Search results for: task analysis
28920 Leveraging Play to Foster Healthy Social-emotional Development in Young Children in Poverty
Authors: Smita Mathur
Abstract:
Play is an innate, player-centric, joyful, fundamental activity of early childhood development that significantly contributes to social, emotional, and academic learning. Leveraging the power of play can enhance these domains by creating engaging, interactive, and developmentally appropriate learning experiences for young children. This research aimed to systematically examine young children’s play behaviors with a focus on four primary objectives: (1) the frequency and duration of on-task behaviors, (2) social interactions and emotional expressions during play, (3) the correlation between academic skills and play, and (4) identifying best practices for integrating play-based curricula. To achieve these objectives, a mixed-method study was conducted among young preschool-aged children in low socio-economic populations in the United States. The children were identified using purposive sampling. The children were observed during structured play in classrooms and unstructured play during outdoor playtime and in their home environments. The study sampled 97 preschool-aged children. A total of 3970 minutes of observations were coded to address the research questions. Thirty-seven percent of children lived in linguistically isolated families, and 76% lived in basic budget poverty. Children lived in overcrowded housing situations (67%), and most families had mixed citizenship status (66%). The observational study was conducted using the observation protocol during the Oxford Study Project. On-task behaviors were measured by tracking the frequency and duration of activities where children maintained focus and engagement. In examining social interactions and emotional expressions, the study recorded social interactions, emotional responses, and teacher involvement during play. The study aimed to identify best practices for integrating play-based curricula into early childhood education. By analyzing the effectiveness of different play-based strategies and their impact on on-task behaviors, social-emotional development, and academic skills, the research sought to provide actionable recommendations for educators and caregivers. The findings from study 1. Highlight play behaviors that increase on-task behaviors and academic, & social skills in young children. 2. Offers insights into teacher preparation and designing play-based curriculum 3. Research critiques observation as a data collection technique.Keywords: play, early childhood education, social-emotional development, academic development
Procedia PDF Downloads 2728919 Emotions in Health Tweets: Analysis of American Government Official Accounts
Authors: García López
Abstract:
The Government Departments of Health have the task of informing and educating citizens about public health issues. For this, they use channels like Twitter, key in the search for health information and the propagation of content. The tweets, important in the virality of the content, may contain emotions that influence the contagion and exchange of knowledge. The goal of this study is to perform an analysis of the emotional projection of health information shared on Twitter by official American accounts: the disease control account CDCgov, National Institutes of Health, NIH, the government agency HHSGov, and the professional organization PublicHealth. For this, we used Tone Analyzer, an International Business Machines Corporation (IBM) tool specialized in emotion detection in text, corresponding to the categorical model of emotion representation. For 15 days, all tweets from these accounts were analyzed with the emotional analysis tool in text. The results showed that their tweets contain an important emotional load, a determining factor in the success of their communications. This exposes that official accounts also use subjective language and contain emotions. The predominance of emotion joy over sadness and the strong presence of emotions in their tweets stimulate the virality of content, a key in the work of informing that government health departments have.Keywords: emotions in tweets, emotion detection in the text, health information on Twitter, American health official accounts, emotions on Twitter, emotions and content
Procedia PDF Downloads 14228918 Studies on Performance of an Airfoil and Its Simulation
Authors: Rajendra Roul
Abstract:
The main objective of the project is to bring attention towards the performance of an aerofoil when exposed to the fluid medium inside the wind tunnel. This project aims at involvement of civil as well as mechanical engineering thereby making itself as a multidisciplinary project. The airfoil of desired size is taken into consideration for the project to carry out effectively. An aerofoil is the shape of the wing or blade of propeller, rotor or turbine. Lot of experiment have been carried out through wind-tunnel keeping aerofoil as a reference object to make a future forecast regarding the design of turbine blade, car and aircraft. Lift and drag now become the major identification factor for any design industry which shows that wind tunnel testing along with software analysis (ANSYS) becomes the mandatory task for any researchers to forecast an aerodynamics design. This project is an initiative towards the mitigation of drag, better lift and analysis of wake surface profile by investigating the surface pressure distribution. The readings has been taken on airfoil model in Wind Tunnel Testing Machine (WTTM) at different air velocity 20m/sec, 25m/sec, 30m/sec and different angle of attack 00,50,100,150,200. Air velocity and pressures are measured in several ways in wind tunnel testing machine by use to measuring instruments like Anemometer and Multi tube manometer. Moreover to make the analysis more accurate Ansys fluent contribution become substantial and subsequently the CFD simulation results. Analysis on an Aerofoil have a wide spectrum of application other than aerodynamics including wind loads in the design of buildings and bridges for structural engineers.Keywords: wind-tunnel, aerofoil, Ansys, multitube manometer
Procedia PDF Downloads 41428917 The Effects of Normal Aging on Reasoning Ability: A Dual-Process Approach
Authors: Jamie A. Prowse Turner, Jamie I. D. Campbell, Valerie A. Thompson
Abstract:
