Search results for: road roughness
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1674

Search results for: road roughness

1314 Estimation of the Road Traffic Emissions and Dispersion in the Developing Countries Conditions

Authors: Hicham Gourgue, Ahmed Aharoune, Ahmed Ihlal

Abstract:

We present in this work our model of road traffic emissions (line sources) and dispersion of these emissions, named DISPOLSPEM (Dispersion of Poly Sources and Pollutants Emission Model). In its emission part, this model was designed to keep the consistent bottom-up and top-down approaches. It also allows to generate emission inventories from reduced input parameters being adapted to existing conditions in Morocco and in the other developing countries. While several simplifications are made, all the performance of the model results are kept. A further important advantage of the model is that it allows the uncertainty calculation and emission rate uncertainty according to each of the input parameters. In the dispersion part of the model, an improved line source model has been developed, implemented and tested against a reference solution. It provides improvement in accuracy over previous formulas of line source Gaussian plume model, without being too demanding in terms of computational resources. In the case study presented here, the biggest errors were associated with the ends of line source sections; these errors will be canceled by adjacent sections of line sources during the simulation of a road network. In cases where the wind is parallel to the source line, the use of the combination discretized source and analytical line source formulas minimizes remarkably the error. Because this combination is applied only for a small number of wind directions, it should not excessively increase the calculation time.

Keywords: air pollution, dispersion, emissions, line sources, road traffic, urban transport

Procedia PDF Downloads 420
1313 A Comparative Study of Specific Assessment Criteria Related to Commercial Vehicle Drivers

Authors: Nur Syahidatul Idany Abdul Ghani, Rahizar Ramli, Jamilah Mohamad, Ahmad Saifizul, Mohamed Rehan Karim

Abstract:

Increasing fatalities in road accidents in Malaysia over the last 10 years are quite alarming. Based on Malaysian Institute of Road Safety Research (Miros) latest research ‘Predicting Malaysian Road Fatalities for year 2020; it is predicted that road fatalities in Malaysia for 2015 is 8,780 and 10,716 for the year 2020 which 30 percent of fatalities were caused by accidents involving commercial vehicles. Government, related agencies and NGOs have continuously and persistently work to reduce the statistics through enforcement, educating the public, training to drivers, road safety campaigns, advertisements etc. However, the trend of casualties does not show encouraging pattern but instead, steadily growing. Thus, this comparative study reviews the literature pertaining on method of measurement used to evaluate commercial drivers competency. In several studies driving competency has been assessed with different assessment based on the license procedures and requirements according to the country regulation. The assessment criteria that has been establish for commercial drivers generally focus on driving tasks and assessment e.g. theory test, medical test and road assessment rather than driving competency test or physical test. Realizing the importance of specific assessment test for drivers competency this comparative study reviews the most discussed literature related to competency assessment method to identify competency of the drivers include (1. judgement and reaction, 2. skill of drivers, 3. experiences and fatigue). The concluding analysis of this paper is a comparative table for assessment methodology to access driver’s competency. A comparative study is a further discussion reviewing past literature to provide an overview on existing assessment test and potential subject matters that can be identified for further studies to increase awareness of the drivers, passengers as well as the authorities about the importance of competent drivers in order to improve safety in commercial vehicles.

Keywords: commercial vehicles, driver’s competency, specific assessment

Procedia PDF Downloads 418
1312 Self-Organizing Map Network for Wheeled Robot Movement Optimization

Authors: Boguslaw Schreyer

Abstract:

The paper investigates the application of the Kohonen’s Self-Organizing Map (SOM) to the wheeled robot starting and braking dynamic states. In securing wheeled robot stability as well as minimum starting and braking time, it is important to ensure correct torque distribution as well as proper slope of braking and driving moments. In this paper, a correct movement distribution has been formulated, securing optimum adhesion coefficient and good transversal stability of a wheeled robot. A neural tuner has been proposed to secure the above properties, although most of the attention is attached to the SOM network application. If the delay of the torque application or torque release is not negligible, it is important to change the rising and falling slopes of the torque. The road/surface condition is also paramount in robot dynamic states control. As the road conditions may randomly change in time, application of the SOM network has been suggested in order to classify the actual road conditions.

Keywords: slip control, SOM network, torque distribution, wheeled Robot

Procedia PDF Downloads 112
1311 Bituminous Geomembranes: Sustainable Products for Road Construction and Maintenance

Authors: Ines Antunes, Andrea Massari, Concetta Bartucca

Abstract:

