Search results for: data driven decision making
30106 The Right of Taiwanese Individuals with Mental Illnesses to Participate in Medical Decision-Making
Authors: Ying-Lun Tseng Chiu-Ying Chen
Abstract:
Taiwan's Mental Health Act was amended at the end of 2022; they added regulations regarding refusing compulsory treatment by patients with mental illnesses. In addition, not only by an examination committee, the judge must also assess the patient's need for compulsory treatment. Additionally, the maximum of compulsory hospitalization has been reduced from an unlimited period to a maximum of 60 days. They aim to promote the healthcare autonomy of individuals with mental illnesses in Taiwan and prevent their silenced voice in medical decision-making while they still possess rationality. Furthermore, they plan to use community support and social care networks to replace the current practice of compulsory treatment in Taiwan. This study uses qualitative research methodology, utilizing interview guidelines to inquire about the experiences of Taiwanese who have undergone compulsory hospitalization, compulsory community treatment, and compulsory medical care. The interviews aimed to explore their feelings when they were subjected to compulsory medical intervention, the inside of their illness, their opinions after treatments, and whether alternative medical interventions proposed by them were considered. Additionally, participants also asked about their personal life history and their support networks in their lives. We collected 12 Taiwanese who had experienced compulsory medical interventions and were interviewed 14 times. The findings indicated that participants still possessed rationality during the onset of their illness. However, when they have other treatments to replace compulsory medical, they sometimes diverge from those of the doctors and their families. Finally, doctors prefer their professional judgment and patients' families' option. Therefore, Taiwanese mental health patients' power of decision-making still needs to improve. Because this research uses qualitative research, so difficult to find participants, and the sample size rate was smaller than Taiwan's population, it may have biases in the analysis. So, Taiwan still has significant progress in enhancing the decision-making rights of participants in the study.Keywords: medical decision making, compulsory treatment, medical ethics, mental health act
Procedia PDF Downloads 8230105 Statistically Accurate Synthetic Data Generation for Enhanced Traffic Predictive Modeling Using Generative Adversarial Networks and Long Short-Term Memory
Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad
Abstract:
Effective traffic management and infrastructure planning are crucial for the development of smart cities and intelligent transportation systems. This study addresses the challenge of data scarcity by generating realistic synthetic traffic data using the PeMS-Bay dataset, improving the accuracy and reliability of predictive modeling. Advanced synthetic data generation techniques, including TimeGAN, GaussianCopula, and PAR Synthesizer, are employed to produce synthetic data that replicates the statistical and structural characteristics of real-world traffic. Future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is planned to capture both spatial and temporal correlations, further improving data quality and realism. The performance of each synthetic data generation model is evaluated against real-world data to identify the best models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are utilized to model and predict complex temporal dependencies within traffic patterns. This comprehensive approach aims to pinpoint areas with low vehicle counts, uncover underlying traffic issues, and inform targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study supports data-driven decision-making that enhances urban mobility, safety, and the overall efficiency of city planning initiatives.Keywords: GAN, long short-term memory, synthetic data generation, traffic management
Procedia PDF Downloads 2930104 Cognitive Characteristics of Industrial Workers in Fuzzy Risk Assessment
Authors: Hyeon-Kyo Lim, Sang-Hun Byun
Abstract:
Risk assessment is carried out in most industrial plants for accident prevention, but there exists insufficient data for statistical decision making. It is commonly said that risk can be expressed as a product of consequence and likelihood of a corresponding hazard factor. Eventually, therefore, risk assessment involves human decision making which cannot be objective per se. This study was carried out to comprehend perceptive characteristics of human beings in industrial plants. Subjects were shown a set of illustrations describing scenes of industrial plants, and were asked to assess the risk of each scene with not only linguistic variables but also numeric scores in the aspect of consequence and likelihood. After that, their responses were formulated as fuzzy membership functions, and compared with those of university students who had no experience of industrial works. The results showed that risk level of industrial workers were lower than those of any other groups, which implied that the workers might generally have a tendency to neglect more hazard factors in their work fields.Keywords: fuzzy, hazard, linguistic variable, risk assessment
Procedia PDF Downloads 25530103 Understanding the Importance of Participation in the City Planning Process and Its Influencing Factors
Authors: Louis Nwachi
Abstract:
Urban planning systems in most countries still rely on expert-driven, top-down technocratic plan-making processes rather than a public and people-led process. This paper set out to evaluate the need for public participation in the plan-making process and to highlight the factors that affect public participation in the plan-making process. In doing this, it adopted a qualitative approach based on document review and interviews taken from real-world phenomena. A case study strategy using the Metropolitan Area of Abuja, the capital of Nigeria, as the study sample was used in carrying out the research. The research finds that participation is an important tool in the plan-making process and that public engagement in the process contributes to the identification of key urban issues that are unique to the specific local areas, thereby contributing to the establishment of priorities and, in turn, to the mobilization of resources to meet the identified needs. It also finds that the development of a participation model by city authorities encourages public engagement and helps to develop trust between those in authority and the different key stakeholder groups involved in the plan-making process.Keywords: plan-making, participation, urban planning, city
Procedia PDF Downloads 10330102 Sparse Coding Based Classification of Electrocardiography Signals Using Data-Driven Complete Dictionary Learning
Authors: Fuad Noman, Sh-Hussain Salleh, Chee-Ming Ting, Hadri Hussain, Syed Rasul
Abstract:
In this paper, a data-driven dictionary approach is proposed for the automatic detection and classification of cardiovascular abnormalities. Electrocardiography (ECG) signal is represented by the trained complete dictionaries that contain prototypes or atoms to avoid the limitations of pre-defined dictionaries. The data-driven trained dictionaries simply take the ECG signal as input rather than extracting features to study the set of parameters that yield the most descriptive dictionary. The approach inherently learns the complicated morphological changes in ECG waveform, which is then used to improve the classification. The classification performance was evaluated with ECG data under two different preprocessing environments. In the first category, QT-database is baseline drift corrected with notch filter and it filters the 60 Hz power line noise. In the second category, the data are further filtered using fast moving average smoother. The experimental results on QT database confirm that our proposed algorithm shows a classification accuracy of 92%.Keywords: electrocardiogram, dictionary learning, sparse coding, classification
Procedia PDF Downloads 38630101 Marketing and Business Intelligence and Their Impact on Products and Services Through Understanding Based on Experiential Knowledge of Customers in Telecommunications Companies
Authors: Ali R. Alshawawreh, Francisco Liébana-Cabanillas, Francisco J. Blanco-Encomienda
Abstract:
Collaboration between marketing and business intelligence (BI) is crucial in today's ever-evolving business landscape. These two domains play pivotal roles in molding customers' experiential knowledge. Marketing insights offer valuable information regarding customer needs, preferences, and behaviors. Conversely, BI facilitates data-driven decision-making, leading to heightened operational efficiency, product quality, and customer satisfaction. Customer experiential knowledge (CEK) encompasses customers' implicit comprehension of consumption experiences influenced by diverse factors, including social and cultural influences. This study primarily focuses on telecommunications companies in Jordan, scrutinizing how experiential customer knowledge mediates the relationship between marketing intelligence and business intelligence. Drawing on theoretical frameworks such as the resource-based view (RBV) and service-dominant logic (SDL), the research aims to comprehend how organizations utilize their resources, particularly knowledge, to foster Evolution. Employing a quantitative research approach, the study collected and analyzed primary data to explore hypotheses. Structural equation modeling (SEM) facilitated by Smart PLS software evaluated the relationships between the constructs, followed by mediation analysis to assess the indirect associations in the model. The study findings offer insights into the intricate dynamics of organizational Creation, uncovering the interconnected relationships between business intelligence, customer experiential knowledge-based innovation (CEK-DI), marketing intelligence (MI), and product and service innovation (PSI), underscoring the pivotal role of advanced intelligence capabilities in developing innovative practices rooted in a profound understanding of customer experiences. Furthermore, the positive impact of BI on PSI reaffirms the significance of data-driven decision-making in shaping the innovation landscape. The significant impact of CEK-DI on PSI highlights the critical role of customer experiences in driving an organization. Companies that actively integrate customer insights into their opportunity creation processes are more likely to create offerings that match customer expectations, which drives higher levels of product and service sophistication. Additionally, the positive and significant impact of MI on CEK-DI underscores the critical role of market insights in shaping evolutionary strategies. While the relationship between MI and PSI is positive, the slightly weaker significance level indicates a subtle association, suggesting that while MI contributes to the development of ideas, In conclusion, the study emphasizes the fundamental role of intelligence capabilities, especially artificial intelligence, emphasizing the need for organizations to leverage market and customer intelligence to achieve effective and competitive innovation practices. Collaborative efforts between marketing and business intelligence serve as pivotal drivers of development, influencing customer experiential knowledge and shaping organizational strategies and practices. Future research could adopt longitudinal designs and gather data from various sectors to offer broader insights. Additionally, the study focuses on the effects of marketing intelligence, business intelligence, customer experiential knowledge, and innovation, but other unexamined variables may also influence innovation processes. Future studies could investigate additional factors, mediators, or moderators, including the role of emerging technologies like AI and machine learning in driving innovation.Keywords: marketing intelligence, business intelligence, product, customer experiential knowledge-driven innovation