The objective of the current research was to use a dual-process theory framework to explain these age-related differences in reasoning. Seventy-two older (M = 80.0 years) and 72 younger (M = 24.6 years) adults were given a variety of reasoning tests (i.e., a syllogistic task, base rate task, the Cognitive Reflection Test, and a perspective manipulation), as well as independent tests of capacity (working memory, processing speed, and inhibition), thinking styles, and metacognitive ability, to account for these age-related differences. It was revealed that age-related differences were limited to problems that required Type 2 processing and were related to differences in cognitive capacity, individual difference factors, and strategy choice. Furthermore, older adults’ performance can be improved by reasoning from another’s’ perspective and cannot, at this time, be explained by metacognitive differences between young and older adults. All of these findings fit well within a dual-process theory of reasoning, which provides an integrative framework accounting for previous findings and the findings presented in the current manuscript.Keywords: aging, dual-process theory, performance, reasoning ability
Procedia PDF Downloads 19128916 Hierarchical Tree Long Short-Term Memory for Sentence Representations
Authors: Xiuying Wang, Changliang Li, Bo Xu
Abstract:
A fixed-length feature vector is required for many machine learning algorithms in NLP field. Word embeddings have been very successful at learning lexical information. However, they cannot capture the compositional meaning of sentences, which prevents them from a deeper understanding of language. In this paper, we introduce a novel hierarchical tree long short-term memory (HTLSTM) model that learns vector representations for sentences of arbitrary syntactic type and length. We propose to split one sentence into three hierarchies: short phrase, long phrase and full sentence level. The HTLSTM model gives our algorithm the potential to fully consider the hierarchical information and long-term dependencies of language. We design the experiments on both English and Chinese corpus to evaluate our model on sentiment analysis task. And the results show that our model outperforms several existing state of the art approaches significantly.Keywords: deep learning, hierarchical tree long short-term memory, sentence representation, sentiment analysis
Procedia PDF Downloads 34928915 Testing a Motivational Model of Physical Education on Contextual Outcomes and Total Moderate to Vigorous Physical Activity of Middle School Students
Authors: Arto Grasten
Abstract:
Given the rising trend in obesity in children and youth, age-related decline in moderate- to- vigorous-intensity physical activity (MVPA) in several Western, African, and Asian countries in addition to limited evidence of behavioral, affective, cognitive outcomes in physical education, it is important to clarify the motivational processes in physical education classes behind total MVPA engagement. The present study examined the full sequence of the Hierarchical Model of Motivation in physical education including motivational climate, basic psychological needs, intrinsic motivation, contextual behavior, affect, cognition, total MVPA, and associated links to body mass index (BMI) and gender differences. A cross-sectional data comprised self-reports and objective assessments of 770 middle school students (Mage = 13.99 ± .81 years, 52% of girls) in North-East Finland. In order to test the associations between motivational climate, psychological needs, intrinsic motivation, cognition, behavior, affect, and total MVPA, a path model was implemented. Indirect effects between motivational climate and cognition, behavior, affect and total MVPA were tested by setting basic needs and intrinsic motivation as mediators into the model. The findings showed that direct and indirect paths for girls and boys associated with different contextual outcomes and girls’ indirect paths were not related with total MVPA. Precisely, task-involving climate-mediated by physical competence and intrinsic motivation related to enjoyment, importance, and graded assessments within girls, whereas task-involving climate associated with enjoyment and importance via competence and autonomy, and total MVPA via autonomy, intrinsic motivation, and importance within boys. Physical education assessments appeared to be essential in motivating students to participate in greater total MVPA. BMI was negatively linked with competence and relatedness only among girls. Although, the current and previous empirical findings supported task-involving teaching methods in physical education, in some cases, ego-involving climate should not be totally avoided. This may indicate that girls and boys perceive physical education classes in a different way. Therefore, both task- and ego-involving teaching practices can be useful ways of driving behavior in physical education classes.Keywords: achievement goal theory, assessment, enjoyment, hierarchical model of motivation, physical activity, self-determination theory
Procedia PDF Downloads 28028914 Static and Dynamic Analysis of Microcantilever Beam
Authors: S. B. Kerur, B. S. Murgayya
Abstract:
The development of micro and nano particle is challenging task and the study of the behavior of material at the micro level is gaining importance as their behavior at micro/nano level is different. These micro particle are being used as a sensing element to measure and detects the hazardous chemical, gases, explosives and biological agents. In the present study, finite element method is used for static and dynamic analysis of simple and composite cantilever beams of different shapes. The present FE model is validated with available analytical results and various parameters like shape, materials properties, damped and undamped conditions are considered for the numerical study. The results show the effects of shape change on the natural frequency and as these are used with fluid for chemical applications, the effect of damping due to viscous nature of fluid are simulated by considering different damping coefficient effect on the dynamic behavior of cantilever beams. The obtained results show the effect of these parameters can be effectively utilized based on system requirements.Keywords: micro, FEM, dynamic, cantilever beam
Procedia PDF Downloads 38228913 Performance Analysis of Domotics System as Real-Time Non-Intrusive Load Monitoring
Authors: Dauda A. Oladosu, Kamorudeen A Olaiya, Abdurahman Bello
Abstract:
The deployment of smart meters by utility providers to gather fine grained spatiotemporal consumption data has grossly influenced the consumers’ emotion and behavior towards energy utilization. The quest for reduction in power consumption is now a subject of concern and one the methods adopted by the consumers to achieve this is Non-intrusive Load (appliance) Monitoring. Hence, this work presents performance Analysis of Domotics System as a tool for load monitoring when integrated with Consumer Control Unit of residential building. The system was developed with basic elements which enhance remote sensing, DTMF (Dual Tone Multi-frequency) recognition and cryptic messaging when specific task was performed. To demonstrate its applicability and suitability, this prototype was used consistently for six months at different load demands and the utilities consumed were documented. The results obtained shows good response when phone dialed, and the packet delivery of feedback SMS was quite satisfactory, making the implemented system to be of good quality with affordable cost and performs the desired functions. Besides, comparative analysis showed notable reduction in energy consumption and invariably lessened electrical bill of the consumer.Keywords: automation, domotics, energy, load, remote, schedule
