Search results for: distributed frequent itemset mining
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4010

Search results for: distributed frequent itemset mining

3650 Influence of Physical Properties on Estimation of Mechanical Strength of Limestone

Authors: Khaled Benyounes

Abstract:

Determination of the rock mechanical properties such as unconfined compressive strength UCS, Young’s modulus E, and tensile strength by the Brazilian test Rtb is considered to be the most important component in drilling and mining engineering project. Research related to establishing correlation between strength and physical parameters of rocks has always been of interest to mining and reservoir engineering. For this, many rock blocks of limestone were collected from the quarry located in Meftah(Algeria), the cores were crafted in the laboratory using a core drill. This work examines the relationships between mechanical properties and some physical properties of limestone. Many empirical equations are established between UCS and physical properties of limestone (such as dry bulk density, velocity of P-waves, dynamic Young’s modulus, alteration index, and total porosity). Others correlations UCS-tensile strength, dynamic Young’s modulus-static Young’s modulus have been find. Based on the Mohr-Coulomb failure criterion, we were able to establish mathematical relationships that will allow estimating the cohesion and internal friction angle from UCS and indirect tensile strength. Results from this study can be useful for mining industry for resolve range of geomechanical problems such as slope stability.

Keywords: limestone, mechanical strength, Young’s modulus, porosity

Procedia PDF Downloads 457
3649 The Effective Use of the Network in the Distributed Storage

Authors: Mamouni Mohammed Dhiya Eddine

Abstract:

This work aims at studying the exploitation of high-speed networks of clusters for distributed storage. Parallel applications running on clusters require both high-performance communications between nodes and efficient access to the storage system. Many studies on network technologies led to the design of dedicated architectures for clusters with very fast communications between computing nodes. Efficient distributed storage in clusters has been essentially developed by adding parallelization mechanisms so that the server(s) may sustain an increased workload. In this work, we propose to improve the performance of distributed storage systems in clusters by efficiently using the underlying high-performance network to access distant storage systems. The main question we are addressing is: do high-speed networks of clusters fit the requirements of a transparent, efficient and high-performance access to remote storage? We show that storage requirements are very different from those of parallel computation. High-speed networks of clusters were designed to optimize communications between different nodes of a parallel application. We study their utilization in a very different context, storage in clusters, where client-server models are generally used to access remote storage (for instance NFS, PVFS or LUSTRE). Our experimental study based on the usage of the GM programming interface of MYRINET high-speed networks for distributed storage raised several interesting problems. Firstly, the specific memory utilization in the storage access system layers does not easily fit the traditional memory model of high-speed networks. Secondly, client-server models that are used for distributed storage have specific requirements on message control and event processing, which are not handled by existing interfaces. We propose different solutions to solve communication control problems at the filesystem level. We show that a modification of the network programming interface is required. Data transfer issues need an adaptation of the operating system. We detail several propositions for network programming interfaces which make their utilization easier in the context of distributed storage. The integration of a flexible processing of data transfer in the new programming interface MYRINET/MX is finally presented. Performance evaluations show that its usage in the context of both storage and other types of applications is easy and efficient.

Keywords: distributed storage, remote file access, cluster, high-speed network, MYRINET, zero-copy, memory registration, communication control, event notification, application programming interface

Procedia PDF Downloads 223
3648 Intrusion Detection System Based on Peer to Peer

Authors: Alireza Pour Ebrahimi, Vahid Abasi

Abstract:

Recently by the extension of internet usage, Research on the intrusion detection system takes a significant importance. Many of improvement systems prevent internal and external network attacks by providing security through firewalls and antivirus. In recently years, intrusion detection systems gradually turn from host-based systems and depend on O.S to the distributed systems which are running on multiple O.S. In this work, by considering the diversity of computer networks whit respect to structure, architecture, resource, services, users and also security goals requirement a fully distributed collaborative intrusion detection system based on peer to peer architecture is suggested. in this platform each partner device (matched device) considered as a peer-to-peer network. All transmitted information to network are visible only for device that use security scanning of a source. Experimental results show that the distributed architecture is significantly upgradeable in respect to centralized approach.

Keywords: network, intrusion detection system, peer to peer, internal and external network

Procedia PDF Downloads 552
3647 A Multi Agent Based Protection Scheme for Smart Distribution Network in Presence of Distributed Energy Resources

Authors: M. R. Ebrahimi, B. Mahdaviani

Abstract:

Conventional electric distribution systems are radial in nature, supplied at one end through a main source. These networks generally have a simple protection system usually implemented using fuses, re-closers, and over-current relays. Recently, great attention has been paid to applying Distributed energy resources (DERs) throughout electric distribution systems. Presence of such generation in a network leads to losing coordination of protection devices. Therefore, it is desired to develop an algorithm which is capable of protecting distribution systems that include DER. On the other hand smart grid brings opportunities to the power system. Fast advancement in communication and measurement techniques accelerates the development of multi agent system (MAS). So in this paper, a new approach for the protection of distribution networks in the presence of DERs is presented base on MAS. The proposed scheme has been implemented on a sample 27-bus distribution network.

