Search results for: motion data acquisition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25832

Search results for: motion data acquisition

25472 Residual Analysis and Ground Motion Prediction Equation Ranking Metrics for Western Balkan Strong Motion Database

Authors: Manuela Villani, Anila Xhahysa, Christopher Brooks, Marco Pagani

Abstract:

The geological structure of Western Balkans is strongly affected by the collision between Adria microplate and the southwestern Euroasia margin, resulting in a considerably active seismic region. The Harmonization of Seismic Hazard Maps in the Western Balkan Countries Project (BSHAP) (2007-2011, 2012-2015) by NATO supported the preparation of new seismic hazard maps of the Western Balkan, but when inspecting the seismic hazard models produced later by these countries on a national scale, significant differences in design PGA values are observed in the border, for instance, North Albania-Montenegro, South Albania- Greece, etc. Considering the fact that the catalogues were unified and seismic sources were defined within BSHAP framework, obviously, the differences arise from the Ground Motion Prediction Equations selection, which are generally the component with highest impact on the seismic hazard assessment. At the time of the project, a modest database was present, namely 672 three-component records, whereas nowadays, this strong motion database has increased considerably up to 20,939 records with Mw ranging in the interval 3.7-7 and epicentral distance distribution from 0.47km to 490km. Statistical analysis of the strong motion database showed the lack of recordings in the moderate-to-large magnitude and short distance ranges; therefore, there is need to re-evaluate the Ground Motion Prediction Equation in light of the recently updated database and the new generations of GMMs. In some cases, it was observed that some events were more extensively documented in one database than the other, like the 1979 Montenegro earthquake, with a considerably larger number of records in the BSHAP Analogue SM database when compared to ESM23. Therefore, the strong motion flat-file provided from the Harmonization of Seismic Hazard Maps in the Western Balkan Countries Project was merged with the ESM23 database for the polygon studied in this project. After performing the preliminary residual analysis, the candidate GMPE-s were identified. This process was done using the GMPE performance metrics available within the SMT in the OpenQuake Platform. The Likelihood Model and Euclidean Distance Based Ranking (EDR) were used. Finally, for this study, a GMPE logic tree was selected and following the selection of candidate GMPEs, model weights were assigned using the average sample log-likelihood approach of Scherbaum.

Keywords: residual analysis, GMPE, western balkan, strong motion, openquake

Procedia PDF Downloads 55
25471 Adapting an Accurate Reverse-time Migration Method to USCT Imaging

Authors: Brayden Mi

Abstract:

Reverse time migration has been widely used in the Petroleum exploration industry to reveal subsurface images and to detect rock and fluid properties since the early 1980s. The seismic technology involves the construction of a velocity model through interpretive model construction, seismic tomography, or full waveform inversion, and the application of the reverse-time propagation of acquired seismic data and the original wavelet used in the acquisition. The methodology has matured from 2D, simple media to present-day to handle full 3D imaging challenges in extremely complex geological conditions. Conventional Ultrasound computed tomography (USCT) utilize travel-time-inversion to reconstruct the velocity structure of an organ. With the velocity structure, USCT data can be migrated with the “bend-ray” method, also known as migration. Its seismic application counterpart is called Kirchhoff depth migration, in which the source of reflective energy is traced by ray-tracing and summed to produce a subsurface image. It is well known that ray-tracing-based migration has severe limitations in strongly heterogeneous media and irregular acquisition geometries. Reverse time migration (RTM), on the other hand, fully accounts for the wave phenomena, including multiple arrives and turning rays due to complex velocity structure. It has the capability to fully reconstruct the image detectable in its acquisition aperture. The RTM algorithms typically require a rather accurate velocity model and demand high computing powers, and may not be applicable to real-time imaging as normally required in day-to-day medical operations. However, with the improvement of computing technology, such a computational bottleneck may not present a challenge in the near future. The present-day (RTM) algorithms are typically implemented from a flat datum for the seismic industry. It can be modified to accommodate any acquisition geometry and aperture, as long as sufficient illumination is provided. Such flexibility of RTM can be conveniently implemented for the application in USCT imaging if the spatial coordinates of the transmitters and receivers are known and enough data is collected to provide full illumination. This paper proposes an implementation of a full 3D RTM algorithm for USCT imaging to produce an accurate 3D acoustic image based on the Phase-shift-plus-interpolation (PSPI) method for wavefield extrapolation. In this method, each acquired data set (shot) is propagated back in time, and a known ultrasound wavelet is propagated forward in time, with PSPI wavefield extrapolation and a piece-wise constant velocity model of the organ (breast). The imaging condition is then applied to produce a partial image. Although each image is subject to the limitation of its own illumination aperture, the stack of multiple partial images will produce a full image of the organ, with a much-reduced noise level if compared with individual partial images.

