Search results for: cycle time minimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19323

Search results for: cycle time minimization

18963 Entropy Generation Analysis of Cylindrical Heat Pipe Using Nanofluid

Authors: Morteza Ghanbarpour, Rahmatollah Khodabandeh

Abstract:

In this study, second law of thermodynamic is employed to evaluate heat pipe thermal performance. In fact, nanofluids potential to decrease the entropy generation of cylindrical heat pipes are studied and the results are compared with experimental data. Some cylindrical copper heat pipes of 200 mm length and 6.35 mm outer diameter were fabricated and tested with distilled water and water based Al2O3 nanofluids with volume concentrations of 1-5% as working fluids. Nanofluids are nanotechnology-based colloidal suspensions fabricated by suspending nanoparticles in a base liquid. These fluids have shown potential to enhance heat transfer properties of the base liquids used in heat transfer application. When the working fluid undergoes between different states in heat pipe cycle the entropy is generated. Different sources of irreversibility in heat pipe thermodynamic cycle are investigated and nanofluid effect on each of these sources is studied. Both experimental and theoretical studies reveal that nanofluid is a good choice to minimize the entropy generation in heat pipe thermodynamic cycle which results in higher thermal performance and efficiency of the system.

Keywords: heat pipe, nanofluid, thermodynamics, entropy generation, thermal resistance

Procedia PDF Downloads 440
18962 CFD Simulation for Development of Cooling System in a Cooking Oven

Authors: V. Jagadish, Mathiyalagan V.

Abstract:

Prediction of Door Touch temperature of a Cooking Oven using CFD Simulation. Self-Clean cycle is carried out in Cooking ovens to convert food spilling into ashes which makes cleaning easy. During this cycle cavity of oven is exposed to high temperature around 460 C. At this operating point the user may prone to touch the Door surfaces, Side Shield, Control Panel. To prevent heat experienced by user, cooling system is built in oven. The most effective cooling system is developed with existing design constraints through CFD Simulations. Cross Flow fan is used for Cooling system due to its cost effectiveness and it can give more air flow with low pressure drop.

Keywords: CFD, MRF, RBM, RANS, new product development, simulation, thermal analysis

Procedia PDF Downloads 131
18961 Heat Transfer Analysis of a Multiphase Oxygen Reactor Heated by a Helical Tube in the Cu-Cl Cycle of a Hydrogen Production

Authors: Mohammed W. Abdulrahman

Abstract:

In the thermochemical water splitting process by Cu-Cl cycle, oxygen gas is produced by an endothermic thermolysis process at a temperature of 530oC. Oxygen production reactor is a three-phase reactor involving cuprous chloride molten salt, copper oxychloride solid reactant and oxygen gas. To perform optimal performance, the oxygen reactor requires accurate control of heat transfer to the molten salt and decomposing solid particles within the thermolysis reactor. In this paper, the scale up analysis of the oxygen reactor that is heated by an internal helical tube is performed from the perspective of heat transfer. A heat balance of the oxygen reactor is investigated to analyze the size of the reactor that provides the required heat input for different rates of hydrogen production. It is found that the helical tube wall and the service side constitute the largest thermal resistances of the oxygen reactor system. In the analysis of this paper, the Cu-Cl cycle is assumed to be heated by two types of nuclear reactor, which are HTGR and CANDU SCWR. It is concluded that using CANDU SCWR requires more heat transfer rate by 3-4 times than that when using HTGR. The effect of the reactor aspect ratio is also studied and it is found that increasing the aspect ratio decreases the number of reactors and the rate of decrease in the number of reactors decreases by increasing the aspect ratio. Comparisons between the results of this study and pervious results of material balances in the oxygen reactor show that the size of the oxygen reactor is dominated by the heat balance rather than the material balance.

Keywords: heat transfer, Cu-Cl cycle, hydrogen production, oxygen, clean energy

Procedia PDF Downloads 240
18960 Development of a New Piezoelectrically Actuated Micropump for Liquid and Gas

Authors: Chiang-Ho Cheng, An-Shik Yang, Chih-Jer Lin, Chun-Ying Lee

Abstract:

This paper aims to present the design, fabrication and test of a novel piezoelectric actuated, check-valves embedded micropump having the advantages of miniature size, light weight and low power consumption. This device is designed to pump gases and liquids with the capability of performing the self-priming and bubble-tolerant work mode by maximizing the stroke volume of the membrane as well as the compression ratio via minimization of the dead volume of the micropump chamber and channel. By experiment apparatus setup, we can get the real-time values of the flow rate of micropump, the displacement of the piezoelectric actuator and the deformation of the check valve, simultaneously. The micropump with check valve 0.4 mm in thickness obtained higher output performance under the sinusoidal waveform of 120 Vpp. The micropump achieved the maximum pumping rates of 42.2 ml/min and back pressure of 14.0 kPa at the corresponding frequency of 28 and 20 Hz. The presented micropump is able to pump gases with a pumping rate of 196 ml/min at operating frequencies of 280 Hz under the sinusoidal waveform of 120 Vpp.