Procedia PDF Downloads 31728912 Document-level Sentiment Analysis: An Exploratory Case Study of Low-resource Language Urdu
Authors: Ammarah Irum, Muhammad Ali Tahir
Abstract:
Document-level sentiment analysis in Urdu is a challenging Natural Language Processing (NLP) task due to the difficulty of working with lengthy texts in a language with constrained resources. Deep learning models, which are complex neural network architectures, are well-suited to text-based applications in addition to data formats like audio, image, and video. To investigate the potential of deep learning for Urdu sentiment analysis, we implemented five different deep learning models, including Bidirectional Long Short Term Memory (BiLSTM), Convolutional Neural Network (CNN), Convolutional Neural Network with Bidirectional Long Short Term Memory (CNN-BiLSTM), and Bidirectional Encoder Representation from Transformer (BERT). In this study, we developed a hybrid deep learning model called BiLSTM-Single Layer Multi Filter Convolutional Neural Network (BiLSTM-SLMFCNN) by fusing BiLSTM and CNN architecture. The proposed and baseline techniques are applied on Urdu Customer Support data set and IMDB Urdu movie review data set by using pre-trained Urdu word embedding that are suitable for sentiment analysis at the document level. Results of these techniques are evaluated and our proposed model outperforms all other deep learning techniques for Urdu sentiment analysis. BiLSTM-SLMFCNN outperformed the baseline deep learning models and achieved 83%, 79%, 83% and 94% accuracy on small, medium and large sized IMDB Urdu movie review data set and Urdu Customer Support data set respectively.Keywords: urdu sentiment analysis, deep learning, natural language processing, opinion mining, low-resource language
Procedia PDF Downloads 7228911 Understanding the Heart of the Matter: A Pedagogical Framework for Apprehending Successful Second Language Development
Authors: Cinthya Olivares Garita
Abstract:
Untangling language processing in second language development has been either a taken-for-granted and overlooked task for some English language teaching (ELT) instructors or a considerable feat for others. From the most traditional language instruction to the most communicative methodologies, how to assist L2 learners in processing language in the classroom has become a challenging matter in second language teaching. Amidst an ample array of methods, strategies, and techniques to teach a target language, finding a suitable model to lead learners to process, interpret, and negotiate meaning to communicate in a second language has imposed a great responsibility on language teachers; committed teachers are those who are aware of their role in equipping learners with the appropriate tools to communicate in the target language in a 21stcentury society. Unfortunately, one might find some English language teachers convinced that their job is only to lecture students; others are advocates of textbook-based instruction that might hinder second language processing, and just a few might courageously struggle to facilitate second language learning effectively. Grounded on the most representative empirical studies on comprehensible input, processing instruction, and focus on form, this analysis aims to facilitate the understanding of how second language learners process and automatize input and propose a pedagogical framework for the successful development of a second language. In light of this, this paper is structured to tackle noticing and attention and structured input as the heart of processing instruction, comprehensible input as the missing link in second language learning, and form-meaning connections as opposed to traditional grammar approaches to language teaching. The author finishes by suggesting a pedagogical framework involving noticing-attention-comprehensible-input-form (NACIF based on their acronym) to support ELT instructors, teachers, and scholars on the challenging task of facilitating the understanding of effective second language development.Keywords: second language development, pedagogical framework, noticing, attention, comprehensible input, form
Procedia PDF Downloads 2828910 Data Analysis to Uncover Terrorist Attacks Using Data Mining Techniques
Authors: Saima Nazir, Mustansar Ali Ghazanfar, Sanay Muhammad Umar Saeed, Muhammad Awais Azam, Saad Ali Alahmari
Abstract:
Terrorism is an important and challenging concern. The entire world is threatened by only few sophisticated terrorist groups and especially in Gulf Region and Pakistan, it has become extremely destructive phenomena in recent years. Predicting the pattern of attack type, attack group and target type is an intricate task. This study offers new insight on terrorist group’s attack type and its chosen target. This research paper proposes a framework for prediction of terrorist attacks using the historical data and making an association between terrorist group, their attack type and target. Analysis shows that the number of attacks per year will keep on increasing, and Al-Harmayan in Saudi Arabia, Al-Qai’da in Gulf Region and Tehreek-e-Taliban in Pakistan will remain responsible for many future terrorist attacks. Top main targets of each group will be private citizen & property, police, government and military sector under constant circumstances.Keywords: data mining, counter terrorism, machine learning, SVM
Procedia PDF Downloads 40828909 Electrophysiological Correlates of Statistical Learning in Children with and without Developmental Language Disorder
Authors: Ana Paula Soares, Alexandrina Lages, Helena Oliveira, Francisco-Javier Gutiérrez-Domínguez, Marisa Lousada
Abstract:
From an early age, exposure to a spoken language allows us to implicitly capture the structure underlying the succession of the speech sounds in that language and to segment it into meaningful units (words). Statistical learning (SL), i.e., the ability to pick up patterns in the sensory environment even without intention or consciousness of doing it, is thus assumed to play a central role in the acquisition of the rule-governed aspects of language and possibly to lie behind the language difficulties exhibited by children with development language disorder (DLD). The research conducted so far has, however, led to inconsistent results, which might stem from the behavioral tasks used to test SL. In a classic SL experiment, participants are first exposed to a continuous stream (e.g., syllables) in which, unbeknownst to the participants, stimuli are grouped into triplets that always appear together in the stream (e.g., ‘tokibu’, ‘tipolu’), with no pauses between each other (e.g., ‘tokibutipolugopilatokibu’) and without any information regarding the task or the stimuli. Following exposure, SL is assessed by asking participants to discriminate between triplets previously presented (‘tokibu’) from new sequences never presented together during exposure (‘kipopi’), i.e., to perform a two-alternative-forced-choice (2-AFC) task. Despite the widespread use of the 2-AFC to test SL, it has come under increasing criticism as it is an offline post-learning task that only assesses the result of the learning that had occurred during the previous exposure phase and that might be affected by other factors beyond the computation of regularities embedded in the input, typically the likelihood two syllables occurring together, a statistic known as transitional probability (TP). One solution to overcome these limitations is to assess SL as exposure to the stream unfolds using online techniques such as event-related potentials (ERP) that is highly sensitive to the time-course of the learning in the brain. Here we collected ERPs to examine the neurofunctional correlates of SL in preschool children with DLD, and chronological-age typical language development (TLD) controls who were exposed to an auditory stream in which eight three-syllable nonsense words, four of which presenting high-TPs and the other four low-TPs, to further analyze whether the ability of DLD and TLD children to extract-word-like units from the steam was modulated by words’ predictability. Moreover, to ascertain if the previous knowledge of the to-be-learned-regularities affected the neural responses to high- and low-TP words, children performed the auditory SL task, firstly, under implicit, and, subsequently, under explicit conditions. Although behavioral evidence of SL was not obtained in either group, the neural responses elicited during the exposure phases of the SL tasks differentiated children with DLD from children with TLD. Specifically, the results indicated that only children from the TDL group showed neural evidence of SL, particularly in the SL task performed under explicit conditions, firstly, for the low-TP, and, subsequently, for the high-TP ‘words’. Taken together, these findings support the view that children with DLD showed deficits in the extraction of the regularities embedded in the auditory input which might underlie the language difficulties.Keywords: development language disorder, statistical learning, transitional probabilities, word segmentation
Procedia PDF Downloads 18828908 A Brave New World of Privacy: Empirical Insights into the Metaverse’s Personalization Dynamics
Authors: Cheng Xu
Abstract:
As the metaverse emerges as a dynamic virtual simulacrum of reality, its implications on user privacy have become a focal point of interest. While previous discussions have ventured into metaverse privacy dynamics, a glaring empirical gap persists, especially concerning the effects of personalization in the context of news recommendation services. This study stands at the forefront of addressing this void, meticulously examining how users' privacy concerns shift within the metaverse's personalization context. Through a pre-registered randomized controlled experiment, participants engaged in a personalization task across both the metaverse and traditional online platforms. Upon completion of this task, a comprehensive news recommendation service provider offers personalized news recommendations to the users. Our empirical findings reveal that the metaverse inherently amplifies privacy concerns compared to traditional settings. However, these concerns are notably mitigated when users have a say in shaping the algorithms that drive these recommendations. This pioneering research not only fills a significant knowledge gap but also offers crucial insights for metaverse developers and policymakers, emphasizing the nuanced role of user input in shaping algorithm-driven privacy perceptions.Keywords: metaverse, privacy concerns, personalization, digital interaction, algorithmic recommendations
Procedia PDF Downloads 11728907 Ambient Notifications and the Interruption Effect
Authors: Trapond Hiransalee
Abstract:
The technology of mobile devices has changed our daily lives. Since smartphone have become a multi-functional device, many people spend unnecessary time on them, and could be interrupted by inappropriate notifications such as unimportant messages from social media. Notifications from smartphone could draw people’s attention and distract them from their priorities and current tasks. This research investigated that if the users were notified by their surroundings instead of smartphone, would it create less distraction and keep their focus on the present task. The experiment was a simulation of a lamp and door notification. Notifications related to work will be embedded in the lamp such as an email from a colleague. A notification that is useful when going outside such as weather information, traffic information, and schedule reminder will be embedded in the door. The experiment was conducted by sending notifications to the participant while he or she was working on a primary task and the working performance was measured. The results show that the lamp notification had fewer interruption effects than the smartphone. For the door notification, it was simulated in order to gain opinions and insights on ambient notifications from participants. Many participants agreed that the ambient notifications are useful and being informed by them could lessen the usage of their smartphone. The results and insights from this research could be used to guide the design process of ambient notifications.Keywords: HCI, interaction, interaction design, usability testing
Procedia PDF Downloads 40528906 Building Tutor and Tutee Pedagogical Agents to Enhance Learning in Adaptive Educational Games
Authors: Ogar Ofut Tumenayu, Olga Shabalina
Abstract:
This paper describes the application of two types of pedagogical agents’ technology with different functions in an adaptive educational game with the sole aim of improving learning and enhancing interactivities in Digital Educational Games (DEG). This idea could promote the elimination of some problems of DEG, like isolation in game-based learning, by introducing a tutor and tutee pedagogical agents. We present an analysis of a learning companion interacting in a peer tutoring environment as a step toward improving social interactions in the educational game environment. We show that tutor and tutee agents use different interventions and interactive approaches: the tutor agent is engaged in tracking the learner’s activities and inferring the learning state, while the tutee agent initiates interactions with the learner at the appropriate times and in appropriate manners. In order to provide motivation to prevent mistakes and clarity a game task, the tutor agent uses the help dialog tool to provide assistance, while the tutee agent provides collaboration assistance by using the hind tool. We presented our idea on a prototype game called “Pyramid Programming Game,” a 2D game that was developed using Libgdx. The game's Pyramid component symbolizes a programming task that is presented to the player in the form of a puzzle. During gameplay, the Agents can instruct, direct, inspire, and communicate emotions. They can also rapidly alter the instructional pattern in response to the learner's performance and knowledge. The pyramid must be effectively destroyed in order to win the game. The game also teaches and illustrates the advantages of utilizing educational agents such as TrA and TeA to assist and motivate students. Our findings support the idea that the functionality of a pedagogical agent should be dualized into an instructional and learner’s companion agent in order to enhance interactivity in a game-based environment.Keywords: tutor agent, tutee agent, learner’s companion interaction, agent collaboration