Keywords: illumination, reverse time migration (RTM), ultrasound computed tomography (USCT), wavefield extrapolation

Procedia PDF Downloads 55
25470 The Effect of Observational Practice on the Volleyball Service Learning with Emphasis on the Role of Self–Efficacy

Authors: Majed Zobairy, Payam Mohammadpanahi

Abstract:

Introduction: Skill movement education is one of extremely important duty for sport coaches and sport teachers. Researchers have done lots of studies in this filed to gain the best methodology in movement learning. One of the essential aspects in skill movement education is observational learning. Observational learning, or learning by watching demonstrations, has been characterized as one of the most important methods by which people learn variety of skill and behaviours.The purpose of this study was determined the effect of observational practice on the volleyball service learning with emphasis on the Role of Self–Efficacy. Methods: The Sample consisted of100 male students was assigned accessible sampling technique and homogeneous manner with emphasis on the Role of Self–Efficacy level to 4 groups. The first group performed physical training, the second group performed observational practice task, the third practiced physically and observationally and the fourth group served as the control group. The experimental groups practiced in a one day acquisition and performed the retention task, after 72 hours. Kolmogorov-Smirnov test and independent t-test were used for Statistical analyses. Results and Discussion: Results shows that observation practice task group can significantly improve volleyball services skills acquisition (T=7.73). Also mixed group (physically and observationally) is significantly better than control group regarding to volleyball services skills acquisition (T=7.04). Conclusion: Results have shown observation practice task group and mixed group are significantly better than control group in acquisition test. The present results are in line with previous studies, suggesting that observation learning can improve performance. On the other hand, results shows that self-efficacy level significantly effect on acquisition movement skill. In other words, high self-efficacy is important factor in skill learning level in volleyball service.

Keywords: observational practice, volleyball service, self–efficacy, sport science

Procedia PDF Downloads 377
25469 Combining Laws of Mechanics and Hydrostatics in Non Inertial Reference Frames

Authors: M. Blokh

Abstract:

Method of combined teaching laws of classical mechanics and hydrostatics in non-inertial reference frames for undergraduate students is proposed. Pressure distribution in a liquid (or gas) moving with acceleration is considered. Combined effect of hydrostatic force and force of inertia on a body immersed in a liquid can lead to paradoxical results, in a motion of pendulum in particular. The body motion under Stokes force influence and forces in rotating reference frames are investigated as well. Problems and difficulties in student perceptions are analyzed.

Keywords: hydrodynamics, mechanics, non-inertial reference frames, teaching

Procedia PDF Downloads 360
25468 History of Film in the (West/South) Africa-the Emergence of the Film Production Economy

Authors: Sibusiso Mnyanda

Abstract:

Storytelling through motion pictures is a valuable economy. South Africa was one of the first countries in the world to see and hear sound motion pictures With Lingards Waxworks in Durban first showing them in August 1895. This article celebrates and takes a microscopic look into the developments of this industry and its economy, highlighting these fundamentals: Skill levels and talent sets that were displayed in this emergence, the quality of the products that were produced by filmmakers and actors, the level of Administration and quality assurance of production houses and the general infrastructure and resources available to the industry at the time.

Keywords: film, Africa, production economy, history

Procedia PDF Downloads 40
25467 CONDUCTHOME: Gesture Interface Control of Home Automation Boxes

Authors: J. Branstett, V. Gagneux, A. Leleu, B. Levadoux, J. Pascale

Abstract:

This paper presents the interface CONDUCTHOME which controls home automation systems with a Leap Motion using ‘invariant gesture protocols’. The function of this interface is to simplify the interaction of the user with its environment. A hardware part allows the Leap Motion to be carried around the house. A software part interacts with the home automation box and displays the useful information for the user. An objective of this work is the development a natural/invariant/simple gesture control interface to help elder people/people with disabilities.

Keywords: automation, ergonomics, gesture recognition, interoperability

Procedia PDF Downloads 411
25466 Non-Contact Human Movement Monitoring Technique for Security Control System Based 2n Electrostatic Induction

Authors: Koichi Kurita

Abstract:

In this study, an effective non-contact technique for the detection of human physical activity is proposed. The technique is based on detecting the electrostatic induction current generated by the walking motion under non-contact and non-attached conditions. A theoretical model for the electrostatic induction current generated because of a change in the electric potential of the human body is proposed. By comparing the obtained electrostatic induction current with the theoretical model, it becomes obvious that this model effectively explains the behavior of the waveform of the electrostatic induction current. The normal walking motions are recorded using a portable sensor measurement located in a passageway of office building. The obtained results show that detailed information regarding physical activity such as a walking cycle can be estimated using our proposed technique. This suggests that the proposed technique which is based on the detection of the walking signal, can be successfully applied to the detection of human walking motion in a secured building.

Keywords: human walking motion, access control, electrostatic induction, alarm monitoring

Procedia PDF Downloads 341
25465 Adequacy of Advanced Earthquake Intensity Measures for Estimation of Damage under Seismic Excitation with Arbitrary Orientation

Authors: Konstantinos G. Kostinakis, Manthos K. Papadopoulos, Asimina M. Athanatopoulou

Abstract:

An important area of research in seismic risk analysis is the evaluation of expected seismic damage of structures under a specific earthquake ground motion. Several conventional intensity measures of ground motion have been used to estimate their damage potential to structures. Yet, none of them was proved to be able to predict adequately the seismic damage of any structural system. Therefore, alternative advanced intensity measures which take into account not only ground motion characteristics but also structural information have been proposed. The adequacy of a number of advanced earthquake intensity measures in prediction of structural damage of 3D R/C buildings under seismic excitation which attacks the building with arbitrary incident angle is investigated in the present paper. To achieve this purpose, a symmetric in plan and an asymmetric 5-story R/C building are studied. The two buildings are subjected to 20 bidirectional earthquake ground motions. The two horizontal accelerograms of each ground motion are applied along horizontal orthogonal axes forming 72 different angles with the structural axes. The response is computed by non-linear time history analysis. The structural damage is expressed in terms of the maximum interstory drift as well as the overall structural damage index. The values of the aforementioned seismic damage measures determined for incident angle 0° as well as their maximum values over all seismic incident angles are correlated with 9 structure-specific ground motion intensity measures. The research identified certain intensity measures which exhibited strong correlation with the seismic damage of the two buildings. However, their adequacy for estimation of the structural damage depends on the response parameter adopted. Furthermore, it was confirmed that the widely used spectral acceleration at the fundamental period of the structure is a good indicator of the expected earthquake damage level.