Greenhouse gasses (GHG) role in the atmosphere has been well known since the 19th century; however, researchers have begun to relate them to climate changes only in the second half of the following century. From this moment, scientists started to correlate the presence of GHG such as CO₂ with the global warming phenomena. This has raised the awareness not only of those who were experts in this field but also of public opinion, which is becoming more and more sensitive to environmental pollution and sustainability issues. Nowadays the reduction of GHG emissions is one of the principal objectives of EU nations. The target is an 80% reduction of emissions in 2050 and to reach the important goal of carbon neutrality. Road sector is responsible for an important amount of those emissions (about 20%). The most part is due to traffic, but a good contribution is also given directly or indirectly from road construction and maintenance. Raw material choice and reuse of post-consumer plastic rather than a cleverer design of roads have an important contribution to reducing carbon footprint. Bituminous membranes can be successfully used as reinforcement systems in asphalt layers to improve road pavement performance against cracking. Composite materials coupling membranes with grids and/or fabrics should be able to combine improved tensile properties of the reinforcement with stress absorbing and waterproofing effects of membranes. Polyglass, with its brand dedicated to road construction and maintenance called Polystrada, has done more than this. The company's target was not only to focus sustainability on the final application but also to implement a greener mentality from the cradle to the grave. Starting from production, Polyglass has made important improvements finalized to increase efficiency and minimize waste. The installation of a trigeneration plant and the usage of selected production scraps inside the products as well as the reduction of emissions into the environment, are one of the main efforts of the company to reduce impact during final product build-up. Moreover, the benefit given by installing Polystrada products brings a significant improvement in road lifetime. This has an impact not only on the number of maintenance or renewal that needs to be done (build less) but also on traffic density due to works and road deviation in case of operations. During the end of the life of a road, Polystrada products can be 100% recycled and milled with classical systems used without changing the normal maintenance procedures. In this work, all these contributions were quantified in terms of CO₂ emission thanks to an LCA analysis. The data obtained were compared with a classical system or a standard production of a membrane. What it is possible to see is that the usage of Polyglass products for street maintenance and building gives a significant reduction of emissions in case of membrane installation under the road wearing course.

Keywords: CO₂ emission, LCA, maintenance, sustainability

Procedia PDF Downloads 45
1310 The Effects of NaF Concentration on the Zinc Coating Electroplated in Supercritical CO2 Mixed Zinc Chloride Bath

Authors: Chun-Ying Lee, Mei-Wen Wu, Li-Yi Cheng, Chiang-Ho Cheng

Abstract:

This research studies the electroplating of zinc coating in the zinc chloride bath mixed with supercritical CO2. The sodium fluoride (NaF) was used as the bath additive to change the structure and property of the coating, and therefore the roughness and corrosion resistance of the zinc coating was investigated. The surface characterization was performed using optical microscope (OM), X-ray diffractometer (XRD), and α-step profilometer. Moreover, the potentiodynamic polarization measurement in 3% NaCl solution was employed in the corrosion resistance evaluation. Because of the emulsification of the electrolyte mixed in Sc-CO2, the electroplated zinc produced the coating with smoother surface, smaller grain, better throwing power and higher corrosion resistance. The main role played by the NaF was to reduce the coating’s roughness and grain size. In other words, the CO2 mixed with the electrolyte under the supercritical condition performed the similar function as brighter and leveler in zinc electroplating to enhance the throwing power and corrosion resistance of the coating.

Keywords: supercritical CO2, zinc-electroplating, sodium fluoride, electroplating

Procedia PDF Downloads 547
1309 Ferroelectricity in Fused Potassium Nitrate-Polymer Composite Films

Authors: Navneet Dabra, Baljinder Kaur, Lakhbir Singh, V. Annapu Reddy, R. Nath, Dae-Yong Jeong, Jasbir S. Hundal

Abstract:

The ferroelectric properties of fused potassium nitrate (KNO3)- polyvinyl alcohol (PVA) composite films have been investigated. The composite films of KNO3-PVA have been prepared by solvant cast technique and then fused over the brass substrate. The ferroelectric hysteresis loops (P-E) have been obtained at room temperature using modified Sawyer-Tower circuit. Percentage of back switching and differential dielectric constant has been derived from P-V loops. The x-ray diffraction (XRD) studies confirm the formation of ferroelectric phase (phase III) in these composite films. The AFM and FE-SEM studies have been used to study the surface morphology of these composite films. The values of remanemt polarization, coercive field, back switching, crystallite size, lattice parameters, and surface roughness have been estimated and correlated.

Keywords: ferroelectric polymer composite, remanemt polarization, back switching, crystallite size, lattice parameters and surface roughness

Procedia PDF Downloads 377
1308 Use of Short Piles for Stabilizing the Side Slope of the Road Embankment along the Canal

Authors: Monapat Sasingha, Suttisak Soralump

Abstract:

This research presents the behavior of slope of the road along the canal stabilized by short piles. In this investigation, the centrifuge machine was used, modelling the condition of the water levels in the canal. The centrifuge tests were performed at 35 g. To observe the movement of the soil, visual analysis was performed to evaluate the failure behavior. Conclusively, the use of short piles to stabilize the canal slope proved to be an effective solution. However, the certain amount of settlement was found behind the short pile rows.

Keywords: centrifuge test, slope failure, embankment, stability of slope

Procedia PDF Downloads 248
1307 Combining the Deep Neural Network with the K-Means for Traffic Accident Prediction

Authors: Celso L. Fernando, Toshio Yoshii, Takahiro Tsubota

Abstract:

Understanding the causes of a road accident and predicting their occurrence is key to preventing deaths and serious injuries from road accident events. Traditional statistical methods such as the Poisson and the Logistics regressions have been used to find the association of the traffic environmental factors with the accident occurred; recently, an artificial neural network, ANN, a computational technique that learns from historical data to make a more accurate prediction, has emerged. Although the ability to make accurate predictions, the ANN has difficulty dealing with highly unbalanced attribute patterns distribution in the training dataset; in such circumstances, the ANN treats the minority group as noise. However, in the real world data, the minority group is often the group of interest; e.g., in the road traffic accident data, the events of the accident are the group of interest. This study proposes a combination of the k-means with the ANN to improve the predictive ability of the neural network model by alleviating the effect of the unbalanced distribution of the attribute patterns in the training dataset. The results show that the proposed method improves the ability of the neural network to make a prediction on a highly unbalanced distributed attribute patterns dataset; however, on an even distributed attribute patterns dataset, the proposed method performs almost like a standard neural network.