Procedia PDF Downloads 6728905 Analyzing the Websites of Institutions Publishing Global Rankings of Universities: A Usability Study
Authors: Nuray Baltaci, Kursat Cagiltay
Abstract:
University rankings which can be seen as nouveau topic are at the center of focus and followed closely by different parties. Students are interested in university rankings in order to make informed decisions about the selection of their candidate future universities. University administrators and academicians can utilize them to see and evaluate their universities’ relative performance compared to other institutions in terms of including but not limited to academic, economic, and international outlook issues. Local institutions may use those ranking systems, as TUBITAK (The Scientific and Technological Research Council of Turkey) and YOK (Council of Higher Education) do in Turkey, to support students and give scholarships when they want to apply for undergraduate and graduate studies abroad. When it is considered that the ranking systems are concerned by this many different parties, the importance of having clear, easy to use and well-designed websites by ranking institutions will be apprehended. In this paper, a usability study for the websites of four different global university ranking institutions, namely Academic Ranking of World Universities (ARWU), Times Higher Education, QS and University Ranking by Academic Performance (URAP), was conducted. User-based approach was adopted and usability tests were conducted with 10 graduate students at Middle East Technical University in Ankara, Turkey. Before performing the formal usability tests, a pilot study had been completed to reflect the necessary changes to the settings of the study. Participants’ demographics, task completion times, paths traced to complete tasks, and their satisfaction levels on each task and website were collected. According to the analyses of the collected data, those ranking websites were compared in terms of efficiency, effectiveness and satisfaction dimensions of usability as pointed in ISO 9241-11. Results showed that none of the selected ranking websites is superior to other ones in terms of overall effectiveness and efficiency of the website. However the only remarkable result was that the highest average task completion times for two of the designed tasks belong to the Times Higher Education Rankings website. Evaluation of the user satisfaction on each task and each website produced slightly different but rather similar results. When the satisfaction levels of the participants on each task are examined, it was seen that the highest scores belong to ARWU and URAP websites. The overall satisfaction levels of the participants for each website showed that the URAP website has highest score followed by ARWU website. In addition, design problems and powerful design features of those websites reported by the participants are presented in the paper. Since the study mainly tackles about the design problems of the URAP website, the focus is on this website. Participants reported 3 main design problems about the website which are unaesthetic and unprofessional design style of the website, improper map location on ranking pages, and improper listing of the field names on field ranking page.Keywords: university ranking, user-based approach, website usability, design
Procedia PDF Downloads 39728904 Math Anxiety Effects on Complex Addition: An ERP Study
Authors: María Isabel Núñez-Peña, Macarena Suárez Pellicioni
Abstract:
In the present study, we used event-related potentials (ERP) to address the question of whether high (HMA) and low math-anxious (LMA) individuals differ on a complex addition verification task, which involved both carrying and non-carrying additions. ERPs were recorded while seventeen HMA and seventeen LMA individuals performed the verification task. Groups did not differ in trait anxiety or gender distribution. Participants were presented with two-digit additions and were asked to decide whether the proposed solution was correct or incorrect. Behavioral data showed a significant Carrying x Proposed solution x Group interaction for accuracy, showing that carrying additions were more error prone than non-carrying ones for both groups, although the difference non-carrying minus carrying was larger for the HMA group. As for ERPs, a P2 component larger in HMA individuals than in their LMA peers was found both for carrying and non-carrying additions. The P2 was followed by a sustained negative slow wave at parietal positions. Because the negative slow waves are thought to reflect the updating of working memory, these results give support to the relationship among working memory, math performance and math anxiety.Keywords: math anxiety, carrying, working memory, P2
Procedia PDF Downloads 44728903 Intensive Intercultural English Language for Enhanced School Community Engagement: An Exploratory Study Applied to Parents from Language Backgrounds Other Than English in a Regional Australian Primary School
Authors: Ann Dashwood
Abstract:
Using standard Australian English with confidence is a cultural expectation of parents of primary school aged children who want to engage effectively with their children’s teachers and school administration. That confidence in support of their children’s learning at school is seldom experienced by parents whose first language is not English. Sharing language with competence in an intercultural environment is the common denominator for meaningful communication and engagement to occur in a school community. Experience in relevant interactive sessions is known to enhance engagement and participation. The purpose of this paper is to identify interactional settings for which parents who are isolated from the daily use of functional Australian cultural language learned to engage more effectively in their children’s learning at school. The outcomes measured parents’ intercultural engagement with classroom teachers and attention to the school’s administrative procedures. The study used quantitative and qualitative methods. The principles of communicative task-based language learning combined with intercultural communication principles provided the theoretical base for intensive English task-based learning and engagement. The quantitative analysis examined data samples collected by classroom teachers and administrators and parents’ writing samples. Interviews and observations qualitatively informed the study. Currently significant numbers of projects are active in community centres and schools to enhance English language knowledge of parents from Language Backgrounds Other Than English (LBOTE). The study was significant to explore the effects of conducting intensive English with parents of varied English language backgrounds by targeting language use for social interactions in the community, specific engagement in school activities, cultural interaction with teachers and responsiveness to complying with school procedures.Keywords: engagement, intercultural communication, LBOTE, school community
Procedia PDF Downloads 10728902 Part of Speech Tagging Using Statistical Approach for Nepali Text
Authors: Archit Yajnik
Abstract:
Part of Speech Tagging has always been a challenging task in the era of Natural Language Processing. This article presents POS tagging for Nepali text using Hidden Markov Model and Viterbi algorithm. From the Nepali text, annotated corpus training and testing data set are randomly separated. Both methods are employed on the data sets. Viterbi algorithm is found to be computationally faster and accurate as compared to HMM. The accuracy of 95.43% is achieved using Viterbi algorithm. Error analysis where the mismatches took place is elaborately discussed.Keywords: hidden markov model, natural language processing, POS tagging, viterbi algorithm
Procedia PDF Downloads 32728901 Meta-Learning for Hierarchical Classification and Applications in Bioinformatics
Authors: Fabio Fabris, Alex A. Freitas
Abstract:
Hierarchical classification is a special type of classification task where the class labels are organised into a hierarchy, with more generic class labels being ancestors of more specific ones. Meta-learning for classification-algorithm recommendation consists of recommending to the user a classification algorithm, from a pool of candidate algorithms, for a dataset, based on the past performance of the candidate algorithms in other datasets. Meta-learning is normally used in conventional, non-hierarchical classification. By contrast, this paper proposes a meta-learning approach for more challenging task of hierarchical classification, and evaluates it in a large number of bioinformatics datasets. Hierarchical classification is especially relevant for bioinformatics problems, as protein and gene functions tend to be organised into a hierarchy of class labels. This work proposes meta-learning approach for recommending the best hierarchical classification algorithm to a hierarchical classification dataset. This work’s contributions are: 1) proposing an algorithm for splitting hierarchical datasets into new datasets to increase the number of meta-instances, 2) proposing meta-features for hierarchical classification, and 3) interpreting decision-tree meta-models for hierarchical classification algorithm recommendation.Keywords: algorithm recommendation, meta-learning, bioinformatics, hierarchical classification
Procedia PDF Downloads 31428900 Assessing the Impact of Additional Information during Motor Preparation in Lane Change Task
Authors: Nikita Rajendra Sharma, Jai Prakash Kushvah, Gerhard Rinkenauer
Abstract:
Driving a car is a discrete aiming movement in which drivers aim at successful extraction of relevant information and elimination of potentially distracting one. It is the motor preparation which enables one to react to certain stimuli onsite by allowing perceptual process for optimal adjustment. Drivers prepare their responses according to the available resources of advanced and ongoing information to drive efficiently. It requires constant programming and reprogramming of the motor system. The reaction time (RT) is shorter when a response signal is preceded by a warning signal. The reason behind this reduced time in responding to targets is that the warning signal causes the participant to prepare for the upcoming response by updating the motor program before the execution. While performing the primary task of changing lanes while driving, the simultaneous occurrence of additional information during the presentation of cues (congruent or incongruent with respect to target cue) might impact the motor preparation and execution. The presence of additional information (other than warning or response signal) between warning signal and imperative stimulus influences human motor preparation to a reasonable extent. The present study was aimed to assess the impact of congruent and incongruent additional information (with respect to imperative stimulus) on driving performance (reaction time, steering wheel amplitude, and steering wheel duration) during a lane change task. implementing movement pre-cueing paradigm. 22 young valid car-drivers (Mage = 24.1+/- 3.21 years, M = 10, F = 12, age-range 21-33 years) participated in the study. The study revealed that additional information influenced the overall driving performance as potential distractors and relevant information. Findings suggest that the events of additional information relatively influenced the reaction time and steering wheel angle as potential distractor or irrelevant information. Participants took longer to respond, and higher steering wheel angles were reported for targets coupled with additional information in comparison with warning signs preceded by potential distractors and the participants' response time was more for a higher number of lanes (2 Lanes > 1 Lane). The same additional information appearing interchangeably at warning signals and targets worked as relevant information facilitating the motor programming in the trails where they were congruent with the direction of lane change direction.Keywords: additional information, lane change task, motor preparation, movement pre-cueing, reaction time, steering wheel amplitude
Procedia PDF Downloads 19128899 A Comparative and Critical Analysis of Some Routing Protocols in Wireless Sensor Networks
Authors: Ishtiaq Wahid, Masood Ahmad, Nighat Ayub, Sajad Ali
Abstract:
Lifetime of a wireless sensor network (WSN) is directly proportional to the energy consumption of its constituent nodes. Routing in wireless sensor network is very challenging due its inherit characteristics. In hierarchal routing the sensor filed is divided into clusters. The cluster-heads are selected from each cluster, which forms a hierarchy of nodes. The cluster-heads are used to transmit the data to the base station while other nodes perform the sensing task. In this way the lifetime of the network is increased. In this paper a comparative study of hierarchal routing protocols are conducted. The simulation is done in NS-2 for validation.Keywords: WSN, cluster, routing, sensor networks