Keywords: damage indices, non-linear response, seismic excitation angle, structure-specific intensity measures

Procedia PDF Downloads 483
25464 An Assistive Robotic Arm for Defence and Rescue Application

Authors: J. Harrison Kurunathan, R. Jayaparvathy

Abstract:

"Assistive Robotics" is the field that deals with the study of robots that helps in human motion and also empowers human abilities by interfacing the robotic systems to be manipulated by human motion. The proposed model is a robotic arm that works as a haptic interface on the basis on accelerometers and DC motors that will function with respect to the movement of the human muscle. The proposed model would effectively work as a haptic interface that would reduce human effort in the field of defense and rescue. This can be used in very critical conditions like fire accidents to avoid causalities.

Keywords: accelerometers, haptic interface, servo motors, signal processing

Procedia PDF Downloads 370
25463 Enhanced Acquisition Time of a Quantum Holography Scheme within a Nonlinear Interferometer

Authors: Sergio Tovar-Pérez, Sebastian Töpfer, Markus Gräfe

Abstract:

The work proposes a technique that decreases the detection acquisition time of quantum holography schemes down to one-third; this allows the possibility to image moving objects. Since its invention, quantum holography with undetected photon schemes has gained interest in the scientific community. This is mainly due to its ability to tailor the detected wavelengths according to the needs of the scheme implementation. Yet this wavelength flexibility grants the scheme a wide range of possible applications; an important matter was yet to be addressed. Since the scheme uses digital phase-shifting techniques to retrieve the information of the object out of the interference pattern, it is necessary to acquire a set of at least four images of the interference pattern along with well-defined phase steps to recover the full object information. Hence, the imaging method requires larger acquisition times to produce well-resolved images. As a consequence, the measurement of moving objects remains out of the reach of the imaging scheme. This work presents the use and implementation of a spatial light modulator along with a digital holographic technique called quasi-parallel phase-shifting. This technique uses the spatial light modulator to build a structured phase image consisting of a chessboard pattern containing the different phase steps for digitally calculating the object information. Depending on the reduction in the number of needed frames, the acquisition time reduces by a significant factor. This technique opens the door to the implementation of the scheme for moving objects. In particular, the application of this scheme in imaging alive specimens comes one step closer.

Keywords: quasi-parallel phase shifting, quantum imaging, quantum holography, quantum metrology

Procedia PDF Downloads 92
25462 Human Machine Interface for Controlling a Robot Using Image Processing

Authors: Ambuj Kumar Gautam, V. Vasu

Abstract:

This paper introduces a head movement based Human Machine Interface (HMI) that uses the right and left movements of head to control a robot motion. Here we present an approach for making an effective technique for real-time face orientation information system, to control a robot which can be efficiently used for Electrical Powered Wheelchair (EPW). Basically this project aims at application related to HMI. The system (machine) identifies the orientation of the face movement with respect to the pixel values of image in a certain areas. Initially we take an image and divide that whole image into three parts on the basis of its number of columns. On the basis of orientation of face, maximum pixel value of approximate same range of (R, G, and B value of a pixel) lie in one of divided parts of image. This information we transfer to the microcontroller through serial communication port and control the motion of robot like forward motion, left and right turn and stop in real time by using head movements.

Keywords: electrical powered wheelchair (EPW), human machine interface (HMI), robotics, microcontroller

Procedia PDF Downloads 271
25461 The Imperative of Adult Education in the Knowledge Society

Authors: Najim Akorede Babalola

Abstract:

Adult Education is a multi and interdisciplinary in nature that cut across different fields of study which includes education, social sciences, engineering even information technologies that dominate the contemporary world among others. In the past, Adult Education has been used as an instrument of civilization by teaching people how to read and write as well as earning a better living. The present world has witnessed a transition from industrial age to information age which is also known as knowledge society needs Adult Education for knowledge acquisition and update of existing knowledge. An individual needs Adult Education in either of its various forms (on-the-job-training, in-service training, extramural classes, vocational education, continuing education among others) in order to develop towards the information society trends; this is because Adult Education is a process of transforming an individual through acquisition of relevant skills and knowledge for personal as well as societal development. Evidence abounds in the literature that Adult Education has not only assisted people in the medieval period but still assisting people in this modern society in changing and transforming their lives for a better living. This study, therefore, raised a salient question that with different ideas and innovations brought by the contemporary world, is Adult Education relevant? It is on this basis that this study intends to examine the relevance of Adult Education in the past and present in order to determine its future relevance.

