Search results for: measuring accuracy
4901 High-Accuracy Satellite Image Analysis and Rapid DSM Extraction for Urban Environment Evaluations (Tripoli-Libya)
Authors: Abdunaser Abduelmula, Maria Luisa M. Bastos, José A. Gonçalves
Abstract:
The modeling of the earth's surface and evaluation of urban environment, with 3D models, is an important research topic. New stereo capabilities of high-resolution optical satellites images, such as the tri-stereo mode of Pleiades, combined with new image matching algorithms, are now available and can be applied in urban area analysis. In addition, photogrammetry software packages gained new, more efficient matching algorithms, such as SGM, as well as improved filters to deal with shadow areas, can achieve denser and more precise results. This paper describes a comparison between 3D data extracted from tri-stereo and dual stereo satellite images, combined with pixel based matching and Wallis filter. The aim was to improve the accuracy of 3D models especially in urban areas, in order to assess if satellite images are appropriate for a rapid evaluation of urban environments. The results showed that 3D models achieved by Pleiades tri-stereo outperformed, both in terms of accuracy and detail, the result obtained from a Geo-eye pair. The assessment was made with reference digital surface models derived from high-resolution aerial photography. This could mean that tri-stereo images can be successfully used for the proposed urban change analyses.Keywords: 3D models, environment, matching, pleiades
Procedia PDF Downloads 3304900 Measuring and Evaluating the Effectiveness of Mobile High Efficiency Particulate Air Filtering on Particulate Matter within the Road Traffic Network of a Sample of Non-Sparse and Sparse Urban Environments in the UK
Authors: Richard Maguire
Abstract:
This research evaluates the efficiency of using mobile HEPA filters to reduce localized Particulate Matter (PM), Total Volatile Organic Chemical (TVOC) and Formaldehyde (HCHO) Air Pollution. The research is being performed using a standard HEPA filter that is tube fitted and attached to a motor vehicle. The velocity of the vehicle is used to generate the pressure difference that allows the filter to remove PM, VOC and HCOC pollution from the localized atmosphere of a road transport traffic route. The testing has been performed on a sample of traffic routes in Non-Sparse and Sparse urban environments within the UK. Pre and Post filter measuring of the PM2.5 Air Quality has been carried out along with demographics of the climate environment, including live filming of the traffic conditions. This provides a base line for future national and international research. The effectiveness measurement is generated through evaluating the difference in PM2.5 Air Quality measured pre- and post- the mobile filter test equipment. A series of further research opportunities and future exploitation options are made based on the results of the research.Keywords: high efficiency particulate air, HEPA filter, particulate matter, traffic pollution
Procedia PDF Downloads 1244899 Opportunity Integrated Assessment Facilitating Critical Thinking and Science Process Skills Measurement on Acid Base Matter
Authors: Anggi Ristiyana Puspita Sari, Suyanta
Abstract:
To recognize the importance of the development of critical thinking and science process skills, the instrument should give attention to the characteristics of chemistry. Therefore, constructing an accurate instrument for measuring those skills is important. However, the integrated instrument assessment is limited in number. The purpose of this study is to validate an integrated assessment instrument for measuring students’ critical thinking and science process skills on acid base matter. The development model of the test instrument adapted McIntire model. The sample consisted of 392 second grade high school students in the academic year of 2015/2016 in Yogyakarta. Exploratory factor analysis (EFA) was conducted to explore construct validity, whereas content validity was substantiated by Aiken’s formula. The result shows that the KMO test is 0.714 which indicates sufficient items for each factor and the Bartlett test is significant (a significance value of less than 0.05). Furthermore, content validity coefficient which is based on 8 expert judgments is obtained at 0.85. The findings support the integrated assessment instrument to measure critical thinking and science process skills on acid base matter.Keywords: acid base matter, critical thinking skills, integrated assessment instrument, science process skills, validity
Procedia PDF Downloads 3234898 Predicting the Diagnosis of Alzheimer’s Disease: Development and Validation of Machine Learning Models
Authors: Jay L. Fu
Abstract:
Patients with Alzheimer's disease progressively lose their memory and thinking skills and, eventually, the ability to carry out simple daily tasks. The disease is irreversible, but early detection and treatment can slow down the disease progression. In this research, publicly available MRI data and demographic data from 373 MRI imaging sessions were utilized to build models to predict dementia. Various machine learning models, including logistic regression, k-nearest neighbor, support vector machine, random forest, and neural network, were developed. Data were divided into training and testing sets, where training sets were used to build the predictive model, and testing sets were used to assess the accuracy of prediction. Key risk factors were identified, and various models were compared to come forward with the best prediction model. Among these models, the random forest model appeared to be the best model with an accuracy of 90.34%. MMSE, nWBV, and gender were the three most important contributing factors to the detection of Alzheimer’s. Among all the models used, the percent in which at least 4 of the 5 models shared the same diagnosis for a testing input was 90.42%. These machine learning models allow early detection of Alzheimer’s with good accuracy, which ultimately leads to early treatment of these patients.Keywords: Alzheimer's disease, clinical diagnosis, magnetic resonance imaging, machine learning prediction
