Search results for: Employed Mothers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4595

Search results for: Employed Mothers

725 Computational Modelling of pH-Responsive Nanovalves in Controlled-Release System

Authors: Tomilola J. Ajayi

Abstract:

A category of nanovalves system containing the α-cyclodextrin (α-CD) ring on a stalk tethered to the pores of mesoporous silica nanoparticles (MSN) is theoretically and computationally modelled. This functions to control opening and blocking of the MSN pores for efficient targeted drug release system. Modeling of the nanovalves is based on the interaction between α-CD and the stalk (p-anisidine) in relation to pH variation. Conformational analysis was carried out prior to the formation of the inclusion complex, to find the global minimum of both neutral and protonated stalk. B3LYP/6-311G**(d, p) basis set was employed to attain all theoretically possible conformers of the stalk. Six conformers were taken into considerations, and the dihedral angle (θ) around the reference atom (N17) of the p-anisidine stalk was scanned from 0° to 360° at 5° intervals. The most stable conformer was obtained at a dihedral angle of 85.3° and was fully optimized at B3LYP/6-311G**(d, p) level of theory. The most stable conformer obtained from conformational analysis was used as the starting structure to create the inclusion complexes. 9 complexes were formed by moving the neutral guest into the α-CD cavity along the Z-axis in 1 Å stepwise while keeping the distance between dummy atom and OMe oxygen atom on the stalk restricted. The dummy atom and the carbon atoms on α-CD structure were equally restricted for orientation A (see Scheme 1). The generated structures at each step were optimized with B3LYP/6-311G**(d, p) methods to determine their energy minima. Protonation of the nitrogen atom on the stalk occurs at acidic pH, leading to unsatisfactory host-guest interaction in the nanogate; hence there is dethreading. High required interaction energy and conformational change are theoretically established to drive the release of α-CD at a certain pH. The release was found to occur between pH 5-7 which agreed with reported experimental results. In this study, we applied the theoretical model for the prediction of the experimentally observed pH-responsive nanovalves which enables blocking, and opening of mesoporous silica nanoparticles pores for targeted drug release system. Our results show that two major factors are responsible for the cargo release at acidic pH. The higher interaction energy needed for the complex/nanovalve formation to exist after protonation as well as conformational change upon protonation are driving the release due to slight pH change from 5 to 7.

Keywords: nanovalves, nanogate, mesoporous silica nanoparticles, cargo

Procedia PDF Downloads 122
724 A Prediction Method of Pollutants Distribution Pattern: Flare Motion Using Computational Fluid Dynamics (CFD) Fluent Model with Weather Research Forecast Input Model during Transition Season

Authors: Benedictus Asriparusa, Lathifah Al Hakimi, Aulia Husada

Abstract:

A large amount of energy is being wasted by the release of natural gas associated with the oil industry. This release interrupts the environment particularly atmosphere layer condition globally which contributes to global warming impact. This research presents an overview of the methods employed by researchers in PT. Chevron Pacific Indonesia in the Minas area to determine a new prediction method of measuring and reducing gas flaring and its emission. The method emphasizes advanced research which involved analytical studies, numerical studies, modeling, and computer simulations, amongst other techniques. A flaring system is the controlled burning of natural gas in the course of routine oil and gas production operations. This burning occurs at the end of a flare stack or boom. The combustion process releases emissions of greenhouse gases such as NO2, CO2, SO2, etc. This condition will affect the chemical composition of air and environment around the boundary layer mainly during transition season. Transition season in Indonesia is absolutely very difficult condition to predict its pattern caused by the difference of two air mass conditions. This paper research focused on transition season in 2013. A simulation to create the new pattern of the pollutants distribution is needed. This paper has outlines trends in gas flaring modeling and current developments to predict the dominant variables in the pollutants distribution. A Fluent model is used to simulate the distribution of pollutants gas coming out of the stack, whereas WRF model output is used to overcome the limitations of the analysis of meteorological data and atmospheric conditions in the study area. Based on the running model, the most influence factor was wind speed. The goal of the simulation is to predict the new pattern based on the time of fastest wind and slowest wind occurs for pollutants distribution. According to the simulation results, it can be seen that the fastest wind (last of March) moves pollutants in a horizontal direction and the slowest wind (middle of May) moves pollutants vertically. Besides, the design of flare stack in compliance according to EPA Oil and Gas Facility Stack Parameters likely shows pollutants concentration remains on the under threshold NAAQS (National Ambient Air Quality Standards).

Keywords: flare motion, new prediction, pollutants distribution, transition season, WRF model

Procedia PDF Downloads 554
723 Microchip-Integrated Computational Models for Studying Gait and Motor Control Deficits in Autism

Authors: Noah Odion, Honest Jimu, Blessing Atinuke Afuape

Abstract:

Introduction: Motor control and gait abnormalities are commonly observed in individuals with autism spectrum disorder (ASD), affecting their mobility and coordination. Understanding the underlying neurological and biomechanical factors is essential for designing effective interventions. This study focuses on developing microchip-integrated wearable devices to capture real-time movement data from individuals with autism. By applying computational models to the collected data, we aim to analyze motor control patterns and gait abnormalities, bridging a crucial knowledge gap in autism-related motor dysfunction. Methods: We designed microchip-enabled wearable devices capable of capturing precise kinematic data, including joint angles, acceleration, and velocity during movement. A cross-sectional study was conducted on individuals with ASD and a control group to collect comparative data. Computational modelling was applied using machine learning algorithms to analyse motor control patterns, focusing on gait variability, balance, and coordination. Finite element models were also used to simulate muscle and joint dynamics. The study employed descriptive and analytical methods to interpret the motor data. Results: The wearable devices effectively captured detailed movement data, revealing significant gait variability in the ASD group. For example, gait cycle time was 25% longer, and stride length was reduced by 15% compared to the control group. Motor control analysis showed a 30% reduction in balance stability in individuals with autism. Computational models successfully predicted movement irregularities and helped identify motor control deficits, particularly in the lower limbs. Conclusions: The integration of microchip-based wearable devices with computational models offers a powerful tool for diagnosing and treating motor control deficits in autism. These results have significant implications for patient care, providing objective data to guide personalized therapeutic interventions. The findings also contribute to the broader field of neuroscience by improving our understanding of the motor dysfunctions associated with ASD and other neurodevelopmental disorders.

Keywords: motor control, gait abnormalities, autism, wearable devices, microchips, computational modeling, kinematic analysis, neurodevelopmental disorders

Procedia PDF Downloads 21
722 Modelling Agricultural Commodity Price Volatility with Markov-Switching Regression, Single Regime GARCH and Markov-Switching GARCH Models: Empirical Evidence from South Africa

Authors: Yegnanew A. Shiferaw

Abstract:

Background: commodity price volatility originating from excessive commodity price fluctuation has been a global problem especially after the recent financial crises. Volatility is a measure of risk or uncertainty in financial analysis. It plays a vital role in risk management, portfolio management, and pricing equity. Objectives: the core objective of this paper is to examine the relationship between the prices of agricultural commodities with oil price, gas price, coal price and exchange rate (USD/Rand). In addition, the paper tries to fit an appropriate model that best describes the log return price volatility and estimate Value-at-Risk and expected shortfall. Data and methods: the data used in this study are the daily returns of agricultural commodity prices from 02 January 2007 to 31st October 2016. The data sets consists of the daily returns of agricultural commodity prices namely: white maize, yellow maize, wheat, sunflower, soya, corn, and sorghum. The paper applies the three-state Markov-switching (MS) regression, the standard single-regime GARCH and the two regime Markov-switching GARCH (MS-GARCH) models. Results: to choose the best fit model, the log-likelihood function, Akaike information criterion (AIC), Bayesian information criterion (BIC) and deviance information criterion (DIC) are employed under three distributions for innovations. The results indicate that: (i) the price of agricultural commodities was found to be significantly associated with the price of coal, price of natural gas, price of oil and exchange rate, (ii) for all agricultural commodities except sunflower, k=3 had higher log-likelihood values and lower AIC and BIC values. Thus, the three-state MS regression model outperformed the two-state MS regression model (iii) MS-GARCH(1,1) with generalized error distribution (ged) innovation performs best for white maize and yellow maize; MS-GARCH(1,1) with student-t distribution (std) innovation performs better for sorghum; MS-gjrGARCH(1,1) with ged innovation performs better for wheat, sunflower and soya and MS-GARCH(1,1) with std innovation performs better for corn. In conclusion, this paper provided a practical guide for modelling agricultural commodity prices by MS regression and MS-GARCH processes. This paper can be good as a reference when facing modelling agricultural commodity price problems.

