Search results for: spatiotemporal features
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3983

Search results for: spatiotemporal features

3623 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets

Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi

Abstract:

Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.

Keywords: breast cancer, diagnosis, machine learning, biomarker classification, neural network

Procedia PDF Downloads 139
3622 Poli4SDG: An Application for Environmental Crises Management and Gender Support

Authors: Angelica S. Valeriani, Lorenzo Biasiolo

Abstract:

In recent years, the scale of the impact of climate change and its related side effects has become ever more massive and devastating. Sustainable Development Goals (SDGs), promoted by United Nations, aim to front issues related to climate change, among others. In particular, the project CROWD4SDG focuses on a bunch of SDGs since it promotes environmental activities and climate-related issues. In this context, we developed a prototype of an application, under advanced development considering web design, that focuses on SDG 13 (SDG on climate action) by providing users with useful instruments to face environmental crises and climate-related disasters. Our prototype is thought and structured for both web and mobile development. The main goal of the application, POLI4SDG, is to help users to get through emergency services. To this extent, an organized overview and classification prove to be very effective and helpful to people in need. A careful analysis of data related to environmental crises prompted us to integrate the user contribution, i.e., exploiting a core principle of Citizen Science, into the realization of a public catalog, available for consulting and organized according to typology and specific features. In addition, gender equality and opportunity features are considered in the prototype in order to allow women, often the most vulnerable category, to have direct support. The overall description of the application functionalities is detailed. Moreover, the implementation features and properties of the prototype are discussed.

Keywords: crowdsourcing, social media, SDG, climate change, natural disasters, gender equality

Procedia PDF Downloads 114
3621 Data-Driven Market Segmentation in Hospitality Using Unsupervised Machine Learning

Authors: Rik van Leeuwen, Ger Koole

Abstract:

Within hospitality, marketing departments use segmentation to create tailored strategies to ensure personalized marketing. This study provides a data-driven approach by segmenting guest profiles via hierarchical clustering based on an extensive set of features. The industry requires understandable outcomes that contribute to adaptability for marketing departments to make data-driven decisions and ultimately driving profit. A marketing department specified a business question that guides the unsupervised machine learning algorithm. Features of guests change over time; therefore, there is a probability that guests transition from one segment to another. The purpose of the study is to provide steps in the process from raw data to actionable insights, which serve as a guideline for how hospitality companies can adopt an algorithmic approach.

Keywords: hierarchical cluster analysis, hospitality, market segmentation

Procedia PDF Downloads 108
3620 Prediction of Music Track Popularity: A Machine Learning Approach

Authors: Syed Atif Hassan, Luv Mehta, Syed Asif Hassan

Abstract:

Hit song science is a field of investigation wherein machine learning techniques are applied to music tracks in order to extract such features from audio signals which can capture information that could explain the popularity of respective tracks. Record companies invest huge amounts of money into recruiting fresh talents and churning out new music each year. Gaining insight into the basis of why a song becomes popular will result in tremendous benefits for the music industry. This paper aims to extract basic musical and more advanced, acoustic features from songs while also taking into account external factors that play a role in making a particular song popular. We use a dataset derived from popular Spotify playlists divided by genre. We use ten genres (blues, classical, country, disco, hip-hop, jazz, metal, pop, reggae, rock), chosen on the basis of clear to ambiguous delineation in the typical sound of their genres. We feed these features into three different classifiers, namely, SVM with RBF kernel, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model at the end. Predicting song popularity is particularly important for the music industry as it would allow record companies to produce better content for the masses resulting in a more competitive market.

Keywords: classifier, machine learning, music tracks, popularity, prediction

Procedia PDF Downloads 666
3619 Recognition of Cursive Arabic Handwritten Text Using Embedded Training Based on Hidden Markov Models (HMMs)

Authors: Rabi Mouhcine, Amrouch Mustapha, Mahani Zouhir, Mammass Driss

Abstract:

In this paper, we present a system for offline recognition cursive Arabic handwritten text based on Hidden Markov Models (HMMs). The system is analytical without explicit segmentation used embedded training to perform and enhance the character models. Extraction features preceded by baseline estimation are statistical and geometric to integrate both the peculiarities of the text and the pixel distribution characteristics in the word image. These features are modelled using hidden Markov models and trained by embedded training. The experiments on images of the benchmark IFN/ENIT database show that the proposed system improves recognition.