Keywords: adult education, multi and inter-disciplinary, knowledge society, skill acquisition

Procedia PDF Downloads 331
25460 A Comparative Study on the Development of Webquest and Online Treasure Hunt as Instructional Materials in Teaching Motion in One Dimension for Grade VII Students

Authors: Mark Anthony Burdeos, Kara Ella Catoto, Alraine Pauyon, Elesar Malicoban

Abstract:

This study sought to develop, validate, and implement the WebQuest and Online Treasure Hunt as instructional materials in teaching Motion in One Dimension for Grade 7 students and to determine its effects on the students’ conceptual learning, performance and attitude towards Physics. In the development stage, several steps were taken, such as the actual planning and developing the WebQuest and Online Treasure Hunt and making the lesson plan and achievement test. The content and the ICT(Information Communications Technology) effect of the developed instructional materials were evaluated by the Content and ICT experts using adapted evaluation forms. During the implementation, pretest and posttest were administered to determine students’ performance, and pre-attitude and post-attitude tests to investigate students’ attitudes towards Physics before and after the WebQuest and Online Treasure Hunt activity. The developed WebQuest and Online Treasure Hunt passed the validation of Content experts and ICT experts. Students acquired more knowledge on Motion in One Dimension and gained a positive attitude towards Physics after the utilization of WebQuest and Online Treasure Hunt, evidenced significantly higher scores in posttest compared to pretest and higher ratings in post-attitude than pre-attitude. The developed WebQuest and Online Treasure Hunt were proven good in quality and effective materials in teaching Motion in One Dimension and developing a positive attitude towards Physics. However, students performed better in the pretest and posttest and rated higher in the pre-attitude and post-attitude tests in the WebQuest than in the Online Treasure Hunt. This study would provide significant learning experiences to the students that would be useful in building their knowledge, in understanding concepts in a most understandable way, in exercising to use their higher-order thinking skills, and in utilizing their capabilities and abilities to relate Physics topics to real-life situations thereby, students can have in-depth learning about Motion in One Dimension. This study would help teachers to enhance the teaching strategies as the two instructional materials provide interesting, engaging, and innovative teaching-learning experiences for the learners, which are helpful in increasing the level of their motivation and participation in learning Physics. In addition, it would provide information as a reference in using technology in the classroom and to determine which of the two instructional materials, WebQuest and Online Treasure Hunt, is suitable for the teaching-learning process in Motion in One Dimension.

Keywords: ICT integration, motion in one dimension, online treasure hunt, Webquest

Procedia PDF Downloads 159
25459 Hydrodynamic Analysis of Fish Fin Kinematics of Oreochromis Niloticus Using Machine Learning and Image Processing

Authors: Paramvir Singh

Abstract:

The locomotion of aquatic organisms has long fascinated biologists and engineers alike, with fish fins serving as a prime example of nature's remarkable adaptations for efficient underwater propulsion. This paper presents a comprehensive study focused on the hydrodynamic analysis of fish fin kinematics, employing an innovative approach that combines machine learning and image processing techniques. Through high-speed videography and advanced computational tools, we gain insights into the complex and dynamic motion of the fins of a Tilapia (Oreochromis Niloticus) fish. This study was initially done by experimentally capturing videos of the various motions of a Tilapia in a custom-made setup. Using deep learning and image processing on the videos, the motion of the Caudal and Pectoral fin was extracted. This motion included the fin configuration (i.e., the angle of deviation from the mean position) with respect to time. Numerical investigations for the flapping fins are then performed using a Computational Fluid Dynamics (CFD) solver. 3D models of the fins were created, mimicking the real-life geometry of the fins. Thrust Characteristics of separate fins (i.e., Caudal and Pectoral separately) and when the fins are together were studied. The relationship and the phase between caudal and pectoral fin motion were also discussed. The key objectives include mathematical modeling of the motion of a flapping fin at different naturally occurring frequencies and amplitudes. The interactions between both fins (caudal and pectoral) were also an area of keen interest. This work aims to improve on research that has been done in the past on similar topics. Also, these results can help in the better and more efficient design of the propulsion systems for biomimetic underwater vehicles that are used to study aquatic ecosystems, explore uncharted or challenging underwater regions, do ocean bed modeling, etc.

Keywords: biomimetics, fish fin kinematics, image processing, fish tracking, underwater vehicles

Procedia PDF Downloads 57
25458 Challenges and Opportunities: One Stop Processing for the Automation of Indonesian Large-Scale Topographic Base Map Using Airborne LiDAR Data

Authors: Elyta Widyaningrum

Abstract:

The LiDAR data acquisition has been recognizable as one of the fastest solution to provide the basis data for topographic base mapping in Indonesia. The challenges to accelerate the provision of large-scale topographic base maps as a development plan basis gives the opportunity to implement the automated scheme in the map production process. The one stop processing will also contribute to accelerate the map provision especially to conform with the Indonesian fundamental spatial data catalog derived from ISO 19110 and geospatial database integration. Thus, the automated LiDAR classification, DTM generation and feature extraction will be conducted in one GIS-software environment to form all layers of topographic base maps. The quality of automated topographic base map will be assessed and analyzed based on its completeness, correctness, contiguity, consistency and possible customization.

Keywords: automation, GIS environment, LiDAR processing, map quality

Procedia PDF Downloads 346
25457 Comparative Analysis of Hybrid Dynamic Stabilization and Fusion for Degenerative Disease of the Lumbosacral Spine: Finite Element Analysis

Authors: Mohamed Bendoukha, Mustapha Mosbah

Abstract:

The Radiographic apparent assumed that the asymptomatic adjacent segment disease ASD is common after lumbar fusion, but this does not correlate with the functional outcomes while compensatory increased motion and stresses at the adjacent level of fusion is well-known to be associated to ASD. Newly developed, the hybrid stabilization are allocated to substituted for mostly the superior level of the fusion in an attempt to reduce the number of fusion levels and likelihood of degeneration process at the adjacent levels during the fusion with pedicle screws. Nevertheless, its biomechanical efficiencies still remain unknown and complications associated with failure of constructs such screw loosening and toggling should be elucidated In the current study, a finite element (FE) study was performed using a validated L2/S1 model subjected to a moment of 7.5 Nm and follower load of 400 N to assess the biomedical behavior of hybrid constructs based on dynamic topping off, semi rigid fusion. The residual range of motion (ROM), stress distribution at the fused and adjacent levels, stress distribution at the disc and the cage-endplate interface with respect to changes of bone quality were investigated. The hybrid instrumentation was associated with a reduction in compressive stresses compared to the fusion construct in the adjacent-level disc and showed high substantial axial force in the implant while fusion instrumentation increased the motion for both flexion and extension.