Keywords: commodity prices, MS-GARCH model, MS regression model, South Africa, volatility

Procedia PDF Downloads 199
721 Application of Free Living Nitrogen Fixing Bacteria to Increase Productivity of Potato in Field

Authors: Govinda Pathak

Abstract:

In modern agriculture, the sustainable enhancement of crop productivity while minimizing environmental impacts remains a paramount challenge. Plant Growth Promoting Rhizobacteria (PGPR) have emerged as a promising solution to address this challenge. The rhizosphere, the dynamic interface between plant roots and soil, hosts intricate microbial interactions crucial for plant health and nutrient acquisition. PGPR, a subset of rhizospheric microorganisms, exhibit multifaceted beneficial effects on plants. Their abilities to stimulate growth, confer stress tolerance, enhance nutrient availability, and suppress pathogens make them invaluable contributors to sustainable agriculture. This work examines the pivotal role of free living nitrogen fixer in optimizing agricultural practices. We delve into the intricate mechanisms underlying PGPR-mediated plant-microbe interactions, encompassing quorum sensing, root exudate modulation, and signaling molecule exchange. Furthermore, we explore the diverse strategies employed by PGPR to enhance plant resilience against abiotic stresses such as drought, salinity, and metal toxicity. Additionally, we highlight the role of PGPR in augmenting nutrient acquisition and soil fertility through mechanisms such as nitrogen fixation, phosphorus solubilization, and mineral mobilization. Furthermore, we discuss the potential of PGPR in minimizing the reliance on chemical fertilizers and pesticides, thereby contributing to environmentally friendly agriculture. However, harnessing the full potential of PGPR requires a comprehensive understanding of their interactions with host plants and the surrounding microbial community. We also address challenges associated with PGPR application, including formulation, compatibility, and field efficacy. As the quest for sustainable agriculture intensifies, harnessing the remarkable attributes of PGPR offers a holistic approach to propel agricultural productivity while maintaining ecological balance. This work underscores the promising prospect of free living nitrogen fixer as a panacea for addressing critical agricultural challenges regarding chemical urea in an era of sustainable and resilient food production.

Keywords: PGPR, nitrogen fixer, quorum sensing, Rhizobacteria, pesticides

Procedia PDF Downloads 57
720 Design and Validation of the 'Teachers' Resilience Scale' for Assessing Protective Factors

Authors: Athena Daniilidou, Maria Platsidou

Abstract:

Resilience is considered to greatly affect the personal and occupational wellbeing and efficacy of individuals; therefore, it has been widely studied in the social and behavioral sciences. Given its significance, several scales have been created to assess resilience of children and adults. However, most of these scales focus on examining only the internal protective or risk factors that affect the levels of resilience. The aim of the present study is to create a reliable scale that assesses both the internal and the external protective factors that affect Greek teachers’ levels of resilience. Participants were 136 secondary school teachers (89 females, 47 males) from urban areas of Greece. Connor-Davidson Resilience Scale (CD-Risc) and Resilience Scale for Adults (RSA) were used to collect the data. First, exploratory factor analysis was employed to investigate the inner structure of each scale. For both scales, the analyses revealed a differentiated factor solution compared to the ones proposed by the creators. That prompt us to create a scale that would combine the best fitting subscales of the CD-Risc and the RSA. To this end, the items of the four factors with the best fit and highest reliability were used to create the ‘Teachers' resilience scale’. Exploratory factor analysis revealed that the scale assesses the following protective/risk factors: Personal Competence and Strength (9 items, α=.83), Family Cohesion Spiritual Influences (7 items, α=.80), Social Competence and Peers Support (7 items, α=.78) and Spiritual Influence (3 items, α=.58). This four-factor model explained 49,50% of the total variance. In the next step, a confirmatory factor analysis was performed on the 26 items of the derived scale to test the above factor solution. The fit of the model to the data was good (χ2/292 = 1.245, CFI = .921, GFI = .829, SRMR = .074, CI90% = .026-,056, RMSEA = 0.43), indicating that the proposed scale can validly measure the aforementioned four aspects of teachers' resilience and thus confirmed its factorial validity. Finally, analyses of variance were performed to check for individual differences in the levels of teachers' resilience in relation to their gender, age, marital status, level of studies, and teaching specialty. Results were consistent to previous findings, thus providing an indication of discriminant validity for the instrument. This scale has the advantage of assessing both the internal and the external protective factors of resilience in a brief yet comprehensive way, since it consists 26 items instead of the total of 58 of the CD-Risc and RSA scales. Its factorial inner structure is supported by the relevant literature on resilience, as it captures the major protective factors of resilience identified in previous studies.

Keywords: protective factors, resilience, scale development, teachers

Procedia PDF Downloads 295
719 Neurocognitive and Executive Function in Cocaine Addicted Females

Authors: Gwendolyn Royal-Smith

Abstract:

Cocaine ranks as one of the world’s most addictive and commonly abused stimulant drugs. Recent evidence indicates that the abuse of cocaine has risen so quickly among females that this group now accounts for about 40 percent of all users in the United States. Neuropsychological studies have demonstrated that specific neural activation patterns carry higher risks for neurocognitive and executive function in cocaine addicted females thereby increasing their vulnerability for poorer treatment outcomes and more frequent post-treatment relapse when compared to males. This study examined secondary data with a convenience sample of 164 cocaine addicted male and females to assess neurocognitive and executive function. The principal objective of this study was to assess whether individual performance on the Stroop Word Color Task is predictive of treatment success by gender. A second objective of the study evaluated whether individual performance employing neurocognitive measures including the Stroop Word-Color task, the Rey Auditory Verbal Learning Test (RALVT), the Iowa Gambling Task, the Wisconsin Card Sorting Task (WISCT), the total score from the Barratte Impulsiveness Scale (Version 11) (BIS-11) and the total score from the Frontal Systems Behavioral Scale (FrSBE) test demonstrated differences in neurocognitive and executive function performance by gender. Logistic regression models were employed utilizing a covariate adjusted model application. Initial analyses of the Stroop Word color tasks indicated significant differences in the performance of males and females, with females experiencing more challenges in derived interference reaction time and associate recall ability. In early testing including the Rey Auditory Verbal Learning Test (RALVT), the number of advantageous vs disadvantageous cards from the Iowa Gambling Task, the number of perseverance errors from the Wisconsin Card Sorting Task (WISCT), the total score from the Barratte Impulsiveness Scale (Version 11) (BIS-11) and the total score from the Frontal Systems Behavioral Scale, results were mixed with women scoring lower in multiple indicators in both neurocognitive and executive function.

Keywords: cocaine addiction, gender, neuropsychology, neurocognitive, executive function

Procedia PDF Downloads 399
718 Studying the Effect of Reducing Thermal Processing over the Bioactive Composition of Non-Centrifugal Cane Sugar: Towards Natural Products with High Therapeutic Value

Authors: Laura Rueda-Gensini, Jader Rodríguez, Juan C. Cruz, Carolina Munoz-Camargo

Abstract:

There is an emerging interest in botanicals and plant extracts for medicinal practices due to their widely reported health benefits. A large variety of phytochemicals found in plants have been correlated with antioxidant, immunomodulatory, and analgesic properties, which makes plant-derived products promising candidates for modulating the progression and treatment of numerous diseases. Non-centrifugal cane sugar (NCS), in particular, has been known for its high antioxidant and nutritional value, but composition-wise variability due to changing environmental and processing conditions have considerably limited its use in the nutraceutical and biomedical fields. This work is therefore aimed at assessing the effect of thermal exposure during NCS production over its bioactive composition and, in turn, its therapeutic value. Accordingly, two modified dehydration methods are proposed that employ: (i) vacuum-aided evaporation, which reduces the necessary temperatures to dehydrate the sample, and (ii) window refractance evaporation, which reduces thermal exposure time. The biochemical composition of NCS produced under these two methods was compared to traditionally-produced NCS by estimating their total polyphenolic and protein content with Folin-Ciocalteu and Bradford assays, as well as identifying the major phenolic compounds in each sample via HPLC-coupled mass spectrometry. Their antioxidant activities were also compared as measured by their scavenging potential of ABTS and DPPH radicals. Results show that the two modified production methods enhance polyphenolic and protein yield in resulting NCS samples when compared to traditional production methods. In particular, reducing employed temperatures with vacuum-aided evaporation demonstrated to be superior at preserving polyphenolic compounds, as evidenced both in the total and individual polyphenol concentrations. However, antioxidant activities were not significantly different between these. Although additional studies should be performed to determine if the observed compositional differences affect other therapeutic activities (e.g., anti-inflammatory, analgesic, and immunoprotective), these results suggest that reducing thermal exposure holds great promise for the production of natural products with enhanced nutritional value.