Keywords: recognition, handwriting, Arabic text, HMMs, embedded training

Procedia PDF Downloads 355
3618 Cigarette Smoke Detection Based on YOLOV3

Authors: Wei Li, Tuo Yang

Abstract:

In order to satisfy the real-time and accurate requirements of cigarette smoke detection in complex scenes, a cigarette smoke detection technology based on the combination of deep learning and color features was proposed. Firstly, based on the color features of cigarette smoke, the suspicious cigarette smoke area in the image is extracted. Secondly, combined with the efficiency of cigarette smoke detection and the problem of network overfitting, a network model for cigarette smoke detection was designed according to YOLOV3 algorithm to reduce the false detection rate. The experimental results show that the method is feasible and effective, and the accuracy of cigarette smoke detection is up to 99.13%, which satisfies the requirements of real-time cigarette smoke detection in complex scenes.

Keywords: deep learning, computer vision, cigarette smoke detection, YOLOV3, color feature extraction

Procedia PDF Downloads 87
3617 Cataphora in English and Chinese Conversation: A Corpus-based Contrastive Study

Authors: Jun Gao

Abstract:

This paper combines the corpus-based and contrastive approaches, seeking to provide a systematic account of cataphora in English and Chinese natural conversations. Based on spoken corpus data, the first part of the paper examines a range of characteristics of cataphora in the two languages, including frequency of occurrence, patterns, and syntactic features. On the basis of this exploration, cataphora in the two languages are contrasted in a structured way. The analysis shows that English and Chinese share a similar distribution of cataphora in natural conversations in terms of frequency of occurrence, with repeat identification cataphora higher than first mention cataphora and intra-sentential cataphora much higher than inter-sentential cataphora. In terms of patterns, three types are identified in English, i.e. P+N, Ø+N, and it+Clause, while in Chinese, two types are identified, i.e., P+N and Ø+N. English and Chinese are similar in terms of syntactic features, i.e., cataphor and postcedent in the intra-sentential cataphora mainly occur in the initial subject position of the same clause, with postcedent immediately followed or delayed, and cataphor and postcedent are mostly in adjacent sentences in inter-sentential cataphora. In the second part of the paper, the motivations of cataphora are investigated. It is found that cataphora is primarily motivated by the speaker and hearer’s different knowledge states with regard to the referent. Other factors are also involved, such as interference, word search, and the tension between the principles of Economy and Clarity.

Keywords: cataphora, contrastive study, motivation, pattern, syntactic features

Procedia PDF Downloads 82
3616 A Clustering Algorithm for Massive Texts

Authors: Ming Liu, Chong Wu, Bingquan Liu, Lei Chen

Abstract:

Internet users have to face the massive amount of textual data every day. Organizing texts into categories can help users dig the useful information from large-scale text collection. Clustering, in fact, is one of the most promising tools for categorizing texts due to its unsupervised characteristic. Unfortunately, most of traditional clustering algorithms lose their high qualities on large-scale text collection. This situation mainly attributes to the high- dimensional vectors generated from texts. To effectively and efficiently cluster large-scale text collection, this paper proposes a vector reconstruction based clustering algorithm. Only the features that can represent the cluster are preserved in cluster’s representative vector. This algorithm alternately repeats two sub-processes until it converges. One process is partial tuning sub-process, where feature’s weight is fine-tuned by iterative process. To accelerate clustering velocity, an intersection based similarity measurement and its corresponding neuron adjustment function are proposed and implemented in this sub-process. The other process is overall tuning sub-process, where the features are reallocated among different clusters. In this sub-process, the features useless to represent the cluster are removed from cluster’s representative vector. Experimental results on the three text collections (including two small-scale and one large-scale text collections) demonstrate that our algorithm obtains high quality on both small-scale and large-scale text collections.