Procedia PDF Downloads 3530100 The Current Level of Shared Decision-Making in Head-And-Neck Oncology: An Exploratory Study – Preliminary Results
Authors: Anne N. Heirman, Song Duimel, Rob van Son, Lisette van der Molen, Richard Dirven, Gyorgi B. Halmos, Julia van Weert, Michiel W.M. van den Brekel
Abstract:
Objectives: Treatments for head-neck cancer are drastic and often significantly impact the quality of life and appearance of patients. Shared decision-making (SDM) beholds a collaboration between patient and doctor in which the most suitable treatment can be chosen by integrating patient preferences, values, and medical information. SDM has a lot of advantages that would be useful in making difficult treatment choices. The objective of this study was to determine the current level of SDM among patients and head-and-neck surgeons. Methods: Consultations of patients with a non-cutaneous head-and-neck malignancy facing a treatment decision were selected and included. If given informed consent, the consultation was recorded with an audio recorder, and the patient and surgeon filled in a questionnaire immediately after the consultation. The SDM level of the consultation was scored objectively by independent observers who judged audio recordings of the consultation using the OPTION5-scale, ranging from 0% (no SDM) to 100% (optimum SDM), as well as subjectively by patients (using the SDM-Q-9 and Control preference scale) and clinicians (SDM-Q-Doc, modified control preference scale) percentages. Preliminary results: Five head-neck surgeons have each at least seven recorded conversations with different patients. One of them was trained in SDM. The other four had no experience with SDM. Most patients were male (74%), and oropharyngeal carcinoma was the most common diagnosis (41%), followed by oral cancer (33%). Five patients received palliative treatment of which two patients were not treated recording guidelines. At this moment, all recordings are scored by the two independent observers. Analysis of the results will follow soon. Conclusion: The current study will determine to what extent there is a discrepancy between the objective and subjective level of shared decision-making (SDM) during a doctor-patient consultation in Head-and-Neck surgery. The results of the analysis will follow shortly.Keywords: head-and-neck oncology, patient involvement, physician-patient relations, shared decision making
Procedia PDF Downloads 9830099 An Interpretable Data-Driven Approach for the Stratification of the Cardiorespiratory Fitness
Authors: D.Mendes, J. Henriques, P. Carvalho, T. Rocha, S. Paredes, R. Cabiddu, R. Trimer, R. Mendes, A. Borghi-Silva, L. Kaminsky, E. Ashley, R. Arena, J. Myers
Abstract:
The continued exploration of clinically relevant predictive models continues to be an important pursuit. Cardiorespiratory fitness (CRF) portends clinical vital information and as such its accurate prediction is of high importance. Therefore, the aim of the current study was to develop a data-driven model, based on computational intelligence techniques and, in particular, clustering approaches, to predict CRF. Two prediction models were implemented and compared: 1) the traditional Wasserman/Hansen Equations; and 2) an interpretable clustering approach. Data used for this analysis were from the 'FRIEND - Fitness Registry and the Importance of Exercise: The National Data Base'; in the present study a subset of 10690 apparently healthy individuals were utilized. The accuracy of the models was performed through the computation of sensitivity, specificity, and geometric mean values. The results show the superiority of the clustering approach in the accurate estimation of CRF (i.e., maximal oxygen consumption).Keywords: cardiorespiratory fitness, data-driven models, knowledge extraction, machine learning
Procedia PDF Downloads 28630098 Helping the Development of Public Policies with Knowledge of Criminal Data
Authors: Diego De Castro Rodrigues, Marcelo B. Nery, Sergio Adorno
Abstract:
The project aims to develop a framework for social data analysis, particularly by mobilizing criminal records and applying descriptive computational techniques, such as associative algorithms and extraction of tree decision rules, among others. The methods and instruments discussed in this work will enable the discovery of patterns, providing a guided means to identify similarities between recurring situations in the social sphere using descriptive techniques and data visualization. The study area has been defined as the city of São Paulo, with the structuring of social data as the central idea, with a particular focus on the quality of the information. Given this, a set of tools will be validated, including the use of a database and tools for visualizing the results. Among the main deliverables related to products and the development of articles are the discoveries made during the research phase. The effectiveness and utility of the results will depend on studies involving real data, validated both by domain experts and by identifying and comparing the patterns found in this study with other phenomena described in the literature. The intention is to contribute to evidence-based understanding and decision-making in the social field.Keywords: social data analysis, criminal records, computational techniques, data mining, big data
Procedia PDF Downloads 8630097 Enhancing Disaster Response Capabilities in Asia-Pacific: An Explorative Study Applied to Decision Support Tools for Logistics Network Design
Authors: Giuseppe Timperio, Robert de Souza
Abstract:
Logistics operations in the context of disaster response are characterized by a high degree of complexity due to the combined effect of a large number of stakeholders involved, time pressure, uncertainties at various levels, massive deployment of goods and personnel, and gigantic financial flow to be managed. It also involves several autonomous parties such as government agencies, militaries, NGOs, UN agencies, private sector to name few, to have a highly collaborative approach especially in the critical phase of the immediate response. This is particularly true in the context of L3 emergencies that are the most severe, large-scale humanitarian crises. Decision-making processes in disaster management are thus extremely difficult due to the presence of multiple decision-makers involved, and the complexity of the tasks being tackled. Hence, in this paper, we look at applying ICT based solutions to enable a speedy and effective decision making in the golden window of humanitarian operations. A high-level view of ICT based solutions in the context of logistics operations for humanitarian response in Southeast Asia is presented, and their viability in a real-life case about logistics network design is explored.Keywords: decision support, disaster preparedness, humanitarian logistics, network design
Procedia PDF Downloads 16930096 Business Intelligence for Profiling of Telecommunication Customer
Authors: Rokhmatul Insani, Hira Laksmiwati Soemitro
Abstract:
Business Intelligence is a methodology that exploits the data to produce information and knowledge systematically, business intelligence can support the decision-making process. Some methods in business intelligence are data warehouse and data mining. A data warehouse can store historical data from transactional data. For data modelling in data warehouse, we apply dimensional modelling by Kimball. While data mining is used to extracting patterns from the data and get insight from the data. Data mining has many techniques, one of which is segmentation. For profiling of telecommunication customer, we use customer segmentation according to customer’s usage of services, customer invoice and customer payment. Customers can be grouped according to their characteristics and can be identified the profitable customers. We apply K-Means Clustering Algorithm for segmentation. The input variable for that algorithm we use RFM (Recency, Frequency and Monetary) model. All process in data mining, we use tools IBM SPSS modeller.Keywords: business intelligence, customer segmentation, data warehouse, data mining
Procedia PDF Downloads 48530095 Vulnerability of People to Climate Change: Influence of Methods and Computation Approaches on Assessment Outcomes
Authors: Adandé Belarmain Fandohan
Abstract:
Climate change has become a major concern globally, particularly in rural communities that have to find rapid coping solutions. Several vulnerability assessment approaches have been developed in the last decades. This comes along with a higher risk for different methods to result in different conclusions, thereby making comparisons difficult and decision-making non-consistent across areas. The effect of methods and computational approaches on estimates of people’s vulnerability was assessed using data collected from the Gambia. Twenty-four indicators reflecting vulnerability components: (exposure, sensitivity, and adaptive capacity) were selected for this purpose. Data were collected through household surveys and key informant interviews. One hundred and fifteen respondents were surveyed across six communities and two administrative districts. Results were compared over three computational approaches: the maximum value transformation normalization, the z-score transformation normalization, and simple averaging. Regardless of the approaches used, communities that have high exposure to climate change and extreme events were the most vulnerable. Furthermore, the vulnerability was strongly related to the socio-economic characteristics of farmers. The survey evidenced variability in vulnerability among communities and administrative districts. Comparing output across approaches, overall, people in the study area were found to be highly vulnerable using the simple average and maximum value transformation, whereas they were only moderately vulnerable using the z-score transformation approach. It is suggested that assessment approach-induced discrepancies be accounted for in international debates to harmonize/standardize assessment approaches to the end of making outputs comparable across regions. This will also likely increase the relevance of decision-making for adaptation policies.Keywords: maximum value transformation, simple averaging, vulnerability assessment, West Africa, z-score transformation
Procedia PDF Downloads 10530094 A Ratio-Weighted Decision Tree Algorithm for Imbalance Dataset Classification
Authors: Doyin Afolabi, Phillip Adewole, Oladipupo Sennaike
Abstract:
Most well-known classifiers, including the decision tree algorithm, can make predictions on balanced datasets efficiently. However, the decision tree algorithm tends to be biased towards imbalanced datasets because of the skewness of the distribution of such datasets. To overcome this problem, this study proposes a weighted decision tree algorithm that aims to remove the bias toward the majority class and prevents the reduction of majority observations in imbalance datasets classification. The proposed weighted decision tree algorithm was tested on three imbalanced datasets- cancer dataset, german credit dataset, and banknote dataset. The specificity, sensitivity, and accuracy metrics were used to evaluate the performance of the proposed decision tree algorithm on the datasets. The evaluation results show that for some of the weights of our proposed decision tree, the specificity, sensitivity, and accuracy metrics gave better results compared to that of the ID3 decision tree and decision tree induced with minority entropy for all three datasets.Keywords: data mining, decision tree, classification, imbalance dataset
Procedia PDF Downloads 13930093 Women Empowerment in Cassava Production: A Case Study of Southwest Nigeria
Authors: Adepoju A. A., Olapade-Ogunwole F., Ganiyu M. O.
