Search results for: swarm optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3292

Search results for: swarm optimization

2932 Elitist Self-Adaptive Step-Size Search in Optimum Sizing of Steel Structures

Authors: Oğuzhan Hasançebi, Saeid Kazemzadeh Azad

Abstract:

This paper covers application of an elitist selfadaptive
step-size search (ESASS) to optimum design of steel
skeletal structures. In the ESASS two approaches are considered for
improving the convergence accuracy as well as the computational
efficiency of the original technique namely the so called selfadaptive
step-size search (SASS). Firstly, an additional randomness
is incorporated into the sampling step of the technique to preserve
exploration capability of the algorithm during the optimization.
Moreover, an adaptive sampling scheme is introduced to improve the
quality of final solutions. Secondly, computational efficiency of the
technique is accelerated via avoiding unnecessary analyses during the
optimization process using an upper bound strategy. The numerical
results demonstrate the usefulness of the ESASS in the sizing
optimization problems of steel truss and frame structures.

Keywords: structural design optimization, optimal sizing, metaheuristics, self-adaptive step-size search, steel trusses, steel frames

Procedia PDF Downloads 375
2931 Topology Enhancement of a Straight Fin Using a Porous Media Computational Fluid Dynamics Simulation Approach

Authors: S. Wakim, M. Nemer, B. Zeghondy, B. Ghannam, C. Bouallou

Abstract:

Designing the optimal heat exchanger is still an essential objective to be achieved. Parametrical optimization involves the evaluation of the heat exchanger dimensions to find those that best satisfy certain objectives. This method contributes to an enhanced design rather than an optimized one. On the contrary, topology optimization finds the optimal structure that satisfies the design objectives. The huge development in metal additive manufacturing allowed topology optimization to find its way into engineering applications especially in the aerospace field to optimize metal structures. Using topology optimization in 3d heat and mass transfer problems requires huge computational time, therefore coupling it with CFD simulations can reduce this it. However, existed CFD models cannot be coupled with topology optimization. The CFD model must allow creating a uniform mesh despite the initial geometry complexity and also to swap the cells from fluid to solid and vice versa. In this paper, a porous media approach compatible with topology optimization criteria is developed. It consists of modeling the fluid region of the heat exchanger as porous media having high porosity and similarly the solid region is modeled as porous media having low porosity. The switching from fluid to solid cells required by topology optimization is simply done by changing each cell porosity using a user defined function. This model is tested on a plate and fin heat exchanger and validated by comparing its results to experimental data and simulations results. Furthermore, this model is used to perform a material reallocation based on local criteria to optimize a plate and fin heat exchanger under a constant heat duty constraint. The optimized fin uses 20% fewer materials than the first while the pressure drop is reduced by about 13%.

Keywords: computational methods, finite element method, heat exchanger, porous media, topology optimization

Procedia PDF Downloads 154
2930 Estimating View-Through Ad Attribution from User Surveys Using Convex Optimization

Authors: Yuhan Lin, Rohan Kekatpure, Cassidy Yeung

Abstract:

In Digital Marketing, robust quantification of View-through attribution (VTA) is necessary for evaluating channel effectiveness. VTA occurs when a product purchase is aided by an Ad but without an explicit click (e.g. a TV ad). A lack of a tracking mechanism makes VTA estimation challenging. Most prevalent VTA estimation techniques rely on post-purchase in-product user surveys. User surveys enable the calculation of channel multipliers, which are the ratio of the view-attributed to the click-attributed purchases of each marketing channel. Channel multipliers thus provide a way to estimate the unknown VTA for a channel from its known click attribution. In this work, we use Convex Optimization to compute channel multipliers in a way that enables a mathematical encoding of the expected channel behavior. Large fluctuations in channel attributions often result from overfitting the calculations to user surveys. Casting channel attribution as a Convex Optimization problem allows an introduction of constraints that limit such fluctuations. The result of our study is a distribution of channel multipliers across the entire marketing funnel, with important implications for marketing spend optimization. Our technique can be broadly applied to estimate Ad effectiveness in a privacy-centric world that increasingly limits user tracking.