Keywords: vector reconstruction, large-scale text clustering, partial tuning sub-process, overall tuning sub-process

Procedia PDF Downloads 436
3615 DBN-Based Face Recognition System Using Light Field

Authors: Bing Gu

Abstract:

Abstract—Most of Conventional facial recognition systems are based on image features, such as LBP, SIFT. Recently some DBN-based 2D facial recognition systems have been proposed. However, we find there are few DBN-based 3D facial recognition system and relative researches. 3D facial images include all the individual biometric information. We can use these information to build more accurate features, So we present our DBN-based face recognition system using Light Field. We can see Light Field as another presentation of 3D image, and Light Field Camera show us a way to receive a Light Field. We use the commercially available Light Field Camera to act as the collector of our face recognition system, and the system receive a state-of-art performance as convenient as conventional 2D face recognition system.

Keywords: DBN, face recognition, light field, Lytro

Procedia PDF Downloads 466
3614 A Neural Approach for the Offline Recognition of the Arabic Handwritten Words of the Algerian Departments

Authors: Salim Ouchtati, Jean Sequeira, Mouldi Bedda

Abstract:

In this work we present an off line system for the recognition of the Arabic handwritten words of the Algerian departments. The study is based mainly on the evaluation of neural network performances, trained with the gradient back propagation algorithm. The used parameters to form the input vector of the neural network are extracted on the binary images of the handwritten word by several methods: the parameters of distribution, the moments centered of the different projections and the Barr features. It should be noted that these methods are applied on segments gotten after the division of the binary image of the word in six segments. The classification is achieved by a multi layers perceptron. Detailed experiments are carried and satisfactory recognition results are reported.

Keywords: handwritten word recognition, neural networks, image processing, pattern recognition, features extraction

Procedia PDF Downloads 514
3613 Leadership in Future Operational Environment

Authors: M. Şimşek

Abstract:

Rapidly changing factors that affect daily life also affect operational environment and the way military leaders fulfill their missions. With the help of technological developments, traditional linearity of conflict and war has started to fade away. Furthermore, mission domain has broadened to include traditional threats, hybrid threats and new challenges of cyber and space. Considering the future operational environment, future military leaders need to adapt themselves to the new challenges of the future battlefield. But how to decide what kind of features of leadership are required to operate and accomplish mission in the new complex battlefield? In this article, the main aim is to provide answers to this question. To be able to find right answers, first leadership and leadership components are defined, and then characteristics of future operational environment are analyzed. Finally, leadership features that are required to be successful in redefined battlefield are explained.

Keywords: future operational environment, leadership, leadership components

Procedia PDF Downloads 435
3612 A Report of 5-Months-Old Baby with Balanced Chromosomal Rearrangements along with Phenotypic Abnormalities

Authors: Mohit Kumar, Beklashwar Salona, Shiv Murti, Mukesh Singh

Abstract:

We report here a case of five-months old male baby, born as second child of non-consanguineous parents with no considerable history of genetic abnormality which was referred to our cytogenetic laboratory for chromosomal analysis. Physical dysmorphic facial features including mongoloid face, cleft palate, simian crease, and developmental delay were observed. We present this case with unique balanced autosomal translocation of t(3;10)(p21;p13). The risk of phenotypic abnormalities based on de novo balanced translocation was estimated to be 7%. The association of balanced chromosomal rearrangement with Down syndrome features such as multiple congenital anomalies, facial dysmorphism and congenital heart anomalies are very rare in a 5-months old male child. Trisomy-21 is not uncommon in chromosomal abnormality with the birth defect and balanced translocations are frequently observed in patients with secondary infertility or recurrent spontaneous abortion (RSA). Two ml heparinized peripheral blood cells cultured in RPMI-1640 for 72 hours supplemented with 20% fetal bovine serum, phytohemagglutinin (PHA), and antibiotics were used for chromosomal analysis. A total 30 metaphases images were captured using Olympus-BX51 microscope and analyzed using Bio-view karyotyping software through GTG-banding (G bands by trypsin and Giemsa) according to International System for Human Cytogenetic Nomenclature 2016. The results showed balanced translocation between short arm of chromosome # 3 and short arm of chromosome # 10. The karyotype of the child was found to be 46,XY,t(3;10)(p21; p13). Chromosomal abnormalities are one of the major causes of birth defect in new born babies. Also, balanced translocations are frequently observed in patients with secondary infertility or recurrent spontaneous abortion. The index case presented with dysmorphic facial features and had a balanced translocation 46,XY,t(3;10)(p21;p13). This translocation with break points at (p21; p13) has not been reported in the literature in a child with facial dysmorphism. To the best of our knowledge, this is the first report of novel balanced translocation t(3;10) with break points in a child with dysmorphic features. We found balanced chromosomal translocation instead of any trisomy or unbalanced aberrations along with some phenotypic abnormalities. Therefore, we suggest that such novel balanced translocation with abnormal phenotype should be reported in order to enable the pathologist, pediatrician, and gynecologist to have a better insight into the intricacies of chromosomal abnormalities and their associated phenotypic features. We hypothesized that dysmorphic features as seen in this case may be the result of change in the pattern of genes located at the breakpoint area in balanced translocations or may be due to deletion or mutation of genes located on the p-arm of chromosome # 3 and p-arm of chromosome # 10.