Keywords: distributed energy resource, distribution network, protection, smart grid, multi agent system

Procedia PDF Downloads 613
3646 Performance Study of Classification Algorithms for Consumer Online Shopping Attitudes and Behavior Using Data Mining

Authors: Rana Alaa El-Deen Ahmed, M. Elemam Shehab, Shereen Morsy, Nermeen Mekawie

Abstract:

With the growing popularity and acceptance of e-commerce platforms, users face an ever increasing burden in actually choosing the right product from the large number of online offers. Thus, techniques for personalization and shopping guides are needed by users. For a pleasant and successful shopping experience, users need to know easily which products to buy with high confidence. Since selling a wide variety of products has become easier due to the popularity of online stores, online retailers are able to sell more products than a physical store. The disadvantage is that the customers might not find products they need. In this research the customer will be able to find the products he is searching for, because recommender systems are used in some ecommerce web sites. Recommender system learns from the information about customers and products and provides appropriate personalized recommendations to customers to find the needed product. In this paper eleven classification algorithms are comparatively tested to find the best classifier fit for consumer online shopping attitudes and behavior in the experimented dataset. The WEKA knowledge analysis tool, which is an open source data mining workbench software used in comparing conventional classifiers to get the best classifier was used in this research. In this research by using the data mining tool (WEKA) with the experimented classifiers the results show that decision table and filtered classifier gives the highest accuracy and the lowest accuracy classification via clustering and simple cart.

Keywords: classification, data mining, machine learning, online shopping, WEKA

Procedia PDF Downloads 354
3645 Modeling and Stability Analysis of Viral Propagation in Wireless Mesh Networking

Authors: Haowei Chen, Kaiqi Xiong

Abstract:

This paper aims to answer how malware will propagate in Wireless Mesh Networks (WMNs) and how communication radius and distributed density of nodes affects the process of spreading. The above analysis is essential for devising network-wide strategies to counter malware. We answer these questions by developing an improved dynamical system that models malware propagation in the area where nodes were uniformly distributed. The proposed model captures both the spatial and temporal dynamics regarding the malware spreading process. Equilibrium and stability are also discussed based on the threshold of the system. If the threshold is less than one, the infected nodes disappear, and if the threshold is greater than one, the infected nodes asymptotically stabilize at the endemic equilibrium. Numerical simulations are investigated about communication radius and distributed density of nodes in WMNs, which allows us to draw various insights that can be used to guide security defense.

Keywords: Bluetooth security, malware propagation, wireless mesh networks, stability analysis

Procedia PDF Downloads 103
3644 Application of Distributed Value Property Zones Approach on the Hydraulic Conductivity for Real Site Located in Al-Najaf Region, Iraq to Investigate the Groundwater Resources

Authors: Hayder H. Kareem, Ayad K. Hussein, Aseel A. Alkatib

Abstract:

Groundwater accumulated at geological formations constitutes a worldwide vital water resource component which can be used to supply agriculture, industry, and domestic uses. The subsurface environment is affected by human activities; consequently, planning and sustainable management of aquifers require serious attention, especially as the world is exposed to the problem of global warming. Establishing accurate and efficient groundwater models will provide confident results for the behavior of the aquifer's system. The new approach, 'Distributed Value Property Zones,' available in Visual MODFLOW, is used to reconstruct the subsurface zones of the Al-Najaf region aquifer, and then its effect is compared with those manual and automated (PEST) approaches. Results show that the model has become more accurate with the use of the new approach, as the calibration and results analyses revealed. The assessment of the Al-Najaf region groundwater aquifer has revealed a degree of insufficiency of the required pumping demand, which reflects dry areas in both of the aquifer's layers. In addition, with pumping, the Euphrates River loses water of 7458 m³/day to the aquifer, while without pumping, it gains 28837 m³/day from the rainfall's recharge. The distributed value property zones approach achieves a precise groundwater model to assess the state of the Al-Najaf region aquifer.

Keywords: Al-Najaf region, distributed value property zones approach, hydraulic conductivity, groundwater modelling using visual MODFLOW

Procedia PDF Downloads 175
3643 Loss Minimization by Distributed Generation Allocation in Radial Distribution System Using Crow Search Algorithm

Authors: M. Nageswara Rao, V. S. N. K. Chaitanya, K. Amarendranath

Abstract:

This paper presents an optimal allocation and sizing of Distributed Generation (DG) in Radial Distribution Network (RDN) for total power loss minimization and enhances the voltage profile of the system. The two main important part of this study first is to find optimal allocation and second is optimum size of DG. The locations of DGs are identified by Analytical expressions and crow search algorithm has been employed to determine the optimum size of DG. In this study, the DG has been placed on single and multiple allocations.CSA is a meta-heuristic algorithm inspired by the intelligent behavior of the crows. Crows stores their excess food in different locations and memorizes those locations to retrieve it when it is needed. They follow each other to do thievery to obtain better food source. This analysis is tested on IEEE 33 bus and IEEE 69 bus under MATLAB environment and the results are compared with existing methods.