Keywords: non-centrifugal cane sugar, polyphenolic compounds, thermal processing, antioxidant activity

Procedia PDF Downloads 90
717 Bi-Component Particle Segregation Studies in a Spiral Concentrator Using Experimental and CFD Techniques

Authors: Prudhvinath Reddy Ankireddy, Narasimha Mangadoddy

Abstract:

Spiral concentrators are commonly used in various industries, including mineral and coal processing, to efficiently separate materials based on their density and size. In these concentrators, a mixture of solid particles and fluid (usually water) is introduced as feed at the top of a spiral channel. As the mixture flows down the spiral, centrifugal and gravitational forces act on the particles, causing them to stratify based on their density and size. Spiral flows exhibit complex fluid dynamics, and interactions involve multiple phases and components in the process. Understanding the behavior of these phases within the spiral concentrator is crucial for achieving efficient separation. An experimental bi-component particle interaction study is conducted in this work utilizing magnetite (heavier density) and silica (lighter density) with different proportions processed in the spiral concentrator. The observation separation reveals that denser particles accumulate towards the inner region of the spiral trough, while a significant concentration of lighter particles are found close to the outer edge. The 5th turn of the spiral trough is partitioned into five zones to achieve a comprehensive distribution analysis of bicomponent particle segregation. Samples are then gathered from these individual streams using an in-house sample collector, and subsequent analysis is conducted to assess component segregation. Along the trough, there was a decline in the concentration of coarser particles, accompanied by an increase in the concentration of lighter particles. The segregation pattern indicates that the heavier coarse component accumulates in the inner zone, whereas the lighter fine component collects in the outer zone. The middle zone primarily consists of heavier fine particles and lighter coarse particles. The zone-wise results reveal that there is a significant fraction of segregation occurs in inner and middle zones. Finer magnetite and silica particles predominantly accumulate in outer zones with the smallest fraction of segregation. Additionally, numerical simulations are also carried out using the computational fluid dynamics (CFD) model based on the volume of fluid (VOF) approach incorporating the RSM turbulence model. The discrete phase model (DPM) is employed for particle tracking, thereby understanding the particle segregation of magnetite and silica along the spiral trough.

Keywords: spiral concentrator, bi-component particle segregation, computational fluid dynamics, discrete phase model

Procedia PDF Downloads 65
716 Patterns of Private Transfers in the Philippines: An Analysis of Who Gives and Receives More

Authors: Rutcher M. Lacaza, Stephen Jun V. Villejo

Abstract:

This paper investigated the patterns of private transfers in the Philippines using the Family Income Expenditure Survey (FIES) 2009, conducted by the Philippine government’s National Statistics Office (NSO) every three years. The paper performed bivariate analysis on net transfers, using the identified determinants for a household to be either a net receiver or a net giver. The household characteristics considered are the following: age, sex, marital status, employment status and educational attainment of the household head, and also size, location, pre-transfer income and the number of employed members of the household. The variables net receiver and net giver are determined by computing the net transfer, subtracting total gifts from total receipts. The receipts are defined as the sum of cash received from abroad, cash received from domestic sources, total gifts received and inheritance. While gifts are defined as the sum of contributions and donations to church and other religious institutions, contributions and donations to other institutions, gifts and contributions to others, and gifts and assistance to private individuals outside the family. Both in kind and in cash transfers are considered in the analysis. It also performed a multiple regression analysis on transfers received and income including other household characteristics to examine the motives for giving transfers – whether altruism or exchanged. It also used the binary logistic regression to estimate the probability of being a net receiver or net giver given the household characteristics. The study revealed that receiving tends to be universal – both the non-poor and the poor benefit although the poor receive substantially less than the non-poor. Regardless of whether households are net receivers or net givers, households in the upper deciles generally give and receive more than those in the lower deciles. It also appears that private transfers may just flow within economic groups. Big amounts of transfers are, therefore, directed to the non-poor and the small amounts go to the poor. This was also supported by the increasing function of gross transfers received and the income of households – the poor receiving less and the non-poor receiving more. This is contrary to the theory that private transfers can help equalize the distribution of income. This suggested that private transfers in the Philippines are not altruistically motivated but exchanged. However, bilateral data on transfers received or given is needed to test this theory directly. The results showed that transfers are much needed by the poor and it is important to understand the nature of private transfers, to ensure that government transfer programs are properly designed and targeted so as to prevent the duplication of private safety nets already present among the non-poor.

Keywords: private transfers, net receiver, net giver, altruism, exchanged.

Procedia PDF Downloads 214
715 Organizational Stress in Women Executives

Authors: Poornima Gupta, Sadaf Siraj

Abstract:

The study examined the organizational causes of organizational stress in women executives and entrepreneurs in India. This was done so that mediation strategies could be developed to combat the organizational stress experienced by them, in order to retain the female employees as well as attract quality talent. The data for this research was collected through the self- administered survey, from the women executives across various industries working at different levels in management. The research design of the study was descriptive and cross-sectional. It was carried out through a self-administered questionnaire filled in by the women executives and entrepreneurs in the NCR region. Multistage sampling involving stratified random sampling was employed. A total of 1000 questionnaires were distributed out of which 450 were returned and after cleaning the data 404 were fit to be considered for analyses. The overall findings of the study suggested that there were various job-related factors that induce stress. Fourteen factors were identified which were a major cause of stress among the working women by applying Factor analysis. The study also assessed the demographic factors which influence the stress in women executives across various industries. The findings show that the women, no doubt, were stressed by organizational factors. The mean stress score was 153 (out of a possible score of 196) indicating high stress. There appeared to be an inverse relationship between the marital status, age, education, work experience, and stress. Married women were less stressed compared to single women employees. Similarly, female employees 29 years or younger experienced more stress at work. Women having education up to 12th standard or less were more stressed compared to graduates and post graduates. Women who had spent more than two years in the same organization perceived more stress compared to their counterparts. Family size and income, interestingly, had no significant impact on stress. The study also established that the level of stress experienced by women across industries differs considerably. Banking sector emerged as the industry where the women experienced the most stress followed by Entrepreneurs, Medical, BPO, Advertising, Government, Academics, and Manufacturing, in that order. The results contribute to the better understanding of the personal and economic factors surrounding job stress and working women. It concludes that the organizations need to be sensitive to the women’s needs. Organizations are traditionally designed around men with the rules made by the men for the men. Involvement of women in top positions, decision making, would make them feel more useful and less stressed. The invisible glass ceiling causes more stress than realized among women. Less distinction between the men and women colleagues in terms of giving responsibilities, involvement in decision making, framing policies, etc. would go a long way to reduce stress in women.

Keywords: women, stress, gender in management, women in management

Procedia PDF Downloads 255
714 Data Clustering Algorithm Based on Multi-Objective Periodic Bacterial Foraging Optimization with Two Learning Archives

Authors: Chen Guo, Heng Tang, Ben Niu

Abstract:

Clustering splits objects into different groups based on similarity, making the objects have higher similarity in the same group and lower similarity in different groups. Thus, clustering can be treated as an optimization problem to maximize the intra-cluster similarity or inter-cluster dissimilarity. In real-world applications, the datasets often have some complex characteristics: sparse, overlap, high dimensionality, etc. When facing these datasets, simultaneously optimizing two or more objectives can obtain better clustering results than optimizing one objective. However, except for the objectives weighting methods, traditional clustering approaches have difficulty in solving multi-objective data clustering problems. Due to this, evolutionary multi-objective optimization algorithms are investigated by researchers to optimize multiple clustering objectives. In this paper, the Data Clustering algorithm based on Multi-objective Periodic Bacterial Foraging Optimization with two Learning Archives (DC-MPBFOLA) is proposed. Specifically, first, to reduce the high computing complexity of the original BFO, periodic BFO is employed as the basic algorithmic framework. Then transfer the periodic BFO into a multi-objective type. Second, two learning strategies are proposed based on the two learning archives to guide the bacterial swarm to move in a better direction. On the one hand, the global best is selected from the global learning archive according to the convergence index and diversity index. On the other hand, the personal best is selected from the personal learning archive according to the sum of weighted objectives. According to the aforementioned learning strategies, a chemotaxis operation is designed. Third, an elite learning strategy is designed to provide fresh power to the objects in two learning archives. When the objects in these two archives do not change for two consecutive times, randomly initializing one dimension of objects can prevent the proposed algorithm from falling into local optima. Fourth, to validate the performance of the proposed algorithm, DC-MPBFOLA is compared with four state-of-art evolutionary multi-objective optimization algorithms and one classical clustering algorithm on evaluation indexes of datasets. To further verify the effectiveness and feasibility of designed strategies in DC-MPBFOLA, variants of DC-MPBFOLA are also proposed. Experimental results demonstrate that DC-MPBFOLA outperforms its competitors regarding all evaluation indexes and clustering partitions. These results also indicate that the designed strategies positively influence the performance improvement of the original BFO.