Keywords: balanced translocation, karyotyping, phenotypic abnormalities, facial dimorphisms

Procedia PDF Downloads 210
3611 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine

Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li

Abstract:

Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.

Keywords: machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation

Procedia PDF Downloads 236
3610 Value from Environmental and Cultural Perspectives or Two Sides of the Same Coin

Authors: Vilem Paril, Dominika Tothova

Abstract:

This paper discusses the value theory in cultural heritage and the value theory in environmental economics. Two economic views of the value theory are compared within the field of cultural heritage maintenance and within the field of the environment. The main aims are to find common features in these two differently structured theories under the layer of differently defined terms as well as really differing features of these two approaches, to clear the confusion which stems from different terminology as in fact these terms capture the same aspects of reality and to show possible inspiration these two perspectives can offer one another. Another aim is to present these two value systems in one value framework. First, important moments of the value theory from the economic perspective are presented, leading to the marginal revolution of (not only) the Austrian School. Then the theory of value within cultural heritage and environmental economics are explored. Finally, individual approaches are compared and their potential mutual inspiration searched for.

Keywords: cultural heritage, environmental economics, existence value, value theory

Procedia PDF Downloads 322
3609 Phonological Variation in the Speech of Grade 1 Teachers in Select Public Elementary Schools in the Philippines

Authors: M. Leonora D. Guerrero

Abstract:

The study attempted to uncover the most and least frequent phonological variation evident in the speech patterns of grade 1 teachers in select public elementary schools in the Philippines. It also determined the lectal description of the participants based on Tayao’s consonant charts for American and Philippine English. Descriptive method was utilized. A total of 24 grade 1 teachers participated in the study. The instrument used was word list. Each column in the word list is represented by words with the target consonant phonemes: labiodental fricatives f/ and /v/ and lingua-alveolar fricative /z/. These phonemes were in the initial, medial, and final positions, respectively. Findings of the study revealed that the most frequent variation happened when the participants read words with /z/ in the final position while the least frequent variation happened when the participants read words with /z/ in the initial position. The study likewise proved that the grade 1 teachers exhibited the segmental features of both the mesolect and basilect. Based on these results, it is suggested that teachers of English in the Philippines must aspire to manifest the features of the mesolect, if not, the acrolect since it is expected of the academicians not to be displaying the phonological features of the acrolects since this variety is only used by the 'uneducated.' This is especially so with grade 1 teachers who are often mimicked by their students who classify their speech as the 'standard.'

Keywords: consonant phonemes, lectal description, Philippine English, phonological variation

Procedia PDF Downloads 215
3608 Design and Fabrication of a Scaffold with Appropriate Features for Cartilage Tissue Engineering

Authors: S. S. Salehi, A. Shamloo

Abstract:

Poor ability of cartilage tissue when experiencing a damage leads scientists to use tissue engineering as a reliable and effective method for regenerating or replacing damaged tissues. An artificial tissue should have some features such as biocompatibility, biodegradation and, enough mechanical properties like the original tissue. In this work, a composite hydrogel is prepared by using natural and synthetic materials that has high porosity. Mechanical properties of different combinations of polymers such as modulus of elasticity were tested, and a hydrogel with good mechanical properties was selected. Bone marrow derived mesenchymal stem cells were also seeded into the pores of the sponge, and the results showed the adhesion and proliferation of cells within the hydrogel after one month. In comparison with previous works, this study offers a new and efficient procedure for the fabrication of cartilage like tissue and further cartilage repair.