Keywords: accident risks estimation, artificial neural network, deep learning, k-mean, road safety

Procedia PDF Downloads 131
1306 Safety Tolerance Zone for Driver-Vehicle-Environment Interactions under Challenging Conditions

Authors: Matjaž Šraml, Marko Renčelj, Tomaž Tollazzi, Chiara Gruden

Abstract:

Road safety is a worldwide issue with numerous and heterogeneous factors influencing it. On the side, driver state – comprising distraction/inattention, fatigue, drowsiness, extreme emotions, and socio-cultural factors highly affect road safety. On the other side, the vehicle state has an important role in mitigating (or not) the road risk. Finally, the road environment is still one of the main determinants of road safety, defining driving task complexity. At the same time, thanks to technological development, a lot of detailed data is easily available, creating opportunities for the detection of driver state, vehicle characteristics and road conditions and, consequently, for the design of ad hoc interventions aimed at improving driver performance, increase awareness and mitigate road risks. This is the challenge faced by the i-DREAMS project. i-DREAMS, which stands for a smart Driver and Road Environment Assessment and Monitoring System, is a 3-year project funded by the European Union’s Horizon 2020 research and innovation program. It aims to set up a platform to define, develop, test and validate a ‘Safety Tolerance Zone’ to prevent drivers from getting too close to the boundaries of unsafe operation by mitigating risks in real-time and after the trip. After the definition and development of the Safety Tolerance Zone concept and the concretization of the same in an Advanced driver-assistance system (ADAS) platform, the system was tested firstly for 2 months in a driving simulator environment in 5 different countries. After that, naturalistic driving studies started for a 10-month period (comprising a 1-month pilot study, 3-month baseline study and 6 months study implementing interventions). Currently, the project team has approved a common evaluation approach, and it is developing the assessment of the usage and outcomes of the i-DREAMS system, which is turning positive insights. The i-DREAMS consortium consists of 13 partners, 7 engineering universities and research groups, 4 industry partners and 2 partners (European Transport Safety Council - ETSC - and POLIS cities and regions for transport innovation) closely linked to transport safety stakeholders, covering 8 different countries altogether.

Keywords: advanced driver assistant systems, driving simulator, safety tolerance zone, traffic safety

Procedia PDF Downloads 45
1305 Enhancing Wire Electric Discharge Machining Efficiency through ANOVA-Based Process Optimization

Authors: Rahul R. Gurpude, Pallvita Yadav, Amrut Mulay

Abstract:

In recent years, there has been a growing focus on advanced manufacturing processes, and one such emerging process is wire electric discharge machining (WEDM). WEDM is a precision machining process specifically designed for cutting electrically conductive materials with exceptional accuracy. It achieves material removal from the workpiece metal through spark erosion facilitated by electricity. Initially developed as a method for precision machining of hard materials, WEDM has witnessed significant advancements in recent times, with numerous studies and techniques based on electrical discharge phenomena being proposed. These research efforts and methods in the field of ED encompass a wide range of applications, including mirror-like finish machining, surface modification of mold dies, machining of insulating materials, and manufacturing of micro products. WEDM has particularly found extensive usage in the high-precision machining of complex workpieces that possess varying hardness and intricate shapes. During the cutting process, a wire with a diameter ranging from 0.18mm is employed. The evaluation of EDM performance typically revolves around two critical factors: material removal rate (MRR) and surface roughness (SR). To comprehensively assess the impact of machining parameters on the quality characteristics of EDM, an Analysis of Variance (ANOVA) was conducted. This statistical analysis aimed to determine the significance of various machining parameters and their relative contributions in controlling the response of the EDM process. By undertaking this analysis, optimal levels of machining parameters were identified to achieve desirable material removal rates and surface roughness.

Keywords: WEDM, MRR, optimization, surface roughness

Procedia PDF Downloads 59
1304 Development of Structural Deterioration Models for Flexible Pavement Using Traffic Speed Deflectometer Data

Authors: Sittampalam Manoharan, Gary Chai, Sanaul Chowdhury, Andrew Golding

Abstract:

The primary objective of this paper is to present a simplified approach to develop the structural deterioration model using traffic speed deflectometer data for flexible pavements. Maintaining assets to meet functional performance is not economical or sustainable in the long terms, and it would end up needing much more investments for road agencies and extra costs for road users. Performance models have to be included for structural and functional predicting capabilities, in order to assess the needs, and the time frame of those needs. As such structural modelling plays a vital role in the prediction of pavement performance. A structural condition is important for the prediction of remaining life and overall health of a road network and also major influence on the valuation of road pavement. Therefore, the structural deterioration model is a critical input into pavement management system for predicting pavement rehabilitation needs accurately. The Traffic Speed Deflectometer (TSD) is a vehicle-mounted Doppler laser system that is capable of continuously measuring the structural bearing capacity of a pavement whilst moving at traffic speeds. The device’s high accuracy, high speed, and continuous deflection profiles are useful for network-level applications such as predicting road rehabilitations needs and remaining structural service life. The methodology adopted in this model by utilizing time series TSD maximum deflection (D0) data in conjunction with rutting, rutting progression, pavement age, subgrade strength and equivalent standard axle (ESA) data. Then, regression analyses were undertaken to establish a correlation equation of structural deterioration as a function of rutting, pavement age, seal age and equivalent standard axle (ESA). This study developed a simple structural deterioration model which will enable to incorporate available TSD structural data in pavement management system for developing network-level pavement investment strategies. Therefore, the available funding can be used effectively to minimize the whole –of- life cost of the road asset and also improve pavement performance. This study will contribute to narrowing the knowledge gap in structural data usage in network level investment analysis and provide a simple methodology to use structural data effectively in investment decision-making process for road agencies to manage aging road assets.