Keywords: digital marketing, survey analysis, operational research, convex optimization, channel attribution

Procedia PDF Downloads 199
2929 Key Parameters Analysis of the Stirring Systems in the Optmization Procedures

Authors: T. Gomes, J. Manzi

Abstract:

The inclusion of stirring systems in the calculation and optimization procedures has been undergone a significant lack of attention, what it can reflect in the results because such systems provide an additional energy to the process, besides promote a better distribution of mass and energy. This is meaningful for the reactive systems, particularly for the Continuous Stirred Tank Reactor (CSTR), for which the key variables and parameters, as well as the operating conditions of stirring systems, can play a pivotal role and it has been showed in the literature that neglect these factors can lead to sub-optimal results. It is also well known that the sole use of the First Law of Thermodynamics as an optimization tool cannot yield satisfactory results, since the joint use of the First and Second Laws condensed into a procedure so-called entropy generation minimization (EGM) has shown itself able to drive the system towards better results. Therefore, the main objective of this paper is to determine the effects of key parameters of the stirring system in the optimization procedures by means of EGM applied to the reactive systems. Such considerations have been possible by dimensional analysis according to Rayleigh and Buckingham's method, which takes into account the physical and geometric parameters and the variables of the reactive system. For the simulation purpose based on the production of propylene glycol, the results have shown a significant increase in the conversion rate from 36% (not-optimized system) to 95% (optimized system) with a consequent reduction of by-products. In addition, it has been possible to establish the influence of the work of the stirrer in the optimization procedure, in which can be described as a function of the fluid viscosity and consequently of the temperature. The conclusions to be drawn also indicate that the use of the entropic analysis as optimization tool has been proved to be simple, easy to apply and requiring low computational effort.

Keywords: stirring systems, entropy, reactive system, optimization

Procedia PDF Downloads 245
2928 On Multiobjective Optimization to Improve the Scalability of Fog Application Deployments Using Fogtorch

Authors: Suleiman Aliyu

Abstract:

Integrating IoT applications with Fog systems presents challenges in optimization due to diverse environments and conflicting objectives. This study explores achieving Pareto optimal deployments for Fog-based IoT systems to address growing QoS demands. We introduce Pareto optimality to balance competing performance metrics. Using the FogTorch optimization framework, we propose a hybrid approach (Backtracking search with branch and bound) for scalable IoT deployments. Our research highlights the advantages of Pareto optimality over single-objective methods and emphasizes the role of FogTorch in this context. Initial results show improvements in IoT deployment cost in Fog systems, promoting resource-efficient strategies.

Keywords: pareto optimality, fog application deployment, resource allocation, internet of things

Procedia PDF Downloads 88
2927 New Machine Learning Optimization Approach Based on Input Variables Disposition Applied for Time Series Prediction

Authors: Hervice Roméo Fogno Fotsoa, Germaine Djuidje Kenmoe, Claude Vidal Aloyem Kazé

Abstract:

One of the main applications of machine learning is the prediction of time series. But a more accurate prediction requires a more optimal model of machine learning. Several optimization techniques have been developed, but without considering the input variables disposition of the system. Thus, this work aims to present a new machine learning architecture optimization technique based on their optimal input variables disposition. The validations are done on the prediction of wind time series, using data collected in Cameroon. The number of possible dispositions with four input variables is determined, i.e., twenty-four. Each of the dispositions is used to perform the prediction, with the main criteria being the training and prediction performances. The results obtained from a static architecture and a dynamic architecture of neural networks have shown that these performances are a function of the input variable's disposition, and this is in a different way from the architectures. This analysis revealed that it is necessary to take into account the input variable's disposition for the development of a more optimal neural network model. Thus, a new neural network training algorithm is proposed by introducing the search for the optimal input variables disposition in the traditional back-propagation algorithm. The results of the application of this new optimization approach on the two single neural network architectures are compared with the previously obtained results step by step. Moreover, this proposed approach is validated in a collaborative optimization method with a single objective optimization technique, i.e., genetic algorithm back-propagation neural networks. From these comparisons, it is concluded that each proposed model outperforms its traditional model in terms of training and prediction performance of time series. Thus the proposed optimization approach can be useful in improving the accuracy of time series forecasts. This proves that the proposed optimization approach can be useful in improving the accuracy of time series prediction based on machine learning.

Keywords: input variable disposition, machine learning, optimization, performance, time series prediction

Procedia PDF Downloads 109
2926 Study on Optimization Design of Pressure Hull for Underwater Vehicle

Authors: Qasim Idrees, Gao Liangtian, Liu Bo, Miao Yiran

Abstract:

In order to improve the efficiency and accuracy of the pressure hull structure, optimization of underwater vehicle based on response surface methodology, a method for optimizing the design of pressure hull structure was studied. To determine the pressure shell of five dimensions as a design variable, the application of thin shell theory and the Chinese Classification Society (CCS) specification was carried on the preliminary design. In order to optimize variables of the feasible region, different methods were studied and implemented such as Opt LHD method (to determine the design test sample points in the feasible domain space), parametric ABAQUS solution for each sample point response, and the two-order polynomial response for the surface model of the limit load of structures. Based on the ultimate load of the structure and the quality of the shell, the two-generation genetic algorithm was used to solve the response surface, and the Pareto optimal solution set was obtained. The final optimization result was 41.68% higher than that of the initial design, and the shell quality was reduced by about 27.26%. The parametric method can ensure the accuracy of the test and improve the efficiency of optimization.