Keywords: intervertebral disc, lumbar spine, degenerative nuclesion, L4-L5, range of motion finite element model, hyperelasticy

Procedia PDF Downloads 162
25456 Customer Acquisition through Time-Aware Marketing Campaign Analysis in Banking Industry

Authors: Harneet Walia, Morteza Zihayat

Abstract:

Customer acquisition has become one of the critical issues of any business in the 21st century; having a healthy customer base is the essential asset of the bank business. Term deposits act as a major source of cheap funds for the banks to invest and benefit from interest rate arbitrage. To attract customers, the marketing campaigns at most financial institutions consist of multiple outbound telephonic calls with more than one contact to a customer which is a very time-consuming process. Therefore, customized direct marketing has become more critical than ever for attracting new clients. As customer acquisition is becoming more difficult to archive, having an intelligent and redefined list is necessary to sell a product smartly. Our aim of this research is to increase the effectiveness of campaigns by predicting customers who will most likely subscribe to the fixed deposit and suggest the most suitable month to reach out to customers. We design a Time Aware Upsell Prediction Framework (TAUPF) using two different approaches, with an aim to find the best approach and technique to build the prediction model. TAUPF is implemented using Upsell Prediction Approach (UPA) and Clustered Upsell Prediction Approach (CUPA). We also address the data imbalance problem by examining and comparing different methods of sampling (Up-sampling and down-sampling). Our results have shown building such a model is quite feasible and profitable for the financial institutions. The Time Aware Upsell Prediction Framework (TAUPF) can be easily used in any industry such as telecom, automobile, tourism, etc. where the TAUPF (Clustered Upsell Prediction Approach (CUPA) or Upsell Prediction Approach (UPA)) holds valid. In our case, CUPA books more reliable. As proven in our research, one of the most important challenges is to define measures which have enough predictive power as the subscription to a fixed deposit depends on highly ambiguous situations and cannot be easily isolated. While we have shown the practicality of time-aware upsell prediction model where financial institutions can benefit from contacting the customers at the specified month, further research needs to be done to understand the specific time of the day. In addition, a further empirical/pilot study on real live customer needs to be conducted to prove the effectiveness of the model in the real world.

Keywords: customer acquisition, predictive analysis, targeted marketing, time-aware analysis

Procedia PDF Downloads 103
25455 Development of Digital Twin Concept to Detect Abnormal Changes in Structural Behaviour

Authors: Shady Adib, Vladimir Vinogradov, Peter Gosling

Abstract:

Digital Twin (DT) technology is a new technology that appeared in the early 21st century. The DT is defined as the digital representation of living and non-living physical assets. By connecting the physical and virtual assets, data are transmitted smoothly, allowing the virtual asset to fully represent the physical asset. Although there are lots of studies conducted on the DT concept, there is still limited information about the ability of the DT models for monitoring and detecting unexpected changes in structural behaviour in real time. This is due to the large computational efforts required for the analysis and an excessively large amount of data transferred from sensors. This paper aims to develop the DT concept to be able to detect the abnormal changes in structural behaviour in real time using advanced modelling techniques, deep learning algorithms, and data acquisition systems, taking into consideration model uncertainties. finite element (FE) models were first developed offline to be used with a reduced basis (RB) model order reduction technique for the construction of low-dimensional space to speed the analysis during the online stage. The RB model was validated against experimental test results for the establishment of a DT model of a two-dimensional truss. The established DT model and deep learning algorithms were used to identify the location of damage once it has appeared during the online stage. Finally, the RB model was used again to identify the damage severity. It was found that using the RB model, constructed offline, speeds the FE analysis during the online stage. The constructed RB model showed higher accuracy for predicting the damage severity, while deep learning algorithms were found to be useful for estimating the location of damage with small severity.

Keywords: data acquisition system, deep learning, digital twin, model uncertainties, reduced basis, reduced order model

Procedia PDF Downloads 79
25454 Mixed Integer Programing for Multi-Tier Rebate with Discontinuous Cost Function

Authors: Y. Long, L. Liu, K. V. Branin

Abstract:

One challenge faced by procurement decision-maker during the acquisition process is how to compare similar products from different suppliers and allocate orders among different products or services. This work focuses on allocating orders among multiple suppliers considering rebate. The objective function is to minimize the total acquisition cost including purchasing cost and rebate benefit. Rebate benefit is complex and difficult to estimate at the ordering step. Rebate rules vary for different suppliers and usually change over time. In this work, we developed a system to collect the rebate policies, standardized the rebate policies and developed two-stage optimization models for ordering allocation. Rebate policy with multi-tiers is considered in modeling. The discontinuous cost function of rebate benefit is formulated for different scenarios. A piecewise linear function is used to approximate the discontinuous cost function of rebate benefit. And a Mixed Integer Programing (MIP) model is built for order allocation problem with multi-tier rebate. A case study is presented and it shows that our optimization model can reduce the total acquisition cost by considering rebate rules.