Keywords: adjusted structural number (SNP), maximum deflection (D0), equant standard axle (ESA), traffic speed deflectometer (TSD)

Procedia PDF Downloads 134
1303 Impact of Intelligent Transportation System on Planning, Operation and Safety of Urban Corridor

Authors: Sourabh Jain, S. S. Jain

Abstract:

Intelligent transportation system (ITS) is the application of technologies for developing a user–friendly transportation system to extend the safety and efficiency of urban transportation systems in developing countries. These systems involve vehicles, drivers, passengers, road operators, managers of transport services; all interacting with each other and the surroundings to boost the security and capacity of road systems. The goal of urban corridor management using ITS in road transport is to achieve improvements in mobility, safety, and the productivity of the transportation system within the available facilities through the integrated application of advanced monitoring, communications, computer, display, and control process technologies, both in the vehicle and on the road. Intelligent transportation system is a product of the revolution in information and communications technologies that is the hallmark of the digital age. The basic ITS technology is oriented on three main directions: communications, information, integration. Information acquisition (collection), processing, integration, and sorting are the basic activities of ITS. In the paper, attempts have been made to present the endeavor that was made to interpret and evaluate the performance of the 27.4 Km long study corridor having eight intersections and four flyovers. The corridor consisting of six lanes as well as eight lanes divided road network. Two categories of data have been collected such as traffic data (traffic volume, spot speed, delay) and road characteristics data (no. of lanes, lane width, bus stops, mid-block sections, intersections, flyovers). The instruments used for collecting the data were video camera, stop watch, radar gun, and mobile GPS (GPS tracker lite). From the analysis, the performance interpretations incorporated were the identification of peak and off-peak hours, congestion and level of service (LOS) at midblock sections and delay followed by plotting the speed contours. The paper proposed the urban corridor management strategies based on sensors integrated into both vehicles and on the roads that those have to be efficiently executable, cost-effective, and familiar to road users. It will be useful to reduce congestion, fuel consumption, and pollution so as to provide comfort, safety, and efficiency to the users.

Keywords: ITS strategies, congestion, planning, mobility, safety

Procedia PDF Downloads 162
1302 Heuristic Approaches for Injury Reductions by Reduced Car Use in Urban Areas

Authors: Stig H. Jørgensen, Trond Nordfjærn, Øyvind Teige Hedenstrøm, Torbjørn Rundmo

Abstract:

The aim of the paper is to estimate and forecast road traffic injuries in the coming 10-15 years given new targets in urban transport policy and shifts of mode of transport, including injury cross-effects of mode changes. The paper discusses possibilities and limitations in measuring and quantifying possible injury reductions. Injury data (killed and seriously injured road users) from six urban areas in Norway from 1998-2012 (N= 4709 casualties) form the basis for estimates of changing injury patterns. For the coming period calculation of number of injuries and injury rates by type of road user (categories of motorized versus non-motorized) by sex, age and type of road are made. A prognosticated population increase (25 %) in total population within 2025 in the six urban areas will curb the proceeded fall in injury figures. However, policy strategies and measures geared towards a stronger modal shift from use of private vehicles to safer public transport (bus, train) will modify this effect. On the other side will door to door transport (pedestrians on their way to/from public transport nodes) imply a higher exposure for pedestrians (bikers) converting from private vehicle use (including fall accidents not registered as traffic accidents). The overall effect is the sum of these modal shifts in the increasing urban population and in addition diminishing return to the majority of road safety countermeasures has also to be taken into account. The paper demonstrates how uncertainties in the various estimates (prediction factors) on increasing injuries as well as decreasing injury figures may partly offset each other. The paper discusses road safety policy and welfare consequences of transport mode shift, including reduced use of private vehicles, and further environmental impacts. In this regard, safety and environmental issues will as a rule concur. However pursuing environmental goals (e.g. improved air quality, reduced co2 emissions) encouraging more biking may generate more biking injuries. The study was given financial grants from the Norwegian Research Council’s Transport Safety Program.

Keywords: road injuries, forecasting, reduced private care use, urban, Norway

Procedia PDF Downloads 215
1301 Physico‑chemical Behavior and Microstructural Manipulation of Nanocomposites Containing Hydroxyapatite, Alumina, and Graphene Oxide

Authors: Reim A. Almotiri, Manal M. Alkhamisi

Abstract:

Ternary nanocomposites based on hydroxyapatite (HAP) and alumina (Al2O3) were embedded through graphene oxide (GO) nanosheets to be investigated for medical applications. The composition of the preparations has been confirmed by X-ray photoelectron spectroscopy, energy-dispersive X-ray analysis, and Fourier-Transform infrared spectroscopy. Scanning and transmission electron microscopy have shown the typical morphologies of the components of the nanocomposites with hydroxyapatite nanorods reaching an average diameter of 22.26±2 nm and an average length of 69.56±19.25 nm in the ternary nanocomposites. The ternary nanocomposite has a microhardness of 5.8±0.1 GPa and a higher average roughness of 6.5 nm compared to pure HAP preparation with an average roughness of 2.7 nm. All preparations have shown an acceptable cytotoxicity profile with a percent osteoblasts cell viability of 98.6±1.3% after culturing with the ternary nanocomposite. The TNC has also shown the highest antibacterial activity compared to preparations of each of its constituents and their nanocomposites, with a zone of inhibition’s diameter of 14.1±0.8 mm and 13.6±0.6 mm against Staphylococcus aureus and Escherichia coli, respectively, compared to no zone of inhibition for the pure hydroxyapatite preparation.