Keywords: parameterization, response surface, structure optimization, pressure hull

Procedia PDF Downloads 233
2925 Grid Computing for Multi-Objective Optimization Problems

Authors: Aouaouche Elmaouhab, Hassina Beggar

Abstract:

Solving multi-objective discrete optimization applications has always been limited by the resources of one machine: By computing power or by memory, most often both. To speed up the calculations, the grid computing represents a primary solution for the treatment of these applications through the parallelization of these resolution methods. In this work, we are interested in the study of some methods for solving multiple objective integer linear programming problem based on Branch-and-Bound and the study of grid computing technology. This study allowed us to propose an implementation of the method of Abbas and Al on the grid by reducing the execution time. To enhance our contribution, the main results are presented.

Keywords: multi-objective optimization, integer linear programming, grid computing, parallel computing

Procedia PDF Downloads 486
2924 Advancements in Mathematical Modeling and Optimization for Control, Signal Processing, and Energy Systems

Authors: Zahid Ullah, Atlas Khan

Abstract:

This abstract focuses on the advancements in mathematical modeling and optimization techniques that play a crucial role in enhancing the efficiency, reliability, and performance of these systems. In this era of rapidly evolving technology, mathematical modeling and optimization offer powerful tools to tackle the complex challenges faced by control, signal processing, and energy systems. This abstract presents the latest research and developments in mathematical methodologies, encompassing areas such as control theory, system identification, signal processing algorithms, and energy optimization. The abstract highlights the interdisciplinary nature of mathematical modeling and optimization, showcasing their applications in a wide range of domains, including power systems, communication networks, industrial automation, and renewable energy. It explores key mathematical techniques, such as linear and nonlinear programming, convex optimization, stochastic modeling, and numerical algorithms, that enable the design, analysis, and optimization of complex control and signal processing systems. Furthermore, the abstract emphasizes the importance of addressing real-world challenges in control, signal processing, and energy systems through innovative mathematical approaches. It discusses the integration of mathematical models with data-driven approaches, machine learning, and artificial intelligence to enhance system performance, adaptability, and decision-making capabilities. The abstract also underscores the significance of bridging the gap between theoretical advancements and practical applications. It recognizes the need for practical implementation of mathematical models and optimization algorithms in real-world systems, considering factors such as scalability, computational efficiency, and robustness. In summary, this abstract showcases the advancements in mathematical modeling and optimization techniques for control, signal processing, and energy systems. It highlights the interdisciplinary nature of these techniques, their applications across various domains, and their potential to address real-world challenges. The abstract emphasizes the importance of practical implementation and integration with emerging technologies to drive innovation and improve the performance of control, signal processing, and energy.

Keywords: mathematical modeling, optimization, control systems, signal processing, energy systems, interdisciplinary applications, system identification, numerical algorithms

Procedia PDF Downloads 112
2923 Size Reduction of Images Using Constraint Optimization Approach for Machine Communications

Authors: Chee Sun Won

Abstract:

This paper presents the size reduction of images for machine-to-machine communications. Here, the salient image regions to be preserved include the image patches of the key-points such as corners and blobs. Based on a saliency image map from the key-points and their image patches, an axis-aligned grid-size optimization is proposed for the reduction of image size. To increase the size-reduction efficiency the aspect ratio constraint is relaxed in the constraint optimization framework. The proposed method yields higher matching accuracy after the size reduction than the conventional content-aware image size-reduction methods.

Keywords: image compression, image matching, key-point detection and description, machine-to-machine communication

Procedia PDF Downloads 418
2922 Optimization of Process Parameters in Wire Electrical Discharge Machining of Inconel X-750 for Dimensional Deviation Using Taguchi Technique

Authors: Mandeep Kumar, Hari Singh

Abstract:

The effective optimization of machining process parameters affects dramatically the cost and production time of machined components as well as the quality of the final products. This paper presents the optimization aspects of a Wire Electrical Discharge Machining operation using Inconel X-750 as work material. The objective considered in this study is minimization of the dimensional deviation. Six input process parameters of WEDM namely spark gap voltage, pulse-on time, pulse-off time, wire feed rate, peak current and wire tension, were chosen as variables to study the process performance. Taguchi's design of experiments methodology has been used for planning and designing the experiments. The analysis of variance was carried out for raw data as well as for signal to noise ratio. Four input parameters and one two-factor interaction have been found to be statistically significant for their effects on the response of interest. The confirmation experiments were also performed for validating the predicted results.