Keywords: cartilage tissue engineering, hydrogel, mechanical strength, mesenchymal stem cell

Procedia PDF Downloads 302
3607 The Effect of Pixelation on Face Detection: Evidence from Eye Movements

Authors: Kaewmart Pongakkasira

Abstract:

This study investigated how different levels of pixelation affect face detection in natural scenes. Eye movements and reaction times, while observers searched for faces in natural scenes rendered in different ranges of pixels, were recorded. Detection performance for coarse visual detail at lower pixel size (3 x 3) was better than with very blurred detail carried by higher pixel size (9 x 9). The result is consistent with the notion that face detection relies on gross detail information of face-shape template, containing crude shape structure and features. In contrast, detection was impaired when face shape and features are obscured. However, it was considered that the degradation of scenic information might also contribute to the effect. In the next experiment, a more direct measurement of the effect of pixelation on face detection, only the embedded face photographs, but not the scene background, will be filtered.

Keywords: eye movements, face detection, face-shape information, pixelation

Procedia PDF Downloads 317
3606 An Evaluative Microbiological Risk Assessment of Drinking Water Supply in the Carpathian Region: Identification of Occurrent Hazardous Bacteria with Quantitative Microbial Risk Assessment Method

Authors: Anikó Kaluzsa

Abstract:

The article's author aims to introduce and analyze those microbiological safety hazards which indicate the presence of secondary contamination in the water supply system. Since drinking water belongs to primary foods and is the basic condition of life, special attention should be paid on its quality. There are such indicators among the microbiological features can be found in water, which are clear evidence of the presence of water contamination, and based on this there is no need to perform other diagnostics, because they prove properly the contamination of the given water supply section. Laboratory analysis can help - both technologically and temporally – to identify contamination, but it does matter how long takes the removal and if the disinfection process takes place in time. The identification of the factors that often occur in the same places or the chance of their occurrence is greater than the average, facilitates our work. The pathogen microbiological risk assessment by the help of several features determines the most likely occurring microbiological features in the Carpathian basin. From among all the microbiological indicators, that are recommended targets for routine inspection by the World Health Organization, there is a paramount importance of the appearance of Escherichia coli in the water network, as its presence indicates the potential ubietiy of enteric pathogens or other contaminants in the water network. In addition, the author presents the steps of microbiological risk assessment analyzing those pathogenic micro-organisms registered to be the most critical.

Keywords: drinking water, E. coli, microbiological indicators, risk assessment, water safety plan

Procedia PDF Downloads 334
3605 Comparative Analysis of Spectral Estimation Methods for Brain-Computer Interfaces

Authors: Rafik Djemili, Hocine Bourouba, M. C. Amara Korba

Abstract:

In this paper, we present a method in order to classify EEG signals for Brain-Computer Interfaces (BCI). EEG signals are first processed by means of spectral estimation methods to derive reliable features before classification step. Spectral estimation methods used are standard periodogram and the periodogram calculated by the Welch method; both methods are compared with Logarithm of Band Power (logBP) features. In the method proposed, we apply Linear Discriminant Analysis (LDA) followed by Support Vector Machine (SVM). Classification accuracy reached could be as high as 85%, which proves the effectiveness of classification of EEG signals based BCI using spectral methods.