Procedia PDF Downloads 47928898 The Role of Self-Regulation and Assessment Feedback on Creative Performance
Authors: Sylvie Studente, Filia J. Garivaldis
Abstract:
The emotions and cognitions that underpin creative performance have been of interest for decades if not centuries, however, research evidence has still not conclusively offered reliable predictors of creativity. It is unclear whether stressors are detrimental to creative thinking, or whether some stress imposes necessary constraints to facilitate the creative process. The present research aims to examine the role of individual differences in self-regulation in influencing the links between emotions, cognitions, and creativity. Self-regulation is the capacity to disengage from moods that inhibit goal progress, and cope with failure, focus on impending intentions, and enhance the intrinsic appeal of tasks. Therefore, it is anticipated that individuals with an intuitive ability in self-regulation are able to harness their emotions and cognitions, to perform well on a creative task. In contrast, individuals with a deficiency in self-regulation will experience difficulty in such a task. Furthermore, stress in the form of positive and negative assessment feedback in the context of education will be manipulated to explore the interactive effects of environmental and individual difference factors on creative performance. The results will provide insight into the underlying factors associated with emotions and creativity, and inform future research in individual differences in cognition and emotion, and environmental triggers of creativity.Keywords: creativity, feedback, self-regulation, stress
Procedia PDF Downloads 47428897 Scientific Linux Cluster for BIG-DATA Analysis (SLBD): A Case of Fayoum University
Authors: Hassan S. Hussein, Rania A. Abul Seoud, Amr M. Refaat
Abstract:
Scientific researchers face in the analysis of very large data sets that is increasing noticeable rate in today’s and tomorrow’s technologies. Hadoop and Spark are types of software that developed frameworks. Hadoop framework is suitable for many Different hardware platforms. In this research, a scientific Linux cluster for Big Data analysis (SLBD) is presented. SLBD runs open source software with large computational capacity and high performance cluster infrastructure. SLBD composed of one cluster contains identical, commodity-grade computers interconnected via a small LAN. SLBD consists of a fast switch and Gigabit-Ethernet card which connect four (nodes). Cloudera Manager is used to configure and manage an Apache Hadoop stack. Hadoop is a framework allows storing and processing big data across the cluster by using MapReduce algorithm. MapReduce algorithm divides the task into smaller tasks which to be assigned to the network nodes. Algorithm then collects the results and form the final result dataset. SLBD clustering system allows fast and efficient processing of large amount of data resulting from different applications. SLBD also provides high performance, high throughput, high availability, expandability and cluster scalability.Keywords: big data platforms, cloudera manager, Hadoop, MapReduce
Procedia PDF Downloads 35828896 Investigating the Causes of Human Error-Induced Incidents in the Maintenance Operations of Petrochemical Industry by Using Human Factors Analysis and Classification System
Authors: Omid Kalatpour, Mohammadreza Ajdari
Abstract:
This article studied the possible causes of human error-induced incidents in the petrochemical industry maintenance activities by using Human Factors Analysis and Classification System (HFACS). The purpose of the study was anticipating and identifying these causes and proposing corrective and preventive actions. Maintenance department in a petrochemical company was selected for research. A checklist of human error-induced incidents was developed based on four HFACS main levels and nineteen sub-groups. Hierarchical task analysis (HTA) technique was used to identify maintenance activities and tasks. The main causes of possible incidents were identified by checklist and recorded. Corrective and preventive actions were defined depending on priority. Analyzing the worksheets of 444 activities in four levels of HFACS showed 37.6% of the causes were at the level of unsafe actions, 27.5% at the level of unsafe supervision, 20.9% at the level of preconditions for unsafe acts and 14% of the causes were at the level of organizational effects. The HFACS sub-groups showed errors (24.36%) inadequate supervision (14.89%) and violations (13.26%) with the most frequency. According to findings of this study, increasing the training effectiveness of operators and supervision improvement respectively are the most important measures in decreasing the human error-induced incidents in petrochemical industry maintenance.Keywords: human error, petrochemical industry, maintenance, HFACS
Procedia PDF Downloads 24228895 Lexical-Semantic Deficits in Sinhala Speaking Persons with Post Stroke Aphasia: Evidence from Single Word Auditory Comprehension Task
Authors: D. W. M. S. Samarathunga, Isuru Dharmarathne
Abstract:
In aphasia, various levels of symbolic language processing (semantics) are affected. It is shown that Persons with Aphasia (PWA) often experience more problems comprehending some categories of words than others. The study aimed to determine lexical semantic deficits seen in Auditory Comprehension (AC) and to describe lexical-semantic deficits across six selected word categories. Thirteen (n =13) persons diagnosed with post-stroke aphasia (PSA) were recruited to perform an AC task. Foods, objects, clothes, vehicles, body parts and animals were selected as the six categories. As the test stimuli, black and white line drawings were adapted from a picture set developed for semantic studies by Snodgrass and Vanderwart. A pilot study was conducted with five (n=5) healthy nonbrain damaged Sinhala speaking adults to decide familiarity and applicability of the test material. In the main study, participants were scored based on the accuracy and number of errors shown. The results indicate similar trends of lexical semantic deficits identified in the literature confirming ‘animals’ to be the easiest category to comprehend. Mann-Whitney U test was performed to determine the association between the selected variables and the participants’ performance on AC task. No statistical significance was found between the errors and the type of aphasia reflecting similar patterns described in aphasia literature in other languages. The current study indicates the presence of selectivity of lexical semantic deficits in AC and a hierarchy was developed based on the complexity of the categories to comprehend by Sinhala speaking PWA, which might be clinically beneficial when improving language skills of Sinhala speaking persons with post-stroke aphasia. However, further studies on aphasia should be conducted with larger samples for a longer period to study deficits in Sinhala and other Sri Lankan languages (Tamil and Malay).Keywords: aphasia, auditory comprehension, selective lexical-semantic deficits, semantic categories