Keywords: ANOVA, DOE, inconel, machining, optimization

Procedia PDF Downloads 204
2921 Optimization of Hybrid off Grid Energy Station

Authors: Yehya Abdellatif, Iyad M. Muslih, Azzah Alkhalailah, Abdallah Muslih

Abstract:

Hybrid Optimization Model for Electric Renewable (HOMER) software was utilized to find the optimum design of a hybrid off-Grid system, by choosing the optimal solution depending on the cost analysis of energy based on different capacity shortage percentages. A complete study for the site conditions and load profile was done to optimize the design and implementation of a hybrid off-grid power station. In addition, the solution takes into consecration the ambient temperature effect on the efficiency of the power generation and the economical aspects of selection depending on real market price. From the analysis of the HOMER model results, the optimum hybrid power station was suggested, based on wind speed, and solar conditions. The optimization function objective is to minimize the Net Price Cost (NPC) and the Cost of Energy (COE) with zero and 10 percentage of capacity shortage.

Keywords: energy modeling, HOMER, off-grid system, optimization

Procedia PDF Downloads 563
2920 Single Pole-To-Earth Fault Detection and Location on the Tehran Railway System Using ICA and PSO Trained Neural Network

Authors: Masoud Safarishaal

Abstract:

Detecting the location of pole-to-earth faults is essential for the safe operation of the electrical system of the railroad. This paper aims to use a combination of evolutionary algorithms and neural networks to increase the accuracy of single pole-to-earth fault detection and location on the Tehran railroad power supply system. As a result, the Imperialist Competitive Algorithm (ICA) and Particle Swarm Optimization (PSO) are used to train the neural network to improve the accuracy and convergence of the learning process. Due to the system's nonlinearity, fault detection is an ideal application for the proposed method, where the 600 Hz harmonic ripple method is used in this paper for fault detection. The substations were simulated by considering various situations in feeding the circuit, the transformer, and typical Tehran metro parameters that have developed the silicon rectifier. Required data for the network learning process has been gathered from simulation results. The 600Hz component value will change with the change of the location of a single pole to the earth's fault. Therefore, 600Hz components are used as inputs of the neural network when fault location is the output of the network system. The simulation results show that the proposed methods can accurately predict the fault location.

Keywords: single pole-to-pole fault, Tehran railway, ICA, PSO, artificial neural network

Procedia PDF Downloads 123
2919 Trajectory Optimization of Re-Entry Vehicle Using Evolutionary Algorithm

Authors: Muhammad Umar Kiani, Muhammad Shahbaz

Abstract:

Performance of any vehicle can be predicted by its design/modeling and optimization. Design optimization leads to efficient performance. Followed by horizontal launch, the air launch re-entry vehicle undergoes a launch maneuver by introducing a carefully selected angle of attack profile. This angle of attack profile is the basic element to complete a specified mission. Flight program of said vehicle is optimized under the constraints of the maximum allowed angle of attack, lateral and axial loads and with the objective of reaching maximum altitude. The main focus of this study is the endo-atmospheric phase of the ascent trajectory. A three degrees of freedom trajectory model is simulated in MATLAB. The optimization process uses evolutionary algorithm, because of its robustness and efficient capacity to explore the design space in search of the global optimum. Evolutionary Algorithm based trajectory optimization also offers the added benefit of being a generalized method that may work with continuous, discontinuous, linear, and non-linear performance matrix. It also eliminates the requirement of a starting solution. Optimization is particularly beneficial to achieve maximum advantage without increasing the computational cost and affecting the output of the system. For the case of launch vehicles we are immensely anxious to achieve maximum performance and efficiency under different constraints. In a launch vehicle, flight program means the prescribed variation of vehicle pitching angle during the flight which has substantial influence reachable altitude and accuracy of orbit insertion and aerodynamic loading. Results reveal that the angle of attack profile significantly affects the performance of the vehicle.

Keywords: endo-atmospheric, evolutionary algorithm, efficient performance, optimization process

Procedia PDF Downloads 405
2918 Optimization of the Structural Design for an Irregular Building in High Seismicity Zone

Authors: Arias Fernando, Juan Bojórquez, Edén Bojórquez, Alfredo Reyes-Salazar, Fernando de J. Velarde, Robespierre Chávez, J. Martin Leal, Victor Baca

Abstract:

The present study focuses on the optimization of different structural systems employed in tall steel buildings, with a specific focus on the city of Acapulco, Guerrero, a region known for its high seismic activity. Using the spectral modal method, analyses were conducted to assess the ability of these buildings to withstand seismic forces and other external loads. After performing a detailed analysis of various models, the results were compared based on various engineering parameters, including maximum interstory drift, base shear, displacements, and the total weight of the structures, the latter being considered as an estimate of the cost of the proposed systems. The findings of this study indicate that steel frames stand out as a viable option for tall buildings in question. However, areas of potential improvement were identified, suggesting opportunities for further optimization of the design and seismic resistance of these structures. This study provides a deep and insightful perspective on the optimization of structural systems in tall steel buildings, offering valuable information for engineers and professionals in the field involved in similar projects.