Keywords: analytical expression, distributed generation, crow search algorithm, power loss, voltage profile

Procedia PDF Downloads 242
3642 Voltage and Current Control of Microgrid in Grid Connected and Islanded Modes

Authors: Megha Chavda, Parth Thummar, Rahul Ghetia

Abstract:

This paper presents the voltage and current control of microgrid accompanied by the synchronization of microgrid with the main utility grid in both islanded and grid-connected modes. Distributed Energy Resources (DERs) satisfy the wide-spread power demand of consumer by behaving as a micro source for a low voltage (LV) grid or microgrid. Synchronization of the microgrid with the main utility grid is done using PLL and PWM gate pulse generation technique is used for the Voltage Source Converter. Potential Function method achieves the voltage and current control of this microgrid in both islanded and grid-connected modes. A low voltage grid consisting of three distributed generators (DG) is considered for the study and is simulated in time-domain using PSCAD/EMTDC software. The simulation results depict the appropriateness of voltage and current control of microgrid and synchronization of microgrid with the medium voltage (MV) grid.

Keywords: microgrid, distributed energy resources, voltage and current control, voltage source converter, pulse width modulation, phase locked loop

Procedia PDF Downloads 415
3641 Occupational Health Programs for Artisanal and Small-Scale Gold Mining: A Systematic Review for the WHO Global Plan of Action for Workers' Health

Authors: Vivian W. L. Tsang, Karen Lockhart, Samuel Spiegel, Annalee Yassi

Abstract:

Background: Workers in the informal economy often incur exposure to well-documented occupational health hazards. Insufficient attention has been afforded to rigorously evaluating intervention programs to reduce the risks, especially in artisanal and small-scale gold mining (ASGM). Objectives: This systematic review, conducted as part of the World Health Organization’s Global Plan of Action for Workers’ Health, sought to assess the state of knowledge on occupational health programs and interventions for the informal artisanal and small-scale gold mining (ASGM) sector, an occupation which directly employs at least 50 million people. Methods: We used a comprehensive search strategy for four well-known databases relevant to health outcomes: PubMed, Engineering Village, OVID Medline, and Web of Science, and employed the PRISMA framework for our analysis. Findings: Ten studies met the inclusion criteria of a primary study focused on assessing the impact of interventions addressing occupational health concerns in ASGM. There were no studies evaluating or even identifying comprehensive occupational health and safety programs for this sector, although target interventions addressing specific hazards exist. Major areas of intervention –education and introduction of mercury-reducing/eliminating technology were identified, and the challenges and limitations of each intervention taken into the assessment. Even for these, however, there was a lack of standardization for measuring outcome or impact, let alone long-term health outcomes for miners and mining communities. Conclusion: There is an urgent need for research on comprehensive occupational health programs addressing the array of hazards faced by artisanal and small-scale miners.

Keywords: informal economy, artisanal and small-scale gold mining, occupational health, health and safety, workplace safety

Procedia PDF Downloads 156
3640 Mine Project Evaluations in the Rising of Uncertainty: Real Options Analysis

Authors: I. Inthanongsone, C. Drebenstedt, J. C. Bongaerts, P. Sontamino

Abstract:

The major concern in evaluating the value of mining projects related to the deficiency of the traditional discounted cash flow (DCF) method. This method does not take uncertainties into account and, hence it does not allow for an economic assessment of managerial flexibility and operational adaptability, which are increasingly determining long-term corporate success. Such an assessment can be performed with the real options valuation (ROV) approach, since it allows for a comparative evaluation of unforeseen uncertainties in a project life cycle. This paper presents an economic evaluation model for open pit mining projects based on real options valuation approach. Uncertainties in the model are caused by metal prices and cost uncertainties and the system dynamics (SD) modeling method is used to structure and solve the real options model. The model is applied to a case study. It can be shown that that managerial flexibility reacting to uncertainties may create additional value to a mining project in comparison to the outcomes of a DCF method. One important insight for management dealing with uncertainty is seen in choosing the optimal time to exercise strategic options.

Keywords: DCF methods, ROV approach, system dynamics modeling methods, uncertainty

Procedia PDF Downloads 505
3639 Data Mining Model for Predicting the Status of HIV Patients during Drug Regimen Change

Authors: Ermias A. Tegegn, Million Meshesha

Abstract:

Human Immunodeficiency Virus and Acquired Immunodeficiency Syndrome (HIV/AIDS) is a major cause of death for most African countries. Ethiopia is one of the seriously affected countries in sub Saharan Africa. Previously in Ethiopia, having HIV/AIDS was almost equivalent to a death sentence. With the introduction of Antiretroviral Therapy (ART), HIV/AIDS has become chronic, but manageable disease. The study focused on a data mining technique to predict future living status of HIV/AIDS patients at the time of drug regimen change when the patients become toxic to the currently taking ART drug combination. The data is taken from University of Gondar Hospital ART program database. Hybrid methodology is followed to explore the application of data mining on ART program dataset. Data cleaning, handling missing values and data transformation were used for preprocessing the data. WEKA 3.7.9 data mining tools, classification algorithms, and expertise are utilized as means to address the research problem. By using four different classification algorithms, (i.e., J48 Classifier, PART rule induction, Naïve Bayes and Neural network) and by adjusting their parameters thirty-two models were built on the pre-processed University of Gondar ART program dataset. The performances of the models were evaluated using the standard metrics of accuracy, precision, recall, and F-measure. The most effective model to predict the status of HIV patients with drug regimen substitution is pruned J48 decision tree with a classification accuracy of 98.01%. This study extracts interesting attributes such as Ever taking Cotrim, Ever taking TbRx, CD4 count, Age, Weight, and Gender so as to predict the status of drug regimen substitution. The outcome of this study can be used as an assistant tool for the clinician to help them make more appropriate drug regimen substitution. Future research directions are forwarded to come up with an applicable system in the area of the study.

Keywords: HIV drug regimen, data mining, hybrid methodology, predictive model

Procedia PDF Downloads 143
3638 Integration of Hydropower and Solar Photovoltaic Generation into Distribution System: Case of South Sudan

Authors: Ater Amogpai

Abstract:

Hydropower and solar photovoltaic (PV) generation are crucial in sustainability and transitioning from fossil fuel to clean energy. Integrating renewable energy sources such as hydropower and solar photovoltaic (PV) into the distributed networks contributes to achieving energy balance, pollution mitigation, and cost reduction. Frequent power outages and a lack of load reliability characterize the current South Sudan electricity distribution system. The country’s electricity demand is 300MW; however, the installed capacity is around 212.4M. Insufficient funds to build new electricity facilities and expand generation are the reasons for the gap in installed capacity. The South Sudan Ministry of Energy and Dams gave a contract to an Egyptian Elsewedy Electric Company that completed the construction of a solar PV plant in 2023. The plant has a 35 MWh battery storage and 20 MW solar PV system capacity. The construction of Juba Solar PV Park started in 2022 to increase the current installed capacity in Juba City to 53 MW. The plant will begin serving 59000 residents in Juba and save 10,886.2t of carbon dioxide (CO2) annually.

Keywords: renewable energy, hydropower, solar energy, photovoltaic, South Sudan

Procedia PDF Downloads 156
3637 Mining and Ecological Events and its Impact on the Genesis and Geo-Distribution of Ebola Outbreaks in Africa

Authors: E Tambo, O. O. Olalubi, E. C. Ugwu, J. Y. Ngogang

Abstract:

Despite the World Health Organization (WHO) declaration of international health emergency concern, the status quo of responses and efforts to stem the worst-recorded Ebola epidemic Ebola outbreak is still precariously inadequate in most of the affected in West. Mining natural resources have been shown to play a key role in both motivating and fuelling ethnic, civil and armed conflicts that have plagued a number of African countries over the last decade. Revenues from the exploitation of natural resources are not only used in sustaining the national economy but also armies, personal enrichment and building political support. Little is documented on the mining and ecological impact on the emergence and geographical distribution of Ebola in Africa over time and space. We aimed to provide a better understanding of the interconnectedness among issues of mining natural, resource management, mining conflict and post-conflict on Ebola outbreak and how wealth generated from abundant natural resources could be better managed in promoting research and development towards strengthening environmental, socioeconomic and health systems sustainability on Ebola outbreak and other emerging diseases surveillance and responses systems prevention and control, early warning alert, durable peace and sustainable development rather than to fuel conflicts, resurgence and emerging diseases epidemics in the perspective of community and national/regional approach. Our results showed the first assessment of systematic impact of all major minerals conflict events diffusion over space and time and mining activities on nine Ebola genesis and geo-distribution in affected countries across Africa. We demonstrate how, where and when mining activities in Africa increase ecological degradation, conflicts at the local level and then spreads violence across territory and time by enhancing the financial capacities of fighting groups/ethnics and diseases onset. In addition, led process of developing minimum standards for natural resource governance; improving governmental and civil society capacity for natural resource management, including the strengthening of monitoring and enforcement mechanisms; understanding the post-mining and conflicts community or national reconstruction and rehabilitation programmes in strengthening or developing community health systems and regulatory mechanisms. In addition the quest for the control over these resources and illegal mining across the landscape forest incursion provided increase environmental and ecological instability and displacement and disequilibrium, therefore affecting the intensity and duration of mining and conflict/wars and episode of Ebola outbreaks over time and space. We highlight the key findings and lessons learnt in promoting country or community-led process in transforming natural resource wealth from a peace liability to a peace asset. The imperative necessity for advocacy and through facilitating intergovernmental deliberations on critical issues and challenges affecting Africa community transforming exploitation of natural resources from a peace liability to outbreak prevention and control. The vital role of mining in increasing government revenues and expenditures, equitable distribution of wealth and health to all stakeholders, in particular local communities requires coordination, cooperative leadership and partnership in fostering sustainable developmental initiatives from mining context to outbreak and other infectious diseases surveillance responses systems in prevention and control, and judicious resource management.