Keywords: actuator, check-valve, micropump, piezoelectric

Procedia PDF Downloads 411
18959 The Effects of Metformin And PCL-sorafenib Nanoparticles Co-treatment on MCF-7 Cell Culture Model of Breast Cancer

Authors: Emad Heydarnia, Aref Sepasi, Nika Asefi, Sara Khakshournia, Javad Mohammadnejad

Abstract:

Background: Despite breakthrough therapeutics in breast cancer, it is one of the main causes of mortality among women worldwide. Thus, drug therapies for treating breast cancer have recently been developed by scientists. Metformin and Sorafenib are well-known therapeutic in breast cancer. In the present study, we combined Sorafenib and PCL-sorafenib with metformin to improve drug absorption and promote therapeutic efficiency. Methods: The MCF-7 cells were treated with Metformin, Sorafenib, or PCL-sorafenib. The growth inhibitory effect of these drugs and cell viability were assessed using MTT and flow cytometry assays, respectively. The expression of targeted genes involved in cell proliferation, signaling, and the cell cycle was measured by Real-time PCR. Results: The results showed that MCF-7 cells treated with Metformin/Sorafenib and PCL-sorafenib/Metformin co-treatment contributed to 50% viability compared to untreated group. Moreover, PI and Annexin V staining tests showed that the cells viability for Metformin/Sorafenib and PCL-sorafenib/Metformin was 38% and 17%, respectively. Furthermore, Sorafenib/Metformin and PCL-sorafenib/Metformin leads to p53 gene expression increase by which they can increase ROS, thereby decreasing GPX4 gene expression. In addition, they affected the expression of BCL2, and BAX genes and altered the cell cycle. Conclusion: Together, the combination of PCL-sorafenib/Metformin and Sorafenib/Metformin increased Sorafenib absorption at lower doses and also leads to apoptosis and oxidative stress increases in MCF-7 cells.

Keywords: breast cancer, metformin, nanotechnology, sorafenib

Procedia PDF Downloads 33
18958 Life Cycle Assessment-Based Environmental Assessment of the Production and Maintenance of Wooden Windows

Authors: Pamela Del Rosario, Elisabetta Palumbo, Marzia Traverso

Abstract:

The building sector plays an important role in addressing pressing environmental issues such as climate change and resource scarcity. The energy performance of buildings is considerably affected by the external envelope. In fact, a considerable proportion of the building energy demand is due to energy losses through the windows. Nevertheless, according to literature, to pay attention only to the contribution of windows to the building energy performance, i.e., their influence on energy use during building operation, could result in a partial evaluation. Hence, it is important to consider not only the building energy performance but also the environmental performance of windows, and this not only during the operational stage but along its complete life cycle. Life Cycle Assessment (LCA) according to ISO 14040:2006 and ISO 14044:2006+A1:2018 is one of the most adopted and robust methods to evaluate the environmental performance of products throughout their complete life cycle. This life-cycle based approach avoids the shift of environmental impacts of a life cycle stage to another, allowing to allocate them to the stage in which they originated and to adopt measures that optimize the environmental performance of the product. Moreover, the LCA method is widely implemented in the construction sector to assess whole buildings as well as construction products and materials. LCA is regulated by the European Standards EN 15978:2011, at the building level, and EN 15804:2012+A2:2019, at the level of construction products and materials. In this work, the environmental performance of wooden windows was assessed by implementing the LCA method and adopting primary data. More specifically, the emphasis is given to embedded and operational impacts. Furthermore, correlations are made between these environmental impacts and aspects such as type of wood and window transmittance. In the particular case of the operational impacts, special attention is set on the definition of suitable maintenance scenarios that consider the potential climate influence on the environmental impacts. For this purpose, a literature review was conducted, and expert consultation was carried out. The study underlined the variability of the embedded environmental impacts of wooden windows by considering different wood types and transmittance values. The results also highlighted the need to define appropriate maintenance scenarios for precise assessment results. It was found that both the service life and the window maintenance requirements in terms of treatment and its frequency are highly dependent not only on the wood type and its treatment during the manufacturing process but also on the weather conditions of the place where the window is installed. In particular, it became evident that maintenance-related environmental impacts were the highest for climate regions with the lowest temperatures and the greatest amount of precipitation.