Keywords: high seismic zone, irregular buildings, optimization design, steel buildings

Procedia PDF Downloads 24
2917 Reliability Based Topology Optimization: An Efficient Method for Material Uncertainty

Authors: Mehdi Jalalpour, Mazdak Tootkaboni

Abstract:

We present a computationally efficient method for reliability-based topology optimization under material properties uncertainty, which is assumed to be lognormally distributed and correlated within the domain. Computational efficiency is achieved through estimating the response statistics with stochastic perturbation of second order, using these statistics to fit an appropriate distribution that follows the empirical distribution of the response, and employing an efficient gradient-based optimizer. The proposed algorithm is utilized for design of new structures and the changes in the optimized topology is discussed for various levels of target reliability and correlation strength. Predictions were verified thorough comparison with results obtained using Monte Carlo simulation.

Keywords: material uncertainty, stochastic perturbation, structural reliability, topology optimization

Procedia PDF Downloads 605
2916 Experimental Investigation and Optimization of Nanoparticle Mass Concentration and Heat Input of Loop Heat Pipe

Authors: P. Gunnasegaran, M. Z. Abdullah, M. Z. Yusoff, Nur Irmawati

Abstract:

This study presents experimental and optimization of nanoparticle mass concentration and heat input based on the total thermal resistance (Rth) of loop heat pipe (LHP), employed for PC-CPU cooling. In this study, silica nanoparticles (SiO2) in water with particle mass concentration ranged from 0% (pure water) to 1% is considered as the working fluid within the LHP. The experimental design and optimization is accomplished by the design of the experimental tool, Response Surface Methodology (RSM). The results show that the nanoparticle mass concentration and the heat input have a significant effect on the Rth of LHP. For a given heat input, the Rth is found to decrease with the increase of the nanoparticle mass concentration up to 0.5% and increased thereafter. It is also found that the Rth is decreased when the heat input is increased from 20W to 60W. The results are optimized with the objective of minimizing the Rt, using Design-Expert software, and the optimized nanoparticle mass concentration and heat input are 0.48% and 59.97W, respectively, the minimum thermal resistance being 2.66(ºC/W).

Keywords: loop heat pipe, nanofluid, optimization, thermal resistance

Procedia PDF Downloads 461
2915 Transformer Design Optimization Using Artificial Intelligence Techniques

Authors: Zakir Husain

Abstract:

Main objective of a power transformer design optimization problem requires minimizing the total overall cost and/or mass of the winding and core material by satisfying all possible constraints obligatory by the standards and transformer user requirement. The constraints include appropriate limits on winding fill factor, temperature rise, efficiency, no-load current and voltage regulation. The design optimizations tasks are a constrained minimum cost and/or mass solution by optimally setting the parameters, geometry and require magnetic properties of the transformer. In this paper, present the above design problems have been formulated by using genetic algorithm (GA) and simulated annealing (SA) on the MATLAB platform. The importance of the presented approach is stems for two main features. First, proposed technique provides reliable and efficient solution for the problem of design optimization with several variables. Second, it guaranteed to obtained solution is global optimum. This paper includes a demonstration of the application of the genetic programming GP technique to transformer design.

Keywords: optimization, power transformer, genetic algorithm (GA), simulated annealing technique (SA)

Procedia PDF Downloads 583
2914 Optimal Design of Concrete Shells by Modified Particle Community Algorithm Using Spinless Curves

Authors: Reza Abbasi, Ahmad Hamidi Benam

Abstract:

Shell structures have many geometrical variables that modify some of these parameters to improve the mechanical behavior of the shell. On the other hand, the behavior of such structures depends on their geometry rather than on mass. Optimization techniques are useful in finding the geometrical shape of shell structures to improve mechanical behavior, especially to prevent or reduce bending anchors. The overall objective of this research is to optimize the shape of concrete shells using the thickness and height parameters along the reference curve and the overall shape of this curve. To implement the proposed scheme, the geometry of the structure was formulated using nonlinear curves. Shell optimization was performed under equivalent static loading conditions using the modified bird community algorithm. The results of this optimization show that without disrupting the initial design and with slight changes in the shell geometry, the structural behavior is significantly improved.