Procedia PDF Downloads 1434897 On Phase Based Stereo Matching and Its Related Issues
Authors: András Rövid, Takeshi Hashimoto
Abstract:
The paper focuses on the problem of the point correspondence matching in stereo images. The proposed matching algorithm is based on the combination of simpler methods such as normalized sum of squared differences (NSSD) and a more complex phase correlation based approach, by considering the noise and other factors, as well. The speed of NSSD and the preciseness of the phase correlation together yield an efficient approach to find the best candidate point with sub-pixel accuracy in stereo image pairs. The task of the NSSD in this case is to approach the candidate pixel roughly. Afterwards the location of the candidate is refined by an enhanced phase correlation based method which in contrast to the NSSD has to run only once for each selected pixel.Keywords: stereo matching, sub-pixel accuracy, phase correlation, SVD, NSSD
Procedia PDF Downloads 4684896 A Unified Fitting Method for the Set of Unified Constitutive Equations for Modelling Microstructure Evolution in Hot Deformation
Abstract:
Constitutive equations are very important in finite element (FE) modeling, and the accuracy of the material constants in the equations have significant effects on the accuracy of the FE models. A wide range of constitutive equations are available; however, fitting the material constants in the constitutive equations could be complex and time-consuming due to the strong non-linearity and relationship between the constants. This work will focus on the development of a set of unified MATLAB programs for fitting the material constants in the constitutive equations efficiently. Users will only need to supply experimental data in the required format and run the program without modifying functions or precisely guessing the initial values, or finding the parameters in previous works and will be able to fit the material constants efficiently.Keywords: constitutive equations, FE modelling, MATLAB program, non-linear curve fitting
Procedia PDF Downloads 994895 Application of Groundwater Level Data Mining in Aquifer Identification
Authors: Liang Cheng Chang, Wei Ju Huang, You Cheng Chen
Abstract:
Investigation and research are keys for conjunctive use of surface and groundwater resources. The hydrogeological structure is an important base for groundwater analysis and simulation. Traditionally, the hydrogeological structure is artificially determined based on geological drill logs, the structure of wells, groundwater levels, and so on. In Taiwan, groundwater observation network has been built and a large amount of groundwater-level observation data are available. The groundwater level is the state variable of the groundwater system, which reflects the system response combining hydrogeological structure, groundwater injection, and extraction. This study applies analytical tools to the observation database to develop a methodology for the identification of confined and unconfined aquifers. These tools include frequency analysis, cross-correlation analysis between rainfall and groundwater level, groundwater regression curve analysis, and decision tree. The developed methodology is then applied to groundwater layer identification of two groundwater systems: Zhuoshui River alluvial fan and Pingtung Plain. The abovementioned frequency analysis uses Fourier Transform processing time-series groundwater level observation data and analyzing daily frequency amplitude of groundwater level caused by artificial groundwater extraction. The cross-correlation analysis between rainfall and groundwater level is used to obtain the groundwater replenishment time between infiltration and the peak groundwater level during wet seasons. The groundwater regression curve, the average rate of groundwater regression, is used to analyze the internal flux in the groundwater system and the flux caused by artificial behaviors. The decision tree uses the information obtained from the above mentioned analytical tools and optimizes the best estimation of the hydrogeological structure. The developed method reaches training accuracy of 92.31% and verification accuracy 93.75% on Zhuoshui River alluvial fan and training accuracy 95.55%, and verification accuracy 100% on Pingtung Plain. This extraordinary accuracy indicates that the developed methodology is a great tool for identifying hydrogeological structures.Keywords: aquifer identification, decision tree, groundwater, Fourier transform
Procedia PDF Downloads 1574894 Autogenous Diabetic Retinopathy Censor for Ophthalmologists - AKSHI
Authors: Asiri Wijesinghe, N. D. Kodikara, Damitha Sandaruwan
Abstract:
The Diabetic Retinopathy (DR) is a rapidly growing interrogation around the world which can be annotated by abortive metabolism of glucose that causes long-term infection in human retina. This is one of the preliminary reason of visual impairment and blindness of adults. Information on retinal pathological mutation can be recognized using ocular fundus images. In this research, we are mainly focused on resurrecting an automated diagnosis system to detect DR anomalies such as severity level classification of DR patient (Non-proliferative Diabetic Retinopathy approach) and vessel tortuosity measurement of untwisted vessels to assessment of vessel anomalies (Proliferative Diabetic Retinopathy approach). Severity classification method is obtained better results according to the precision, recall, F-measure and accuracy (exceeds 94%) in all formats of cross validation. In ROC (Receiver Operating Characteristic) curves also visualized the higher AUC (Area Under Curve) percentage (exceeds 95%). User level evaluation of severity capturing is obtained higher accuracy (85%) result and fairly better values for each evaluation measurements. Untwisted vessel detection for tortuosity measurement also carried out the good results with respect to the sensitivity (85%), specificity (89%) and accuracy (87%).Keywords: fundus image, exudates, microaneurisms, hemorrhages, tortuosity, diabetic retinopathy, optic disc, fovea
