Search results for: hierarchical Bayesian framework
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5835

Search results for: hierarchical Bayesian framework

5475 Social Processes and Organizational Structures for the Management of Exploration and Exploration within and across Organization Boundaries

Authors: Linda O. N. Nwabunike

Abstract:

The role of internal and external efforts in the management of exploration and exploitation has been highlighted in literature. External ties support ambidexterity at different levels with, for instance: business unit ambidexterity, individual ambidexterity, organizational ambidexterity, and alliance ambidexterity. Recently studies have highlighted the combination of organization, alliance, and acquisition strategies for ambidexterity by conceptualizing ambidexterity across modes of operation. Literature still lacks detailed understanding of how these different processes are combined in the management of ambidexterity across modes of operation. This study plans to propose a conceptual model that illustrates the social processes involved in the management of ambidexterity across modes of operation. Main arguments are integrated from social structures, organizational design, and ambidexterity literature. The framework illustrates that how social capital is promoted by hierarchical relations within the organization and business relations across the boundaries of the organization. Whereby such social relations within and outside the organization are supported by the dual structures of the organization in the coordination of multiple efforts. This paper has potential to contribute to the understanding about how ambidexterity is attained.

Keywords: ambidexterity, coordination, external-ties, social-capital

Procedia PDF Downloads 167
5474 A Multi-agent System Framework for Stakeholder Analysis of Local Energy Systems

Authors: Mengqiu Deng, Xiao Peng, Yang Zhao

Abstract:

The development of local energy systems requires the collective involvement of different actors from various levels of society. However, the stakeholder analysis of local energy systems still has been under-developed. This paper proposes an multi-agent system (MAS) framework to facilitate the development of stakeholder analysis of local energy systems. The framework takes into account the most influencing stakeholders, including prosumers/consumers, system operators, energy companies and government bodies. Different stakeholders are modeled based on agent architectures for example the belief-desire-intention (BDI) to better reflect their motivations and interests in participating in local energy systems. The agent models of different stakeholders are then integrated in one model of the whole energy system. An illustrative case study is provided to elaborate how to develop a quantitative agent model for different stakeholders, as well as to demonstrate the practicability of the proposed framework. The findings from the case study indicate that the suggested framework and agent model can serve as analytical instruments for enhancing the government’s policy-making process by offering a systematic view of stakeholder interconnections in local energy systems.

Keywords: multi-agent system, BDI agent, local energy systems, stakeholders

Procedia PDF Downloads 87
5473 Comparison of Various Policies under Different Maintenance Strategies on a Multi-Component System

Authors: Demet Ozgur-Unluakin, Busenur Turkali, Ayse Karacaorenli

Abstract:

Maintenance strategies can be classified into two types, which are reactive and proactive, with respect to the time of the failure and maintenance. If the maintenance activity is done after a breakdown, it is called reactive maintenance. On the other hand, proactive maintenance, which is further divided as preventive and predictive, focuses on maintaining components before a failure occurs to prevent expensive halts. Recently, the number of interacting components in a system has increased rapidly and therefore, the structure of the systems have become more complex. This situation has made it difficult to provide the right maintenance decisions. Herewith, determining effective decisions has played a significant role. In multi-component systems, many methodologies and strategies can be applied when a component or a system has already broken down or when it is desired to identify and avoid proactively defects that could lead to future failure. This study focuses on the comparison of various maintenance strategies on a multi-component dynamic system. Components in the system are hidden, although there exists partial observability to the decision maker and they deteriorate in time. Several predefined policies under corrective, preventive and predictive maintenance strategies are considered to minimize the total maintenance cost in a planning horizon. The policies are simulated via Dynamic Bayesian Networks on a multi-component system with different policy parameters and cost scenarios, and their performances are evaluated. Results show that when the difference between the corrective and proactive maintenance cost is low, none of the proactive maintenance policies is significantly better than the corrective maintenance. However, when the difference is increased, at least one policy parameter for each proactive maintenance strategy gives significantly lower cost than the corrective maintenance.

Keywords: decision making, dynamic Bayesian networks, maintenance, multi-component systems, reliability

Procedia PDF Downloads 129
5472 An Ecological Systems Approach to Risk and Protective Factors of Sibling Conflict for Children in the United Kingdom

Authors: C. A. Bradley, D. Patsios, D. Berridge

Abstract:

This paper presents evidence to better understand the risk and protective factors related to sibling conflict and the patterns of association between sibling conflict and negative adjustment outcomes by incorporating additional familial and societal factors within statistical models of risk and adjustment. It was conducted through the secondary analysis of a large representative cross-sectional dataset of children in the UK. The original study includes proxy interviews for young children and self-report interviews for adolescents. The study applies an ecological systems framework for the analyses. Hierarchical regression models assess risk and protective factors and adjustment outcomes associated with sibling conflict. Interactions reveal differential effect between contextual risk factors and the social context of influence. The general pattern of findings suggested that, although factors affecting likelihood of experiencing sibling conflict were often determined by child age, some remained consistent across childhood. These factors were often conditional on each other, reinforcing the importance of an ecological framework. Across both age-groups, sibling conflict was associated with siblings closer in age; male sibling groups; most advantaged socio-economic group; and exposure to community violence, such as witnessing violent assault or robbery. The study develops the evidence base on the influence of ethnicity and socio-economic group on sibling conflict by exploring interactions between social context. It also identifies key new areas of influence – such as family structure, disability, and community violence in exacerbating or reducing risk of conflict. The study found negative associations between sibling conflict and young children’s mental well-being and adolescents' mental well-being and anti-social behaviour, but also more context specific associations – such as sibling conflict moderating the negative impact of adversity and high risk experiences for young children such as parental violence toward the child.