Keywords: concrete shells, shape optimization, spinless curves, modified particle community algorithm

Procedia PDF Downloads 231
2913 Optimization of Structures Subjected to Earthquake

Authors: Alireza Lavaei, Alireza Lohrasbi, Mohammadali M. Shahlaei

Abstract:

To reduce the overall time of structural optimization for earthquake loads two strategies are adopted. In the first strategy, a neural system consisting self-organizing map and radial basis function neural networks, is utilized to predict the time history responses. In this case, the input space is classified by employing a self-organizing map neural network. Then a distinct RBF neural network is trained in each class. In the second strategy, an improved genetic algorithm is employed to find the optimum design. A 72-bar space truss is designed for optimal weight using exact and approximate analysis for the El Centro (S-E 1940) earthquake loading. The numerical results demonstrate the computational advantages and effectiveness of the proposed method.

Keywords: optimization, genetic algorithm, neural networks, self-organizing map

Procedia PDF Downloads 311
2912 A Reinforcement Learning Based Method for Heating, Ventilation, and Air Conditioning Demand Response Optimization Considering Few-Shot Personalized Thermal Comfort

Authors: Xiaohua Zou, Yongxin Su

Abstract:

The reasonable operation of heating, ventilation, and air conditioning (HVAC) is of great significance in improving the security, stability, and economy of power system operation. However, the uncertainty of the operating environment, thermal comfort varies by users and rapid decision-making pose challenges for HVAC demand response optimization. In this regard, this paper proposes a reinforcement learning-based method for HVAC demand response optimization considering few-shot personalized thermal comfort (PTC). First, an HVAC DR optimization framework based on few-shot PTC model and DRL is designed, in which the output of few-shot PTC model is regarded as the input of DRL. Then, a few-shot PTC model that distinguishes between awake and asleep states is established, which has excellent engineering usability. Next, based on soft actor criticism, an HVAC DR optimization algorithm considering the user’s PTC is designed to deal with uncertainty and make decisions rapidly. Experiment results show that the proposed method can efficiently obtain use’s PTC temperature, reduce energy cost while ensuring user’s PTC, and achieve rapid decision-making under uncertainty.

Keywords: HVAC, few-shot personalized thermal comfort, deep reinforcement learning, demand response

Procedia PDF Downloads 85
2911 A Study on Computational Fluid Dynamics (CFD)-Based Design Optimization Techniques Using Multi-Objective Evolutionary Algorithms (MOEA)

Authors: Ahmed E. Hodaib, Mohamed A. Hashem

Abstract:

In engineering applications, a design has to be as fully perfect as possible in some defined case. The designer has to overcome many challenges in order to reach the optimal solution to a specific problem. This process is called optimization. Generally, there is always a function called “objective function” that is required to be maximized or minimized by choosing input parameters called “degrees of freedom” within an allowed domain called “search space” and computing the values of the objective function for these input values. It becomes more complex when we have more than one objective for our design. As an example for Multi-Objective Optimization Problem (MOP): A structural design that aims to minimize weight and maximize strength. In such case, the Pareto Optimal Frontier (POF) is used, which is a curve plotting two objective functions for the best cases. At this point, a designer should make a decision to choose the point on the curve. Engineers use algorithms or iterative methods for optimization. In this paper, we will discuss the Evolutionary Algorithms (EA) which are widely used with Multi-objective Optimization Problems due to their robustness, simplicity, suitability to be coupled and to be parallelized. Evolutionary algorithms are developed to guarantee the convergence to an optimal solution. An EA uses mechanisms inspired by Darwinian evolution principles. Technically, they belong to the family of trial and error problem solvers and can be considered global optimization methods with a stochastic optimization character. The optimization is initialized by picking random solutions from the search space and then the solution progresses towards the optimal point by using operators such as Selection, Combination, Cross-over and/or Mutation. These operators are applied to the old solutions “parents” so that new sets of design variables called “children” appear. The process is repeated until the optimal solution to the problem is reached. Reliable and robust computational fluid dynamics solvers are nowadays commonly utilized in the design and analyses of various engineering systems, such as aircraft, turbo-machinery, and auto-motives. Coupling of Computational Fluid Dynamics “CFD” and Multi-Objective Evolutionary Algorithms “MOEA” has become substantial in aerospace engineering applications, such as in aerodynamic shape optimization and advanced turbo-machinery design.