Keywords: data clustering, multi-objective optimization, bacterial foraging optimization, learning archives

Procedia PDF Downloads 137
713 Commodifying Things Past: Comparative Study of Heritage Tourism Practices in Montenegro and Serbia

Authors: Jovana Vukcevic, Sanja Pekovic, Djurdjica Perovic, Tatjana Stanovcic

Abstract:

This paper presents a critical inquiry into the role of uncomfortable heritage in nation branding with the particular focus on the specificities of the politics of memory, forgetting and revisionism in the post-communist post-Yugoslavia. It addresses legacies of unwanted, ambivalent or unacknowledged past and different strategies employed by the former-Yugoslav states and private actors in “rebranding” their heritage, ensuring its preservation, but re-contextualizing the narrative of the past through contemporary tourism practices. It questions the interplay between nostalgia, heritage and market, and the role of heritage in polishing the history of totalitarian and authoritarian regimes in the Balkans. It argues that in post-socialist Yugoslavia, the necessity to limit correlations with former ideology and the use of the commercial brush in shaping a marketable version of the past instigated the emergence of the profit-oriented heritage practices. Building on that argument, the paper addresses these issues as “commodification” and “disneyfication” of Balkans’ ambivalent heritage, contributing to the analysis of changing forms of memorialisation and heritagization practices in Europe. It questions the process of ‘coming to terms with the past’ through marketable forms of heritage tourism, fetching the boundary between market-driven nostalgia and state-imposed heritage policies. In order to analyse plurality of ways of dealing with controversial, ambivalent and unwanted heritage of dictatorships in the Balkans, the paper considers two prominent examples of heritage commodification in Serbia and Montenegro, and the re-appropriations of those narratives for the nation branding purposes. The first one is the story of the Tito’s Blue Train, the landmark of the socialist past and the symbol of Yugoslavia which has nowadays being used for birthday parties and marriage celebrations, while the second emphasises the unusual business arrangement turning the fortress Mamula, former concentration camp through the Second World War, into a luxurious Mediterranean resort. Questioning how the ‘uneasy’ past was acknowledged and embedded into the official heritage institutions and tourism practices, study examines the changing relation towards the legacies of dictatorships, inviting us to rethink the economic models of the things past. Analysis of these processes should contribute to better understanding of the new mnemonics strategies and (converging?) ways of ‘doing’ past in Europe.

Keywords: commodification, heritage tourism, totalitarianism, Serbia, Montenegro

Procedia PDF Downloads 249
712 Local Binary Patterns-Based Statistical Data Analysis for Accurate Soccer Match Prediction

Authors: Mohammad Ghahramani, Fahimeh Saei Manesh

Abstract:

Winning a soccer game is based on thorough and deep analysis of the ongoing match. On the other hand, giant gambling companies are in vital need of such analysis to reduce their loss against their customers. In this research work, we perform deep, real-time analysis on every soccer match around the world that distinguishes our work from others by focusing on particular seasons, teams and partial analytics. Our contributions are presented in the platform called “Analyst Masters.” First, we introduce various sources of information available for soccer analysis for teams around the world that helped us record live statistical data and information from more than 50,000 soccer matches a year. Our second and main contribution is to introduce our proposed in-play performance evaluation. The third contribution is developing new features from stable soccer matches. The statistics of soccer matches and their odds before and in-play are considered in the image format versus time including the halftime. Local Binary patterns, (LBP) is then employed to extract features from the image. Our analyses reveal incredibly interesting features and rules if a soccer match has reached enough stability. For example, our “8-minute rule” implies if 'Team A' scores a goal and can maintain the result for at least 8 minutes then the match would end in their favor in a stable match. We could also make accurate predictions before the match of scoring less/more than 2.5 goals. We benefit from the Gradient Boosting Trees, GBT, to extract highly related features. Once the features are selected from this pool of data, the Decision trees decide if the match is stable. A stable match is then passed to a post-processing stage to check its properties such as betters’ and punters’ behavior and its statistical data to issue the prediction. The proposed method was trained using 140,000 soccer matches and tested on more than 100,000 samples achieving 98% accuracy to select stable matches. Our database from 240,000 matches shows that one can get over 20% betting profit per month using Analyst Masters. Such consistent profit outperforms human experts and shows the inefficiency of the betting market. Top soccer tipsters achieve 50% accuracy and 8% monthly profit in average only on regional matches. Both our collected database of more than 240,000 soccer matches from 2012 and our algorithm would greatly benefit coaches and punters to get accurate analysis.

Keywords: soccer, analytics, machine learning, database

Procedia PDF Downloads 238
711 Coulomb-Explosion Driven Proton Focusing in an Arched CH Target

Authors: W. Q. Wang, Y. Yin, D. B. Zou, T. P. Yu, J. M. Ouyang, F. Q. Shao

Abstract:

High-energy-density state, i.e., matter and radiation at energy densities in excess of 10^11 J/m^3, is related to material, nuclear physics, astrophysics, and geophysics. Laser-driven particle beams are better suited to heat the matter as a trigger due to their unique properties of ultrashort duration and low emittance. Compared to X-ray and electron sources, it is easier to generate uniformly heated large-volume material for the proton and ion beams because of highly localized energy deposition. With the construction of state-of-art high power laser facilities, creating of extremely conditions of high-temperature and high-density in laboratories becomes possible. It has been demonstrated that on a picosecond time scale the solid density material can be isochorically heated to over 20 eV by the ultrafast proton beam generated from spherically shaped targets. For the above-mentioned technique, the proton energy density plays a crucial role in the formation of warm dense matter states. Recently, several methods have devoted to realize the focusing of the accelerated protons, involving externally exerted static-fields or specially designed targets interacting with a single or multi-pile laser pulses. In previous works, two co-propagating or opposite direction laser pulses are employed to strike a submicron plasma-shell. However, ultra-high pulse intensities, accurately temporal synchronization and undesirable transverse instabilities for a long time are still intractable for currently experimental implementations. A mechanism of the focusing of laser-driven proton beams from two-ion-species arched targets is investigated by multi-dimensional particle-in-cell simulations. When an intense linearly-polarized laser pulse impinges on the thin arched target, all electrons are completely evacuated, leading to a Coulomb-explosive electric-field mostly originated from the heavier carbon ions. The lighter protons in the moving reference frame by the ionic sound speed will be accelerated and effectively focused because of this radially isotropic field. At a 2.42×10^21 W/cm^2 laser intensity, a ballistic proton bunch with its energy-density as high as 2.15×10^17 J/m^3 is produced, and the highest proton energy and the focusing position agree well with that from the theory.