Keywords: adjustment, conflict, ecological systems, family systems, risk and protective factors, sibling

Procedia PDF Downloads 106
5471 Framework for Detecting External Plagiarism from Monolingual Documents: Use of Shallow NLP and N-Gram Frequency Comparison

Authors: Saugata Bose, Ritambhra Korpal

Abstract:

The internet has increased the copy-paste scenarios amongst students as well as amongst researchers leading to different levels of plagiarized documents. For this reason, much of research is focused on for detecting plagiarism automatically. In this paper, an initiative is discussed where Natural Language Processing (NLP) techniques as well as supervised machine learning algorithms have been combined to detect plagiarized texts. Here, the major emphasis is on to construct a framework which detects external plagiarism from monolingual texts successfully. For successfully detecting the plagiarism, n-gram frequency comparison approach has been implemented to construct the model framework. The framework is based on 120 characteristics which have been extracted during pre-processing the documents using NLP approach. Afterwards, filter metrics has been applied to select most relevant characteristics and then supervised classification learning algorithm has been used to classify the documents in four levels of plagiarism. Confusion matrix was built to estimate the false positives and false negatives. Our plagiarism framework achieved a very high the accuracy score.

Keywords: lexical matching, shallow NLP, supervised machine learning algorithm, word n-gram

Procedia PDF Downloads 357
5470 PDDA: Priority-Based, Dynamic Data Aggregation Approach for Sensor-Based Big Data Framework

Authors: Lutful Karim, Mohammed S. Al-kahtani

Abstract:

Sensors are being used in various applications such as agriculture, health monitoring, air and water pollution monitoring, traffic monitoring and control and hence, play the vital role in the growth of big data. However, sensors collect redundant data. Thus, aggregating and filtering sensors data are significantly important to design an efficient big data framework. Current researches do not focus on aggregating and filtering data at multiple layers of sensor-based big data framework. Thus, this paper introduces (i) three layers data aggregation and framework for big data and (ii) a priority-based, dynamic data aggregation scheme (PDDA) for the lowest layer at sensors. Simulation results show that the PDDA outperforms existing tree and cluster-based data aggregation scheme in terms of overall network energy consumptions and end-to-end data transmission delay.

Keywords: big data, clustering, tree topology, data aggregation, sensor networks

Procedia PDF Downloads 346
5469 A Bayesian Population Model to Estimate Reference Points of Bombay-Duck (Harpadon nehereus) in Bay of Bengal, Bangladesh Using CMSY and BSM

Authors: Ahmad Rabby

Abstract:

The demographic trend analyses of Bombay-duck from time series catch data using CMSY and BSM for the first time in Bangladesh. During 2000-2018, CMSY indicates average lowest production in 2000 and highest in 2018. This has been used in the estimation of prior biomass by the default rules. Possible 31030 viable trajectories for 3422 r-k pairs were found by the CMSY analysis and the final estimates for intrinsic rate of population increase (r) was 1.19 year-1 with 95% CL= 0.957-1.48 year-1. The carrying capacity(k) of Bombay-duck was 283×103 tons with 95% CL=173×103 - 464×103 tons and MSY was 84.3×103tons year-1, 95% CL=49.1×103-145×103 tons year-1. Results from Bayesian state-space implementation of the Schaefer production model (BSM) using catch & CPUE data, found catchabilitiy coefficient(q) was 1.63 ×10-6 from lcl=1.27×10-6 to ucl=2.10×10-6 and r= 1.06 year-1 with 95% CL= 0.727 - 1.55 year-1, k was 226×103 tons with 95% CL=170×103-301×103 tons and MSY was 60×103 tons year-1 with 95% CL=49.9 ×103- 72.2 ×103 tons year-1. Results for Bombay-duck fishery management based on BSM assessment from time series catch data illustrated that, Fmsy=0.531 with 95% CL =0.364 - 0.775 (if B > 1/2 Bmsy then Fmsy =0.5r); Fmsy=0.531 with 95% CL =0.364-0.775 (r and Fmsy are linearly reduced if B < 1/2Bmsy). Biomass in 2018 was 110×103 tons with 2.5th to 97.5th percentile=82.3-155×103 tons. Relative biomass (B/Bmsy) in last year was 0.972 from 2.5th percentile to 97.5th percentile=0.728 -1.37. Fishing mortality in last year was 0.738 with 2.5th-97.5th percentile=0.525-1.37. Exploitation F/Fmsy was 1.39, from 2.5th to 97.5th percentile it was 0.988 -1.86. The biological reference points of B/BMSY was smaller than 1.0, while F/FMSY was higher than 1.0 revealed an over-exploitation of the fishery, indicating that more conservative management strategies are required for Bombay-duck fishery.