Keywords: mathematical optimization, multi-objective evolutionary algorithms "MOEA", computational fluid dynamics "CFD", aerodynamic shape optimization

Procedia PDF Downloads 256
2910 Optimization of the Dam Management to Satisfy the Irrigation Demand: A Case Study in Algeria

Authors: Merouane Boudjerda, Bénina Touaibia, Mustapha K Mihoubi

Abstract:

In Algeria, water resources play a crucial role in economic development. But over the last decades, they are relatively limited and gradually decreasing to the detriment of agriculture. The agricultural irrigation is the primary water consuming sector followed by the domestic and industrial sectors. The research presented in this paper focuses on the optimization of irrigation water demand. Dynamic Programming-Neural Network (DPNN) method is applied to investigate reservoir optimization. The optimal operation rule is formulated to minimize the gap between water release and water irrigation demand. As a case study, Boukerdane dam’s reservoir system in North of Algeria has been selected to examine our proposed optimization model. The application of DPNN method allowed increasing the satisfaction rate (SR) from 34% to 60%. In addition, the operation rule generated showed more reliable and resilience operation for the examined case study.

Keywords: water management, agricultural demand, Boukerdane dam, dynamic programming, artificial neural network

Procedia PDF Downloads 131
2909 Aerodynamic Design an UAV and Stability Analysis with Method of Genetic Algorithm Optimization

Authors: Saul A. Torres Z., Eduardo Liceaga C., Alfredo Arias M.

Abstract:

We seek to develop a UAV for agricultural spraying at a maximum altitude of 5000 meters above sea level, with a payload of 100 liters of fumigant. For the developing the aerodynamic design of the aircraft is using computational tools such as the "Vortex Lattice Athena" software, "MATLAB", "ANSYS FLUENT", "XFoil" package among others. Also methods are being used structured programming, exhaustive analysis of optimization methods and search. The results have a very low margin of error, and the multi-objective problems can be helpful for future developments. Also we developed method for Stability Analysis (Lateral-Directional and Longitudinal).

Keywords: aerodynamics design, optimization, algorithm genetic, multi-objective problem, longitudinal stability, lateral-directional stability

Procedia PDF Downloads 594
2908 Design Optimization of a Compact Quadrupole Electromagnet for CLS 2.0

Authors: Md. Armin Islam, Les Dallin, Mark Boland, W. J. Zhang

Abstract:

This paper reports a study on the optimal magnetic design of a compact quadrupole electromagnet for the Canadian Light Source (CLS 2.0). The nature of the design is to determine a quadrupole with low relative higher order harmonics and better field quality. The design problem was formulated as an optimization model, in which the objective function is the higher order harmonics (multipole errors) and the variable to be optimized is the material distribution on the pole. The higher order harmonics arose in the quadrupole due to truncating the ideal hyperbola at a certain point to make the pole. In this project, the arisen harmonics have been optimized both transversely and longitudinally by adjusting material on the poles in a controlled way. For optimization, finite element analysis (FEA) has been conducted. A better higher order harmonics amplitudes and field quality have been achieved through the optimization. On the basis of the optimized magnetic design, electrical and cooling calculation has been performed for the magnet.

Keywords: drift, electrical, and cooling calculation, integrated field, magnetic field gradient, multipole errors, quadrupole

Procedia PDF Downloads 143
2907 Direct Torque Control of Induction Motor Employing Teaching Learning Based Optimization

Authors: Anam Gopi

Abstract:

The undesired torque and flux ripple may occur in conventional direct torque control (DTC) induction motor drive. DTC can improve the system performance at low speeds by continuously tuning the regulator by adjusting the Kp, Ki values. In this Teaching Learning Based Optimization (TLBO) is proposed to adjust the parameters (Kp, Ki) of the speed controller in order to minimize torque ripple, flux ripple, and stator current distortion. The TLBO based PI controller has resulted is maintaining a constant speed of the motor irrespective of the load torque fluctuations.

Keywords: teaching learning based optimization, direct torque control, PI controller

Procedia PDF Downloads 585
2906 Parallel Gripper Modelling and Design Optimization Using Multi-Objective Grey Wolf Optimizer

Authors: Golak Bihari Mahanta, Bibhuti Bhusan Biswal, B. B. V. L. Deepak, Amruta Rout, Gunji Balamurali

Abstract:

Robots are widely used in the manufacturing industry for rapid production with higher accuracy and precision. With the help of End-of-Arm Tools (EOATs), robots are interacting with the environment. Robotic grippers are such EOATs which help to grasp the object in an automation system for improving the efficiency. As the robotic gripper directly influence the quality of the product due to the contact between the gripper surface and the object to be grasped, it is necessary to design and optimize the gripper mechanism configuration. In this study, geometric and kinematic modeling of the parallel gripper is proposed. Grey wolf optimizer algorithm is introduced for solving the proposed multiobjective gripper optimization problem. Two objective functions developed from the geometric and kinematic modeling along with several nonlinear constraints of the proposed gripper mechanism is used to optimize the design variables of the systems. Finally, the proposed methodology compared with a previously proposed method such as Teaching Learning Based Optimization (TLBO) algorithm, NSGA II, MODE and it was seen that the proposed method is more efficient compared to the earlier proposed methodology.