Keywords: Coulomb explosion, focusing, high-energy-density, ion acceleration

Procedia PDF Downloads 344
710 Application of Vector Representation for Revealing the Richness of Meaning of Facial Expressions

Authors: Carmel Sofer, Dan Vilenchik, Ron Dotsch, Galia Avidan

Abstract:

Studies investigating emotional facial expressions typically reveal consensus among observes regarding the meaning of basic expressions, whose number ranges between 6 to 15 emotional states. Given this limited number of discrete expressions, how is it that the human vocabulary of emotional states is so rich? The present study argues that perceivers use sequences of these discrete expressions as the basis for a much richer vocabulary of emotional states. Such mechanisms, in which a relatively small number of basic components is expanded to a much larger number of possible combinations of meanings, exist in other human communications modalities, such as spoken language and music. In these modalities, letters and notes, which serve as basic components of spoken language and music respectively, are temporally linked, resulting in the richness of expressions. In the current study, in each trial participants were presented with sequences of two images containing facial expression in different combinations sampled out of the eight static basic expressions (total 64; 8X8). In each trial, using single word participants were required to judge the 'state of mind' portrayed by the person whose face was presented. Utilizing word embedding methods (Global Vectors for Word Representation), employed in the field of Natural Language Processing, and relying on machine learning computational methods, it was found that the perceived meanings of the sequences of facial expressions were a weighted average of the single expressions comprising them, resulting in 22 new emotional states, in addition to the eight, classic basic expressions. An interaction between the first and the second expression in each sequence indicated that every single facial expression modulated the effect of the other facial expression thus leading to a different interpretation ascribed to the sequence as a whole. These findings suggest that the vocabulary of emotional states conveyed by facial expressions is not restricted to the (small) number of discrete facial expressions. Rather, the vocabulary is rich, as it results from combinations of these expressions. In addition, present research suggests that using word embedding in social perception studies, can be a powerful, accurate and efficient tool, to capture explicit and implicit perceptions and intentions. Acknowledgment: The study was supported by a grant from the Ministry of Defense in Israel to GA and CS. CS is also supported by the ABC initiative in Ben-Gurion University of the Negev.

Keywords: Glove, face perception, facial expression perception. , facial expression production, machine learning, word embedding, word2vec

Procedia PDF Downloads 175
709 Health State Utility Values Related to COVID-19 Pandemic Using EQ-5D: A Systematic Review and Meta-Analysis

Authors: Xu Feifei

Abstract:

The prevalence of COVID-19 currently is the biggest challenge to improving people's quality of life. Its impact on the health-related quality of life (HRQoL) is highly uncertain and has not been summarized so far. The aim of the present systematic review was to assess and provide an up-to-date analysis of the impact of the COVID-19 pandemic on the HRQoL of participants who have been infected, have not been infected but isolated, frontline, with different diseases, and the general population. Therefore, an electronic search of the literature in PubMed databases was performed from 2019 to July 2022 (without date restriction). PRISMA guideline methodology was employed, and data regarding the HRQoL were extracted from eligible studies. Articles were included if they met the following inclusion criteria: (a) reports on the data collection of the health state utility values (HSUVs) related to COVID-19 from 2019 to 2021; (b) English language and peer-reviewed journals; and (c) original HSUV data; (d) using EQ-5D tool to quantify the HRQoL. To identify studies that reported the effects on COVID-19, data on the proportion of overall HSUVs of participants who had the outcome were collected and analyzed using a one-group meta-analysis. As a result, thirty-two studies fulfilled the inclusion criteria and, therefore, were included in the systematic review. A total of 45295 participants and provided 219 means of HSUVs during COVID-19 were included in this systematic review. The range of utility is from 0.224 to 1. The study included participants from Europe (n=16), North America (n=4), Asia (n=10), South America (n=1), and Africa (n=1). Twelve articles showed that the HRQoL of the participants who have been infected with COVID-19 (range of overall HSUVs from 0.6125 to 0.863). Two studies reported the population of frontline workers (the range of overall HSUVs from 0.82 to 0.93). Seven of the articles researched the participants who had not been infected with COVID-19 but suffered from morbidities during the pandemic (range of overall HSUVs from 0.5 to 0.96). Thirteen studies showed that the HRQoL of the respondents who have not been infected with COVID-19 and without any morbidities (range of overall HSUVs from 0.64 to 0.964). Moreover, eighteen articles reported the outcomes of overall HSUVs during the COVID-19 pandemic in different population groups. The estimate of overall HSUVs of direct COVID-19 experience population (n=1333) was 0.751 (95% CI 0.670 - 0.832, I2 = 98.64%); the estimate of frontline population (n=610) was 0.906 ((95% CI 0.854 – 0.957, I2 = 98.61%); participants with different disease (n=132) were 0.768 (95% CI 0.515 - 1.021, I2= 99.26%); general population without infection history (n=29,892) was 0.825 (95% CI 0.766 - 0.885, I2 =99.69%). Conclusively, taking into account these results, this systematic review might confirm that COVID-19 has a negative impact on the HRQoL of the infected population and illness population. It provides practical value for cost-effectiveness model analysis of health states related to COVID-19.

Keywords: COVID-19, health-related quality of life, meta-analysis, systematic review, utility value

Procedia PDF Downloads 81
708 Integrating Data Mining with Case-Based Reasoning for Diagnosing Sorghum Anthracnose

Authors: Mariamawit T. Belete

Abstract:

Cereal production and marketing are the means of livelihood for millions of households in Ethiopia. However, cereal production is constrained by technical and socio-economic factors. Among the technical factors, cereal crop diseases are the major contributing factors to the low yield. The aim of this research is to develop an integration of data mining and knowledge based system for sorghum anthracnose disease diagnosis that assists agriculture experts and development agents to make timely decisions. Anthracnose diagnosing systems gather information from Melkassa agricultural research center and attempt to score anthracnose severity scale. Empirical research is designed for data exploration, modeling, and confirmatory procedures for testing hypothesis and prediction to draw a sound conclusion. WEKA (Waikato Environment for Knowledge Analysis) was employed for the modeling. Knowledge based system has come across a variety of approaches based on the knowledge representation method; case-based reasoning (CBR) is one of the popular approaches used in knowledge-based system. CBR is a problem solving strategy that uses previous cases to solve new problems. The system utilizes hidden knowledge extracted by employing clustering algorithms, specifically K-means clustering from sampled anthracnose dataset. Clustered cases with centroid value are mapped to jCOLIBRI, and then the integrator application is created using NetBeans with JDK 8.0.2. The important part of a case based reasoning model includes case retrieval; the similarity measuring stage, reuse; which allows domain expert to transfer retrieval case solution to suit for the current case, revise; to test the solution, and retain to store the confirmed solution to the case base for future use. Evaluation of the system was done for both system performance and user acceptance. For testing the prototype, seven test cases were used. Experimental result shows that the system achieves an average precision and recall values of 70% and 83%, respectively. User acceptance testing also performed by involving five domain experts, and an average of 83% acceptance is achieved. Although the result of this study is promising, however, further study should be done an investigation on hybrid approach such as rule based reasoning, and pictorial retrieval process are recommended.

Keywords: sorghum anthracnose, data mining, case based reasoning, integration

Procedia PDF Downloads 77
707 The Effect of Dementia on Family Members

Authors: Shakeela Ahmed, Nabanita Hazarika

Abstract:

The study aims to understand the effects of dementia on family members. The primary objectives of this research are to identify the main reasons for dementia among the elderly, understand the struggles and stigmas faced by the family members, and understand the effects of dementia on family members. The research employs a qualitative method and utilizes unstructured interviews with family members, counselors and caregivers. A descriptive research design is employed, and thematic analysis is used to analyze the data. A total of 17 family members in the age group of 54-69 years were interviewed, along with 2 counselors and 2 caretakers. In understanding dementia, the researcher has reviewed articles, and the studies revealed diverse meanings, symptoms, stages attached to dementia, and the complex interplay of protective and risk factors for dementia. However, in understanding dementia and its effects on families, there is a lack of studies in relation to the significant effects of dementia on family members and their role as primary caregivers. Therefore, an attempt has been made to understand the effects of dementia on family members, along with ways to improve dementia care for family members. The purpose of the study was to understand the effects and challenges of dementia on family members, the psychosocial reasons for dementia among the elderly, and the various struggles and stigmas faced by the family members of dementia patients. The major findings of the study indicate that people with dementia are cared for by family members at home. Dementia has a significant impact on family members. Family member's quality of life is affected; they experience feelings of anxiety, stress, irritation, frustration, and fear as they watch their loved ones struggle with dementia. They also experience financial strain, as dementia care, medication, and therapy are expensive. Another common impact is the role reversal of family members for their loved ones with dementia. There is a lack of awareness and social understanding about dementia, which leads to family members experiencing stigma and struggles. Caregivers are unable to take care of themselves, and many times, the primary caregiver, a spouse who is elderly, experiences acute stress and a physical inability to meet the demands of being a caregiver. Strategies to improve dementia care are understanding dementia, being patient with the person, showing love and care for the person, avoiding provoking the person, distracting them, offering reassurance, playing their favorite music, talking about things they love, going through old memories, following a structured routine, and remaining calm. The study has made an attempt to provide strategies to manage dementia care, understanding the struggles family members go through, and raising awareness about dementia that will enable further research and investigations.