Keywords: brain-computer interface, motor imagery, electroencephalogram, linear discriminant analysis, support vector machine

Procedia PDF Downloads 499
3604 Performance Analysis of Domotics System as Real-Time Non-Intrusive Load Monitoring

Authors: Dauda A. Oladosu, Kamorudeen A Olaiya, Abdurahman Bello

Abstract:

The deployment of smart meters by utility providers to gather fine grained spatiotemporal consumption data has grossly influenced the consumers’ emotion and behavior towards energy utilization. The quest for reduction in power consumption is now a subject of concern and one the methods adopted by the consumers to achieve this is Non-intrusive Load (appliance) Monitoring. Hence, this work presents performance Analysis of Domotics System as a tool for load monitoring when integrated with Consumer Control Unit of residential building. The system was developed with basic elements which enhance remote sensing, DTMF (Dual Tone Multi-frequency) recognition and cryptic messaging when specific task was performed. To demonstrate its applicability and suitability, this prototype was used consistently for six months at different load demands and the utilities consumed were documented. The results obtained shows good response when phone dialed, and the packet delivery of feedback SMS was quite satisfactory, making the implemented system to be of good quality with affordable cost and performs the desired functions. Besides, comparative analysis showed notable reduction in energy consumption and invariably lessened electrical bill of the consumer.

Keywords: automation, domotics, energy, load, remote, schedule

Procedia PDF Downloads 319
3603 Road Vehicle Recognition Using Magnetic Sensing Feature Extraction and Classification

Authors: Xiao Chen, Xiaoying Kong, Min Xu

Abstract:

This paper presents a road vehicle detection approach for the intelligent transportation system. This approach mainly uses low-cost magnetic sensor and associated data collection system to collect magnetic signals. This system can measure the magnetic field changing, and it also can detect and count vehicles. We extend Mel Frequency Cepstral Coefficients to analyze vehicle magnetic signals. Vehicle type features are extracted using representation of cepstrum, frame energy, and gap cepstrum of magnetic signals. We design a 2-dimensional map algorithm using Vector Quantization to classify vehicle magnetic features to four typical types of vehicles in Australian suburbs: sedan, VAN, truck, and bus. Experiments results show that our approach achieves a high level of accuracy for vehicle detection and classification.

Keywords: vehicle classification, signal processing, road traffic model, magnetic sensing

Procedia PDF Downloads 320
3602 Causal Relation Identification Using Convolutional Neural Networks and Knowledge Based Features

Authors: Tharini N. de Silva, Xiao Zhibo, Zhao Rui, Mao Kezhi

Abstract:

Causal relation identification is a crucial task in information extraction and knowledge discovery. In this work, we present two approaches to causal relation identification. The first is a classification model trained on a set of knowledge-based features. The second is a deep learning based approach training a model using convolutional neural networks to classify causal relations. We experiment with several different convolutional neural networks (CNN) models based on previous work on relation extraction as well as our own research. Our models are able to identify both explicit and implicit causal relations as well as the direction of the causal relation. The results of our experiments show a higher accuracy than previously achieved for causal relation identification tasks.

Keywords: causal realtion extraction, relation extracton, convolutional neural network, text representation

Procedia PDF Downloads 736
3601 Extracting Actions with Improved Part of Speech Tagging for Social Networking Texts

Authors: Yassine Jamoussi, Ameni Youssfi, Henda Ben Ghezala

Abstract:

With the growing interest in social networking, the interaction of social actors evolved to a source of knowledge in which it becomes possible to perform context aware-reasoning. The information extraction from social networking especially Twitter and Facebook is one of the problems in this area. To extract text from social networking, we need several lexical features and large scale word clustering. We attempt to expand existing tokenizer and to develop our own tagger in order to support the incorrect words currently in existence in Facebook and Twitter. Our goal in this work is to benefit from the lexical features developed for Twitter and online conversational text in previous works, and to develop an extraction model for constructing a huge knowledge based on actions

Keywords: social networking, information extraction, part-of-speech tagging, natural language processing

Procedia PDF Downloads 305
3600 A Supervised Approach for Detection of Singleton Spam Reviews

Authors: Atefeh Heydari, Mohammadali Tavakoli, Naomie Salim

Abstract:

In recent years, we have witnessed that online reviews are the most important source of customers’ opinion. They are progressively more used by individuals and organisations to make purchase and business decisions. Unfortunately, for the reason of profit or fame, frauds produce deceptive reviews to hoodwink potential customers. Their activities mislead not only potential customers to make appropriate purchasing decisions and organisations to reshape their business, but also opinion mining techniques by preventing them from reaching accurate results. Spam reviews could be divided into two main groups, i.e. multiple and singleton spam reviews. Detecting a singleton spam review that is the only review written by a user ID is extremely challenging due to lack of clue for detection purposes. Singleton spam reviews are very harmful and various features and proofs used in multiple spam reviews detection are not applicable in this case. Current research aims to propose a novel supervised technique to detect singleton spam reviews. To achieve this, various features are proposed in this study and are to be combined with the most appropriate features extracted from literature and employed in a classifier. In order to compare the performance of different classifiers, SVM and naive Bayes classification algorithms were used for model building. The results revealed that SVM was more accurate than naive Bayes and our proposed technique is capable to detect singleton spam reviews effectively.