Keywords: mining, mining conflicts, mines, ecological, Ebola, outbreak, mining companies, miners, impact

Procedia PDF Downloads 305
3636 Development of a Framework for Assessment of Market Penetration of Oil Sands Energy Technologies in Mining Sector

Authors: Saeidreza Radpour, Md. Ahiduzzaman, Amit Kumar

Abstract:

Alberta’s mining sector consumed 871.3 PJ in 2012, which is 67.1% of the energy consumed in the industry sector and about 40% of all the energy consumed in the province of Alberta. Natural gas, petroleum products, and electricity supplied 55.9%, 20.8%, and 7.7%, respectively, of the total energy use in this sector. Oil sands mining and upgrading to crude oil make up most of the mining energy sector activities in Alberta. Crude oil is produced from the oil sands either by in situ methods or by the mining and extraction of bitumen from oil sands ore. In this research, the factors affecting oil sands production have been assessed and a framework has been developed for market penetration of new efficient technologies in this sector. Oil sands production amount is a complex function of many different factors, broadly categorized into technical, economic, political, and global clusters. The results of developed and implemented statistical analysis in this research show that the importance of key factors affecting on oil sands production in Alberta is ranked as: Global energy consumption (94% consistency), Global crude oil price (86% consistency), and Crude oil export (80% consistency). A framework for modeling oil sands energy technologies’ market penetration (OSETMP) has been developed to cover related technical, economic and environmental factors in this sector. It has been assumed that the impact of political and social constraints is reflected in the model by changes of global oil price or crude oil price in Canada. The market share of novel in situ mining technologies with low energy and water use are assessed and calculated in the market penetration framework include: 1) Partial upgrading, 2) Liquid addition to steam to enhance recovery (LASER), 3) Solvent-assisted process (SAP), also called solvent-cyclic steam-assisted gravity drainage (SC-SAGD), 4) Cyclic solvent, 5) Heated solvent, 6) Wedge well, 7) Enhanced modified steam and Gas push (emsagp), 8) Electro-thermal dynamic stripping process (ET-DSP), 9) Harris electro-magnetic heating applications (EMHA), 10) Paraffin froth separation. The results of the study will show the penetration profile of these technologies over a long term planning horizon.

Keywords: appliances efficiency improvement, diffusion models, market penetration, residential sector

Procedia PDF Downloads 335
3635 Regulating Transnational Corporations and Protecting Human Rights: Analyzing the Efficiency of International Legal Framework

Authors: Stellina Jolly

Abstract:

July 18th to August 19th 2013 has gone down in the history of India for undertaking the country’s first environment referendum. The Supreme Court had ruled that the Vedanta Group's bauxite mining project in the Niyamgiri Hills of Orissa will have to get clearance from the gram sabha, which will consider the cultural and religious rights of the tribals and forest dwellers living in Rayagada and Kalahandi districts. In the Niyamgiri hills, people of small tribal hamlets were asked to voice their opinion on bauxite mining in their habitat. The ministry has reiterated its stand that mining cannot be allowed on the Niyamgiri hills because it will affect the rights of the Dongria Kondhs. The tribal person who occupies the Niyamgiri Hills in Eastern India accomplished their first success in 2010 in their struggle to protect and preserve their existence, culture and land against Vedanta a London-based mining giant. In August, 2010 Government of India revoked permission for Vedanta Resources to mine bauxite from hills in Orissa State where the Dongria Kondh live as forest dwellers. This came after various protests and reports including amnesty report wherein it highlighted that an alumina refinery in eastern India operated by a subsidiary of mining company. Vedanta was accused of causing air and water pollution that threatens the health of local people and their access to water. The abuse of human rights by corporate is not a new issue it has occurred in Africa, Asia and other parts of the world. Paper focuses on the instances and extent of human right especially in terms of environment violations by corporations. Further Paper details on corporations and sustainable development. Paper finally comes up with certain recommendation including call for a declaration by United Nations on Corporate environment Human Rights Liability.

Keywords: environment, corporate, human rights, sustainable development

Procedia PDF Downloads 479
3634 Mood Recognition Using Indian Music

Authors: Vishwa Joshi

Abstract:

The study of mood recognition in the field of music has gained a lot of momentum in the recent years with machine learning and data mining techniques and many audio features contributing considerably to analyze and identify the relation of mood plus music. In this paper we consider the same idea forward and come up with making an effort to build a system for automatic recognition of mood underlying the audio song’s clips by mining their audio features and have evaluated several data classification algorithms in order to learn, train and test the model describing the moods of these audio songs and developed an open source framework. Before classification, Preprocessing and Feature Extraction phase is necessary for removing noise and gathering features respectively.