Keywords: hydroxypatite, cytotoxicity, nanocomposites, X-ray analysis

Procedia PDF Downloads 60
1300 Experimental Investigation of Bituminous Roads with Waste Plastic

Authors: Arjita Biswas, Sandeep Potnis

Abstract:

Plastic roads (bituminous roads using waste plastic in the wearing course ) have now become familiar in the Road Construction Sector in India. With the Indian Road Congress Code (IRC SP: 98 -2013), many agencies are coming forward to implement Plastic Roads in India. This paper discuss and compare about the various properties of bituminous mix with 8% waste plastic and normal bituminous mix. This paper also signifies the performance of both the types of roads after 4 months of age under loading conditions. Experiments were carried out to evaluate its performance. The result shows improved performance of plastic roads.

Keywords: bituminous roads, experiments, performance, plastic roads

Procedia PDF Downloads 196
1299 Review of Research on Waste Plastic Modified Asphalt

Authors: Song Xinze, Caikejian

Abstract:

This article explores the application of waste plastics in asphalt pavement materials, analyzes their impact on the performance of asphalt and mixtures, and their environmental sustainability. Firstly, plastics are classified based on their physical properties. Then, the preparation processes of modified asphalt agents and modified asphalt are elaborated, and the impact of preparation processes on the performance of modified asphalt is analyzed. A further comprehensive evaluation of existing research results indicates that waste plastics as asphalt modifiers can enhance the relevant properties of modified asphalt and asphalt mixtures. Although waste plastic-modified asphalt has shown significant advantages in improving road performance, it's long-term performance and environmental safety in practical applications still require further scientific verification and research. The focus of future research should be on the compatibility between modifiers and asphalt, optimization of preparation processes, and improvement of storage stability, aiming to promote the widespread application of waste plastic-modified asphalt in road construction and realize its value in environmental protection and resource recycling.

Keywords: waste plastics, Asphalt modification, Preparation process, Asphalt performance, Road performance

Procedia PDF Downloads 15
1298 Perception of Hazards and Risks in Road Utilization as Space for Social Ceremonies in Indigenous Residential Area of Ogbomoso, Nigeria

Authors: Okanlawon Simon Ayorinde, Odunjo Oluronke Omolola, Fadamiro Joseph Akinlabi, Adedibu Afolabi Adebgite

Abstract:

A road is a path established over land, especially prepared way between places for the use of pedestrian, riders, and vehicles: a hard surface built for vehicles to travel on. The social, economic and health importance of roads in any community and nation cannot be underestimated. Roads provide access to properties and they also provide mobility which is ability to transport goods and services from one place to another. In the residential zones of many indigenous cities in Nigeria, roads are usually blocked for social ceremonies. Road blocked for ceremonies as used in this study are a temporary barrier across a road, used to stop or hinder traffic from passing through to the other side. Social ceremonies that could warrant road blockage include marriage, child naming, funeral, celebration of life’s achievement, birthday anniversary etc. These activities are likely to generate environmental hazards and their attendant risks. The assessment of these hazards and risks in residential zones of indigenous cities in Nigeria becomes imperative. The study is focused on Ogbomoso, Oyo State, Nigeria. The town has two local government councils namely Ogbomoso North and Ogbomoso South. Urban tracts that are easy to identify are political wards in the absence of land use segregation, houses numbering and street naming. The wards that had residential having a minimum of 60% of their land use components were surveyed and fifteen out of twenty wards identified in the town were surveyed. The study utilized primary data collected through questionnaire administration The three major road categories (Trunk A-Federal; Trunk B- State; Trunk C-Local) were identified and trunk C-Local roads were purposively selected being the concern of this study because they are the ones often blocked for social activities. The major stakeholders interviewed and the respective sampling methods are residents (random and systematic), social ceremony organizers (purposive), government officials (purposive) and road users namely commercial motorists and commercial motor cyclists (random and incidental). Data analysis was mainly descriptive. Two indices to measure respondents’ perception were developed. These are ‘Hazard Severity Index’ (HSI) and ‘Relative Awareness Index’ (RAI).Thereafter, policy implications and recommendations were provided.

Keywords: road, residential zones, indigenous cities, blocked, social ceremonies

Procedia PDF Downloads 498
1297 Human Identification Using Local Roughness Patterns in Heartbeat Signal

Authors: Md. Khayrul Bashar, Md. Saiful Islam, Kimiko Yamashita, Yano Midori

Abstract:

Despite having some progress in human authentication, conventional biometrics (e.g., facial features, fingerprints, retinal scans, gait, voice patterns) are not robust against falsification because they are neither confidential nor secret to an individual. As a non-invasive tool, electrocardiogram (ECG) has recently shown a great potential in human recognition due to its unique rhythms characterizing the variability of human heart structures (chest geometry, sizes, and positions). Moreover, ECG has a real-time vitality characteristic that signifies the live signs, which ensure legitimate individual to be identified. However, the detection accuracy of the current ECG-based methods is not sufficient due to a high variability of the individual’s heartbeats at a different instance of time. These variations may occur due to muscle flexure, the change of mental or emotional states, and the change of sensor positions or long-term baseline shift during the recording of ECG signal. In this study, a new method is proposed for human identification, which is based on the extraction of the local roughness of ECG heartbeat signals. First ECG signal is preprocessed using a second order band-pass Butterworth filter having cut-off frequencies of 0.00025 and 0.04. A number of local binary patterns are then extracted by applying a moving neighborhood window along the ECG signal. At each instant of the ECG signal, the pattern is formed by comparing the ECG intensities at neighboring time points with the central intensity in the moving window. Then, binary weights are multiplied with the pattern to come up with the local roughness description of the signal. Finally, histograms are constructed that describe the heartbeat signals of individual subjects in the database. One advantage of the proposed feature is that it does not depend on the accuracy of detecting QRS complex, unlike the conventional methods. Supervised recognition methods are then designed using minimum distance to mean and Bayesian classifiers to identify authentic human subjects. An experiment with sixty (60) ECG signals from sixty adult subjects from National Metrology Institute of Germany (NMIG) - PTB database, showed that the proposed new method is promising compared to a conventional interval and amplitude feature-based method.

Keywords: human identification, ECG biometrics, local roughness patterns, supervised classification

Procedia PDF Downloads 383
1296 SOTM: A New Cooperation Based Trust Management System for VANET

Authors: Amel Ltifi, Ahmed Zouinkhi, Mohamed Salim Bouhlel

Abstract:

Security and trust management in Vehicular Ad-hoc NETworks (VANET) is a crucial research domain which is the scope of many researches and domains. Although, the majority of the proposed trust management systems for VANET are based on specific road infrastructure, which may not be present in all the roads. Therefore, road security should be managed by vehicles themselves. In this paper, we propose a new Self Organized Trust Management system (SOTM). This system has the responsibility to cut with the spread of false warnings in the network through four principal components: cooperation, trust management, communication and security.

Keywords: ative vehicle, cooperation, trust management, VANET

Procedia PDF Downloads 402
1295 Robust State feedback Controller for an Active Suspension System

Authors: Hussein Altartouri

Abstract:

The purpose of this paper is to present a modeling and control of the active suspension system using robust state feedback controller implemented for a half car model. This system represents a mechatronic system which contains all the essential components to be considered a complete mechatronic system. This system must adapt different conditions which are difficult to compromise, such as disturbances, slippage, and motion on rough road (that contains rocks, stones, and other miscellanies). Some current automobile suspension systems use passive components only by utilizing spring and damping coefficient with fixed rates. Vehicle suspensions systems are used to provide good road handling and improve passenger comfort. Passive suspensions only offer compromise between these two conflicting criteria. Active suspension poses the ability to reduce the traditional design as a compromise between handling and comfort by directly controlling the suspensions force actuators. In this study, the robust state feedback controller implemented to the active suspensions system for half car model.

Keywords: half-car model, active suspension system, state feedback, road profile

Procedia PDF Downloads 375
1294 Despiking of Turbulent Flow Data in Gravel Bed Stream

Authors: Ratul Das

Abstract:

The present experimental study insights the decontamination of instantaneous velocity fluctuations captured by Acoustic Doppler Velocimeter (ADV) in gravel-bed streams to ascertain near-bed turbulence for low Reynolds number. The interference between incidental and reflected pulses produce spikes in the ADV data especially in the near-bed flow zone and therefore filtering the data are very essential. Nortek’s Vectrino four-receiver ADV probe was used to capture the instantaneous three-dimensional velocity fluctuations over a non-cohesive bed. A spike removal algorithm based on the acceleration threshold method was applied to note the bed roughness and its influence on velocity fluctuations and velocity power spectra in the carrier fluid. The velocity power spectra of despiked signals with a best combination of velocity threshold (VT) and acceleration threshold (AT) are proposed which ascertained velocity power spectra a satisfactory fit with the Kolmogorov “–5/3 scaling-law” in the inertial sub-range. Also, velocity distributions below the roughness crest level fairly follows a third-degree polynomial series.

Keywords: acoustic doppler velocimeter, gravel-bed, spike removal, reynolds shear stress, near-bed turbulence, velocity power spectra

Procedia PDF Downloads 285
1293 Carbon Footprint of Road Project for Sustainable Development: Lessons Learnt from Traffic Management of a Developing Urban Centre

Authors: Sajjad Shukur Ullah, Syed Shujaa Safdar Gardezi

Abstract:

Road infrastructure plays a vital role in the economic activities of any economy. Besides derived benefits from these facilities, the utilization of extensive energy resources, fuels, and materials results in a negative impact on the environment in terms of carbon footprint; carbon footprint is the overall amount of greenhouse gas (GHG) generated from any action. However, this aspect of environmental impact from road structure is not seriously considered during such developments, thus undermining a critical factor of sustainable development, which usually remains unaddressed, especially in developing countries. The current work investigates the carbon footprint impact of a small road project (0.8 km, dual carriageway) initiated for traffic management in an urban centre. Life cycle assessment (LCA) with boundary conditions of cradle to the site has been adopted. The only construction phase of the life cycle has been assessed at this stage. An impact of 10 ktons-CO2 (6260 ton-CO2/km) has been assessed. The rigid pavement dominated the contributions as compared to a flexible component. Among the structural elements, the underpass works shared the major portion. Among the materials, the concrete and steel utilized for various structural elements resulted in more than 90% of the impact. The earth-moving equipment was dominant in operational carbon. The results have highlighted that road infrastructure projects pose serious threats to the environment during their construction and which need to be considered during the approval stages. This work provides a guideline for supporting sustainable development that could only be ensured when such endeavours are properly assessed by industry professionals and decide various alternative environmental conscious solutions for the future.