Keywords: elderly, dementia, stigma, family members

Procedia PDF Downloads 30
706 Celebrating Community Heritage through the People’s Collection Wales: A Case Study in the Development of Collecting Traditions and Engagement

Authors: Gruffydd E. Jones

Abstract:

The world’s largest collection of historical, cultural, and heritage material is unarchived and undocumented in the hands of the public. Not only does this material represent the missing collections in heritage sector archives today, but it is also the key to providing a diverse range of communities with the means to express their history in their own words and to celebrate their unique, personal heritage. The People’s Collection Wales (PCW) acts as a platform on which the heritage of Wales and her people can be collated and shared, at the heart of which is a thriving community engagement programme across a network of museums, archives, and libraries. By providing communities with the archival skillset commonly employed throughout the heritage sector, PCW enables local projects, societies, and individuals to express their understanding of local heritage with their own voices, empowering communities to embrace their diverse and complex identities around Wales. Drawing on key examples from the project’s history, this paper will demonstrate the successful way in which museums have been developed as hubs for community engagement where the public was at the heart of collection and documentation activities, informing collection and curatorial policies to benefit both the institute and its local community. This paper will also highlight how collections from marginalised, under-represented, and minority communities have been published and celebrated extensively around Wales, including adoption by the education system in classrooms today. Any activity within the heritage sector, whether of collection, preservation, digitisation, or accessibility, should be considerate of community engagement opportunities not only to remain relevant but in order to develop as community hubs, pivots around which local heritage is supported and preserved. Attention will be drawn to our digitisation workflow, which, through training and support from museums and libraries, has allowed the public not only to become involved but to actively lead the contemporary evolution of documentation strategies in Wales. This paper will demonstrate how the PCW online access archive is promoting museum collections, encouraging user interaction, and providing an invaluable platform on which a broader community can inform, preserve and celebrate their cultural heritage through their own archival material too. The continuing evolution of heritage engagement depends wholly on placing communities at the heart of the sector, recognising their wealth of cultural knowledge, and developing the archival skillset necessary for them to become archival practitioners of their own.

Keywords: social history, cultural heritage, community heritage, museums, archives, libraries, community engagement, oral history, community archives

Procedia PDF Downloads 92
705 Course Perceiving Differences among College Science Students from Various Cultures: A Case Study in the US

Authors: Yuanyuan Song

Abstract:

Background: As we all know, culture plays a pivotal role in the realm of education, influencing study perceptions and outcomes. Nevertheless, there remains a need to delve into how culture specifically impacts the perception of courses. Therefore, the impact of culture on students' perceptions and academic performance is explored in this study. Drawing from cultural constructionism and conflict theories, it is posited that when students hailing from diverse cultures and backgrounds converge in the same classroom, their perceptions of course content may diverge significantly. This study seeks to unravel the tangible disparities and ascertain how cultural nuances shape students' perceptions of classroom content when encountering diverse cultural contexts within the same learning environment. Methodology: Given the diverse cultural backgrounds of students within the US, this study draws upon data collected from a course offered by a US college. In pursuit of answers to these inquiries, a qualitative approach was employed, involving semi-structured interviews conducted in a college-level science class in the US during 2023. The interviews encompassed approximately nine questions, spanning demographic particulars, cultural backgrounds, science learning experiences, academic outcomes, and more. Participants were exclusively drawn from science-related majors, with each student originating from a distinct cultural context. All participants were undergraduates, and most of them were from eighteen to twenty-five years old, totaling six students who attended the class and willingly participated in the interviews. The duration of each interview was approximately twenty minutes. Results: The findings gleaned from the interview data underscore the notable impact of varying cultural contexts on students' perceptions. This study argues that female science students, for instance, are influenced by gender dynamics due to the predominant male presence in science majors, creating an environment where female students feel reticent about expressing themselves in public. Students of East Asian origin exhibit a stronger belief in the efficacy of personal efforts when contrasted with their North American counterparts. Minority students indicated that they grapple with integration into the predominantly white mainstream society, influencing their eagerness to engage in classroom activities that are conducted by white professors. All of them emphasized the importance of learning science.

Keywords: multiculture education, educational sociology, educational equality, STEM education

Procedia PDF Downloads 59
704 Synthesis of Temperature Sensitive Nano/Microgels by Soap-Free Emulsion Polymerization and Their Application in Hydrate Sediments Drilling Operations

Authors: Xuan Li, Weian Huang, Jinsheng Sun, Fuhao Zhao, Zhiyuan Wang, Jintang Wang

Abstract:

Natural gas hydrates (NGHs) as promising alternative energy sources have gained increasing attention. Hydrate-bearing formation in marine areas is highly unconsolidated formation and is fragile, which is composed of weakly cemented sand-clay and silty sediments. During the drilling process, the invasion of drilling fluid can easily lead to excessive water content in the formation. It will change the soil liquid plastic limit index, which significantly affects the formation quality, leading to wellbore instability due to the metastable character of hydrate-bearing sediments. Therefore, controlling the filtrate loss into the formation in the drilling process has to be highly regarded for protecting the stability of the wellbore. In this study, the temperature-sensitive nanogel of P(NIPAM-co-AMPS-co-tBA) was prepared by soap-free emulsion polymerization, and the temperature-sensitive behavior was employed to achieve self-adaptive plugging in hydrate sediments. First, the effects of additional amounts of AMPS, tBA, and cross-linker MBA on the microgel synthesis process and temperature-sensitive behaviors were investigated. Results showed that, as a reactive emulsifier, AMPS can not only participate in the polymerization reaction but also act as an emulsifier to stabilize micelles and enhance the stability of nanoparticles. The volume phase transition temperature (VPTT) of nanogels gradually decreased with the increase of the contents of hydrophobic monomer tBA. An increase in the content of the cross-linking agent MBA can lead to a rise in the coagulum content and instability of the emulsion. The plugging performance of nanogel was evaluated in a core sample with a pore size distribution range of 100-1000nm. The temperature-sensitive nanogel can effectively improve the microfiltration performance of drilling fluid. Since a combination of a series of nanogels could have a wide particle size distribution at any temperature, around 200nm to 800nm, the self-adaptive plugging capacity of nanogels for the hydrate sediments was revealed. Thermosensitive nanogel is a potential intelligent plugging material for drilling operations in natural gas hydrate-bearing sediments.

Keywords: temperature-sensitive nanogel, NIPAM, self-adaptive plugging performance, drilling operations, hydrate-bearing sediments

Procedia PDF Downloads 168
703 High Resolution Satellite Imagery and Lidar Data for Object-Based Tree Species Classification in Quebec, Canada

Authors: Bilel Chalghaf, Mathieu Varin

Abstract:

Forest characterization in Quebec, Canada, is usually assessed based on photo-interpretation at the stand level. For species identification, this often results in a lack of precision. Very high spatial resolution imagery, such as DigitalGlobe, and Light Detection and Ranging (LiDAR), have the potential to overcome the limitations of aerial imagery. To date, few studies have used that data to map a large number of species at the tree level using machine learning techniques. The main objective of this study is to map 11 individual high tree species ( > 17m) at the tree level using an object-based approach in the broadleaf forest of Kenauk Nature, Quebec. For the individual tree crown segmentation, three canopy-height models (CHMs) from LiDAR data were assessed: 1) the original, 2) a filtered, and 3) a corrected model. The corrected CHM gave the best accuracy and was then coupled with imagery to refine tree species crown identification. When compared with photo-interpretation, 90% of the objects represented a single species. For modeling, 313 variables were derived from 16-band WorldView-3 imagery and LiDAR data, using radiance, reflectance, pixel, and object-based calculation techniques. Variable selection procedures were employed to reduce their number from 313 to 16, using only 11 bands to aid reproducibility. For classification, a global approach using all 11 species was compared to a semi-hierarchical hybrid classification approach at two levels: (1) tree type (broadleaf/conifer) and (2) individual broadleaf (five) and conifer (six) species. Five different model techniques were used: (1) support vector machine (SVM), (2) classification and regression tree (CART), (3) random forest (RF), (4) k-nearest neighbors (k-NN), and (5) linear discriminant analysis (LDA). Each model was tuned separately for all approaches and levels. For the global approach, the best model was the SVM using eight variables (overall accuracy (OA): 80%, Kappa: 0.77). With the semi-hierarchical hybrid approach, at the tree type level, the best model was the k-NN using six variables (OA: 100% and Kappa: 1.00). At the level of identifying broadleaf and conifer species, the best model was the SVM, with OA of 80% and 97% and Kappa values of 0.74 and 0.97, respectively, using seven variables for both models. This paper demonstrates that a hybrid classification approach gives better results and that using 16-band WorldView-3 with LiDAR data leads to more precise predictions for tree segmentation and classification, especially when the number of tree species is large.