Keywords: biological reference points, catchability coefficient, carrying capacity, intrinsic rate of population increase

Procedia PDF Downloads 124
5468 An Integrated Cognitive Performance Evaluation Framework for Urban Search and Rescue Applications

Authors: Antonio D. Lee, Steven X. Jiang

Abstract:

A variety of techniques and methods are available to evaluate cognitive performance in Urban Search and Rescue (USAR) applications. However, traditional cognitive performance evaluation techniques typically incorporate either the conscious or systematic aspect, failing to take into consideration the subconscious or intuitive aspect. This leads to incomplete measures and produces ineffective designs. In order to fill the gaps in past research, this study developed a theoretical framework to facilitate the integration of situation awareness (SA) and intuitive pattern recognition (IPR) to enhance the cognitive performance representation in USAR applications. This framework provides guidance to integrate both SA and IPR in order to evaluate the cognitive performance of the USAR responders. The application of this framework will help improve the system design.

Keywords: cognitive performance, intuitive pattern recognition, situation awareness, urban search and rescue

Procedia PDF Downloads 328
5467 A Proposed Framework for Digital Librarianship in Academic Libraries

Authors: Daniel Vaati Nzioka, John Oredo, Dorothy Muthoni Njiraine

Abstract:

The service delivery in academic libraries has been regressing due to the failure of Digital Librarians (DLns) to perform optimally. This study aimed at developing a proposed framework for digital librarianship in academic libraries with special emphasis to three selected public academic institutional libraries. The study’s specific objectives were to determine the roles played by the current DLns’ in academic libraries, establish job description of DLns’ in various academic libraries, ascertain DLns best practices, and to implement a viable digital librarianship conceptual framework. The study used a survey research with open-ended questionnaire designed as per the objectives of the study. A purposively selected sample of 30 Library and Information Science (LIS) professionals from the three selected academic libraries in charge of Digital Information Services (DIS) and managing electronic resources were selected and interviewed. A piloted self-administered questionnaire was used to gather information from these respondents. A total of thirty (30) questionnaires to the LIS professionals-ten from each of the three selected academic libraries were administered. The study developed a proposed conceptual framework for DLns’ that details the pertinent issues currently facing academic libraries when hiring DLns. The study recommended that the provided framework be adopted to guide library managers in identifying the needs of staff training and selecting the most adequate training method as well as settling on the best practices to be sent to staff for training and development.

Keywords: digital, academic, libraries, framework

Procedia PDF Downloads 108
5466 A Framework and Case Study for Sustainable Development of Urban Areas

Authors: Yasaman Zeinali, Farid Khosravikia

Abstract:

This paper presents a multi-objective framework for sustainable urban development. The proposed framework aims to address different aspects of sustainability in urban development planning. These aspects include, but are not limited to education, health, job opportunities, architecture, culture, environment, mobility, energy, water, waste, and so on. Then, the proposed framework is applied to the Brackenridge Tract (an area in downtown Austin, Texas), to redevelop that area in a sustainable way. The detail of the implementation process is presented in this paper. The ultimate goal of this paper is to develop a sustainable area in downtown Austin with ensuring that it locally meets the needs of present and future generations with respect to economic, social, environmental, health as well as cultural aspects. Moreover, it helps the city with the population growth problem by accommodating more people in that area.

Keywords: urban planning, sustainability, sustainable urban development, environmental impacts of human activities

Procedia PDF Downloads 253
5465 Fuzzy Optimization for Identifying Anticancer Targets in Genome-Scale Metabolic Models of Colon Cancer

Authors: Feng-Sheng Wang, Chao-Ting Cheng

Abstract:

Developing a drug from conception to launch is costly and time-consuming. Computer-aided methods can reduce research costs and accelerate the development process during the early drug discovery and development stages. This study developed a fuzzy multi-objective hierarchical optimization framework for identifying potential anticancer targets in a metabolic model. First, RNA-seq expression data of colorectal cancer samples and their healthy counterparts were used to reconstruct tissue-specific genome-scale metabolic models. The aim of the optimization framework was to identify anticancer targets that lead to cancer cell death and evaluate metabolic flux perturbations in normal cells that have been caused by cancer treatment. Four objectives were established in the optimization framework to evaluate the mortality of cancer cells for treatment and to minimize side effects causing toxicity-induced tumorigenesis on normal cells and smaller metabolic perturbations. Through fuzzy set theory, a multiobjective optimization problem was converted into a trilevel maximizing decision-making (MDM) problem. The applied nested hybrid differential evolution was applied to solve the trilevel MDM problem using two nutrient media to identify anticancer targets in the genome-scale metabolic model of colorectal cancer, respectively. Using Dulbecco’s Modified Eagle Medium (DMEM), the computational results reveal that the identified anticancer targets were mostly involved in cholesterol biosynthesis, pyrimidine and purine metabolisms, glycerophospholipid biosynthetic pathway and sphingolipid pathway. However, using Ham’s medium, the genes involved in cholesterol biosynthesis were unidentifiable. A comparison of the uptake reactions for the DMEM and Ham’s medium revealed that no cholesterol uptake reaction was included in DMEM. Two additional media, i.e., a cholesterol uptake reaction was included in DMEM and excluded in HAM, were respectively used to investigate the relationship of tumor cell growth with nutrient components and anticancer target genes. The genes involved in the cholesterol biosynthesis were also revealed to be determinable if a cholesterol uptake reaction was not induced when the cells were in the culture medium. However, the genes involved in cholesterol biosynthesis became unidentifiable if such a reaction was induced.