Keywords: construction waste management, kiloton, life cycle assessment, rigid pavement

Procedia PDF Downloads 80
1292 Micro-Milling Process Development of Advanced Materials

Authors: M. A. Hafiz, P. T. Matevenga

Abstract:

Micro-level machining of metals is a developing field which has shown to be a prospective approach to produce features on the parts in the range of a few to a few hundred microns with acceptable machining quality. It is known that the mechanics (i.e. the material removal mechanism) of micro-machining and conventional machining have significant differences due to the scaling effects associated with tool-geometry, tool material and work piece material characteristics. Shape memory alloys (SMAs) are those metal alloys which display two exceptional properties, pseudoelasticity and the shape memory effect (SME). Nickel-titanium (NiTi) alloys are one of those unique metal alloys. NiTi alloys are known to be difficult-to-cut materials specifically by using conventional machining techniques due to their explicit properties. Their high ductility, high amount of strain hardening, and unusual stress–strain behaviour are the main properties accountable for their poor machinability in terms of tool wear and work piece quality. The motivation of this research work was to address the challenges and issues of micro-machining combining with those of machining of NiTi alloy which can affect the desired performance level of machining outputs. To explore the significance of range of cutting conditions on surface roughness and tool wear, machining tests were conducted on NiTi. Influence of different cutting conditions and cutting tools on surface and sub-surface deformation in work piece was investigated. Design of experiments strategy (L9 Array) was applied to determine the key process variables. The dominant cutting parameters were determined by analysis of variance. These findings showed that feed rate was the dominant factor on surface roughness whereas depth of cut found to be dominant factor as far as tool wear was concerned. The lowest surface roughness was achieved at the feed rate of equal to the cutting edge radius where as the lowest flank wear was observed at lowest depth of cut. Repeated machining trials have yet to be carried out in order to observe the tool life, sub-surface deformation and strain induced hardening which are also expecting to be amongst the critical issues in micro machining of NiTi. The machining performance using different cutting fluids and strategies have yet to be studied.

Keywords: nickel titanium, micro-machining, surface roughness, machinability

Procedia PDF Downloads 324
1291 Mapping of Traffic Noise in Riyadh City-Saudi Arabia

Authors: Khaled A. Alsaif, Mosaad A. Foda

Abstract:

The present work aims at development of traffic noise maps for Riyadh City using the software Lima. Road traffic data were estimated or measured as accurate as possible in order to obtain consistent noise maps. The predicted noise levels at some selected sites are validated by actual field measurements, which are obtained by a system that consists of a sound level meter, a GPS receiver and a database to manage the measured data. The maps show that noise levels remain over 50 dBA and can exceed 70 dBA at the nearside of major roads and highways.

Keywords: noise pollution, road traffic noise, LimA predictor, GPS

Procedia PDF Downloads 360
1290 Fabrication of a Continuous Flow System for Biofilm Studies

Authors: Mohammed Jibrin Ndejiko

Abstract:

Modern and current models such as flow cell technology which enhances a non-destructive growth and inspection of the sessile microbial communities revealed a great understanding of biofilms. A continuous flow system was designed to evaluate possibility of biofilm formation by Escherichia coli DH5α on the stainless steel (type 304) under continuous nutrient supply. The result of the colony forming unit (CFU) count shows that bacterial attachment and subsequent biofilm formation on stainless steel coupons with average surface roughness of 1.5 ± 1.8 µm and 2.0 ± 0.09 µm were both significantly higher (p ≤ 0.05) than those of the stainless steel coupon with lower surface roughness of 0.38 ± 1.5 µm. These observations support the hypothesis that surface profile is one of the factors that influence biofilm formation on stainless steel surfaces. The SEM and FESEM micrographs of the stainless steel coupons also revealed the attached Escherichia coli DH5α biofilm and dehydrated extracellular polymeric substance on the stainless steel surfaces. Thus, the fabricated flow system represented a very useful tool to study biofilm formation under continuous nutrient supply.

Keywords: biofilm, flowcell, stainless steel, coupon

Procedia PDF Downloads 302
1289 Sliding Mode Control of a Bus Suspension System

Authors: Mujde Turkkan, Nurkan Yagiz

Abstract:

The vibrations, caused by the irregularities of the road surface, are to be suppressed via suspension systems. In this paper, sliding mode control for a half bus model with air suspension system is presented. The bus is modelled as five degrees of freedom (DoF) system. The mathematical model of the half bus is developed using Lagrange Equations. For time domain analysis, the bus model is assumed to travel at certain speed over the bump road. The numerical results of the analysis indicate that the sliding mode controllers can be effectively used to suppress the vibrations and to improve the ride comfort of the busses.

Keywords: active suspension system, air suspension, bus model, sliding mode control

Procedia PDF Downloads 368
1288 Porous Ni Electrodes Modified with Au Nanoparticles for Hydrogen Production

Authors: V. Pérez-Herranz, C. González-Buch, E. M. Ortega, S. Mestre

Abstract:

In this work new macroporous Ni electrodes modified with Au nanoparticles for hydrogen production have been developed. The supporting macroporous Ni electrodes have been obtained by means of the electrodeposition at high current densities. Then, the Au nanoparticles were synthesized and added to the electrode surface. The electrocatalytic behaviour of the developed electrocatalysts was studied by means of pseudo-steady-state polarization curves, electrochemical impedance spectroscopy (EIS) and hydrogen discharge curves. The size of the Au synthetized nanoparticles shows a monomodal distribution, with a very sharp band between 10 and 50 nm. The characteristic parameters d10, d50 and d90 were 14, 20 and 31 nm respectively. From Tafel polarization data has been concluded that the Au nanoparticles improve the catalytic activity of the developed electrodes towards the HER respect to the macroporous Ni electrodes. EIS permits to obtain the electrochemically active area by means of the roughness factor value. All the developed electrodes show roughness factor values in the same order of magnitude. From the activation energy results it can be concluded that the Au nanoparticles improve the intrinsic catalytic activity of the macroporous Ni electrodes.