Procedia PDF Downloads 3424893 Influence of High-Resolution Satellites Attitude Parameters on Image Quality
Authors: Walid Wahballah, Taher Bazan, Fawzy Eltohamy
Abstract:
One of the important functions of the satellite attitude control system is to provide the required pointing accuracy and attitude stability for optical remote sensing satellites to achieve good image quality. Although offering noise reduction and increased sensitivity, time delay and integration (TDI) charge coupled devices (CCDs) utilized in high-resolution satellites (HRS) are prone to introduce large amounts of pixel smear due to the instability of the line of sight. During on-orbit imaging, as a result of the Earth’s rotation and the satellite platform instability, the moving direction of the TDI-CCD linear array and the imaging direction of the camera become different. The speed of the image moving on the image plane (focal plane) represents the image motion velocity whereas the angle between the two directions is known as the drift angle (β). The drift angle occurs due to the rotation of the earth around its axis during satellite imaging; affecting the geometric accuracy and, consequently, causing image quality degradation. Therefore, the image motion velocity vector and the drift angle are two important factors used in the assessment of the image quality of TDI-CCD based optical remote sensing satellites. A model for estimating the image motion velocity and the drift angle in HRS is derived. The six satellite attitude control parameters represented in the derived model are the (roll angle φ, pitch angle θ, yaw angle ψ, roll angular velocity φ֗, pitch angular velocity θ֗ and yaw angular velocity ψ֗ ). The influence of these attitude parameters on the image quality is analyzed by establishing a relationship between the image motion velocity vector, drift angle and the six satellite attitude parameters. The influence of the satellite attitude parameters on the image quality is assessed by the presented model in terms of modulation transfer function (MTF) in both cross- and along-track directions. Three different cases representing the effect of pointing accuracy (φ, θ, ψ) bias are considered using four different sets of pointing accuracy typical values, while the satellite attitude stability parameters are ideal. In the same manner, the influence of satellite attitude stability (φ֗, θ֗, ψ֗) on image quality is also analysed for ideal pointing accuracy parameters. The results reveal that cross-track image quality is influenced seriously by the yaw angle bias and the roll angular velocity bias, while along-track image quality is influenced only by the pitch angular velocity bias.Keywords: high-resolution satellites, pointing accuracy, attitude stability, TDI-CCD, smear, MTF
Procedia PDF Downloads 4024892 Blood Glucose Level Measurement from Breath Analysis
Authors: Tayyab Hassan, Talha Rehman, Qasim Abdul Aziz, Ahmad Salman
Abstract:
The constant monitoring of blood glucose level is necessary for maintaining health of patients and to alert medical specialists to take preemptive measures before the onset of any complication as a result of diabetes. The current clinical monitoring of blood glucose uses invasive methods repeatedly which are uncomfortable and may result in infections in diabetic patients. Several attempts have been made to develop non-invasive techniques for blood glucose measurement. In this regard, the existing methods are not reliable and are less accurate. Other approaches claiming high accuracy have not been tested on extended dataset, and thus, results are not statistically significant. It is a well-known fact that acetone concentration in breath has a direct relation with blood glucose level. In this paper, we have developed the first of its kind, reliable and high accuracy breath analyzer for non-invasive blood glucose measurement. The acetone concentration in breath was measured using MQ 138 sensor in the samples collected from local hospitals in Pakistan involving one hundred patients. The blood glucose levels of these patients are determined using conventional invasive clinical method. We propose a linear regression classifier that is trained to map breath acetone level to the collected blood glucose level achieving high accuracy.Keywords: blood glucose level, breath acetone concentration, diabetes, linear regression
Procedia PDF Downloads 1724891 An MrPPG Method for Face Anti-Spoofing
Authors: Lan Zhang, Cailing Zhang
Abstract:
In recent years, many face anti-spoofing algorithms have high detection accuracy when detecting 2D face anti-spoofing or 3D mask face anti-spoofing alone in the field of face anti-spoofing, but their detection performance is greatly reduced in multidimensional and cross-datasets tests. The rPPG method used for face anti-spoofing uses the unique vital information of real face to judge real faces and face anti-spoofing, so rPPG method has strong stability compared with other methods, but its detection rate of 2D face anti-spoofing needs to be improved. Therefore, in this paper, we improve an rPPG(Remote Photoplethysmography) method(MrPPG) for face anti-spoofing which through color space fusion, using the correlation of pulse signals between real face regions and background regions, and introducing the cyclic neural network (LSTM) method to improve accuracy in 2D face anti-spoofing. Meanwhile, the MrPPG also has high accuracy and good stability in face anti-spoofing of multi-dimensional and cross-data datasets. The improved method was validated on Replay-Attack, CASIA-FASD, Siw and HKBU_MARs_V2 datasets, the experimental results show that the performance and stability of the improved algorithm proposed in this paper is superior to many advanced algorithms.Keywords: face anti-spoofing, face presentation attack detection, remote photoplethysmography, MrPPG