Keywords: Cancer metabolism, genome-scale metabolic model, constraint-based model, multilevel optimization, fuzzy optimization, hybrid differential evolution

Procedia PDF Downloads 80
5464 Development of Electronic Waste Management Framework at College of Design Art, Design and Technology

Authors: Wafula Simon Peter, Kimuli Nabayego Ibtihal, Nabaggala Kimuli Nashua

Abstract:

The worldwide use of information and communications technology (ICT) equipment and other electronic equipment is growing and consequently, there is a growing amount of equipment that becomes waste after its time in use. This growth is expected to accelerate since equipment lifetime decreases with time and growing consumption. As a result, e-waste is one of the fastest-growing waste streams globally. The United Nations University (UNU) calculates in its second Global E-waste Monitor 44.7 million metric tonnes (Mt) of e-waste were generated globally in 2016. The study population was 80 respondents, from which a sample of 69 respondents was selected using simple and purposive sampling techniques. This research was carried out to investigate the problem of e-waste and come up with a framework to improve e-waste management. The objective of the study was to develop a framework for improving e-waste management at the College of Engineering, Design, Art and Technology (CEDAT). This was achieved by breaking it down into specific objectives, and these included the establishment of the policy and other Regulatory frameworks being used in e-waste management at CEDAT, the determination of the effectiveness of the e-waste management practices at CEDAT, the establishment of the critical challenges constraining e-waste management at the College, development of a framework for e-waste management. The study reviewed the e-waste regulatory framework used at the college and then collected data which was used to come up with a framework. The study also established that weak policy and regulatory framework, lack of proper infrastructure, improper disposal of e-waste and a general lack of awareness of the e-waste and the magnitude of the problem are the critical challenges of e-waste management. In conclusion, the policy and regulatory framework should be revised, localized and strengthened to contextually address the problem. Awareness campaigns, the development of proper infrastructure and extensive research to establish the volumes and magnitude of the problems will come in handy. The study recommends a framework for the improvement of e-waste.

Keywords: e-waste, treatment, disposal, computers, model, management policy and guidelines

Procedia PDF Downloads 79
5463 3D Carbon Structures (Globugraphite) with Hierarchical Pore Morphology for the Application in Energy Storage Systems

Authors: Hubert Beisch, Janik Marx, Svenja Garlof, Roman Shvets, Ivan Grygorchak, Andriy Kityk, Bodo Fiedler

Abstract:

Three-dimensional carbon materials can be used as electrode materials for energy storage systems such as batteries and supercapacitors. Fast charging and discharging times are realizable without reducing the performance due to aging processes. Furthermore high specific surface area (SSA) of three-dimensional carbon structures leads to high specific capacities. One newly developed carbon foam is Globugraphite. This interconnected globular carbon morphology with statistically distributed hierarchical pores is manufactured by a chemical vapor deposition (CVD) process from ceramic templates resulting from a sintering process. Via scanning electron (SEM) and transmission electron microscopy (TEM), the morphology is characterized. Moreover, the SSA was measured by the Brunauer–Emmett–Teller (BET) theory. Measurements of Globugraphite in an organic and inorganic electrolyte show high energy densities and power densities resulting from ion absorption by forming an electrochemical double layer. A comparison of the specific values is summarized in a Ragone diagram. Energy densities up to 48 Wh/kg and power densities to 833 W/kg could be achieved for an SSA from 376 m²/g to 859 m²/g. For organic electrolyte, a specific capacity of 100 F/g at a density of 20 mg/cm³ was achieved.

Keywords: BET, carbon foam, CVD process, electrochemical cell, Ragone diagram, SEM, TEM

Procedia PDF Downloads 234
5462 A Framework for Supply Chain Efficiency Evaluation of Mass Customized Automobiles

Authors: Arshia Khan, Hans-Dietrich Haasis

Abstract:

Different tools of the supply chain should be managed very efficiently in mass customization. In the automobile industry, there are different strategies to manage these tools. We need to investigate which strategies among the different ones are successful and which are not. There is lack in literature regarding such analysis. Keeping this in view, the purpose of this paper is to construct a framework and model which can help to analyze the supply chain of mass customized automobiles quantitatively for future studies. Furthermore, we will also consider that which type of data can be used for the suggested model and where it can be taken from. Such framework can help to bring insight for future analysis.

Keywords: mass customization, supply chain, inventory, distribution, automobile industry

Procedia PDF Downloads 375
5461 Fast Bayesian Inference of Multivariate Block-Nearest Neighbor Gaussian Process (NNGP) Models for Large Data

Authors: Carlos Gonzales, Zaida Quiroz, Marcos Prates

Abstract:

Several spatial variables collected at the same location that share a common spatial distribution can be modeled simultaneously through a multivariate geostatistical model that takes into account the correlation between these variables and the spatial autocorrelation. The main goal of this model is to perform spatial prediction of these variables in the region of study. Here we focus on a geostatistical multivariate formulation that relies on sharing common spatial random effect terms. In particular, the first response variable can be modeled by a mean that incorporates a shared random spatial effect, while the other response variables depend on this shared spatial term, in addition to specific random spatial effects. Each spatial random effect is defined through a Gaussian process with a valid covariance function, but in order to improve the computational efficiency when the data are large, each Gaussian process is approximated to a Gaussian random Markov field (GRMF), specifically to the block nearest neighbor Gaussian process (Block-NNGP). This approach involves dividing the spatial domain into several dependent blocks under certain constraints, where the cross blocks allow capturing the spatial dependence on a large scale, while each individual block captures the spatial dependence on a smaller scale. The multivariate geostatistical model belongs to the class of Latent Gaussian Models; thus, to achieve fast Bayesian inference, it is used the integrated nested Laplace approximation (INLA) method. The good performance of the proposed model is shown through simulations and applications for massive data.