Abstract:
This study examined women's empowerment in cassava production in southwest Nigeria. The contributions of the five domains namely decision about agricultural production, decision-making power over productive resources, control of the use of income, leadership and time allocation to women disempowerment, profiled the women based on their socio-economics features and determined factors influencing women's disempowerment. Primary data were collected from the women farmers and processors through the use of structured questionnaires. Purposive sampling was used to select the LGAs and villages based on a large number of cassava farmers and processors, while cluster sampling was used to select 360 respondents in the study area. Descriptive statistics such as bar charts and percentages, Women Empowerment in Agriculture (WEAI), and the Logit regression model were used to analyze the data collected. The results revealed that 63.88% of the women were disempowered. Lack of decision-making power over productive resources; 36.47% and leadership skills; 33.26% contributed mostly to the disempowerment of the women. About 85% of the married women were disempowered, while 76.92% of the women who participated in social group activities were more empowered than their disempowered counterparts. The findings showed that women with more years of processing experience have the probability of being disempowered while those who engage in farming as a primary livelihood activity, and participate in social groups among others have the tendency to be empowered. In view of this, it was recommended that women should be encouraged to farm and contribute to social group activities.Keywords: cassava, production, empowerment, southwest, Nigeria
Procedia PDF Downloads 5930092 Artificial Intelligence Impact on Strategic Stability
Authors: Darius Jakimavicius
Abstract:
Artificial intelligence is the subject of intense debate in the international arena, identified both as a technological breakthrough and as a component of the strategic stability effect. Both the kinetic and non-kinetic development of AI and its application in the national strategies of the great powers may trigger a change in the security situation. Artificial intelligence is generally faster, more capable and more efficient than humans, and there is a temptation to transfer decision-making and control responsibilities to artificial intelligence. Artificial intelligence, which, once activated, can select and act on targets without further intervention by a human operator, blurs the boundary between human or robot (machine) warfare, or perhaps human and robot together. Artificial intelligence acts as a force multiplier that speeds up decision-making and reaction times on the battlefield. The role of humans is increasingly moving away from direct decision-making and away from command and control processes involving the use of force. It is worth noting that the autonomy and precision of AI systems make the process of strategic stability more complex. Deterrence theory is currently in a phase of development in which deterrence is undergoing further strain and crisis due to the complexity of the evolving models enabled by artificial intelligence. Based on the concept of strategic stability and deterrence theory, it is appropriate to develop further research on the development and impact of AI in order to assess AI from both a scientific and technical perspective: to capture a new niche in the scientific literature and academic terminology, to clarify the conditions for deterrence, and to identify the potential uses, impacts and possibly quantities of AI. The research problem is the impact of artificial intelligence developed by great powers on strategic stability. This thesis seeks to assess the impact of AI on strategic stability and deterrence principles, with human exclusion from the decision-making and control loop as a key axis. The interaction between AI and human actions and interests can determine fundamental changes in great powers' defense and deterrence, and the development and application of AI-based great powers strategies can lead to a change in strategic stability.Keywords: artificial inteligence, strategic stability, deterrence theory, decision making loop
Procedia PDF Downloads 4330091 The Importance of Effectively Communicating Science and Economics to the Public (Layman)
Authors: Puran Prasad Adhikari
Abstract:
Considering the fact that when we are able to communicate science and economics effectively to broader nonprofessional audiences, it promotes a great understanding of its wider relevance to society and encourages more informed and confident decision-making at all levels, from the government to communities to individuals. The study has been conducted. This study is aimed to examine the understanding of the general public of economics and the basic sciences functioning in our surroundings in our day-to-day life. Data was gathered through historical documents related to science communication and through interviews with the public. The statistical result shows that there is a great lack of knowledge in the general public about the basic sciences and how economics impacts their life daily. The difficulties faced by the public include the view that these things can only be understood by professionals and it is beyond their capacity to grasp these concepts, the use of technical words and jargon by the professionals, and the lack of the medium to understand even if they want to learn it. The result further indicates that the lack of this basic knowledge also leads to bad decision-making, which causes frustration and anxiety. The result shows the great correlation between the confidence level of a person and the knowledge of basic science and economics. The factor behind this was the right decision-making capacity of the individual, which boosts the happy hormones of the individual. So indirectly, we found the correlation between mental health and the understanding of science and economics. The public wants to have a basic understanding and concepts of these topics, but they complain that there is no effective medium through which they can gain the understanding; the medium which is available is full of jargon and technical terms directed to professional and highly educated which they consider is beyond their reach. So, communicating the basic concepts to the general public is of great importance in the 21st century for the overall progress of society. The professional one can make this possible by considering the level of public understanding and making the communication and the programs comprehensible to the layman. Various means can be used to make this successful and effective, e.g., cartoon guide books, Q&A with the layman, animations use, and daily life examples. This study’s implication will help educators of high-level institutions and policymakers improve general public [layman] access to comprehensible knowledge.Keywords: layman, comprehensible, decision making, frustration, confidence
Procedia PDF Downloads 7530090 An Automatic Bayesian Classification System for File Format Selection
Authors: Roman Graf, Sergiu Gordea, Heather M. Ryan
Abstract:
This paper presents an approach for the classification of an unstructured format description for identification of file formats. The main contribution of this work is the employment of data mining techniques to support file format selection with just the unstructured text description that comprises the most important format features for a particular organisation. Subsequently, the file format indentification method employs file format classifier and associated configurations to support digital preservation experts with an estimation of required file format. Our goal is to make use of a format specification knowledge base aggregated from a different Web sources in order to select file format for a particular institution. Using the naive Bayes method, the decision support system recommends to an expert, the file format for his institution. The proposed methods facilitate the selection of file format and the quality of a digital preservation process. The presented approach is meant to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and specifications of file formats. To facilitate decision-making, the aggregated information about the file formats is presented as a file format vocabulary that comprises most common terms that are characteristic for all researched formats. The goal is to suggest a particular file format based on this vocabulary for analysis by an expert. The sample file format calculation and the calculation results including probabilities are presented in the evaluation section.Keywords: data mining, digital libraries, digital preservation, file format
Procedia PDF Downloads 49930089 From Manipulation to Citizen Control: A Case Study Revealing the Level of Participation in the Citizen Participatory Audit
Authors: Mark Jason E. Arca, Jay Vee R. Linatoc, Rex Francis N. Lupango, Michael Joe A. Ramirez
Abstract:
Participation promises an avenue for citizens to take part in governance, but it does not necessarily mean effective participation. The proper integration of participants in the decision-making process should be properly addressed to ensure effectiveness. This study explores the integration of the participants in the decision-making process to reveal the level of participation in the Solid Waste Management audit done by the Citizen Participatory Audit (CPA), a program under the supervision of the Commission on Audit. Specifically, this study will use the experience of participation to identify emerging themes that will help reveal the level of participation through the integrated ladder of participation. The researchers used key informant interviews to gather necessary data from the actors of the program. The findings revealed that the level of participation present in the CPA is at the Placation level, a level below the program’s targeted level of participation. The study also allowed the researchers to reveal facilitating factors in the program that contributed to a better understanding of the practice of participation.Keywords: citizen participation, culture of participation, ladder of participation, level of participation
Procedia PDF Downloads 41430088 Advancing Urban Sustainability through Data-Driven Machine Learning Solutions
Authors: Nasim Eslamirad, Mahdi Rasoulinezhad, Francesco De Luca, Sadok Ben Yahia, Kimmo Sakari Lylykangas, Francesco Pilla
Abstract:
With the ongoing urbanization, cities face increasing environmental challenges impacting human well-being. To tackle these issues, data-driven approaches in urban analysis have gained prominence, leveraging urban data to promote sustainability. Integrating Machine Learning techniques enables researchers to analyze and predict complex environmental phenomena like Urban Heat Island occurrences in urban areas. This paper demonstrates the implementation of data-driven approach and interpretable Machine Learning algorithms with interpretability techniques to conduct comprehensive data analyses for sustainable urban design. The developed framework and algorithms are demonstrated for Tallinn, Estonia to develop sustainable urban strategies to mitigate urban heat waves. Geospatial data, preprocessed and labeled with UHI levels, are used to train various ML models, with Logistic Regression emerging as the best-performing model based on evaluation metrics to derive a mathematical equation representing the area with UHI or without UHI effects, providing insights into UHI occurrences based on buildings and urban features. The derived formula highlights the importance of building volume, height, area, and shape length to create an urban environment with UHI impact. The data-driven approach and derived equation inform mitigation strategies and sustainable urban development in Tallinn and offer valuable guidance for other locations with varying climates.Keywords: data-driven approach, machine learning transparent models, interpretable machine learning models, urban heat island effect
Procedia PDF Downloads 4130087 The Relevance of PISA Tests in the Decentralization of the Educational System in Romania
Authors: Nitu Marilena Cristina
Abstract:
Decentralization of the education system is an educational policy option necessary from the perspective of democratizing internal life and streamlining service administration public. The experience of recent years has shown that decisions taken at central level do not to take into account all situations and especially all the specific needs and interests of the various institutions and individuals. A democratic society implies that the decision-making process is brought closer to the place of application, allowing citizens to take part in the decision-making that affects them directly or indirectly. Essentially decentralization of pre-university education is the transfer of authority, responsibility and resources in decision-making and general management, and financially to the educational units and the local community. This creates a frame of an effective collaboration between school and community. Modern theories on the leadership of education advocate the adoption of decentralization measures and participatory strategies. Numerous countries confronted with the educational impasse has appealed to these strategies. Reforming projects have begun application diversified and nuanced social decentralization models according to the specific social and educational situation. Analysis of legal provisions and measures adopted in the framework of the reform process indicates that, at least formally, decentralization is the solution chosen.Keywords: decentralization, educational, management, reforming
Procedia PDF Downloads 17030086 The Analysis of Emergency Shutdown Valves Torque Data in Terms of Its Use as a Health Indicator for System Prognostics
Authors: Ewa M. Laskowska, Jorn Vatn
Abstract:
Industry 4.0 focuses on digital optimization of industrial processes. The idea is to use extracted data in order to build a decision support model enabling use of those data for real time decision making. In terms of predictive maintenance, the desired decision support tool would be a model enabling prognostics of system's health based on the current condition of considered equipment. Within area of system prognostics and health management, a commonly used health indicator is Remaining Useful Lifetime (RUL) of a system. Because the RUL is a random variable, it has to be estimated based on available health indicators. Health indicators can be of different types and come from different sources. They can be process variables, equipment performance variables, data related to number of experienced failures, etc. The aim of this study is the analysis of performance variables of emergency shutdown valves (ESV) used in oil and gas industry. ESV is inspected periodically, and at each inspection torque and time of valve operation are registered. The data will be analyzed by means of machine learning or statistical analysis. The purpose is to investigate whether the available data could be used as a health indicator for a prognostic purpose. The second objective is to examine what is the most efficient way to incorporate the data into predictive model. The idea is to check whether the data can be applied in form of explanatory variables in Markov process or whether other stochastic processes would be a more convenient to build an RUL model based on the information coming from registered data.Keywords: emergency shutdown valves, health indicator, prognostics, remaining useful lifetime, RUL
Procedia PDF Downloads 9130085 Mining Educational Data to Support Students’ Major Selection
Authors: Kunyanuth Kularbphettong, Cholticha Tongsiri
Abstract:
This paper aims to create the model for student in choosing an emphasized track of student majoring in computer science at Suan Sunandha Rajabhat University. The objective of this research is to develop the suggested system using data mining technique to analyze knowledge and conduct decision rules. Such relationships can be used to demonstrate the reasonableness of student choosing a track as well as to support his/her decision and the system is verified by experts in the field. The sampling is from student of computer science based on the system and the questionnaire to see the satisfaction. The system result is found to be satisfactory by both experts and student as well.Keywords: data mining technique, the decision support system, knowledge and decision rules, education
Procedia PDF Downloads 42430084 Presidential Interactions with Faculty Senates: Expectations and Practices
Authors: Michael T. Miller, G. David Gearhart
Abstract:
Shared governance is an important element in higher education decision making. Through the joint decision making process, faculty members are provided an opportunity to help shape the future of an institution while increasing support for decisions that are made. Presidents, those leaders who are legally bound to guide their institutions, must find ways to collaborate effectively with faculty members in making decisions, and the first step in this process is understanding when and how presidents and faculty leaders interact. In the current study, a national sample of college presidents reported their preparation for the presidency, their perceptions of the functions of a faculty senate, and ultimately, the locations for important interactions between presidents and faculty senates. Results indicated that presidents, regardless of their preparation, found official functions to be the most important for communicating, although, those presidents with academic backgrounds were more likely to perceive faculty senates as having a role in all aspects of an institutions management.Keywords: college faculty, college president, faculty senate, leadership
Procedia PDF Downloads 12430083 Measuring Stakeholder Engagement and Drivers of Success in Ethiopian Tourism Sector
Authors: Gezahegn Gizaw
Abstract:
The FDRE Tourism Training Institute organizes forums for debates, best practices exchange and focus group discussions to forge a sustainable and growing tourism sector while minimizing negative impacts on the environment, communities, and cultures. This study aimed at applying empirical research method to identify and quantify relative importance of success factors and individual engagement indicators that were identified in these forums. Response to the 12-question survey was collected from a total of 437 respondents in academic training institutes (212), business executive and employee (204) and non-academic government offices (21). Overall, capacity building was perceived as the most important driver of success for stakeholder engagement. Business executive and employee category rated capacity building as the most important driver of success (53%), followed by decision-making process (27%) and community participation (20%). Among educators and students, both capacity building and decision-making process were perceived as the most important factors (40% of respondents), whereas community participation was perceived as the most important success factor only by 20% of respondents. Individual engagement score in capacity building, decision-making process and community participation showed highest variability by educational level of participants (variance of 3.4% - 5.2%, p<0.001). Individual engagement score in capacity building was highly correlated to perceived benefit of training on improved efficiency, job security, higher customer satisfaction and self-esteem. On the other hand, individual engagement score in decision making process was highly correlated to its perceived benefit on lowering business costs, improving ability to meet the needs of a target market, job security, self-esteem and more teamwork. The study provides a set of recommendations that help educators, business executives and policy makers to maximize the individual and synergetic effect of training, decision making process on sustainability and growth of the tourism sector in Ethiopia.Keywords: engagement score, driver of success, capacity building, tourism
Procedia PDF Downloads 7730082 Enhancing Information Technologies with AI: Unlocking Efficiency, Scalability, and Innovation
Authors: Abdal-Hafeez Alhussein
Abstract:
Artificial Intelligence (AI) has become a transformative force in the field of information technologies, reshaping how data is processed, analyzed, and utilized across various domains. This paper explores the multifaceted applications of AI within information technology, focusing on three key areas: automation, scalability, and data-driven decision-making. We delve into how AI-powered automation is optimizing operational efficiency in IT infrastructures, from automated network management to self-healing systems that reduce downtime and enhance performance. Scalability, another critical aspect, is addressed through AI’s role in cloud computing and distributed systems, enabling the seamless handling of increasing data loads and user demands. Additionally, the paper highlights the use of AI in cybersecurity, where real-time threat detection and adaptive response mechanisms significantly improve resilience against sophisticated cyberattacks. In the realm of data analytics, AI models—especially machine learning and natural language processing—are driving innovation by enabling more precise predictions, automated insights extraction, and enhanced user experiences. The paper concludes with a discussion on the ethical implications of AI in information technologies, underscoring the importance of transparency, fairness, and responsible AI use. It also offers insights into future trends, emphasizing the potential of AI to further revolutionize the IT landscape by integrating with emerging technologies like quantum computing and IoT.Keywords: artificial intelligence, information technology, automation, scalability