Keywords: discontinuous cost function, mixed integer programming, optimization, procurement, rebate

Procedia PDF Downloads 242
25453 Robotic Exoskeleton Response During Infant Physiological Knee Kinematics

Authors: Breanna Macumber, Victor A. Huayamave, Emir A. Vela, Wangdo Kim, Tamara T. Chamber, Esteban Centeno

Abstract:

Spina bifida is a type of neural tube defect that affects the nervous system and can lead to problems such as total leg paralysis. Treatment requires physical therapy and rehabilitation. Robotic exoskeletons have been used for rehabilitation to train muscle movement and assist in injury recovery; however, current models focus on the adult populations and not on the infant population. The proposed framework aims to couple a musculoskeletal infant model with a robotic exoskeleton using vacuum-powered artificial muscles to provide rehabilitation to infants affected by spina bifida. The study that drove the input values for the robotic exoskeleton used motion capture technology to collect data from the spontaneous kicking movement of a 2.4-month-old infant lying supine. OpenSim was used to develop the musculoskeletal model, and Inverse kinematics was used to estimate hip joint angles. A total of 4 kicks (A, B, C, D) were selected, and the selection was based on range, transient response, and stable response. Kicks had at least 5° of range of motion with a smooth transient response and a stable period. The robotic exoskeleton used a Vacuum-Powered Artificial Muscle (VPAM) the structure comprised of cells that were clipped in a collapsed state and unclipped when desired to simulate infant’s age. The artificial muscle works with vacuum pressure. When air is removed, the muscle contracts and when air is added, the muscle relaxes. Bench testing was performed using a 6-month-old infant mannequin. The previously developed exoskeleton worked really well with controlled ranges of motion and frequencies, which are typical of rehabilitation protocols for infants suffering with spina bifida. However, the random kicking motion in this study contained high frequency kicks and was not able to accurately replicate all the investigated kicks. Kick 'A' had a greater error when compared to the other kicks. This study has the potential to advance the infant rehabilitation field.

Keywords: musculoskeletal modeling, soft robotics, rehabilitation, pediatrics

Procedia PDF Downloads 93
25452 Effect of the Cross-Sectional Geometry on Heat Transfer and Particle Motion of Circulating Fluidized Bed Riser for CO2 Capture

Authors: Seungyeong Choi, Namkyu Lee, Dong Il Shim, Young Mun Lee, Yong-Ki Park, Hyung Hee Cho

Abstract:

Effect of the cross-sectional geometry on heat transfer and particle motion of circulating fluidized bed riser for CO2 capture was investigated. Numerical simulation using Eulerian-eulerian method with kinetic theory of granular flow was adopted to analyze gas-solid flow consisting in circulating fluidized bed riser. Circular, square, and rectangular cross-sectional geometry cases of the same area were carried out. Rectangular cross-sectional geometries were analyzed having aspect ratios of 1: 2, 1: 4, 1: 8, and 1:16. The cross-sectional geometry significantly influenced the particle motion and heat transfer. The downward flow pattern of solid particles near the wall was changed. The gas-solid mixing degree of the riser with the rectangular cross section of the high aspect ratio was the lowest. There were differences in bed-to-wall heat transfer coefficient according to rectangular geometry with different aspect ratios.

Keywords: bed geometry, computational fluid dynamics, circulating fluidized bed riser, heat transfer

Procedia PDF Downloads 238
25451 Facility Data Model as Integration and Interoperability Platform

Authors: Nikola Tomasevic, Marko Batic, Sanja Vranes

Abstract:

Emerging Semantic Web technologies can be seen as the next step in evolution of the intelligent facility management systems. Particularly, this considers increased usage of open source and/or standardized concepts for data classification and semantic interpretation. To deliver such facility management systems, providing the comprehensive integration and interoperability platform in from of the facility data model is a prerequisite. In this paper, one of the possible modelling approaches to provide such integrative facility data model which was based on the ontology modelling concept was presented. Complete ontology development process, starting from the input data acquisition, ontology concepts definition and finally ontology concepts population, was described. At the beginning, the core facility ontology was developed representing the generic facility infrastructure comprised of the common facility concepts relevant from the facility management perspective. To develop the data model of a specific facility infrastructure, first extension and then population of the core facility ontology was performed. For the development of the full-blown facility data models, Malpensa and Fiumicino airports in Italy, two major European air-traffic hubs, were chosen as a test-bed platform. Furthermore, the way how these ontology models supported the integration and interoperability of the overall airport energy management system was analyzed as well.

Keywords: airport ontology, energy management, facility data model, ontology modeling

Procedia PDF Downloads 423
25450 Exoskeleton Response During Infant Physiological Knee Kinematics And Dynamics

Authors: Breanna Macumber, Victor A. Huayamave, Emir A. Vela, Wangdo Kim, Tamara T. Chamber, Esteban Centeno

Abstract:

Spina bifida is a type of neural tube defect that affects the nervous system and can lead to problems such as total leg paralysis. Treatment requires physical therapy and rehabilitation. Robotic exoskeletons have been used for rehabilitation to train muscle movement and assist in injury recovery; however, current models focus on the adult populations and not on the infant population. The proposed framework aims to couple a musculoskeletal infant model with a robotic exoskeleton using vacuum-powered artificial muscles to provide rehabilitation to infants affected by spina bifida. The study that drove the input values for the robotic exoskeleton used motion capture technology to collect data from the spontaneous kicking movement of a 2.4-month-old infant lying supine. OpenSim was used to develop the musculoskeletal model, and Inverse kinematics was used to estimate hip joint angles. A total of 4 kicks (A, B, C, D) were selected, and the selection was based on range, transient response, and stable response. Kicks had at least 5° of range of motion with a smooth transient response and a stable period. The robotic exoskeleton used a Vacuum-Powered Artificial Muscle (VPAM) the structure comprised of cells that were clipped in a collapsed state and unclipped when desired to simulate infant’s age. The artificial muscle works with vacuum pressure. When air is removed, the muscle contracts and when air is added, the muscle relaxes. Bench testing was performed using a 6-month-old infant mannequin. The previously developed exoskeleton worked really well with controlled ranges of motion and frequencies, which are typical of rehabilitation protocols for infants suffering with spina bifida. However, the random kicking motion in this study contained high frequency kicks and was not able to accurately replicate all the investigated kicks. Kick 'A' had a greater error when compared to the other kicks. This study has the potential to advance the infant rehabilitation field.

Keywords: musculoskeletal modeling, soft robotics, rehabilitation, pediatrics

Procedia PDF Downloads 59
25449 Visualization-Based Feature Extraction for Classification in Real-Time Interaction

Authors: Ágoston Nagy

Abstract:

This paper introduces a method of using unsupervised machine learning to visualize the feature space of a dataset in 2D, in order to find most characteristic segments in the set. After dimension reduction, users can select clusters by manual drawing. Selected clusters are recorded into a data model that is used for later predictions, based on realtime data. Predictions are made with supervised learning, using Gesture Recognition Toolkit. The paper introduces two example applications: a semantic audio organizer for analyzing incoming sounds, and a gesture database organizer where gestural data (recorded by a Leap motion) is visualized for further manipulation.

Keywords: gesture recognition, machine learning, real-time interaction, visualization

Procedia PDF Downloads 328
25448 Economized Sensor Data Processing with Vehicle Platooning

Authors: Henry Hexmoor, Kailash Yelasani

Abstract:

We present vehicular platooning as a special case of crowd-sensing framework where sharing sensory information among a crowd is used for their collective benefit. After offering an abstract policy that governs processes involving a vehicular platoon, we review several common scenarios and components surrounding vehicular platooning. We then present a simulated prototype that illustrates efficiency of road usage and vehicle travel time derived from platooning. We have argued that one of the paramount benefits of platooning that is overlooked elsewhere, is the substantial computational savings (i.e., economizing benefits) in acquisition and processing of sensory data among vehicles sharing the road. The most capable vehicle can share data gathered from its sensors with nearby vehicles grouped into a platoon.

Keywords: cloud network, collaboration, internet of things, social network

Procedia PDF Downloads 174
25447 The Design of Intelligent Passenger Organization System for Metro Stations Based on Anylogic

Authors: Cheng Zeng, Xia Luo

Abstract:

Passenger organization has always been an essential part of China's metro operation and management. Facing the massive passenger flow, stations need to improve their intelligence and automation degree by an appropriate integrated system. Based on the existing integrated supervisory control system (ISCS) and simulation software (Anylogic), this paper designs an intelligent passenger organization system (IPOS) for metro stations. Its primary function includes passenger information acquisition, data processing and computing, visualization management, decision recommendations, and decision response based on interlocking equipment. For this purpose, the logical structure and intelligent algorithms employed are particularly devised. Besides, the structure diagram of information acquisition and application module, the application of Anylogic, the case library's function process are all given by this research. Based on the secondary development of Anylogic and existing technologies like video recognition, the IPOS is supposed to improve the response speed and address capacity in the face of emergent passenger flow of metro stations.

Keywords: anylogic software, decision-making support system, intellectualization, ISCS, passenger organization

Procedia PDF Downloads 152
25446 Acoustic Emission Monitoring of Surface Roughness in Ultra High Precision Grinding of Borosilicate-Crown Glass

Authors: Goodness Onwuka, Khaled Abou-El-Hossein

Abstract:

The increase in the demand for precision optics, coupled with the absence of much research output in the ultra high precision grinding of precision optics as compared to the ultrahigh precision diamond turning of optical metals has fostered the need for more research in the ultra high precision grinding of an optical lens. Furthermore, the increase in the stringent demands for nanometric surface finishes through lapping, polishing and grinding processes necessary for the use of borosilicate-crown glass in the automotive and optics industries has created the demand to effectively monitor the surface roughness during the production process. Acoustic emission phenomenon has been proven as useful monitoring technique in several manufacturing processes ranging from monitoring of bearing production to tool wear estimation. This paper introduces a rare and unique approach with the application of acoustic emission technique to monitor the surface roughness of borosilicate-crown glass during an ultra high precision grinding process. This research was carried out on a 4-axes Nanoform 250 ultrahigh precision lathe machine using an ultra high precision grinding spindle to machine the flat surface of the borosilicate-crown glass with the tip of the grinding wheel. A careful selection of parameters and design of experiment was implemented using Box-Behnken method to vary the wheel speed, feed rate and depth of cut at three levels with a 3-center point design. Furthermore, the average surface roughness was measured using Taylor Hobson PGI Dimension XL optical profilometer, and an acoustic emission data acquisition device from National Instruments was utilized to acquire the signals while the data acquisition codes were designed with National Instrument LabVIEW software for acquisition at a sampling rate of 2 million samples per second. The results show that the raw and root mean square amplitude values of the acoustic signals increased with a corresponding increase in the measured average surface roughness values for the different parameter combinations. Therefore, this research concludes that acoustic emission monitoring technique is a potential technique for monitoring the surface roughness in the ultra high precision grinding of borosilicate-crown glass.