Keywords: Block-NNGP, geostatistics, gaussian process, GRMF, INLA, multivariate models.

Procedia PDF Downloads 97
5460 A Heuristic Based Decomposition Approach for a Hierarchical Production Planning Problem

Authors: Nusrat T. Chowdhury, M. F. Baki, A. Azab

Abstract:

The production planning problem is concerned with specifying the optimal quantities to produce in order to meet the demand for a prespecified planning horizon with the least possible expenditure. Making the right decisions in production planning will affect directly the performance and productivity of a manufacturing firm, which is important for its ability to compete in the market. Therefore, developing and improving solution procedures for production planning problems is very significant. In this paper, we develop a Dantzig-Wolfe decomposition of a multi-item hierarchical production planning problem with capacity constraint and present a column generation approach to solve the problem. The original Mixed Integer Linear Programming model of the problem is decomposed item by item into a master problem and a number of subproblems. The capacity constraint is considered as the linking constraint between the master problem and the subproblems. The subproblems are solved using the dynamic programming approach. We also propose a multi-step iterative capacity allocation heuristic procedure to handle any kind of infeasibility that arises while solving the problem. We compare the computational performance of the developed solution approach against the state-of-the-art heuristic procedure available in the literature. The results show that the proposed heuristic-based decomposition approach improves the solution quality by 20% as compared to the literature.

Keywords: inventory, multi-level capacitated lot-sizing, emission control, setup carryover

Procedia PDF Downloads 138
5459 Energy Efficient Clustering with Reliable and Load-Balanced Multipath Routing for Wireless Sensor Networks

Authors: Alamgir Naushad, Ghulam Abbas, Shehzad Ali Shah, Ziaul Haq Abbas

Abstract:

Unlike conventional networks, it is particularly challenging to manage resources efficiently in Wireless Sensor Networks (WSNs) due to their inherent characteristics, such as dynamic network topology and limited bandwidth and battery power. To ensure energy efficiency, this paper presents a routing protocol for WSNs, namely, Enhanced Hybrid Multipath Routing (EHMR), which employs hierarchical clustering and proposes a next hop selection mechanism between nodes according to a maximum residual energy metric together with a minimum hop count. Load-balancing of data traffic over multiple paths is achieved for a better packet delivery ratio and low latency rate. Reliability is ensured in terms of higher data rate and lower end-to-end delay. EHMR also enhances the fast-failure recovery mechanism to recover a failed path. Simulation results demonstrate that EHMR achieves a higher packet delivery ratio, reduced energy consumption per-packet delivery, lower end-to-end latency, and reduced effect of data rate on packet delivery ratio when compared with eminent WSN routing protocols.

Keywords: energy efficiency, load-balancing, hierarchical clustering, multipath routing, wireless sensor networks

Procedia PDF Downloads 84
5458 From Service to Ritual: Preliminary Development on Conceptual Framework for Designing Ritual

Authors: Yi-Jing Lee

Abstract:

Prior to the development of ritual design tool and framework, this paper establishes a systematic review on the studies related to ritual and ritual design across anthropology, consumer culture, marketing, and design. It is found that following symbolic anthropologists, the ethnographic approach was adapted by consumer culture researchers to study modern rituals and marketers to enhance consumption. In the domain of design, although there are already designers aware of the importance of ritualistic dimension of human interaction, there are little frameworks for conceptualizing and developing rituals. The conceptualized framework and developing tools is proposed and suggestions of applying it is made in the end of the paper.

Keywords: ritual, ritual design, service design, symbolic interaction

Procedia PDF Downloads 193
5457 A Hybrid Recommendation System Based on Association Rules

Authors: Ahmed Mohammed Alsalama

Abstract:

Recommendation systems are widely used in e-commerce applications. The engine of a current recommendation system recommends items to a particular user based on user preferences and previous high ratings. Various recommendation schemes such as collaborative filtering and content-based approaches are used to build a recommendation system. Most of the current recommendation systems were developed to fit a certain domain such as books, articles, and movies. We propose a hybrid framework recommendation system to be applied on two-dimensional spaces (User x Item) with a large number of Users and a small number of Items. Moreover, our proposed framework makes use of both favorite and non-favorite items of a particular user. The proposed framework is built upon the integration of association rules mining and the content-based approach. The results of experiments show that our proposed framework can provide accurate recommendations to users.