Keywords: music, mood, features, classification

Procedia PDF Downloads 503
3633 Multi-Class Text Classification Using Ensembles of Classifiers

Authors: Syed Basit Ali Shah Bukhari, Yan Qiang, Saad Abdul Rauf, Syed Saqlaina Bukhari

Abstract:

Text Classification is the methodology to classify any given text into the respective category from a given set of categories. It is highly important and vital to use proper set of pre-processing , feature selection and classification techniques to achieve this purpose. In this paper we have used different ensemble techniques along with variance in feature selection parameters to see the change in overall accuracy of the result and also on some other individual class based features which include precision value of each individual category of the text. After subjecting our data through pre-processing and feature selection techniques , different individual classifiers were tested first and after that classifiers were combined to form ensembles to increase their accuracy. Later we also studied the impact of decreasing the classification categories on over all accuracy of data. Text classification is highly used in sentiment analysis on social media sites such as twitter for realizing people’s opinions about any cause or it is also used to analyze customer’s reviews about certain products or services. Opinion mining is a vital task in data mining and text categorization is a back-bone to opinion mining.

Keywords: Natural Language Processing, Ensemble Classifier, Bagging Classifier, AdaBoost

Procedia PDF Downloads 238
3632 A Highly Efficient Broadcast Algorithm for Computer Networks

Authors: Ganesh Nandakumaran, Mehmet Karaata

Abstract:

A wave is a distributed execution, often made up of a broadcast phase followed by a feedback phase, requiring the participation of all the system processes before a particular event called decision is taken. Wave algorithms with one initiator such as the 1-wave algorithm have been shown to be very efficient for broadcasting messages in tree networks. Extensions of this algorithm broadcasting a sequence of waves using a single initiator have been implemented in algorithms such as the m-wave algorithm. However as the network size increases, having a single initiator adversely affects the message delivery times to nodes further away from the initiator. As a remedy, broadcast waves can be allowed to be initiated by multiple initiator nodes distributed across the network to reduce the completion time of broadcasts. These waves initiated by one or more initiator processes form a collection of waves covering the entire network. Solutions to global-snapshots, distributed broadcast and various synchronization problems can be solved efficiently using waves with multiple concurrent initiators. In this paper, we propose the first stabilizing multi-wave sequence algorithm implementing waves started by multiple initiator processes such that every process in the network receives at least one sequence of broadcasts. Due to being stabilizing, the proposed algorithm can withstand transient faults and do not require initialization. We view a fault as a transient fault if it perturbs the configuration of the system but not its program.

Keywords: distributed computing, multi-node broadcast, propagation of information with feedback and cleaning (PFC), stabilization, wave algorithms

Procedia PDF Downloads 506
3631 Social Media Mining with R. Twitter Analyses

Authors: Diana Codat

Abstract:

Tweets' analysis is part of text mining. Each document is a written text. It's possible to apply the usual text search techniques, in particular by switching to the bag-of-words representation. But the tweets induce peculiarities. Some may enrich the analysis. Thus, their length is calibrated (at least as far as public messages are concerned), special characters make it possible to identify authors (@) and themes (#), the tweet and retweet mechanisms make it possible to follow the diffusion of the information. Conversely, other characteristics may disrupt the analyzes. Because space is limited, authors often use abbreviations, emoticons to express feelings, and they do not pay much attention to spelling. All this creates noise that can complicate the task. The tweets carry a lot of potentially interesting information. Their exploitation is one of the main axes of the analysis of the social networks. We show how to access Twitter-related messages. We will initiate a study of the properties of the tweets, and we will follow up on the exploitation of the content of the messages. We will work under R with the package 'twitteR'. The study of tweets is a strong focus of analysis of social networks because Twitter has become an important vector of communication. This example shows that it is easy to initiate an analysis from data extracted directly online. The data preparation phase is of great importance.

Keywords: data mining, language R, social networks, Twitter

Procedia PDF Downloads 187
3630 Physical and Mechanical Characterization of Limestone in the Quarry of Meftah (Algeria)

Authors: Khaled Benyounes

Abstract:

Determination of the rock mechanical properties such as unconfined compressive strength UCS, Young’s modulus E, and tensile strength by the Brazilian test Rtb is considered to be the most important component in drilling and mining engineering project. Research related to establishing correlation between strength and physical parameters of rocks has always been of interest to mining and reservoir engineering. For this, many rock blocks of limestone were collected from the quarry located in Meftah (Algeria), the cores were crafted in the laboratory using a core drill. This work examines the relationships between mechanical properties and some physical properties of limestone. Many empirical equations are established between UCS and physical properties of limestone (such as dry bulk density, velocity of P-waves, dynamic Young’s modulus, alteration index, and total porosity). Other correlations, UCS - tensile strength, dynamic Young’s modulus - static Young’s modulus have been find. Based on the Mohr-Coulomb failure criterion, we were able to establish mathematical relationships that will allow estimating the cohesion and internal friction angle from UCS and indirect tensile strength. Results from this study can be useful for mining industry for resolve range of geomechanical problems such as slope stability.