Keywords: embedded impacts, environmental performance, life cycle assessment, LCA, maintenance stage, operational impacts, wooden windows

Procedia PDF Downloads 207
18957 An Epsilon Hierarchical Fuzzy Twin Support Vector Regression

Authors: Arindam Chaudhuri

Abstract:

The research presents epsilon- hierarchical fuzzy twin support vector regression (epsilon-HFTSVR) based on epsilon-fuzzy twin support vector regression (epsilon-FTSVR) and epsilon-twin support vector regression (epsilon-TSVR). Epsilon-FTSVR is achieved by incorporating trapezoidal fuzzy numbers to epsilon-TSVR which takes care of uncertainty existing in forecasting problems. Epsilon-FTSVR determines a pair of epsilon-insensitive proximal functions by solving two related quadratic programming problems. The structural risk minimization principle is implemented by introducing regularization term in primal problems of epsilon-FTSVR. This yields dual stable positive definite problems which improves regression performance. Epsilon-FTSVR is then reformulated as epsilon-HFTSVR consisting of a set of hierarchical layers each containing epsilon-FTSVR. Experimental results on both synthetic and real datasets reveal that epsilon-HFTSVR has remarkable generalization performance with minimum training time.

Keywords: regression, epsilon-TSVR, epsilon-FTSVR, epsilon-HFTSVR

Procedia PDF Downloads 338
18956 MFCA: An Environmental Management Accounting Technique for Optimal Resource Efficiency in Production Processes

Authors: Omolola A. Tajelawi, Hari L. Garbharran

Abstract:

Revenue leakages are one of the major challenges manufacturers face in production processes, as most of the input materials that should emanate as products from the lines are lost as waste. Rather than generating income from material input which is meant to end-up as products, losses are further incurred as costs in order to manage waste generated. In addition, due to the lack of a clear view of the flow of resources on the lines from input to output stage, acquiring information on the true cost of waste generated have become a challenge. This has therefore given birth to the conceptualization and implementation of waste minimization strategies by several manufacturing industries. This paper reviews the principles and applications of three environmental management accounting tools namely Activity-based Costing (ABC), Life-Cycle Assessment (LCA) and Material Flow Cost Accounting (MFCA) in the manufacturing industry and their effectiveness in curbing revenue leakages. The paper unveils the strengths and limitations of each of the tools; beaming a searchlight on the tool that could allow for optimal resource utilization, transparency in production process as well as improved cost efficiency. Findings from this review reveal that MFCA may offer superior advantages with regards to the provision of more detailed information (both in physical and monetary terms) on the flow of material inputs throughout the production process compared to the other environmental accounting tools. This paper therefore makes a case for the adoption of MFCA as a viable technique for the identification and reduction of waste in production processes, and also for effective decision making by production managers, financial advisors and other relevant stakeholders.

Keywords: MFCA, environmental management accounting, resource efficiency, waste reduction, revenue losses

Procedia PDF Downloads 315
18955 A Sustainability Benchmarking Framework Based on the Life Cycle Sustainability Assessment: The Case of the Italian Ceramic District

Authors: A. M. Ferrari, L. Volpi, M. Pini, C. Siligardi, F. E. Garcia Muina, D. Settembre Blundo

Abstract:

A long tradition in the ceramic manufacturing since the 18th century, primarily due to the availability of raw materials and an efficient transport system, let to the birth and development of the Italian ceramic tiles district that nowadays represents a reference point for this sector even at global level. This economic growth has been coupled to attention towards environmental sustainability issues throughout various initiatives undertaken over the years at the level of the production sector, such as certification activities and sustainability policies. In this way, starting from an evaluation of the sustainability in all its aspects, the present work aims to develop a benchmarking helping both producers and consumers. In the present study, throughout the Life Cycle Sustainability Assessment (LCSA) framework, the sustainability has been assessed in all its dimensions: environmental with the Life Cycle Assessment (LCA), economic with the Life Cycle Costing (LCC) and social with the Social Life Cycle Assessment (S-LCA). The annual district production of stoneware tiles during the 2016 reference year has been taken as reference flow for all the three assessments, and the system boundaries cover the entire life cycle of the tiles, except for the LCC for which only the production costs have been considered at the moment. In addition, a preliminary method for the evaluation of local and indoor emissions has been introduced in order to assess the impact due to atmospheric emissions on both people living in the area surrounding the factories and workers. The Life Cycle Assessment results, obtained from IMPACT 2002+ modified assessment method, highlight that the manufacturing process is responsible for the main impact, especially because of atmospheric emissions at a local scale, followed by the distribution to end users, the installation and the ordinary maintenance of the tiles. With regard to the economic evaluation, both the internal and external costs have been considered. For the LCC, primary data from the analysis of the financial statements of Italian ceramic companies show that the higher cost items refer to expenses for goods and services and costs of human resources. The analysis of externalities with the EPS 2015dx method attributes the main damages to the distribution and installation of the tiles. The social dimension has been investigated with a preliminary approach by using the Social Hotspots Database, and the results indicate that the most affected damage categories are health and safety and labor rights and decent work. This study shows the potential of the LCSA framework applied to an industrial sector; in particular, it can be a useful tool for building a comprehensive benchmark for the sustainability of the ceramic industry, and it can help companies to actively integrate sustainability principles into their business models.