Keywords: data mining, association rules, recommendation systems, hybrid systems

Procedia PDF Downloads 453
5456 Examining How Teachers’ Backgrounds and Perceptions for Technology Use Influence on Students’ Achievements

Authors: Zhidong Zhang, Amanda Resendez

Abstract:

This study is to examine how teachers’ perspective on education technology use in their class influence their students’ achievement. The authors hypothesized that teachers’ perspective can directly or indirectly influence students’ learning, performance, and achievements. In this study, a questionnaire entitled, Teacher’s Perspective on Educational Technology, was delivered to 63 teachers and 1268 students’ mathematics and reading achievement records were collected. The questionnaire consists of four parts: a) demographic variables, b) attitudes on technology integration, c) outside factor affecting technology integration, and d) technology use in the classroom. Kruskal-Wallis and hierarchical regression analysis techniques were used to examine: 1) the relationship between the demographic variables and teachers’ perspectives on educational technology, and 2) how the demographic variables were causally related to students’ mathematics and reading achievements. The study found that teacher demographics were significantly related to the teachers’ perspective on educational technology with p < 0.05 and p < 0.01 separately. These teacher demographical variables included the school district, age, gender, the grade currently teach, teaching experience, and proficiency using new technology. Further, these variables significantly predicted students’ mathematics and reading achievements with p < 0.05 and p < 0.01 separately. The variations of R² are between 0.176 and 0.467. That means 46.7% of the variance of a given analysis can be explained by the model.

Keywords: teacher's perception of technology use, mathematics achievement, reading achievement, Kruskal-Wallis test, hierarchical regression analysis

Procedia PDF Downloads 131
5455 Sustainable Design in the Use of Deployable Structures

Authors: Umweni Osahon Joshua, Anton Ianakiev

Abstract:

Deployable structures have been used in various scenarios from moving roofs in stadia, space antennae or booms. There has been a lot of literature relating deployable structures but with main focus on space applications. The complexities in the design of deployable structures may be the reason only few have been constructed for earth based solutions. This paper intends to explore the possibilities of integrating sustainable design concepts in deployable structures. Key aspects of sustainable design of structures as applicable to deployable structures have not been explored. Sustainable design of structures have mainly been concerned with static structures in the built environment. However, very little literature, concepts or framework has been drafted as it relates to deployable structures or their integration to static structures as a model for sustainable design. This article seeks to address this flaw in sustainable design for structural engineering and to provide a framework for designing structures in a sustainable manner. This framework will apply to deployable structures for earth-based environments as a form of disaster relief measures and also as part of static structures in the built environment.

Keywords: deployable structures, sustainable design, framework, earth-based environments

Procedia PDF Downloads 541
5454 Designing a Legal Framework for Social Innovation

Authors: Prapin Nuchpiam

Abstract:

The importance of social innovation has become increasingly significant as the process of developing effective solutions to social problems and being a force of change for people’s better quality of life. In order to promote social innovation, active collaboration between government, business organizations, and the civil society sector is needed. A proper legal framework also plays an important role in building the social innovation ecosystem. Currently, there is no specific law designed for social innovation or a so-called “social innovation law”. One of the legal frameworks for social innovation is the development of hybrid legal forms for social enterprises such as the UK’s Community Interest Company (CIC), the US’s Low-Profit Limited Liability Company (L3C) and the US’s Benefit Corporation (B-Corp), among others. This is because social enterprise is recognized as an organizational form of social innovation with its aim for social benefit goals and the achievement of financial sustainability. Nonetheless, there has been a debate over the differences and similarities between social innovation and social enterprise. Thus, social enterprise law might not fit well with social innovation, resulting in a search for a legal framework specially designed for social innovation. This paper aims to study the interrelationship between social innovation, social enterprise, and the role of law to see whether we need a specific law for social innovation. If so, what should such a legal framework look like? The paper will provide a critical analysis of innovative legal forms for social enterprise as a type of social innovation law. A proper legal framework for social innovation could help promote the sector, which could result in finding new solutions to social problems. It will also bring about a greater common understanding of the exciting development of legal scholarship in this way, which will, in turn, serve as a productive basis or direction for further research on this increasingly important topic.

Keywords: social innovation, social enterprise, legal framework, regulation

Procedia PDF Downloads 95
5453 Relations between Psychological Adjustment and Perceived Parental, Teacher and Best Friend Acceptance among Bangladeshi Adolescents

Authors: Tariqul Islam, Shaheen Mollah

Abstract:

The study's main objective is to assess the relationship between psychological adjustment and parental acceptance-rejection, teacher acceptance-rejection, and best friend acceptance-rejection among secondary school students. This study was conducted on a sample of 300 (6th through 10th-grade students) recruited from over ten schools in Dhaka. While the schools were selected purposively, the respondents within each school were selected conveniently. The collected data were analyzed using Pearson product-moment correlation, hierarchical regression, and simultaneous regression analysis. The results showed that psychological adjustment is positively correlated with paternal, maternal, teacher, and best friend acceptance. The paternal acceptance was significantly connected with maternal acceptance. The teacher and best friend acceptance are correlated substantially with paternal and maternal acceptance. The hierarchical multiple regressions indicated that maternal, paternal, teacher, and best friend acceptance-rejection contributed significantly to students' psychological adjustment. The results revealed substantial independent contributions of maternal, paternal, teacher, and best friend acceptance on the students' psychological adjustment. The simultaneous regression analysis indicates that the maternal and best friend acceptances (but not paternal acceptance) were significant predictors of psychological adjustments. It showed that 41.7% variability in psychological adjustment could be explained by paternal, maternal, and best friend acceptance. The findings of the present study are exciting. They may contribute to developing insight in parents and best friends for behaving properly with their offspring and friend, respectively, for better psychological adjustment.