Keywords: limestone, mechanical strength, Young’s modulus, porosity

Procedia PDF Downloads 641
3629 Case Study Analysis for Driver's Company in the Transport Sector with the Help of Data Mining

Authors: Diana Katherine Gonzalez Galindo, David Rolando Suarez Mora

Abstract:

With this study, we used data mining as a new alternative of the solution to evaluate the comments of the customers in order to find a pattern that helps us to determine some behaviors to reduce the deactivation of the partners of the LEVEL app. In one of the greatest business created in the last times, the partners are being affected due to an internal process that compensates the customer for a bad experience, but these comments could be false towards the driver, that’s why we made an investigation to collect information to restructure this process, many partners have been disassociated due to this internal process and many of them refuse the comments given by the customer. The main methodology used in this case study is the observation, we recollect information in real time what gave us the opportunity to see the most common issues to get the most accurate solution. With this new process helped by data mining, we could get a prediction based on the behaviors of the customer and some basic data recollected such as the age, the gender, and others; this could help us in future to improve another process. This investigation gives more opportunities to the partner to keep his account active even if the customer writes a message through the app. The term is trying to avoid a recession of drivers in the future offering improving in the processes, at the same time we are in search of stablishing a strategy which benefits both the app’s managers and the associated driver.

Keywords: agent, driver, deactivation, rider

Procedia PDF Downloads 284
3628 Identifying the Factors affecting on the Success of Energy Usage Saving in Municipality of Tehran

Authors: Rojin Bana Derakhshan, Abbas Toloie

Abstract:

For the purpose of optimizing and developing energy efficiency in building, it is required to recognize key elements of success in optimization of energy consumption before performing any actions. Surveying Principal Components is one of the most valuable result of Linear Algebra because the simple and non-parametric methods are become confusing. So that energy management system implemented according to energy management system international standard ISO50001:2011 and all energy parameters in building to be measured through performing energy auditing. In this essay by simulating used of data mining, the key impressive elements on energy saving in buildings to be determined. This approach is based on data mining statistical techniques using feature selection method and fuzzy logic and convert data from massive to compressed type and used to increase the selected feature. On the other side, influence portion and amount of each energy consumption elements in energy dissipation in percent are recognized as separated norm while using obtained results from energy auditing and after measurement of all energy consuming parameters and identified variables. Accordingly, energy saving solution divided into 3 categories, low, medium and high expense solutions.

Keywords: energy saving, key elements of success, optimization of energy consumption, data mining

Procedia PDF Downloads 472
3627 Application of Data Mining Techniques for Tourism Knowledge Discovery

Authors: Teklu Urgessa, Wookjae Maeng, Joong Seek Lee

Abstract:

Application of five implementations of three data mining classification techniques was experimented for extracting important insights from tourism data. The aim was to find out the best performing algorithm among the compared ones for tourism knowledge discovery. Knowledge discovery process from data was used as a process model. 10-fold cross validation method is used for testing purpose. Various data preprocessing activities were performed to get the final dataset for model building. Classification models of the selected algorithms were built with different scenarios on the preprocessed dataset. The outperformed algorithm tourism dataset was Random Forest (76%) before applying information gain based attribute selection and J48 (C4.5) (75%) after selection of top relevant attributes to the class (target) attribute. In terms of time for model building, attribute selection improves the efficiency of all algorithms. Artificial Neural Network (multilayer perceptron) showed the highest improvement (90%). The rules extracted from the decision tree model are presented, which showed intricate, non-trivial knowledge/insight that would otherwise not be discovered by simple statistical analysis with mediocre accuracy of the machine using classification algorithms.

Keywords: classification algorithms, data mining, knowledge discovery, tourism

Procedia PDF Downloads 300
3626 Distributed Manufacturing (DM)- Smart Units and Collaborative Processes

Authors: Hermann Kuehnle

Abstract:

Developments in ICT totally reshape manufacturing as machines, objects and equipment on the shop floors will be smart and online. Interactions with virtualizations and models of a manufacturing unit will appear exactly as interactions with the unit itself. These virtualizations may be driven by providers with novel ICT services on demand that might jeopardize even well established business models. Context aware equipment, autonomous orders, scalable machine capacity or networkable manufacturing unit will be the terminology to get familiar with in manufacturing and manufacturing management. Such newly appearing smart abilities with impact on network behavior, collaboration procedures and human resource development will make distributed manufacturing a preferred model to produce. Computing miniaturization and smart devices revolutionize manufacturing set ups, as virtualizations and atomization of resources unwrap novel manufacturing principles. Processes and resources obey novel specific laws and have strategic impact on manufacturing and major operational implications. Mechanisms from distributed manufacturing engaging interacting smart manufacturing units and decentralized planning and decision procedures already demonstrate important effects from this shift of focus towards collaboration and interoperability.

Keywords: autonomous unit, networkability, smart manufacturing unit, virtualization

Procedia PDF Downloads 531
3625 Scalable Cloud-Based LEO Satellite Constellation Simulator

Authors: Karim Sobh, Khaled El-Ayat, Fady Morcos, Amr El-Kadi

Abstract:

Distributed applications deployed on LEO satellites and ground stations require substantial communication between different members in a constellation to overcome the earth coverage barriers imposed by GEOs. Applications running on LEO constellations suffer the earth line-of-sight blockage effect. They need adequate lab testing before launching to space. We propose a scalable cloud-based net-work simulation framework to simulate problems created by the earth line-of-sight blockage. The framework utilized cloud IaaS virtual machines to simulate LEO satellites and ground stations distributed software. A factorial ANOVA statistical analysis is conducted to measure simulator overhead on overall communication performance. The results showed a very low simulator communication overhead. Consequently, the simulation framework is proposed as a candidate for testing LEO constellations with distributed software in the lab before space launch.