Procedia PDF Downloads 1930081 A Machine Learning Decision Support Framework for Industrial Engineering Purposes
Authors: Anli Du Preez, James Bekker
Abstract:
Data is currently one of the most critical and influential emerging technologies. However, the true potential of data is yet to be exploited since, currently, about 1% of generated data are ever actually analyzed for value creation. There is a data gap where data is not explored due to the lack of data analytics infrastructure and the required data analytics skills. This study developed a decision support framework for data analytics by following Jabareen’s framework development methodology. The study focused on machine learning algorithms, which is a subset of data analytics. The developed framework is designed to assist data analysts with little experience, in choosing the appropriate machine learning algorithm given the purpose of their application.Keywords: Data analytics, Industrial engineering, Machine learning, Value creation
Procedia PDF Downloads 16830080 Complex Decision Rules in the Form of Decision Trees
Authors: Avinash S. Jagtap, Sharad D. Gore, Rajendra G. Gurao
Abstract:
Decision rules become more and more complex as the number of conditions increase. As a consequence, the complexity of the decision rule also influences the time complexity of computer implementation of such a rule. Consider, for example, a decision that depends on four conditions A, B, C and D. For simplicity, suppose each of these four conditions is binary. Even then the decision rule will consist of 16 lines, where each line will be of the form: If A and B and C and D, then action 1. If A and B and C but not D, then action 2 and so on. While executing this decision rule, each of the four conditions will be checked every time until all the four conditions in a line are satisfied. The minimum number of logical comparisons is 4 whereas the maximum number is 64. This paper proposes to present a complex decision rule in the form of a decision tree. A decision tree divides the cases into branches every time a condition is checked. In the form of a decision tree, every branching eliminates half of the cases that do not satisfy the related conditions. As a result, every branch of the decision tree involves only four logical comparisons and hence is significantly simpler than the corresponding complex decision rule. The conclusion of this paper is that every complex decision rule can be represented as a decision tree and the decision tree is mathematically equivalent but computationally much simpler than the original complex decision ruleKeywords: strategic, tactical, operational, adaptive, innovative
Procedia PDF Downloads 28830079 Theoretical Appraisal of Satisfactory Decision: Uncertainty, Evolutionary Ideas and Beliefs, Satisfactory Time Use
Authors: Okay Gunes
Abstract:
Unsatisfactory experiences due to an information shortage regarding the future pay-offs of actual choices, yield satisficing decision-making. This research will examine, for the first time in the literature, the motivation behind suboptimal decisions due to uncertainty by subjecting Adam Smith’s and Jeremy Bentham’s assumptions about the nature of the actions that lead to satisficing behavior, in order to clarify the theoretical background of a “consumption-based satisfactory time” concept. The contribution of this paper with respect to the existing literature is threefold: Firstly, it is showed in this paper that Adam Smith’s uncertainty is related to the problem of the constancy of ideas and not related directly to beliefs. Secondly, possessions, as in Jeremy Bentham’s oeuvre, are assumed to be just as pleasing, as protecting and improving the actual or expected quality of life, so long as they reduce any displeasure due to the undesired outcomes of uncertainty. Finally, each consumption decision incurs its own satisfactory time period, owed to not feeling hungry, being healthy, not having transportation…etc. This reveals that the level of satisfaction is indeed a behavioral phenomenon where its value would depend on the simultaneous satisfaction derived from all activities.Keywords: decision-making, idea and belief, satisficing, uncertainty
Procedia PDF Downloads 28730078 Ranking Effective Factors on Strategic Planning to Achieve Organization Objectives in Fuzzy Multivariate Decision-Making Technique
Authors: Elahe Memari, Ahmad Aslizadeh, Ahmad Memari
Abstract:
Today strategic planning is counted as the most important duties of senior directors in each organization. Strategic planning allows the organizations to implement compiled strategies and reach higher competitive benefits than their competitors. The present research work tries to prepare and rank the strategies form effective factors on strategic planning in fulfillment of the State Road Management and Transportation Organization in order to indicate the role of organizational factors in efficiency of the process to organization managers. Connection between six main factors in fulfillment of State Road Management and Transportation Organization were studied here, including Improvement of Strategic Thinking in senior managers, improvement of the organization business process, rationalization of resources allocation in different parts of the organization, coordination and conformity of strategic plan with organization needs, adjustment of organization activities with environmental changes, reinforcement of organizational culture. All said factors approved by implemented tests and then ranked using fuzzy multivariate decision-making technique.Keywords: Fuzzy TOPSIS, improvement of organization business process, multivariate decision-making, strategic planning
Procedia PDF Downloads 42330077 Machine Learning Predictive Models for Hydroponic Systems: A Case Study Nutrient Film Technique and Deep Flow Technique
Authors: Kritiyaporn Kunsook
Abstract:
Machine learning algorithms (MLAs) such us artificial neural networks (ANNs), decision tree, support vector machines (SVMs), Naïve Bayes, and ensemble classifier by voting are powerful data driven methods that are relatively less widely used in the mapping of technique of system, and thus have not been comparatively evaluated together thoroughly in this field. The performances of a series of MLAs, ANNs, decision tree, SVMs, Naïve Bayes, and ensemble classifier by voting in technique of hydroponic systems prospectively modeling are compared based on the accuracy of each model. Classification of hydroponic systems only covers the test samples from vegetables grown with Nutrient film technique (NFT) and Deep flow technique (DFT). The feature, which are the characteristics of vegetables compose harvesting height width, temperature, require light and color. The results indicate that the classification performance of the ANNs is 98%, decision tree is 98%, SVMs is 97.33%, Naïve Bayes is 96.67%, and ensemble classifier by voting is 98.96% algorithm respectively.Keywords: artificial neural networks, decision tree, support vector machines, naïve Bayes, ensemble classifier by voting
Procedia PDF Downloads 375