Keywords: adjustment, parenting, rejection, acceptance

Procedia PDF Downloads 145
5452 An Examination of the Relationship between Organizational Justice and Trust in the Supervisor: The Mediating Role of Perceived Supervisor Support

Authors: Michel Zaitouni, Mohamed Nassar

Abstract:

The purpose of this study is first, to explore the effect of employees’ perception of justice on trust in the supervisor in the context of performance appraisal; Second, to assess the role of perceived supervisor support as a mediator between organizational justice and trust in the supervisor in a non-western society such as Kuwait.The survey data consisted of 415 employees working at different hierarchical levels in three major banks in Kuwait. Hierarchical regression analysis was used to test the research hypotheses. Results supported hypothesized relationships between distributive, informational and interpersonal justice and trust in the supervisor but failed to support that procedural justice positively and significantly relate to trust in the supervisor. Moreover, results found that this relationship is partially mediated by perceived supervisor support. A potential limitation of this study is that data were obtained from the same industry which limits the generalizability of this study to other industries. Moreover, a longitudinal research will be helpful to strengthen the mediating relationship. The findings provide valuable information for the development of common perspectives regarding the perception of justice in the context of performance appraisal between the western and non-western societies. The paper has the privilege to explore additional relationships related to justice perceptions in the Kuwaiti banking sector, whereas previous research focused mainly on procedural and distributive justice as predictors of trust in the supervisor.

Keywords: Kuwait, organizational justice, perceived supervisor support, trust in the supervisor

Procedia PDF Downloads 309
5451 Comparison of Deep Learning and Machine Learning Algorithms to Diagnose and Predict Breast Cancer

Authors: F. Ghazalnaz Sharifonnasabi, Iman Makhdoom

Abstract:

Breast cancer is a serious health concern that affects many people around the world. According to a study published in the Breast journal, the global burden of breast cancer is expected to increase significantly over the next few decades. The number of deaths from breast cancer has been increasing over the years, but the age-standardized mortality rate has decreased in some countries. It’s important to be aware of the risk factors for breast cancer and to get regular check- ups to catch it early if it does occur. Machin learning techniques have been used to aid in the early detection and diagnosis of breast cancer. These techniques, that have been shown to be effective in predicting and diagnosing the disease, have become a research hotspot. In this study, we consider two deep learning approaches including: Multi-Layer Perceptron (MLP), and Convolutional Neural Network (CNN). We also considered the five-machine learning algorithm titled: Decision Tree (C4.5), Naïve Bayesian (NB), Support Vector Machine (SVM), K-Nearest Neighbors (KNN) Algorithm and XGBoost (eXtreme Gradient Boosting) on the Breast Cancer Wisconsin Diagnostic dataset. We have carried out the process of evaluating and comparing classifiers involving selecting appropriate metrics to evaluate classifier performance and selecting an appropriate tool to quantify this performance. The main purpose of the study is predicting and diagnosis breast cancer, applying the mentioned algorithms and also discovering of the most effective with respect to confusion matrix, accuracy and precision. It is realized that CNN outperformed all other classifiers and achieved the highest accuracy (0.982456). The work is implemented in the Anaconda environment based on Python programing language.

Keywords: breast cancer, multi-layer perceptron, Naïve Bayesian, SVM, decision tree, convolutional neural network, XGBoost, KNN

Procedia PDF Downloads 75
5450 Creating and Questioning Research-Oriented Digital Outputs to Manuscript Metadata: A Case-Based Methodological Investigation

Authors: Diandra Cristache

Abstract:

The transition of traditional manuscript studies into the digital framework closely affects the methodological premises upon which manuscript descriptions are modeled, created, and questioned for the purpose of research. This paper intends to explore the issue by presenting a methodological investigation into the process of modeling, creating, and questioning manuscript metadata. The investigation is founded on a close observation of the Polonsky Greek Manuscripts Project, a collaboration between the Universities of Cambridge and Heidelberg. More than just providing a realistic ground for methodological exploration, along with a complete metadata set for computational demonstration, the case study also contributes to a broader purpose: outlining general methodological principles for making the most out of manuscript metadata by means of research-oriented digital outputs. The analysis mainly focuses on the scholarly approach to manuscript descriptions, in the specific instance where the act of metadata recording does not have a programmatic research purpose. Close attention is paid to the encounter of 'traditional' practices in manuscript studies with the formal constraints of the digital framework: does the shift in practices (especially from the straight narrative of free writing towards the hierarchical constraints of the TEI encoding model) impact the structure of metadata and its capability to respond specific research questions? It is argued that flexible structure of TEI and traditional approaches to manuscript description lead to a proliferation of markup: does an 'encyclopedic' descriptive approach ensure the epistemological relevance of the digital outputs to metadata? To provide further insight on the computational approach to manuscript metadata, the metadata of the Polonsky project are processed with techniques of distant reading and data networking, thus resulting in a new group of digital outputs (relational graphs, geographic maps). The computational process and the digital outputs are thoroughly illustrated and discussed. Eventually, a retrospective analysis evaluates how the digital outputs respond to the scientific expectations of research, and the other way round, how the requirements of research questions feed back into the creation and enrichment of metadata in an iterative loop.