Keywords: benchmarking, Italian ceramic industry, life cycle sustainability assessment, porcelain stoneware tiles

Procedia PDF Downloads 99
18954 Deciding Graph Non-Hamiltonicity via a Closure Algorithm

Authors: E. R. Swart, S. J. Gismondi, N. R. Swart, C. E. Bell

Abstract:

We present an heuristic algorithm that decides graph non-Hamiltonicity. All graphs are directed, each undirected edge regarded as a pair of counter directed arcs. Each of the n! Hamilton cycles in a complete graph on n+1 vertices is mapped to an n-permutation matrix P where p(u,i)=1 if and only if the ith arc in a cycle enters vertex u, starting and ending at vertex n+1. We first create exclusion set E by noting all arcs (u, v) not in G, sufficient to code precisely all cycles excluded from G i.e. cycles not in G use at least one arc not in G. Members are pairs of components of P, {p(u,i),p(v,i+1)}, i=1, n-1. A doubly stochastic-like relaxed LP formulation of the Hamilton cycle decision problem is constructed. Each {p(u,i),p(v,i+1)} in E is coded as variable q(u,i,v,i+1)=0 i.e. shrinks the feasible region. We then implement the Weak Closure Algorithm (WCA) that tests necessary conditions of a matching, together with Boolean closure to decide 0/1 variable assignments. Each {p(u,i),p(v,j)} not in E is tested for membership in E, and if possible, added to E (q(u,i,v,j)=0) to iteratively maximize |E|. If the WCA constructs E to be maximal, the set of all {p(u,i),p(v,j)}, then G is decided non-Hamiltonian. Only non-Hamiltonian G share this maximal property. Ten non-Hamiltonian graphs (10 through 104 vertices) and 2000 randomized 31 vertex non-Hamiltonian graphs are tested and correctly decided non-Hamiltonian. For Hamiltonian G, the complement of E covers a matching, perhaps useful in searching for cycles. We also present an example where the WCA fails.

Keywords: Hamilton cycle decision problem, computational complexity theory, graph theory, theoretical computer science

Procedia PDF Downloads 344
18953 A Comprehensive Study of a Hybrid System Integrated Solid Oxide Fuel cell, Gas Turbine, Organic Rankine Cycle with Compressed air Energy Storage

Authors: Taiheng Zhang, Hongbin Zhao

Abstract:

Compressed air energy storage become increasingly vital for solving intermittency problem of some renewable energies. In this study, a new hybrid system on a combination of compressed air energy storage (CAES), solid oxide fuel cell (SOFC), gas turbine (GT), and organic Rankine cycle (ORC) is proposed. In the new system, excess electricity during off-peak time is utilized to compress air. Then, the compressed air is stored in compressed air storage tank. During peak time, the compressed air enters the cathode of SOFC directly instead of combustion chamber of traditional CAES. There is no air compressor consumption of SOFC-GT in peak demand, so SOFC- GT can generate power with high-efficiency. In addition, the waste heat of exhaust from GT is recovered by applying an ORC. Three different organic working fluid (R123, R601, R601a) of ORC are chosen to evaluate system performance. Based on Aspen plus and Engineering Equation Solver (EES) software, energy and exergoeconomic analysis are used to access the viability of the combined system. Besides, the effect of two parameters (fuel flow and ORC turbine inlet pressure) on energy efficiency is studied. The effect of low-price electricity at off-peak hours on thermodynamic criteria (total unit exergy cost of products and total cost rate) is also investigated. Furthermore, for three different organic working fluids, the results of round-trip efficiency, exergy efficiency, and exergoeconomic factors are calculated and compared. Based on thermodynamic performance and exergoeconomic performance of different organic working fluids, the best suitable working fluid will be chosen. In conclusion, this study can provide important guidance for system efficiency improvement and viability.

Keywords: CAES, SOFC, ORC, energy and exergoeconomic analysis, organic working fluids

Procedia PDF Downloads 92
18952 Adaptation of Requirement Engineering Practices in Pakistan

Authors: Waqas Ali, Nadeem Majeed

Abstract:

Requirement engineering is an essence of software development life cycle. The more time we spend on requirement engineering, higher the probability of success. Effective requirement engineering ensures and predicts successful software product. This paper presents the adaptation of requirement engineering practices in small and medium size companies of Pakistan. The study is conducted by questionnaires to show how much of requirement engineering models and practices are followed in Pakistan.