Procedia PDF Downloads 1784890 Morphology Operation and Discrete Wavelet Transform for Blood Vessels Segmentation in Retina Fundus
Authors: Rita Magdalena, N. K. Caecar Pratiwi, Yunendah Nur Fuadah, Sofia Saidah, Bima Sakti
Abstract:
Vessel segmentation of retinal fundus is important for biomedical sciences in diagnosing ailments related to the eye. Segmentation can simplify medical experts in diagnosing retinal fundus image state. Therefore, in this study, we designed a software using MATLAB which enables the segmentation of the retinal blood vessels on retinal fundus images. There are two main steps in the process of segmentation. The first step is image preprocessing that aims to improve the quality of the image to be optimum segmented. The second step is the image segmentation in order to perform the extraction process to retrieve the retina’s blood vessel from the eye fundus image. The image segmentation methods that will be analyzed in this study are Morphology Operation, Discrete Wavelet Transform and combination of both. The amount of data that used in this project is 40 for the retinal image and 40 for manually segmentation image. After doing some testing scenarios, the average accuracy for Morphology Operation method is 88.46 % while for Discrete Wavelet Transform is 89.28 %. By combining the two methods mentioned in later, the average accuracy was increased to 89.53 %. The result of this study is an image processing system that can segment the blood vessels in retinal fundus with high accuracy and low computation time.Keywords: discrete wavelet transform, fundus retina, morphology operation, segmentation, vessel
Procedia PDF Downloads 1954889 TomoTherapy® System Repositioning Accuracy According to Treatment Localization
Authors: Veronica Sorgato, Jeremy Belhassen, Philippe Chartier, Roddy Sihanath, Nicolas Docquiere, Jean-Yves Giraud
Abstract:
We analyzed the image-guided radiotherapy method used by the TomoTherapy® System (Accuray Corp.) for patient repositioning in clinical routine. The TomoTherapy® System computes X, Y, Z and roll displacements to match the reference CT, on which the dosimetry has been performed, with the pre-treatment MV CT. The accuracy of the repositioning method has been studied according to the treatment localization. For this, a database of 18774 treatment sessions, performed during 2 consecutive years (2016-2017 period) has been used. The database includes the X, Y, Z and roll displacements proposed by TomoTherapy® System as well as the manual correction of these proposals applied by the radiation therapist. This manual correction aims to further improve the repositioning based on the clinical situation and depends on the structures surrounding the target tumor tissue. The statistical analysis performed on the database aims to define repositioning limits to be used as security and guiding tool for the manual adjustment implemented by the radiation therapist. This tool will participate not only to notify potential repositioning errors but also to further improve patient positioning for optimal treatment.Keywords: accuracy, IGRT MVCT, image-guided radiotherapy megavoltage computed tomography, statistical analysis, tomotherapy, localization
Procedia PDF Downloads 2264888 Radar-Based Classification of Pedestrian and Dog Using High-Resolution Raw Range-Doppler Signatures
Authors: C. Mayr, J. Periya, A. Kariminezhad
Abstract:
In this paper, we developed a learning framework for the classification of vulnerable road users (VRU) by their range-Doppler signatures. The frequency-modulated continuous-wave (FMCW) radar raw data is first pre-processed to obtain robust object range-Doppler maps per coherent time interval. The complex-valued range-Doppler maps captured from our outdoor measurements are further fed into a convolutional neural network (CNN) to learn the classification. This CNN has gone through a hyperparameter optimization process for improved learning. By learning VRU range-Doppler signatures, the three classes 'pedestrian', 'dog', and 'noise' are classified with an average accuracy of almost 95%. Interestingly, this classification accuracy holds for a combined longitudinal and lateral object trajectories.Keywords: machine learning, radar, signal processing, autonomous driving
Procedia PDF Downloads 2464887 Evaluating the Validity of the Combined Bedside Test in Diagnosing Juvenile Myasthenia Gravis (2012-2024)
Authors: Pechpailin Kortnoi, Tanitnun Paprad
Abstract:
Background: Myasthenia gravis (MG) is an autoimmune disorder characterized by impaired neuromuscular transmission due to antibodies against nicotinic receptors, leading to muscle weakness, ptosis, and respiratory issues. The incidence of MG has risen globally, emphasizing the need for effective diagnostics. Objective: This study evaluates the validity of a combined bedside test (the ice pack test and fatigability test) for diagnosing juvenile myasthenia gravis (JMG) in pediatric patients with ptosis. Methods: This cross-sectional study, conducted from January 2012 to May 2024 at King Chulalongkorn Memorial Hospital, Thailand, included pediatric patients (1 month to 18 years) with ptosis undergoing ice pack and fatigability tests. Data included demographics, clinical findings, and test results. Diagnostic efficacy was assessed using sensitivity, specificity, accuracy, PPV, NPV, Fagan Nomogram, Kappa Statistics, and McNemar’s Chi-Square. Results: Of 43 identified patients, 32 were included, with 47% male and a mean age of 7 years. The combined bedside test had high sensitivity (92.8%) and accuracy (87.5%) but moderate specificity (50%). It significantly outperformed the ice pack test (P = 0.0005), which showed low sensitivity (42.8%) and accuracy (43.8%). The fatigability test had 82% sensitivity and 92% PPV. Confirmatory tests (AChR-Ab, MuSK-Ab, neostigmine, repetitive nerve stimulation) supported most diagnoses. Conclusions: The combined bedside test, with high sensitivity (92.8%) and accuracy (87.5%), is an effective screening tool for juvenile myasthenia gravis, outperforming the ice pack test. Integrating it into clinical practice may improve diagnosis and enable timely treatment. The fatigability test (82% sensitivity) is also useful as an adjunct screening tool.Keywords: myasthenia gravis, the fatigability test, the ice pack test, the combined bedside test