Keywords: tree species, object-based, classification, multispectral, machine learning, WorldView-3, LiDAR

Procedia PDF Downloads 131
702 Enhancing Fault Detection in Rotating Machinery Using Wiener-CNN Method

Authors: Mohamad R. Moshtagh, Ahmad Bagheri

Abstract:

Accurate fault detection in rotating machinery is of utmost importance to ensure optimal performance and prevent costly downtime in industrial applications. This study presents a robust fault detection system based on vibration data collected from rotating gears under various operating conditions. The considered scenarios include: (1) both gears being healthy, (2) one healthy gear and one faulty gear, and (3) introducing an imbalanced condition to a healthy gear. Vibration data was acquired using a Hentek 1008 device and stored in a CSV file. Python code implemented in the Spider environment was used for data preprocessing and analysis. Winner features were extracted using the Wiener feature selection method. These features were then employed in multiple machine learning algorithms, including Convolutional Neural Networks (CNN), Multilayer Perceptron (MLP), K-Nearest Neighbors (KNN), and Random Forest, to evaluate their performance in detecting and classifying faults in both the training and validation datasets. The comparative analysis of the methods revealed the superior performance of the Wiener-CNN approach. The Wiener-CNN method achieved a remarkable accuracy of 100% for both the two-class (healthy gear and faulty gear) and three-class (healthy gear, faulty gear, and imbalanced) scenarios in the training and validation datasets. In contrast, the other methods exhibited varying levels of accuracy. The Wiener-MLP method attained 100% accuracy for the two-class training dataset and 100% for the validation dataset. For the three-class scenario, the Wiener-MLP method demonstrated 100% accuracy in the training dataset and 95.3% accuracy in the validation dataset. The Wiener-KNN method yielded 96.3% accuracy for the two-class training dataset and 94.5% for the validation dataset. In the three-class scenario, it achieved 85.3% accuracy in the training dataset and 77.2% in the validation dataset. The Wiener-Random Forest method achieved 100% accuracy for the two-class training dataset and 85% for the validation dataset, while in the three-class training dataset, it attained 100% accuracy and 90.8% accuracy for the validation dataset. The exceptional accuracy demonstrated by the Wiener-CNN method underscores its effectiveness in accurately identifying and classifying fault conditions in rotating machinery. The proposed fault detection system utilizes vibration data analysis and advanced machine learning techniques to improve operational reliability and productivity. By adopting the Wiener-CNN method, industrial systems can benefit from enhanced fault detection capabilities, facilitating proactive maintenance and reducing equipment downtime.

Keywords: fault detection, gearbox, machine learning, wiener method

Procedia PDF Downloads 79
701 Application of Deep Learning and Ensemble Methods for Biomarker Discovery in Diabetic Nephropathy through Fibrosis and Propionate Metabolism Pathways

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

Diabetic nephropathy (DN) is a major complication of diabetes, with fibrosis and propionate metabolism playing critical roles in its progression. Identifying biomarkers linked to these pathways may provide novel insights into DN diagnosis and treatment. This study aims to identify biomarkers associated with fibrosis and propionate metabolism in DN. Analyze the biological pathways and regulatory mechanisms of these biomarkers. Develop a machine learning model to predict DN-related biomarkers and validate their functional roles. Publicly available transcriptome datasets related to DN (GSE96804 and GSE104948) were obtained from the GEO database (https://www.ncbi.nlm.nih.gov/gds), and 924 propionate metabolism-related genes (PMRGs) and 656 fibrosis-related genes (FRGs) were identified. The analysis began with the extraction of DN-differentially expressed genes (DN-DEGs) and propionate metabolism-related DEGs (PM-DEGs), followed by the intersection of these with fibrosis-related genes to identify key intersected genes. Instead of relying on traditional models, we employed a combination of deep neural networks (DNNs) and ensemble methods such as Gradient Boosting Machines (GBM) and XGBoost to enhance feature selection and biomarker discovery. Recursive feature elimination (RFE) was coupled with these advanced algorithms to refine the selection of the most critical biomarkers. Functional validation was conducted using convolutional neural networks (CNN) for gene set enrichment and immunoinfiltration analysis, revealing seven significant biomarkers—SLC37A4, ACOX2, GPD1, ACE2, SLC9A3, AGT, and PLG. These biomarkers are involved in critical biological processes such as fatty acid metabolism and glomerular development, providing a mechanistic link to DN progression. Furthermore, a TF–miRNA–mRNA regulatory network was constructed using natural language processing models to identify 8 transcription factors and 60 miRNAs that regulate these biomarkers, while a drug–gene interaction network revealed potential therapeutic targets such as UROKINASE–PLG and ATENOLOL–AGT. This integrative approach, leveraging deep learning and ensemble models, not only enhances the accuracy of biomarker discovery but also offers new perspectives on DN diagnosis and treatment, specifically targeting fibrosis and propionate metabolism pathways.

Keywords: diabetic nephropathy, deep neural networks, gradient boosting machines (GBM), XGBoost

Procedia PDF Downloads 5
700 Dogs Chest Homogeneous Phantom for Image Optimization

Authors: Maris Eugênia Dela Rosa, Ana Luiza Menegatti Pavan, Marcela De Oliveira, Diana Rodrigues De Pina, Luis Carlos Vulcano

Abstract:

In medical veterinary as well as in human medicine, radiological study is essential for a safe diagnosis in clinical practice. Thus, the quality of radiographic image is crucial. In last year’s there has been an increasing substitution of image acquisition screen-film systems for computed radiology equipment (CR) without technical charts adequacy. Furthermore, to carry out a radiographic examination in veterinary patient is required human assistance for restraint this, which can compromise image quality by generating dose increasing to the animal, for Occupationally Exposed and also the increased cost to the institution. The image optimization procedure and construction of radiographic techniques are performed with the use of homogeneous phantoms. In this study, we sought to develop a homogeneous phantom of canine chest to be applied to the optimization of these images for the CR system. In carrying out the simulator was created a database with retrospectives chest images of computed tomography (CT) of the Veterinary Hospital of the Faculty of Veterinary Medicine and Animal Science - UNESP (FMVZ / Botucatu). Images were divided into four groups according to the animal weight employing classification by sizes proposed by Hoskins & Goldston. The thickness of biological tissues were quantified in a 80 animals, separated in groups of 20 animals according to their weights: (S) Small - equal to or less than 9.0 kg, (M) Medium - between 9.0 and 23.0 kg, (L) Large – between 23.1 and 40.0kg and (G) Giant – over 40.1 kg. Mean weight for group (S) was 6.5±2.0 kg, (M) 15.0±5.0 kg, (L) 32.0±5.5 kg and (G) 50.0 ±12.0 kg. An algorithm was developed in Matlab in order to classify and quantify biological tissues present in CT images and convert them in simulator materials. To classify tissues presents, the membership functions were created from the retrospective CT scans according to the type of tissue (adipose, muscle, bone trabecular or cortical and lung tissue). After conversion of the biologic tissue thickness in equivalent material thicknesses (acrylic simulating soft tissues, bone tissues simulated by aluminum and air to the lung) were obtained four different homogeneous phantoms, with (S) 5 cm of acrylic, 0,14 cm of aluminum and 1,8 cm of air; (M) 8,7 cm of acrylic, 0,2 cm of aluminum and 2,4 cm of air; (L) 10,6 cm of acrylic, 0,27 cm of aluminum and 3,1 cm of air and (G) 14,8 cm of acrylic, 0,33 cm of aluminum and 3,8 cm of air. The developed canine homogeneous phantom is a practical tool, which will be employed in future, works to optimize veterinary X-ray procedures.