Keywords: requirement engineering, Pakistan, models, practices, organizations

Procedia PDF Downloads 690
18951 Comparative Life Cycle Assessment of High Barrier Polymer Packaging for Selecting Resource Efficient and Environmentally Low-Impact Materials

Authors: D. Kliaugaitė, J. K, Staniškis

Abstract:

In this study tree types of multilayer gas barrier plastic packaging films were compared using life cycle assessment as a tool for resource efficient and environmentally low-impact materials selection. The first type of multilayer packaging film (PET-AlOx/LDPE) consists of polyethylene terephthalate with barrier layer AlOx (PET-AlOx) and low density polyethylene (LDPE). The second type of polymer film (PET/PE-EVOH-PE) is made of polyethylene terephthalate (PET) and co-extrusion film PE-EVOH-PE as barrier layer. And the third one type of multilayer packaging film (PET-PVOH/LDPE) is formed from polyethylene terephthalate with barrier layer PVOH (PET-PVOH) and low density polyethylene (LDPE). All of analyzed packaging has significant impact to resource depletion, because of raw materials extraction and energy use and production of different kind of plastics. Nevertheless the impact generated during life cycle of functional unit of II type of packaging (PET/PE-EVOH-PE) was about 25% lower than impact generated by I type (PET-AlOx/LDPE) and III type (PET-PVOH/LDPE) of packaging. Result revealed that the contribution of different gas barrier type to the overall environmental problem of packaging is not significant. The impact are mostly generated by using energy and materials during raw material extraction and production of different plastic materials as plastic polymers material as PE, LDPE and PET, but not gas barrier materials as AlOx, PVOH and EVOH. The LCA results could be useful in different decision-making processes, for selecting resource efficient and environmentally low-impact materials.

Keywords: life cycle assessment, polymer packaging, resource efficiency, materials extraction, polyethylene terephthalate

Procedia PDF Downloads 337
18950 On the End-of-Life Inventory Problem

Authors: Hans Frenk, Sonya Javadi, Semih Onur Sezer

Abstract:

We consider the so-called end of life inventory problem for the supplier of a product in its final phase of the service life cycle. This phase starts when the production of the items stops and continues until the warranty of the last sold item expires. At the beginning of this phase, the supplier places a final order for spare parts to serve customers coming with defective items. At any time during the final phase, the supplier may also decide to switch to an alternative and more cost-effective policy. This alternative policy may be in the form of replacing a defective item with a substitutable product or offering discounts / rebates on new generation products. In this setup, the objective is to find a final order quantity and also a switching time which will minimize the total expected discounted cost. We study this problem under a general cost structure in a continuous-time framework where arrivals of defective items are given by a non-homogeneous Poisson process. We consider four formulations which differ by the nature of the switching time. These formulations are studied in detail and properties of the objective function are derived in each case. Using these properties, we provide exact algorithms for efficient numerical implementations. Numerical examples are provided illustrating the application of these algorithms. In these examples, we also compare the costs associated with these different formulations.

Keywords: End-of-life inventory control, martingales, optimization, service parts

Procedia PDF Downloads 308
18949 Medicinal Plants: An Antiviral Depository with Complex Mode of Action

Authors: Daniel Todorov, Anton Hinkov, Petya Angelova, Kalina Shishkova, Venelin Tsvetkov, Stoyan Shishkov

Abstract:

Human herpes viruses (HHV) are ubiquitous pathogens with a pandemic spread across the globe. HHV type 1 is the main causative agent of cold sores and fever blisters around the mouth and on the face, whereas HHV type 2 is generally responsible for genital herpes outbreaks. The treatment of both viruses is more or less successful with antivirals from the nucleoside analogues group. Their wide application increasingly leads to the emergence of resistant mutants In the past, medicinal plants have been used to treat a number of infectious and non-infectious diseases. Their diversity and ability to produce the vast variety of secondary metabolites according to the characteristics of the environment give them the potential to help us in our warfare with viral infections. The variable chemical characteristics and complex composition is an advantage in the treatment of herpes since the emergence of resistant mutants is significantly complicated. The screening process is difficult due to the lack of standardization. That is why it is especially important to follow the mechanism of antiviral action of plants. On the one hand, it may be expected to interact with its compounds, resulting in enhanced antiviral effects, and the most appropriate environmental conditions can be chosen to maximize the amount of active secondary metabolites. During our study, we followed the activity of various plant extracts on the viral replication cycle as well as their effect on the extracellular virion. We obtained our results following the logical sequence of the experimental settings - determining the cytotoxicity of the extracts, evaluating the overall effect on viral replication and extracellular virion.During our research, we have screened a variety of plant extracts for their antiviral activity against both virus replication and the virion itself. We investigated the effect of the extracts on the individual stages of the viral replication cycle - viral adsorption, penetration and the effect on replication depending on the time of addition. If there are positive results in the later experiments, we had studied the activity over viral adsorption, penetration and the effect of replication according to the time of addition. Our results indicate that some of the extracts from the Lamium album have several targets. The first stages of the viral life cycle are most affected. Several of our active antiviral agents have shown an effect on extracellular virion and adsorption and penetration processes. Our research over the last decade has shown several curative antiviral plants - some of which are from the Lamiacea family. The rich set of active ingredients of the plants in this family makes them a good source of antiviral preparation.