Keywords: Au nano particles, hydrogen evolution reaction, porous Ni electrodes, electrochemical impedance spectroscopy

Procedia PDF Downloads 600
1287 Fabrication of Durable and Renegerable Superhydrophobic Coatings on Metallic Surfaces for Potential Industrial Applications

Authors: Priya Varshney, Soumya S. Mohapatra

Abstract:

Fabrication of anti-corrosion and self-cleaning superhydrophobic coatings for metallic surfaces which are regenerable and durable in the aggressive conditions has shown tremendous interest in materials science. In this work, the superhydrophobic coatings on metallic surfaces (aluminum, steel, copper) were prepared by two-step and one-step chemical etching process. In two-step process, roughness on surface was created by chemical etching and then passivation of roughened surface with low surface energy materials whereas, in one-step process, roughness on surface by chemical etching and passivation of surface with low surface energy materials were done in a single step. Beside this, the effect of etchant concentration and etching time on wettability and morphology was also studied. Thermal, mechanical, ultra-violet stability of these coatings were also tested. Along with this, regeneration of coatings and self-cleaning, corrosion resistance and water repelling characteristics were also studied. The surface morphology shows the presence of a rough microstuctures on the treated surfaces and the contact angle measurements confirms the superhydrophobic nature. It is experimentally observed that the surface roughness and contact angle increases with increase in etching time as well as with concentration of etchant. Superhydrophobic surfaces show the excellent self-cleaning behaviour. Coatings are found to be stable and maintain their superhydrophobicity in acidic and alkaline solutions. Water jet impact, floatation on water surface, and low temperature condensation tests prove the water-repellent nature of the coatings. These coatings are found to be thermal, mechanical and ultra-violet stable. These durable superhydrophobic metallic surfaces have potential industrial applications.

Keywords: superhydrophobic, water-repellent, anti-corrosion, self-cleaning

Procedia PDF Downloads 258
1286 Morphological Characteristic of Hybrid Thin Films

Authors: Azyuni Aziz, Syed A. Malik, Shahrul Kadri Ayop, Fatin Hana Naning

Abstract:

Currently, organic-inorganic hybrid thin films have attracted researchers to explore them, where these thin films can give a lot of benefits. Hybrid thin films are thin films that consist of inorganic and organic materials. Inorganic and organic materials give high efficiency and low manufacturing cost in some applications such as solar cells application, furthermore, organic materials are environment-friendly. In this study, poly (3-hexylthiophene) was choosing as organic material which combined with inorganic nanoparticles, Cadmium Sulfide (CdS) quantum dots. Samples were prepared using new technique, Angle Lifting Deposition (ALD) at different weight percentage. All prepared samples were then characterized by Field Emission Scanning Electron Microscopy (FESEM) with Energy-dispersive X-ray spectroscopy (EDX) and Atomic Force Microscopy (AFM) to study surface of samples and determine their surface roughness. Results show that these inorganic nanoparticles have affected the surface of samples and surface roughness of samples increased due to increasing of weight percentage of CdS in the thin films samples.

Keywords: AFM, CdS, FESEM-EDX, hybrid thin films, P3HT

Procedia PDF Downloads 481
1285 A Review: The Impact of Core Quality the Empirical Review of Critical Factors on the Causes of Delay in Road Constructions Projects in the GCC Countries

Authors: Sulaiman Al-Hinai, Setyawan Widyarto

Abstract:

The aim of this study is to identify the critically dominating factors on the delays of road constructions in the GCC countries and their effects on project delivery in Arab countries. Towards the achieved of the objectives the study used the empirical literature from the all relevant online sources and database as many as possible. The findings of this study have summarized and short listed of the success factors in the two categories such as internal and external factors have caused to be influenced to delay of road constructions in the Arab regions. However, in the category of internal factors, there are 63 factors short listed from seven group of factors which has revealed to effects on the delay of road constructions especially, the consultant related factors, the contractor related factors, designed related factors, client related factors, labor related factors, material related issues, equipment related issues respectively. Moreover, for external related factors are also considered to summarized especially natural disaster (flood, hurricanes and cyclone etc.), conflict, war, global financial crisis, compensation delay to affected property owner, price fluctuated, unexpected ground conditions (soil and high-water level), changing of government regulations and laws, delays in obtaining permission from municipality, loss of time by traffic control and restrictions at job site, problem with inhabitant of community, delays in providing service from utilities (water and electricity’s) and accident during constructions accordingly. The present study also concluded the effects of above factors which has delay road constructions through increasing of cost and overrun it, taken overtime, creating of disputes, going for lawsuits, finally happening of abandon of projects. Thus, the present study has given the following recommendations to overcome of above problems by increasing of detailed site investigations, ensure careful monitoring and regular meetings, effective site management, collaborative working and effective coordination’s, proper and comprehensive planning and scheduling and ensure full and intensive commitment from all parties accordingly.

Keywords: Arab GCC countries, critical success factors, road constructions delay, project management

Procedia PDF Downloads 106