Keywords: radiation protection, phantom, veterinary radiology, computed radiography

Procedia PDF Downloads 416
699 Equity, Bonds, Institutional Debt and Economic Growth: Evidence from South Africa

Authors: Ashenafi Beyene Fanta, Daniel Makina

Abstract:

Economic theory predicts that finance promotes economic growth. Although the finance-growth link is among the most researched areas in financial economics, our understanding of the link between the two is still incomplete. This is caused by, among others, wrong econometric specifications, using weak proxies of financial development, and inability to address the endogeneity problem. Studies on the finance growth link in South Africa consistently report economic growth driving financial development. Early studies found that economic growth drives financial development in South Africa, and recent studies have confirmed this using different econometric models. However, the monetary aggregate (i.e. M2) utilized used in these studies is considered a weak proxy for financial development. Furthermore, the fact that the models employed do not address the endogeneity problem in the finance-growth link casts doubt on the validity of the conclusions. For this reason, the current study examines the finance growth link in South Africa using data for the period 1990 to 2011 by employing a generalized method of moments (GMM) technique that is capable of addressing endogeneity, simultaneity and omitted variable bias problems. Unlike previous cross country and country case studies that have also used the same technique, our contribution is that we account for the development of bond markets and non-bank financial institutions rather than being limited to stock market and banking sector development. We find that bond market development affects economic growth in South Africa, and no similar effect is observed for the bank and non-bank financial intermediaries and the stock market. Our findings show that examination of individual elements of the financial system is important in understanding the unique effect of each on growth. The observation that bond markets rather than private credit and stock market development promotes economic growth in South Africa induces an intriguing question as to what unique roles bond markets play that the intermediaries and equity markets are unable to play. Crucially, our results support observations in the literature that using appropriate measures of financial development is critical for policy advice. They also support the suggestion that individual elements of the financial system need to be studied separately to consider their unique roles in advancing economic growth. We believe that our understanding of the channels through which bond market contribute to growth would be a fertile ground for future research.

Keywords: bond market, finance, financial sector, growth

Procedia PDF Downloads 421
698 Analyzing the Job Satisfaction of Silver Workers Using Structural Equation Modeling

Authors: Valentin Nickolai, Florian Pfeffel, Christian Louis Kühner

Abstract:

In many industrialized nations, the demand for skilled workers rises, causing the current market for employees to be more candidate-driven than employer-driven. Therefore, losing highly skilled and experienced employees due to early or partial retirement negatively impacts firms. Therefore, finding new ways to incentivize older employees (Silver Workers) to stay longer with the company and in their job can be crucial for the success of a firm. This study analyzes how working remotely can be a valid incentive for experienced Silver Workers to stay in their job and instead work from home with more flexible working hours. An online survey with n = 684 respondents, who are employed in the service sector, has been conducted based on 13 constructs that influence job satisfaction. These have been further categorized into three groups “classic influencing factors,” “influencing factors changed by remote working,” and new remote working influencing factors,” and were analyzed using structural equation modeling (SEM). Here, Cronbach’s alpha of the individual constructs was shown to be suitable. Furthermore, the construct validity of the constructs was confirmed by face validity, content validity, convergent validity (AVE > 0.5: CR > 0.7), and discriminant validity. Additionally, confirmatory factor analysis (CFA) confirmed the model fit for the investigated sample (CMIN/DF: 2.567; CFI: 0.927; RMSEA: 0.048). It was shown in the SEM-analysis that the influencing factor on job satisfaction, “identification with the work,” is the most significant with β = 0.540, followed by “Appreciation” (β = 0.151), “Compensation” (β = 0.124), “Work-Life-Balance” (β = 0.116), and “Communication and Exchange of Information” (β = 0.105). While the significance of each factor can vary depending on the work model, the SEM-analysis also shows that the identification with the work is the most significant factor in all three work models mentioned above and, in the case of the traditional office work model, it is the only significant influencing factor. The study shows that employees between the ages of 56 and 65 years have the highest job satisfaction when working entirely from home or remotely. Furthermore, their job satisfaction score of 5.4 on a scale from 1 (very dissatisfied) to 7 (very satisfied) is the highest amongst all age groups in any of the three work models. Due to the significantly higher job satisfaction, it can be argued that giving Silver Workers the offer to work from home or remotely can incentivize them not to opt for early retirement or partial retirement but to stay in their job full-time Furthermore, these findings can indicate that employees in the Silver Worker age are much more inclined to leave their job for early retirement if they have to entirely work in the office.

Keywords: home office, remote work instead of early or partial retirement, silver worker, structural equation modeling

Procedia PDF Downloads 72
697 Mechanisms Underlying Comprehension of Visualized Personal Health Information: An Eye Tracking Study

Authors: Da Tao, Mingfu Qin, Wenkai Li, Tieyan Wang

Abstract:

While the use of electronic personal health portals has gained increasing popularity in the healthcare industry, users usually experience difficulty in comprehending and correctly responding to personal health information, partly due to inappropriate or poor presentation of the information. The way personal health information is visualized may affect how users perceive and assess their personal health information. This study was conducted to examine the effects of information visualization format and visualization mode on the comprehension and perceptions of personal health information among personal health information users with eye tracking techniques. A two-factor within-subjects experimental design was employed, where participants were instructed to complete a series of personal health information comprehension tasks under varied types of visualization mode (i.e., whether the information visualization is static or dynamic) and three visualization formats (i.e., bar graph, instrument-like graph, and text-only format). Data on a set of measures, including comprehension performance, perceptions, and eye movement indicators, were collected during the task completion in the experiment. Repeated measure analysis of variance analyses (RM-ANOVAs) was used for data analysis. The results showed that while the visualization format yielded no effects on comprehension performance, it significantly affected users’ perceptions (such as perceived ease of use and satisfaction). The two graphic visualizations yielded significantly higher favorable scores on subjective evaluations than that of the text format. While visualization mode showed no effects on users’ perception measures, it significantly affected users' comprehension performance in that dynamic visualization significantly reduced users' information search time. Both visualization format and visualization mode had significant main effects on eye movement behaviors, and their interaction effects were also significant. While the bar graph format and text format had similar time to first fixation across dynamic and static visualizations, instrument-like graph format had a larger time to first fixation for dynamic visualization than for static visualization. The two graphic visualization formats yielded shorter total fixation duration compared with the text-only format, indicating their ability to improve information comprehension efficiency. The results suggest that dynamic visualization can improve efficiency in comprehending important health information, and graphic visualization formats were favored more by users. The findings are helpful in the underlying comprehension mechanism of visualized personal health information and provide important implications for optimal design and visualization of personal health information.

Keywords: eye tracking, information comprehension, personal health information, visualization

Procedia PDF Downloads 106
696 A Study on the Current State and Policy Implications of Engineer Operated National Research Facility and Equipment in Korea

Authors: Chang-Yong Kim, Dong-Woo Kim, Whon-Hyun Lee, Yong-Joo Kim, Tae-Won Chung, Kyung-Mi Lee, Han-Sol Kim, Eun-Joo Lee, Euh Duck Jeong

Abstract:

In the past, together with the annual increase in investment on national R&D projects, the government’s budget investment in FE has steadily maintained. In the case of major developed countries, R&D and its supporting works are distinguished and professionalized in their own right, in so far as having a training system for facilities, equipment operation, and maintenance personnel. In Korea, however, research personnel conduct both research and equipment operation, leading to quantitative shortages of operational manpower and qualitative problems due to insecure employment such as maintenance issues or the loss of effectiveness of necessary equipment. Therefore, the purpose of this study was to identify the current status of engineer operated national research FE in Korea based on a 2017 survey results of domestic facilities and to suggest policy implications. A total of 395 research institutes that carried out national R&D projects and registered more than two FE since 2005 were surveyed on-line for two months. The survey showed that 395 non-profit research facilities were operating 45,155 pieces of equipment with 2,211 engineer operated national research FE, meaning that each engineer had to manage 21 items of FE. Among these, 43.9% of the workers were employed in temporary positions, including indefinite term contracts. Furthermore, the salary and treatment of the engineer personnel were relatively low compared to researchers. In short, engineers who exclusively focused on managing and maintaining FE play a very important role in increasing research immersion and obtaining highly reliable research results. Moreover, institutional efforts and government support for securing operators are severely lacking as domestic national R&D policies are mostly focused on researchers. The 2017 survey on FE also showed that 48.1% of all research facilities did not even employ engineers. In order to solve the shortage of the engineer personnel, the government will start the pilot project in 2012, and then only the 'research equipment engineer training project' from 2013. Considering the above, a national long-term manpower training plan that addresses the quantitative and qualitative shortage of operators needs to be established through a study of the current situation. In conclusion, the findings indicate that this should not only include a plan which connects training to employment but also measures the creation of additional jobs by re-defining and re-establishing operator roles and improving working conditions.

Keywords: engineer, Korea, maintenance, operation, research facilities and equipment

Procedia PDF Downloads 188