Keywords: gripper optimization, metaheuristics, , teaching learning based algorithm, multi-objective optimization, optimal gripper design

Procedia PDF Downloads 188
2905 Optimization of Solar Rankine Cycle by Exergy Analysis and Genetic Algorithm

Authors: R. Akbari, M. A. Ehyaei, R. Shahi Shavvon

Abstract:

Nowadays, solar energy is used for energy purposes such as the use of thermal energy for domestic, industrial and power applications, as well as the conversion of the sunlight into electricity by photovoltaic cells. In this study, the thermodynamic simulation of the solar Rankin cycle with phase change material (paraffin) was first studied. Then energy and exergy analyses were performed. For optimization, a single and multi-objective genetic optimization algorithm to maximize thermal and exergy efficiency was used. The parameters discussed in this paper included the effects of input pressure on turbines, input mass flow to turbines, the surface of converters and collector angles on thermal and exergy efficiency. In the organic Rankin cycle, where solar energy is used as input energy, the fluid selection is considered as a necessary factor to achieve reliable and efficient operation. Therefore, silicon oil is selected for a high-temperature cycle and water for a low-temperature cycle as an operating fluid. The results showed that increasing the mass flow to turbines 1 and 2 would increase thermal efficiency, while it reduces and increases the exergy efficiency in turbines 1 and 2, respectively. Increasing the inlet pressure to the turbine 1 decreases the thermal and exergy efficiency, and increasing the inlet pressure to the turbine 2 increases the thermal efficiency and exergy efficiency. Also, increasing the angle of the collector increased thermal efficiency and exergy. The thermal efficiency of the system was 22.3% which improves to 33.2 and 27.2% in single-objective and multi-objective optimization, respectively. Also, the exergy efficiency of the system was 1.33% which has been improved to 1.719 and 1.529% in single-objective and multi-objective optimization, respectively. These results showed that the thermal and exergy efficiency in a single-objective optimization is greater than the multi-objective optimization.

Keywords: exergy analysis, genetic algorithm, rankine cycle, single and multi-objective function

Procedia PDF Downloads 147
2904 Developing Model for Fuel Consumption Optimization in Aviation Industry

Authors: Somesh Kumar Sharma, Sunanad Gupta

Abstract:

The contribution of aviation to society and economy is undisputedly significant. The aviation industry drives economic and social progress by contributing prominently to tourism, commerce and improved quality of life. Identifying the amount of fuel consumed by an aircraft while moving in both airspace and ground networks is critical to air transport economics. Aviation fuel is a major operating cost parameter of the aviation industry and at the same time it is prone to various constraints. This article aims to develop a model for fuel consumption of aviation product. The paper tailors the information for the fuel consumption optimization in terms of information development, information evaluation and information refinement. The information is evaluated and refined using statistical package R and Factor Analysis which is further validated with neural networking. The study explores three primary dimensions which are finally summarized into 23 influencing variables in contrast to 96 variables available in literature. The 23 variables explored in this study should be considered as highly influencing variables for fuel consumption which will contribute significantly towards fuel optimization.

Keywords: fuel consumption, civil aviation industry, neural networking, optimization

Procedia PDF Downloads 340
2903 Multiparametric Optimization of Water Treatment Process for Thermal Power Plants

Authors: Balgaisha Mukanova, Natalya Glazyrina, Sergey Glazyrin

Abstract:

The formulated problem of optimization of the technological process of water treatment for thermal power plants is considered in this article. The problem is of multiparametric nature. To optimize the process, namely, reduce the amount of waste water, a new technology was developed to reuse such water. A mathematical model of the technology of wastewater reuse was developed. Optimization parameters were determined. The model consists of a material balance equation, an equation describing the kinetics of ion exchange for the non-equilibrium case and an equation for the ion exchange isotherm. The material balance equation includes a nonlinear term that depends on the kinetics of ion exchange. A direct problem of calculating the impurity concentration at the outlet of the water treatment plant was numerically solved. The direct problem was approximated by an implicit point-to-point computation difference scheme. The inverse problem was formulated as relates to determination of the parameters of the mathematical model of the water treatment plant operating in non-equilibrium conditions. The formulated inverse problem was solved. Following the results of calculation the time of start of the filter regeneration process was determined, as well as the period of regeneration process and the amount of regeneration and wash water. Multi-parameter optimization of water treatment process for thermal power plants allowed decreasing the amount of wastewater by 15%.

Keywords: direct problem, multiparametric optimization, optimization parameters, water treatment

Procedia PDF Downloads 387