Procedia PDF Downloads 25328894 The Role of Arousal in Time Perception: Implications for Emotional Driving
Authors: Ewa Siedlecka
Abstract:
Emotional stress is an important risk factor in the rate and severity of traffic accidents. Moreover, incorrect time perception is implicated in the increase of traffic violations, such as running red lights or collisions. While the role of emotional arousal on perceived time is well-established, the role of physiological arousal in time perception remains unexamined. Specific emotions can be, however, associated with distinct physiological responses. In the current research, two studies examined the role of physiological arousal in time perception. In the first experiment, 41 participants engaged in a cold pressor task and had their time perception measured throughout the experiment. In the second study, 138 participants engaged in either isometric or deep breathing exercises. These activities were designed to simulate the sympathetic and parasympathetic nervous systems, respectively. Participants completed a bisection task to measure time perception in both studies, as well as a physiological response via an Electrocardiography (ECG). Results found that activation of the parasympathetic nervous system is associated with greater time perception. These findings are discussed with reference to models of time perception, as well as implications for emotional driving and misperceptions of speed. It is important to consider the role of physiology in the misperception of time, as these factors can lead to increases in driving accidents.Keywords: emotions, nervous system, physiology, time perception
Procedia PDF Downloads 32428893 F-VarNet: Fast Variational Network for MRI Reconstruction
Authors: Omer Cahana, Maya Herman, Ofer Levi
Abstract:
Magnetic resonance imaging (MRI) is a long medical scan that stems from a long acquisition time. This length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach, such as compress sensing (CS) or parallel imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. In order to achieve that, two properties have to exist: i) the signal must be sparse under a known transform domain, ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm needs to be applied to recover the signal. While the rapid advance in the deep learning (DL) field, which has demonstrated tremendous successes in various computer vision task’s, the field of MRI reconstruction is still in an early stage. In this paper, we present an extension of the state-of-the-art model in MRI reconstruction -VarNet. We utilize VarNet by using dilated convolution in different scales, which extends the receptive field to capture more contextual information. Moreover, we simplified the sensitivity map estimation (SME), for it holds many unnecessary layers for this task. Those improvements have shown significant decreases in computation costs as well as higher accuracy.Keywords: MRI, deep learning, variational network, computer vision, compress sensing
Procedia PDF Downloads 16128892 Memory-Guided Oculomotor Task in High School Football Players with ADHD, Post-Concussive Injuries, and Controls
Authors: B. McGovern, J. F. Luck, A. Gade, I. V. Lake, D. O’Connell, H. C. Cutcliffe, K. P. Shah, E. E. Ginalis, C. M. Lambert, N. Christian, J. R. Kait, A. W. Yu, C. P. Eckersley, C. R. Bass
Abstract:
Mild traumatic brain injury (mTBI) in the form of post-concussive injuries and attention deficit / hyperactivity disorder (ADHD) share similar cognitive impairments, including impaired working memory and executive function. The memory-guided oculomotor task separates working memory and inhibitory components to provide further information on the nature of these deficits in each pathology. Eleven subjects with ADHD, fifteen control subjects, and ten subjects with recent concussive injury were matched on age, gender, and education (all high school-age males). Eye movements were recorded during memory-guided oculomotor tasks with varying delays using EyeLink 1000 (SR Research). The percentage of premature saccades and the latency of correct response are the analyzed measures for response inhibition and working memory, respectively. No significant differences were found in latencies between controls subjects and subjects with ADHD or post-concussive injuries, in accordance with previous studies. Subjects with ADHD and post-concussive injuries both demonstrated a trend of increased percentages of premature saccades compared to control subjects in the same oculomotor task. This trend reached statistical significance between the post-concussive and control groups (p < 0.05). These findings support the primary nature of the executive function deficits in response inhibition in ADHD and mTBI. The interpretation of results is limited by the small sample size and the exploratory nature of the study. Further investigation into oculomotor performance differences in mTBI and ADHD may help in differentiating these pathologies in consequent diagnoses and provide insight into the interaction of these deficits in mTBI.Keywords: attention deficit / hyperactivity disorder (ADHD), concussion, diagnosis, oculomotor, pediatrics
Procedia PDF Downloads 29928891 DGA Data Interpretation Using Extension Theory for Power Transformer Diagnostics
Authors: O. P. Rahi, Manoj Kumar
Abstract:
Power transformers are essential and expensive equipments in electrical power system. Dissolved gas analysis (DGA) is one of the most useful techniques to detect incipient faults in power transformers. However, the identification of the faulted location by conventional method is not always an easy task due to variability of gas data and operational variables. In this paper, an extension theory based power transformer fault diagnosis method is presented. Extension theory tries to solve contradictions and incompatibility problems. This paper first briefly introduces the basic concept of matter element theory, establishes the matter element models for three-ratio method, and then briefly discusses extension set theory. Detailed analysis is carried out on the extended relation function (ERF) adopted in this paper for transformer fault diagnosis. The detailed diagnosing steps are offered. Simulation proves that the proposed method can overcome the drawbacks of the conventional three-ratio method, such as no matching and failure to diagnose multi-fault. It enhances diagnosing accuracy.Keywords: DGA, extension theory, ERF, fault diagnosis power transformers, fault diagnosis, fuzzy logic
Procedia PDF Downloads 412