Procedia PDF Downloads 74886 Analytical Formulae for the Approach Velocity Head Coefficient
Authors: Abdulrahman Abdulrahman
Abstract:
Critical depth meters, such as abroad crested weir, Venture Flume and combined control flume are standard devices for measuring flow in open channels. The discharge relation for these devices cannot be solved directly, but it needs iteration process to account for the approach velocity head. In this paper, analytical solution was developed to calculate the discharge in a combined critical depth-meter namely, a hump combined with lateral contraction in rectangular channel with subcritical approach flow including energy losses. Also analytical formulae were derived for approach velocity head coefficient for different types of critical depth meters. The solution was derived by solving a standard cubic equation considering energy loss on the base of trigonometric identity. The advantage of this technique is to avoid iteration process adopted in measuring flow by these devices. Numerical examples are chosen for demonstration of the proposed solution.Keywords: broad crested weir, combined control meter, control structures, critical flow, discharge measurement, flow control, hydraulic engineering, hydraulic structures, open channel flow
Procedia PDF Downloads 2744885 Comparison of Extended Kalman Filter and Unscented Kalman Filter for Autonomous Orbit Determination of Lagrangian Navigation Constellation
Authors: Youtao Gao, Bingyu Jin, Tanran Zhao, Bo Xu
Abstract:
The history of satellite navigation can be dated back to the 1960s. From the U.S. Transit system and the Russian Tsikada system to the modern Global Positioning System (GPS) and the Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS), performance of satellite navigation has been greatly improved. Nowadays, the navigation accuracy and coverage of these existing systems have already fully fulfilled the requirement of near-Earth users, but these systems are still beyond the reach of deep space targets. Due to the renewed interest in space exploration, a novel high-precision satellite navigation system is becoming even more important. The increasing demand for such a deep space navigation system has contributed to the emergence of a variety of new constellation architectures, such as the Lunar Global Positioning System. Apart from a Walker constellation which is similar to the one adopted by GPS on Earth, a novel constellation architecture which consists of libration point satellites in the Earth-Moon system is also available to construct the lunar navigation system, which can be called accordingly, the libration point satellite navigation system. The concept of using Earth-Moon libration point satellites for lunar navigation was first proposed by Farquhar and then followed by many other researchers. Moreover, due to the special characteristics of Libration point orbits, an autonomous orbit determination technique, which is called ‘Liaison navigation’, can be adopted by the libration point satellites. Using only scalar satellite-to-satellite tracking data, both the orbits of the user and libration point satellites can be determined autonomously. In this way, the extensive Earth-based tracking measurement can be eliminated, and an autonomous satellite navigation system can be developed for future space exploration missions. The method of state estimate is an unnegligible factor which impacts on the orbit determination accuracy besides type of orbit, initial state accuracy and measurement accuracy. We apply the extended Kalman filter(EKF) and the unscented Kalman filter(UKF) to determinate the orbits of Lagrangian navigation satellites. The autonomous orbit determination errors are compared. The simulation results illustrate that UKF can improve the accuracy and z-axis convergence to some extent.Keywords: extended Kalman filter, autonomous orbit determination, unscented Kalman filter, navigation constellation
Procedia PDF Downloads 2854884 Sentiment Analysis of Fake Health News Using Naive Bayes Classification Models
Authors: Danielle Shackley, Yetunde Folajimi
Abstract:
As more people turn to the internet seeking health-related information, there is more risk of finding false, inaccurate, or dangerous information. Sentiment analysis is a natural language processing technique that assigns polarity scores to text, ranging from positive, neutral, and negative. In this research, we evaluate the weight of a sentiment analysis feature added to fake health news classification models. The dataset consists of existing reliably labeled health article headlines that were supplemented with health information collected about COVID-19 from social media sources. We started with data preprocessing and tested out various vectorization methods such as Count and TFIDF vectorization. We implemented 3 Naive Bayes classifier models, including Bernoulli, Multinomial, and Complement. To test the weight of the sentiment analysis feature on the dataset, we created benchmark Naive Bayes classification models without sentiment analysis, and those same models were reproduced, and the feature was added. We evaluated using the precision and accuracy scores. The Bernoulli initial model performed with 90% precision and 75.2% accuracy, while the model supplemented with sentiment labels performed with 90.4% precision and stayed constant at 75.2% accuracy. Our results show that the addition of sentiment analysis did not improve model precision by a wide margin; while there was no evidence of improvement in accuracy, we had a 1.9% improvement margin of the precision score with the Complement model. Future expansion of this work could include replicating the experiment process and substituting the Naive Bayes for a deep learning neural network model.Keywords: sentiment analysis, Naive Bayes model, natural language processing, topic analysis, fake health news classification model