Keywords: human herpes virus, antiviral activity, Lamium album, Nepeta nuda

Procedia PDF Downloads 136
18948 Characteristics of Children Heart Rhythm Regulation with Acute Respiratory Diseases

Authors: D. F. Zeynalov, T. V. Kartseva, O. V. Sorokin

Abstract:

Currently, approaches to assess cardiointervalography are based on the calculation of data variance intervals RR. However, they do not allow the evaluation of features related to a period of the cardiac cycle, so how electromechanical phenomena during cardiac subphase are characterized by differently directed changes. Therefore, we have proposed a method of subphase analysis of the cardiac cycle, developed in the department of hominal physiology Novosibirsk State Medical University to identify the features of the dispersion subphase of the cardiac cycle. In the present paper we have examined the 5-minute intervals cardiointervalography (CIG) to isolate RR-, QT-, ST-ranges in healthy children and children with acute respiratory diseases (ARD) in comparison. It is known that primary school-aged children suffer at ARD 5-7 times per year. Consequently, it is one of the most relevant problems in pediatrics. It is known that the spectral indices and indices of temporal analysis of heart rate variability are highly sensitive to the degree of intoxication during immunological process. We believe that the use of subphase analysis of heart rate will allow more thoroughly evaluate responsiveness of the child organism during the course of ARD. The study involved 60 primary school-aged children (30 boys and 30 girls). In order to assess heart rhythm regulation, the record CIG was used on the "VNS-Micro" device of Neurosoft Company (Ivanovo) for 5 minutes in the supine position and 5 minutes during active orthostatic test. Subphase analysis of variance QT-interval and ST-segment was performed on the "KardioBOS" software Biokvant Company (Novosibirsk). In assessing the CIG in the supine position and in during orthostasis of children with acute respiratory diseases only RR-intervals are observed typical trend of general biological reactions through pressosensitive compensation mechanisms to lower blood pressure, but compared with healthy children the severity of the changes is different, of sick children are more pronounced indicators of heart rate regulation. But analysis CIG RR-intervals and analysis subphase ST-segment have yielded conflicting trends, which may be explained by the different nature of the intra- and extracardiac influences on regulatory mechanisms that implement the various phases of the cardiac cycle.

Keywords: acute respiratory diseases, cardiointervalography, subphase analysis, cardiac cycle

Procedia PDF Downloads 253
18947 An Empirical Study of Performance Management System: Implementation of Performance Management Cycle to Achieve High-Performance Culture at Pertamina Company, Indonesia

Authors: Arif Budiman

Abstract:

Any organization or company that wishes to achieve vision, mission, and goals of the organization is required to implement a performance management system or known as the Performance Management System (PMS) in every part of the whole organization. PMS is a tool to help visualize the direction and work program of the organization to achieve the goal. The challenge is PMS should not stop merely as a visualization tool to achieve the vision and mission of the organization, but PMS should also be able to create a high-performance culture that is inherent in each individual of the organization. Establishment of a culture within an organization requires the support of top leaders and also requires a system or governance that encourages every individual in the organization to be involved in any work program of the organization. Keywords of creating a high-performance culture are the formation of communication pattern involving the whole individual, either vertically or horizontally, and performed consistently and persistently by all individuals in each line of the organization. PT Pertamina (Persero) as the state-owned national energy company holds a system to internalize the culture of high performance through a system called Performance Management System Cycle (PMS Cycle). This system has 7 stages of the cycle, those are: (1) defining vision, mission and strategic plan of the company, (2) defining key performance indicator of each line and the individual (‘expectation setting conversation’), (3) defining performance target and performance agreement, (4) monitoring performance on a monthly regular basis (‘pulse check’), (5) implementing performance dialogue between leaders and staffs periodically every 3 months (‘performance dialogue’), (6) defining rewards and consequences based on the achievement of the performance of each line and the individual, and (7) calculating the final performance value achieved by each line and individual from one period of the current year. Perform PMS is a continual communication running throughout the year, that is why any three performance discussion that should be performed, include expectation setting conversations, pulse check and performance dialogue. In addition, another significant point and necessary undertaken to complete the assessment of individual performance assessment is soft competencies through 360-degree assessment by leaders, staffs, and peers.