Keywords: digital manuscript studies, digital outputs to manuscripts metadata, metadata interoperability, methodological issues

Procedia PDF Downloads 140
5449 PhD Research Design and Descriptive Theory: Theoretical Framework for Development of Integrated Management System

Authors: Samuel Quashie

Abstract:

The importance of theory for PhD construction management research cannot be underestimated, as it requires a sound theoretical basis. Theory efficiency reduces errors in the research problem, solving it by building upon current theory. Provides a structure for examination, enables the efficient development of the construction management field and to it practical real world problems. The aim is to develop the theoretical framework for the application of descriptive theory within the PhD research design To apply the proposed theoretical framework using the case of the topic of ‘integrated management system,’ classifying the phenomena into categories, explore the association between the category–defining attributes and the outcome observed. Forming categorization based upon attributes of phenomena (framework and typologies), and statement of association (models). Predicting (deductive process) and confirming (inductive process). The descriptive theory is important and provides a structure for examination, enables the efficient development of construction management field and to it practical real world problems. In conclusion, the work done in management presents fertile ground for research and theory development.

Keywords: descriptive theory, PhD research design, theoretical framework, construction management

Procedia PDF Downloads 426
5448 Message Framework for Disaster Management: An Application Model for Mines

Authors: A. Baloglu, A. Çınar

Abstract:

Different tools and technologies were implemented for Crisis Response and Management (CRM) which is generally using available network infrastructure for information exchange. Depending on type of disaster or crisis, network infrastructure could be affected and it could not be able to provide reliable connectivity. Thus any tool or technology that depends on the connectivity could not be able to fulfill its functionalities. As a solution, a new message exchange framework has been developed. Framework provides offline/online information exchange platform for CRM Information Systems (CRMIS) and it uses XML compression and packet prioritization algorithms and is based on open source web technologies. By introducing offline capabilities to the web technologies, framework will be able to perform message exchange on unreliable networks. The experiments done on the simulation environment provide promising results on low bandwidth networks (56kbps and 28.8 kbps) with up to 50% packet loss and the solution is to successfully transfer all the information on these low quality networks where the traditional 2 and 3 tier applications failed.

Keywords: crisis response and management, XML messaging, web services, XML compression, mining

Procedia PDF Downloads 339
5447 Dissimilarity Measure for General Histogram Data and Its Application to Hierarchical Clustering

Authors: K. Umbleja, M. Ichino

Abstract:

Symbolic data mining has been developed to analyze data in very large datasets. It is also useful in cases when entry specific details should remain hidden. Symbolic data mining is quickly gaining popularity as datasets in need of analyzing are becoming ever larger. One type of such symbolic data is a histogram, which enables to save huge amounts of information into a single variable with high-level of granularity. Other types of symbolic data can also be described in histograms, therefore making histogram a very important and general symbolic data type - a method developed for histograms - can also be applied to other types of symbolic data. Due to its complex structure, analyzing histograms is complicated. This paper proposes a method, which allows to compare two histogram-valued variables and therefore find a dissimilarity between two histograms. Proposed method uses the Ichino-Yaguchi dissimilarity measure for mixed feature-type data analysis as a base and develops a dissimilarity measure specifically for histogram data, which allows to compare histograms with different number of bins and bin widths (so called general histogram). Proposed dissimilarity measure is then used as a measure for clustering. Furthermore, linkage method based on weighted averages is proposed with the concept of cluster compactness to measure the quality of clustering. The method is then validated with application on real datasets. As a result, the proposed dissimilarity measure is found producing adequate and comparable results with general histograms without the loss of detail or need to transform the data.

Keywords: dissimilarity measure, hierarchical clustering, histograms, symbolic data analysis

Procedia PDF Downloads 162
5446 Computer-Assisted Management of Building Climate and Microgrid with Model Predictive Control

Authors: Vinko Lešić, Mario Vašak, Anita Martinčević, Marko Gulin, Antonio Starčić, Hrvoje Novak

Abstract:

With 40% of total world energy consumption, building systems are developing into technically complex large energy consumers suitable for application of sophisticated power management approaches to largely increase the energy efficiency and even make them active energy market participants. Centralized control system of building heating and cooling managed by economically-optimal model predictive control shows promising results with estimated 30% of energy efficiency increase. The research is focused on implementation of such a method on a case study performed on two floors of our faculty building with corresponding sensors wireless data acquisition, remote heating/cooling units and central climate controller. Building walls are mathematically modeled with corresponding material types, surface shapes and sizes. Models are then exploited to predict thermal characteristics and changes in different building zones. Exterior influences such as environmental conditions and weather forecast, people behavior and comfort demands are all taken into account for deriving price-optimal climate control. Finally, a DC microgrid with photovoltaics, wind turbine, supercapacitor, batteries and fuel cell stacks is added to make the building a unit capable of active participation in a price-varying energy market. Computational burden of applying model predictive control on such a complex system is relaxed through a hierarchical decomposition of the microgrid and climate control, where the former is designed as higher hierarchical level with pre-calculated price-optimal power flows control, and latter is designed as lower level control responsible to ensure thermal comfort and exploit the optimal supply conditions enabled by microgrid energy flows management. Such an approach is expected to enable the inclusion of more complex building subsystems into consideration in order to further increase the energy efficiency.

Keywords: price-optimal building climate control, Microgrid power flow optimisation, hierarchical model predictive control, energy efficient buildings, energy market participation

Procedia PDF Downloads 465