Procedia PDF Downloads 974883 New Fourth Order Explicit Group Method in the Solution of the Helmholtz Equation
Authors: Norhashidah Hj Mohd Ali, Teng Wai Ping
Abstract:
In this paper, the formulation of a new group explicit method with a fourth order accuracy is described in solving the two-dimensional Helmholtz equation. The formulation is based on the nine-point fourth-order compact finite difference approximation formula. The complexity analysis of the developed scheme is also presented. Several numerical experiments were conducted to test the feasibility of the developed scheme. Comparisons with other existing schemes will be reported and discussed. Preliminary results indicate that this method is a viable alternative high accuracy solver to the Helmholtz equation.Keywords: explicit group method, finite difference, Helmholtz equation, five-point formula, nine-point formula
Procedia PDF Downloads 5014882 Effects of Paroxetine on Biochemical Parameters and Reproductive Function in Male Rats
Authors: Rachid Mosbah, Aziez Chettoum, Zouhir Djerrou, Alberto Mantovani
Abstract:
Selective serotonin reuptake inhibitors (SSRI) are a class of molecules used in treating depression, anxiety, and mood disorders. Paroxetine (PRT) is one of the mostly prescribed antidepressant which has attracted great attention regarding its side effects in recent years. This study was planned to assess the adverse effects of PRT on the biochemical parameters and reproductive system. Fourteen male Wistar rats were randomly allocated into two groups (7 rats or each): control and treated with PRT at dose of 5mg/kg.bw for two weeks. At the end of the experiment, blood was collected from retro orbital plexus for measuring the biochemical parameters, whereas the reproductive organs were removed for measuring semen quality and the histological investigations. Results showed that PRT induced significant changes in some biochemical parameters and alteration of semen quality including sperm count, spermatids number and sperm viability, motility, and abnormalities. The histopathological examinations of testis and epididymis revealed an alteration of spermatogenesis, cellular disorganization and vacuolization, enlargement of interstitial space, shrinkage and degenerative changes in the epithelium of seminiferous and epididymal tubules with few to nil numbers of spermatozoa in their lumen. In conclusion, PRT treatment caused changes in some biochemical parameters and sperm profile as well as histopathologic effects of reproductive organs.Keywords: antidepressant, biochemical parameters, reproductive function, paroxetine
Procedia PDF Downloads 1254881 A Relational View for Financial Metrics in Logistics Service Providers
Authors: Paulo Sergio Altman Ferreira
Abstract:
Relationship development plays an essential role in every logistics company. Logistics companies are service-based businesses essentially performing the flow of materials, housing, and inventory management for a wide range of customers. The service encounter between the logistics provider’s personnel and the customers may form a connection that will demonstrate a strong impact, not only to the customers' overall satisfaction but may also provide the perception of individualized services. Logistics services must drive value. It also shows a close influence on the quality and costs of client-centered services. If we describe logistics value creation as the function of quality perception of the client divided by service costs, there is a requirement to better outline and explain the measures and analytics for logistics costs and relationship performance. This critical shift to understand logistics services is a relevant contribution to capture how relationship value can be quantified. This might involve changing our current perspective on logistics providers beyond uniquely measuring the services in terms of activities, personnel levels, and financial/costs ratios. This paper argues that measuring value creation accomplishments of logistics services needs to consider the relational improvements for the wider range of logistics companies. Accurate logistics value requires a description of the financial impact of the relational perspective of the service.Keywords: logistics services providers, financial metrics, relationship management, value creation
Procedia PDF Downloads 1504880 Optimization of Fused Deposition Modeling 3D Printing Process via Preprocess Calibration Routine Using Low-Cost Thermal Sensing
Authors: Raz Flieshman, Adam Michael Altenbuchner, Jörg Krüger
Abstract:
This paper presents an approach to optimizing the Fused Deposition Modeling (FDM) 3D printing process through a preprocess calibration routine of printing parameters. The core of this method involves the use of a low-cost thermal sensor capable of measuring tempera-tures within the range of -20 to 500 degrees Celsius for detailed process observation. The calibration process is conducted by printing a predetermined path while varying the process parameters through machine instructions (g-code). This enables the extraction of critical thermal, dimensional, and surface properties along the printed path. The calibration routine utilizes computer vision models to extract features and metrics from the thermal images, in-cluding temperature distribution, layer adhesion quality, surface roughness, and dimension-al accuracy and consistency. These extracted properties are then analyzed to optimize the process parameters to achieve the desired qualities of the printed material. A significant benefit of this calibration method is its potential to create printing parameter profiles for new polymer and composite materials, thereby enhancing the versatility and application range of FDM 3D printing. The proposed method demonstrates significant potential in enhancing the precision and reliability of FDM 3D printing, making it a valuable contribution to the field of additive manufacturing.Keywords: FDM 3D printing, preprocess calibration, thermal sensor, process optimization, additive manufacturing, computer vision, material profiles
Procedia PDF Downloads 414879 PointNetLK-OBB: A Point Cloud Registration Algorithm with High Accuracy
Authors: Wenhao Lan, Ning Li, Qiang Tong
Abstract:
To improve the registration accuracy of a source point cloud and template point cloud when the initial relative deflection angle is too large, a PointNetLK algorithm combined with an oriented bounding box (PointNetLK-OBB) is proposed. In this algorithm, the OBB of a 3D point cloud is used to represent the macro feature of source and template point clouds. Under the guidance of the iterative closest point algorithm, the OBB of the source and template point clouds is aligned, and a mirror symmetry effect is produced between them. According to the fitting degree of the source and template point clouds, the mirror symmetry plane is detected, and the optimal rotation and translation of the source point cloud is obtained to complete the 3D point cloud registration task. To verify the effectiveness of the proposed algorithm, a comparative experiment was performed using the publicly available ModelNet40 dataset. The experimental results demonstrate that, compared with PointNetLK, PointNetLK-OBB improves the registration accuracy of the source and template point clouds when the initial relative deflection angle is too large, and the sensitivity of the initial relative position between the source point cloud and template point cloud is reduced. The primary contribution of this paper is the use of PointNetLK to avoid the non-convex problem of traditional point cloud registration and leveraging the regularity of the OBB to avoid the local optimization problem in the PointNetLK context.Keywords: mirror symmetry, oriented bounding box, point cloud registration, PointNetLK-OBB
Procedia PDF Downloads 1504878 Online Handwritten Character Recognition for South Indian Scripts Using Support Vector Machines
Authors: Steffy Maria Joseph, Abdu Rahiman V, Abdul Hameed K. M.
Abstract:
Online handwritten character recognition is a challenging field in Artificial Intelligence. The classification success rate of current techniques decreases when the dataset involves similarity and complexity in stroke styles, number of strokes and stroke characteristics variations. Malayalam is a complex south indian language spoken by about 35 million people especially in Kerala and Lakshadweep islands. In this paper, we consider the significant feature extraction for the similar stroke styles of Malayalam. This extracted feature set are suitable for the recognition of other handwritten south indian languages like Tamil, Telugu and Kannada. A classification scheme based on support vector machines (SVM) is proposed to improve the accuracy in classification and recognition of online malayalam handwritten characters. SVM Classifiers are the best for real world applications. The contribution of various features towards the accuracy in recognition is analysed. Performance for different kernels of SVM are also studied. A graphical user interface has developed for reading and displaying the character. Different writing styles are taken for each of the 44 alphabets. Various features are extracted and used for classification after the preprocessing of input data samples. Highest recognition accuracy of 97% is obtained experimentally at the best feature combination with polynomial kernel in SVM.Keywords: SVM, matlab, malayalam, South Indian scripts, onlinehandwritten character recognition
Procedia PDF Downloads 5754877 Urban Design via Estimation Model for Traffic Index of Cities Based on an Artificial Intelligence
Authors: Seyed Sobhan Alvani, Mohammad Gohari
Abstract:
By developing cities and increasing the population, traffic congestion has become a vital problem. Due to this crisis, urban designers try to present solutions to decrease this difficulty. On the other hand, predicting the model with perfect accuracy is essential for solution-providing. The current study presents a model based on artificial intelligence which can predict traffic index based on city population, growth rate, and area. The accuracy of the model was evaluated, which is acceptable and it is around 90%. Thus, urban designers and planners can employ it for predicting traffic index in the future to provide strategies.Keywords: traffic index, population growth rate, cities wideness, artificial neural network
Procedia PDF Downloads 414876 The Impact of Grammatical Differences on English-Mandarin Chinese Simultaneous Interpreting
Authors: Miao Sabrina Wang
Abstract:
This paper examines the impact of grammatical differences on simultaneous interpreting from English into Mandarin Chinese by drawing upon an empirical study of professional and student interpreters. The research focuses on the effects of three grammatical categories including passives, adverbial components and noun phrases on simultaneous interpreting. For each category, interpretations of instances in which the grammatical structures are the same across the two languages are compared with interpretations of instances in which the grammatical structures differ across the two languages in terms of content accuracy and delivery appropriateness. The results indicate that grammatical differences have a significant impact on the interpreting performance of both professionals and students.Keywords: content accuracy, delivery appropriateness, grammatical differences, simultaneous interpreting
Procedia PDF Downloads 5424875 Improving Short-Term Forecast of Solar Irradiance
Authors: Kwa-Sur Tam, Byung O. Kang
Abstract:
By using different ranges of daily sky clearness index defined in this paper, any day can be classified as a clear sky day, a partly cloudy day or a cloudy day. This paper demonstrates how short-term forecasting of solar irradiation can be improved by taking into consideration the type of day so defined. The source of day type dependency has been identified. Forecasting methods that take into consideration of day type have been developed and their efficacy have been established. While all methods that implement some form of adjustment to the cloud cover forecast provided by the U.S. National Weather Service provide accuracy improvement, methods that incorporate day type dependency provides even further improvement in forecast accuracy.Keywords: day types, forecast methods, National Weather Service, sky cover, solar energy
Procedia PDF Downloads 4664874 GRCNN: Graph Recognition Convolutional Neural Network for Synthesizing Programs from Flow Charts
Authors: Lin Cheng, Zijiang Yang
Abstract:
Program synthesis is the task to automatically generate programs based on user specification. In this paper, we present a framework that synthesizes programs from flow charts that serve as accurate and intuitive specification. In order doing so, we propose a deep neural network called GRCNN that recognizes graph structure from its image. GRCNN is trained end-to-end, which can predict edge and node information of the flow chart simultaneously. Experiments show that the accuracy rate to synthesize a program is 66.4%, and the accuracy rates to recognize edge and node are 94.1% and 67.9%, respectively. On average, it takes about 60 milliseconds to synthesize a program.Keywords: program synthesis, flow chart, specification, graph recognition, CNN
Procedia PDF Downloads 1194873 Spectrogram Pre-Processing to Improve Isotopic Identification to Discriminate Gamma and Neutrons Sources
Authors: Mustafa Alhamdi
Abstract:
Industrial application to classify gamma rays and neutron events is investigated in this study using deep machine learning. The identification using a convolutional neural network and recursive neural network showed a significant improvement in predication accuracy in a variety of applications. The ability to identify the isotope type and activity from spectral information depends on feature extraction methods, followed by classification. The features extracted from the spectrum profiles try to find patterns and relationships to present the actual spectrum energy in low dimensional space. Increasing the level of separation between classes in feature space improves the possibility to enhance classification accuracy. The nonlinear nature to extract features by neural network contains a variety of transformation and mathematical optimization, while principal component analysis depends on linear transformations to extract features and subsequently improve the classification accuracy. In this paper, the isotope spectrum information has been preprocessed by finding the frequencies components relative to time and using them as a training dataset. Fourier transform implementation to extract frequencies component has been optimized by a suitable windowing function. Training and validation samples of different isotope profiles interacted with CdTe crystal have been simulated using Geant4. The readout electronic noise has been simulated by optimizing the mean and variance of normal distribution. Ensemble learning by combing voting of many models managed to improve the classification accuracy of neural networks. The ability to discriminate gamma and neutron events in a single predication approach using deep machine learning has shown high accuracy using deep learning. The paper findings show the ability to improve the classification accuracy by applying the spectrogram preprocessing stage to the gamma and neutron spectrums of different isotopes. Tuning deep machine learning models by hyperparameter optimization of neural network models enhanced the separation in the latent space and provided the ability to extend the number of detected isotopes in the training database. Ensemble learning contributed significantly to improve the final prediction.Keywords: machine learning, nuclear physics, Monte Carlo simulation, noise estimation, feature extraction, classification
Procedia PDF Downloads 1504872 A Study on Improvement of Straightness of Preform Pulling Process of Hollow Pipe by Finete Element Analysis Method
Authors: Yeon-Jong Jeong, Jun-Hong Park, Hyuk Choi
Abstract:
In this study, we have studied the design of intermediate die in multipass drawing. Research has been continuously studied because of the advantage of better dimensional accuracy, smooth surface and improved mechanical properties in the case of drawing. Among them, multipass drawing, which is a method to realize complicated shape by drawing, was discussed in this study. The most important factor in the multipass drawing is the dimensional accuracy and simplify the process. To accomplish this, a multistage shape drawing was performed using various intermediate die shape designs, and finite element analysis was performed.Keywords: FEM (Finite Element Method), multipass drawing, intermediate die, hollow pipe
Procedia PDF Downloads 316