Keywords: 360-degree assessment, expectation setting conversation, performance management system cycle, performance dialogue, pulse check

Procedia PDF Downloads 414
18946 Estimating the Power Influence of an Off-Grid Photovoltaic Panel on the Indicting Rate of a Storage System (Batteries)

Authors: Osamede Asowata

Abstract:

The current resurgence of interest in the use of renewable energy is driven by the need to reduce the high environmental impact of fossil-based energy. The aim of this paper is to evaluate the effect of a stationary PV panel on the charging rate of deep-cycle valve regulated lead-acid (DCVRLA) batteries. Stationary PV panels are set to a fixed tilt and orientation angle, which plays a major role in dictating the output power of a PV panel and subsequently on the charging time of a DCVRLA battery. In a basic PV system, an energy storage device that stores the power from the PV panel is necessary due to the fluctuating nature of the PV voltage caused by climatic conditions. The charging and discharging times of a DCVRLA battery were determined for a twelve month period from January through December 2012. Preliminary results, which include regression analysis (R2), conversion-time per week and work-time per day, indicate that a 36 degrees tilt angle produces a good charging rate for a latitude of 26 degrees south throughout the year.

Keywords: tilt and orientation angles, solar chargers, PV panels, storage devices, direct solar radiation.

Procedia PDF Downloads 222
18945 Analysis, Evaluation and Optimization of Food Management: Minimization of Food Losses and Food Wastage along the Food Value Chain

Authors: G. Hafner

Abstract:

A method developed at the University of Stuttgart will be presented: ‘Analysis, Evaluation and Optimization of Food Management’. A major focus is represented by quantification of food losses and food waste as well as their classification and evaluation regarding a system optimization through waste prevention. For quantification and accounting of food, food losses and food waste along the food chain, a clear definition of core terms is required at the beginning. This includes their methodological classification and demarcation within sectors of the food value chain. The food chain is divided into agriculture, industry and crafts, trade and consumption (at home and out of home). For adjustment of core terms, the authors have cooperated with relevant stakeholders in Germany for achieving the goal of holistic and agreed definitions for the whole food chain. This includes modeling of sub systems within the food value chain, definition of terms, differentiation between food losses and food wastage as well as methodological approaches. ‘Food Losses’ and ‘Food Wastes’ are assigned to individual sectors of the food chain including a description of the respective methods. The method for analyzing, evaluation and optimization of food management systems consist of the following parts: Part I: Terms and Definitions. Part II: System Modeling. Part III: Procedure for Data Collection and Accounting Part. IV: Methodological Approaches for Classification and Evaluation of Results. Part V: Evaluation Parameters and Benchmarks. Part VI: Measures for Optimization. Part VII: Monitoring of Success The method will be demonstrated at the example of an invesigation of food losses and food wastage in the Federal State of Bavaria including an extrapolation of respective results to quantify food wastage in Germany.

Keywords: food losses, food waste, resource management, waste management, system analysis, waste minimization, resource efficiency

Procedia PDF Downloads 376
18944 Analytical Derivative: Importance on Environment and Water Analysis/Cycle

Authors: Adesoji Sodeinde

Abstract:

Analytical derivatives has recently undergone an explosive growth in areas of separation techniques, likewise in detectability of certain compound/concentrated ions. The gloomy and depressing scenario which charaterized the application of analytical derivatives in areas of water analysis, water cycle and the environment should not be allowed to continue unabated. Due to technological advancement in various chemical/biochemical analysis separation techniques is widely used in areas of medical, forensic and to measure and assesses environment and social-economic impact of alternative control strategies. This technological improvement was dully established in the area of comparison between certain separation/detection techniques to bring about vital result in forensic[as Gas liquid chromatography reveals the evidence given in court of law during prosecution of drunk drivers]. The water quality analysis,pH and water temperature analysis can be performed in the field, the concentration of dissolved free amino-acid [DFAA] can also be detected through separation techniques. Some important derivatives/ions used in separation technique. Water analysis : Total water hardness [EDTA to determine ca and mg ions]. Gas liquid chromatography : innovative gas such as helium [He] or nitrogen [N] Water cycle : Animal bone charcoal,activated carbon and ultraviolet light [U.V light].

Keywords: analytical derivative, environment, water analysis, chemical/biochemical analysis

Procedia PDF Downloads 316
18943 Topology Optimization of Heat and Mass Transfer for Two Fluids under Steady State Laminar Regime: Application on Heat Exchangers

Authors: Rony Tawk, Boutros Ghannam, Maroun Nemer

Abstract:

Topology optimization technique presents a potential tool for the design and optimization of structures involved in mass and heat transfer. The method starts with an initial intermediate domain and should be able to progressively distribute the solid and the two fluids exchanging heat. The multi-objective function of the problem takes into account minimization of total pressure loss and maximization of heat transfer between solid and fluid subdomains. Existing methods account for the presence of only one fluid, while the actual work extends optimization distribution of solid and two different fluids. This requires to separate the channels of both fluids and to ensure a minimum solid thickness between them. This is done by adding a third objective function to the multi-objective optimization problem. This article uses density approach where each cell holds two local design parameters ranging from 0 to 1, where the combination of their extremums defines the presence of solid, cold fluid or hot fluid in this cell. Finite volume method is used for direct solver coupled with a discrete adjoint approach for sensitivity analysis and method of moving asymptotes for numerical optimization. Several examples are presented to show the ability of the method to find a trade-off between minimization of power dissipation and maximization of heat transfer while ensuring the separation and continuity of the channel of each fluid without crossing or mixing the fluids. The main conclusion is the possibility to find an optimal bi-fluid domain using topology optimization, defining a fluid to fluid heat exchanger device.