Keywords: LEO, cloud computing, constellation, satellite, network simulation, netfilter

Procedia PDF Downloads 389
3624 Application of Computer Aided Engineering Tools in Performance Prediction and Fault Detection of Mechanical Equipment of Mining Process Line

Authors: K. Jahani, J. Razavi

Abstract:

Nowadays, to decrease the number of downtimes in the industries such as metal mining, petroleum and chemical industries, predictive maintenance is crucial. In order to have efficient predictive maintenance, knowing the performance of critical equipment of production line such as pumps and hydro-cyclones under variable operating parameters, selecting best indicators of this equipment health situations, best locations for instrumentation, and also measuring of these indicators are very important. In this paper, computer aided engineering (CAE) tools are implemented to study some important elements of copper process line, namely slurry pumps and cyclone to predict the performance of these components under different working conditions. These modeling and simulations can be used in predicting, for example, the damage tolerance of the main shaft of the slurry pump or wear rate and location of cyclone wall or pump case and impeller. Also, the simulations can suggest best-measuring parameters, measuring intervals, and their locations.

Keywords: computer aided engineering, predictive maintenance, fault detection, mining process line, slurry pump, hydrocyclone

Procedia PDF Downloads 407
3623 A General Variable Neighborhood Search Algorithm to Minimize Makespan of the Distributed Permutation Flowshop Scheduling Problem

Authors: G. M. Komaki, S. Mobin, E. Teymourian, S. Sheikh

Abstract:

This paper addresses minimizing the makespan of the distributed permutation flow shop scheduling problem. In this problem, there are several parallel identical factories or flowshops each with series of similar machines. Each job should be allocated to one of the factories and all of the operations of the jobs should be performed in the allocated factory. This problem has recently gained attention and due to NP-Hard nature of the problem, metaheuristic algorithms have been proposed to tackle it. Majority of the proposed algorithms require large computational time which is the main drawback. In this study, a general variable neighborhood search algorithm (GVNS) is proposed where several time-saving schemes have been incorporated into it. Also, the GVNS uses the sophisticated method to change the shaking procedure or perturbation depending on the progress of the incumbent solution to prevent stagnation of the search. The performance of the proposed algorithm is compared to the state-of-the-art algorithms based on standard benchmark instances.

Keywords: distributed permutation flow shop, scheduling, makespan, general variable neighborhood search algorithm

Procedia PDF Downloads 358
3622 Analyzing Medical Workflows Using Market Basket Analysis

Authors: Mohit Kumar, Mayur Betharia

Abstract:

Healthcare domain, with the emergence of Electronic Medical Record (EMR), collects a lot of data which have been attracting Data Mining expert’s interest. In the past, doctors have relied on their intuition while making critical clinical decisions. This paper presents the means to analyze the Medical workflows to get business insights out of huge dumped medical databases. Market Basket Analysis (MBA) which is a special data mining technique, has been widely used in marketing and e-commerce field to discover the association between products bought together by customers. It helps businesses in increasing their sales by analyzing the purchasing behavior of customers and pitching the right customer with the right product. This paper is an attempt to demonstrate Market Basket Analysis applications in healthcare. In particular, it discusses the Market Basket Analysis Algorithm ‘Apriori’ applications within healthcare in major areas such as analyzing the workflow of diagnostic procedures, Up-selling and Cross-selling of Healthcare Systems, designing healthcare systems more user-friendly. In the paper, we have demonstrated the MBA applications using Angiography Systems, but can be extrapolated to other modalities as well.

Keywords: data mining, market basket analysis, healthcare applications, knowledge discovery in healthcare databases, customer relationship management, healthcare systems

Procedia PDF Downloads 176
3621 An Experimental Study for Assessing Email Classification Attributes Using Feature Selection Methods

Authors: Issa Qabaja, Fadi Thabtah

Abstract:

Email phishing classification is one of the vital problems in the online security research domain that have attracted several scholars due to its impact on the users payments performed daily online. One aspect to reach a good performance by the detection algorithms in the email phishing problem is to identify the minimal set of features that significantly have an impact on raising the phishing detection rate. This paper investigate three known feature selection methods named Information Gain (IG), Chi-square and Correlation Features Set (CFS) on the email phishing problem to separate high influential features from low influential ones in phishing detection. We measure the degree of influentially by applying four data mining algorithms on a large set of features. We compare the accuracy of these algorithms on the complete features set before feature selection has been applied and after feature selection has been applied. After conducting experiments, the results show 12 common significant features have been chosen among the considered features by the feature selection methods. Further, the average detection accuracy derived by the data mining algorithms on the reduced 12-features set was very slight affected when compared with the one derived from the 47-features set.

Keywords: data mining, email classification, phishing, online security

Procedia PDF Downloads 438