Keywords: classification algorithms, Naïve Bayes, opinion review spam detection, singleton review spam detection, support vector machine

Procedia PDF Downloads 309
3599 Emerging Technologies in Distance Education

Authors: Eunice H. Li

Abstract:

This paper discusses and analyses a small portion of the literature that has been reviewed for research work in Distance Education (DE) pedagogies that I am currently undertaking. It begins by presenting a brief overview of Taylor's (2001) five-generation models of Distance Education. The focus of the discussion will be on the 5th generation, Intelligent Flexible Learning Model. For this generation, educational and other institutions make portal access and interactive multi-media (IMM) an integral part of their operations. The paper then takes a brief look at current trends in technologies – for example smart-watch wearable technology such as Apple Watch. The emergent trends in technologies carry many new features. These are compared to former DE generational features. Also compared is the time span that has elapsed between the generations that are referred to in Taylor's model. This paper is a work in progress. The paper therefore welcome new insights, comparisons and critique of the issues discussed.

Keywords: distance education, e-learning technologies, pedagogy, generational models

Procedia PDF Downloads 463
3598 Radar Track-based Classification of Birds and UAVs

Authors: Altilio Rosa, Chirico Francesco, Foglia Goffredo

Abstract:

In recent years, the number of Unmanned Aerial Vehicles (UAVs) has significantly increased. The rapid development of commercial and recreational drones makes them an important part of our society. Despite the growing list of their applications, these vehicles pose a huge threat to civil and military installations: detection, classification and neutralization of such flying objects become an urgent need. Radar is an effective remote sensing tool for detecting and tracking flying objects, but scenarios characterized by the presence of a high number of tracks related to flying birds make especially challenging the drone detection task: operator PPI is cluttered with a huge number of potential threats and his reaction time can be severely affected. Flying birds compared to UAVs show similar velocity, RADAR cross-section and, in general, similar characteristics. Building from the absence of a single feature that is able to distinguish UAVs and birds, this paper uses a multiple features approach where an original feature selection technique is developed to feed binary classifiers trained to distinguish birds and UAVs. RADAR tracks acquired on the field and related to different UAVs and birds performing various trajectories were used to extract specifically designed target movement-related features based on velocity, trajectory and signal strength. An optimization strategy based on a genetic algorithm is also introduced to select the optimal subset of features and to estimate the performance of several classification algorithms (Neural network, SVM, Logistic regression…) both in terms of the number of selected features and misclassification error. Results show that the proposed methods are able to reduce the dimension of the data space and to remove almost all non-drone false targets with a suitable classification accuracy (higher than 95%).

Keywords: birds, classification, machine learning, UAVs

Procedia PDF Downloads 224
3597 Review of Influential Factors on the Personnel Interview for Employment from Point of View of Human Resources Management

Authors: Abbas Ghahremani

Abstract:

One of the most fundamental management issues in organizations and companies is the recruiting of efficient staff and compiling exact and perfect criteria for testing the applicants,which is guided and practiced by the manager of human resources of the organization. Obviously, each part of the organization seeks special features and abilities in the people apart from common features among all the staff in all units,which are called principal duties and abilities,and we will study them more. This article is trying to find out how we can identify the most efficient people among the applicants of employment by using proper methods of testing appropriate for the needs of different of employment by using proper methods of testing appropriate for the needs of different units of the organization and recruit efficient staff. Acceptable method for recruiting is to closely identify their characters from various aspects such as ability to communicate, flexibility, stress management, risk acceptance, tolerance, vision to future, familiarity with the art, amount of creativity and different thinking and by raising proper questions related with the above named features and presenting a questionnaire, evaluate them from various aspect in order to gain the proper result. According to the above explanations, it can be concluded which aspects of abilities and characteristics of a person must be evaluated in order to reduce any mistake in recruitment and approach an ideal result and ultimately gain an organized system according to the standards and avoid waste of energy for unprofessional personnel which is a marginal issue in the organizations.