Keywords: acoustic emission, borosilicate-crown glass, surface roughness, ultra high precision grinding

Procedia PDF Downloads 277
25445 Developing a Translator Career Path: Based on the Dreyfus Model of Skills Acquisition

Authors: Noha A. Alowedi

Abstract:

This paper proposes a Translator Career Path (TCP) which is based on the Dreyfus Model of Skills Acquisition as the conceptual framework. In this qualitative study, the methodology to collect and analyze the data takes an inductive approach that draws upon the literature to form the criteria for the different steps in the TCP. This path is based on descriptors of expert translator performance and best employees’ practice documented in the literature. Each translator skill will be graded as novice, advanced beginner, competent, proficient, and expert. Consequently, five levels of translator performance are identified in the TCP as five ranks. The first rank is the intern translator, which is equivalent to the novice level; the second rank is the assistant translator, which is equivalent to the advanced beginner level; the third rank is the associate translator, which is equivalent to the competent level; the fourth rank is the translator, which is equivalent to the proficient level; finally, the fifth rank is the expert translator, which is equivalent to the expert level. The main function of this career path is to guide the processes of translator development in translation organizations. Although it is designed primarily for the need of in-house translators’ supervisors, the TCP can be used in academic settings for translation trainers and teachers.

Keywords: Dreyfus model, translation organization, translator career path, translator development, translator evaluation, translator promotion

Procedia PDF Downloads 354
25444 The Effectiveness of Using Picture Storybooks on Young English as a Foreign Language Learners for English Vocabulary Acquisition and Moral Education: A Case Study

Authors: Tiffany Yung Hsuan Ma

Abstract:

The Whole Language Approach, which gained prominence in the 1980s, and the increasing emphasis on multimodal resources in educational research have elevated the utilization of picture books in English as a foreign language (EFL) instruction. This approach underscores real-world language application, providing EFL learners with a range of sensory stimuli, including visual elements. Additionally, the substantial impact of picture books on fostering prosocial behaviors in children has garnered recognition. These narratives offer opportunities to impart essential values such as kindness, fairness, and respect. Examining how picture books enhance vocabulary acquisition can offer valuable insights for educators in devising engaging language activities conducive to a positive learning environment. This research entails a case study involving two kindergarten-aged EFL learners and employs qualitative methods, including worksheets, observations, and interviews with parents. It centers on three pivotal inquiries: (1) The extent of young learners' acquisition of essential vocabulary, (2) The influence of these books on their behavior at home, and (3) Effective teaching strategies for the seamless integration of picture storybooks into EFL instruction for young learners. The findings can provide guidance to parents, educators, curriculum developers, and policymakers regarding the advantages and optimal approaches to incorporating picture books into language instruction. Ultimately, this research has the potential to enhance English language learning outcomes and promote moral education within the Taiwanese EFL context.

Keywords: EFL, vocabulary acquisition, young learners, picture book, moral education

Procedia PDF Downloads 47
25443 Stable Diffusion, Context-to-Motion Model to Augmenting Dexterity of Prosthetic Limbs

Authors: André Augusto Ceballos Melo

Abstract:

Design to facilitate the recognition of congruent prosthetic movements, context-to-motion translations guided by image, verbal prompt, users nonverbal communication such as facial expressions, gestures, paralinguistics, scene context, and object recognition contributes to this process though it can also be applied to other tasks, such as walking, Prosthetic limbs as assistive technology through gestures, sound codes, signs, facial, body expressions, and scene context The context-to-motion model is a machine learning approach that is designed to improve the control and dexterity of prosthetic limbs. It works by using sensory input from the prosthetic limb to learn about the dynamics of the environment and then using this information to generate smooth, stable movements. This can help to improve the performance of the prosthetic limb and make it easier for the user to perform a wide range of tasks. There are several key benefits to using the context-to-motion model for prosthetic limb control. First, it can help to improve the naturalness and smoothness of prosthetic limb movements, which can make them more comfortable and easier to use for the user. Second, it can help to improve the accuracy and precision of prosthetic limb movements, which can be particularly useful for tasks that require fine motor control. Finally, the context-to-motion model can be trained using a variety of different sensory inputs, which makes it adaptable to a wide range of prosthetic limb designs and environments. Stable diffusion is a machine learning method that can be used to improve the control and stability of movements in robotic and prosthetic systems. It works by using sensory feedback to learn about the dynamics of the environment and then using this information to generate smooth, stable movements. One key aspect of stable diffusion is that it is designed to be robust to noise and uncertainty in the sensory feedback. This means that it can continue to produce stable, smooth movements even when the sensory data is noisy or unreliable. To implement stable diffusion in a robotic or prosthetic system, it is typically necessary to first collect a dataset of examples of the desired movements. This dataset can then be used to train a machine learning model to predict the appropriate control inputs for a given set of sensory observations. Once the model has been trained, it can be used to control the robotic or prosthetic system in real-time. The model receives sensory input from the system and uses it to generate control signals that drive the motors or actuators responsible for moving the system. Overall, the use of the context-to-motion model has the potential to significantly improve the dexterity and performance of prosthetic limbs, making them more useful and effective for a wide range of users Hand Gesture Body Language Influence Communication to social interaction, offering a possibility for users to maximize their quality of life, social interaction, and gesture communication.

Keywords: stable diffusion, neural interface, smart prosthetic, augmenting

Procedia PDF Downloads 86