (CSPSW) compared to the SPSW model, S (Mises), Smax (In-Plane Principal), Smax (In-Plane Principal-ABS), Smax (Min Principal) increased by 53%, 70%, 68% and 43%, respectively. The presence of cavities has led to an increase in the estimated stresses, but their presence has caused critical stresses and critical deformations created to be removed from the inner surface of the shear wall and transferred to the desired sections (regular cavities) which can be suggested as a solution in seismic design and improvement of the structure to transfer possible damage during the earthquake and storm to the desired and pre-designed location in the structure.

Keywords: steel plate shear wall, abacus software, finite element method, , boundary element, seismic structural improvement, von misses stress

Procedia PDF Downloads 82