Keywords: human resources management, staff recuiting, employment factors, efficient staff

Procedia PDF Downloads 463
3596 Case-Based Reasoning: A Hybrid Classification Model Improved with an Expert's Knowledge for High-Dimensional Problems

Authors: Bruno Trstenjak, Dzenana Donko

Abstract:

Data mining and classification of objects is the process of data analysis, using various machine learning techniques, which is used today in various fields of research. This paper presents a concept of hybrid classification model improved with the expert knowledge. The hybrid model in its algorithm has integrated several machine learning techniques (Information Gain, K-means, and Case-Based Reasoning) and the expert’s knowledge into one. The knowledge of experts is used to determine the importance of features. The paper presents the model algorithm and the results of the case study in which the emphasis was put on achieving the maximum classification accuracy without reducing the number of features.

Keywords: case based reasoning, classification, expert's knowledge, hybrid model

Procedia PDF Downloads 367
3595 Diagnosis of the Heart Rhythm Disorders by Using Hybrid Classifiers

Authors: Sule Yucelbas, Gulay Tezel, Cuneyt Yucelbas, Seral Ozsen

Abstract:

In this study, it was tried to identify some heart rhythm disorders by electrocardiography (ECG) data that is taken from MIT-BIH arrhythmia database by subtracting the required features, presenting to artificial neural networks (ANN), artificial immune systems (AIS), artificial neural network based on artificial immune system (AIS-ANN) and particle swarm optimization based artificial neural network (PSO-NN) classifier systems. The main purpose of this study is to evaluate the performance of hybrid AIS-ANN and PSO-ANN classifiers with regard to the ANN and AIS. For this purpose, the normal sinus rhythm (NSR), atrial premature contraction (APC), sinus arrhythmia (SA), ventricular trigeminy (VTI), ventricular tachycardia (VTK) and atrial fibrillation (AF) data for each of the RR intervals were found. Then these data in the form of pairs (NSR-APC, NSR-SA, NSR-VTI, NSR-VTK and NSR-AF) is created by combining discrete wavelet transform which is applied to each of these two groups of data and two different data sets with 9 and 27 features were obtained from each of them after data reduction. Afterwards, the data randomly was firstly mixed within themselves, and then 4-fold cross validation method was applied to create the training and testing data. The training and testing accuracy rates and training time are compared with each other. As a result, performances of the hybrid classification systems, AIS-ANN and PSO-ANN were seen to be close to the performance of the ANN system. Also, the results of the hybrid systems were much better than AIS, too. However, ANN had much shorter period of training time than other systems. In terms of training times, ANN was followed by PSO-ANN, AIS-ANN and AIS systems respectively. Also, the features that extracted from the data affected the classification results significantly.

Keywords: AIS, ANN, ECG, hybrid classifiers, PSO

Procedia PDF Downloads 445
3594 Agent-Base Modeling of IoT Applications by Using Software Product Line

Authors: Asad Abbas, Muhammad Fezan Afzal, Muhammad Latif Anjum, Muhammad Azmat

Abstract:

The Internet of Things (IoT) is used to link up real objects that use the internet to interact. IoT applications allow handling and operating the equipment in accordance with environmental needs, such as transportation and healthcare. IoT devices are linked together via a number of agents that act as a middleman for communications. The operation of a heat sensor differs indoors and outside because agent applications work with environmental variables. In this article, we suggest using Software Product Line (SPL) to model IoT agents and applications' features on an XML-based basis. The contextual diversity within the same domain of application can be handled, and the reusability of features is increased by XML-based feature modelling. For the purpose of managing contextual variability, we have embraced XML for modelling IoT applications, agents, and internet-connected devices.

Keywords: IoT agents, IoT applications, software product line, feature model, XML

Procedia PDF Downloads 95