Keywords: topology optimization, density approach, bi-fluid domain, laminar steady state regime, fluid-to-fluid heat exchanger

Procedia PDF Downloads 375
18942 Lean Product Development and Sustainability: A Systematic Literature Review

Authors: João P. E. De Souza, Rob Dekkers

Abstract:

Whereas lean product development aims at maximising customer value whilst optimising product and process design, the question arises whether this approach includes sustainability. A systematic literature review reveals that methods associated with this conceptualisation of product development are suitable for including sustainability, but that the criteria for the triple-bottom line need to be included when using these methods; this is particularly the case for social aspects. Thus, the main finding is that not new methods should be developed, but that existing methods should be more inclusive towards all aspects of sustainability and product life-cycle thinking.

Keywords: lean product development, product life-cycle, sustainability, systematic literature review, triple bottom-line

Procedia PDF Downloads 131
18941 Multi-Objective Optimization for the Green Vehicle Routing Problem: Approach to Case Study of the Newspaper Distribution Problem

Authors: Julio C. Ferreira, Maria T. A. Steiner

Abstract:

The aim of this work is to present a solution procedure referred to here as the Multi-objective Optimization for Green Vehicle Routing Problem (MOOGVRP) to provide solutions for a case study. The proposed methodology consists of three stages to resolve Scenario A. Stage 1 consists of the “treatment” of data; Stage 2 consists of applying mathematical models of the p-Median Capacitated Problem (with the objectives of minimization of distances and homogenization of demands between groups) and the Asymmetric Traveling Salesman Problem (with the objectives of minimizing distances and minimizing time). The weighted method was used as the multi-objective procedure. In Stage 3, an analysis of the results is conducted, taking into consideration the environmental aspects related to the case study, more specifically with regard to fuel consumption and air pollutant emission. This methodology was applied to a (partial) database that addresses newspaper distribution in the municipality of Curitiba, Paraná State, Brazil. The preliminary findings for Scenario A showed that it was possible to improve the distribution of the load, reduce the mileage and the greenhouse gas by 17.32% and the journey time by 22.58% in comparison with the current scenario. The intention for future works is to use other multi-objective techniques and an expanded version of the database and explore the triple bottom line of sustainability.

Keywords: Asymmetric Traveling Salesman Problem, Green Vehicle Routing Problem, Multi-objective Optimization, p-Median Capacitated Problem

Procedia PDF Downloads 89
18940 Optimal Sequential Scheduling of Imperfect Maintenance Last Policy for a System Subject to Shocks

Authors: Yen-Luan Chen

Abstract:

Maintenance has a great impact on the capacity of production and on the quality of the products, and therefore, it deserves continuous improvement. Maintenance procedure done before a failure is called preventive maintenance (PM). Sequential PM, which specifies that a system should be maintained at a sequence of intervals with unequal lengths, is one of the commonly used PM policies. This article proposes a generalized sequential PM policy for a system subject to shocks with imperfect maintenance and random working time. The shocks arrive according to a non-homogeneous Poisson process (NHPP) with varied intensity function in each maintenance interval. As a shock occurs, the system suffers two types of failures with number-dependent probabilities: type-I (minor) failure, which is rectified by a minimal repair, and type-II (catastrophic) failure, which is removed by a corrective maintenance (CM). The imperfect maintenance is carried out to improve the system failure characteristic due to the altered shock process. The sequential preventive maintenance-last (PML) policy is defined as that the system is maintained before any CM occurs at a planned time Ti or at the completion of a working time in the i-th maintenance interval, whichever occurs last. At the N-th maintenance, the system is replaced rather than maintained. This article first takes up the sequential PML policy with random working time and imperfect maintenance in reliability engineering. The optimal preventive maintenance schedule that minimizes the mean cost rate of a replacement cycle is derived analytically and determined in terms of its existence and uniqueness. The proposed models provide a general framework for analyzing the maintenance policies in reliability theory.

Keywords: optimization, preventive maintenance, random working time, minimal repair, replacement, reliability

Procedia PDF Downloads 245
18939 An Agent-Based Modeling and Simulation of Human Muscle

Authors: Sina Saadati, Mohammadreza Razzazi

Abstract:

In this article, we have tried to present an agent-based model of human muscle. A suitable model of muscle is necessary for the analysis of mankind's movements. It can be used by clinical researchers who study the influence of motion sicknesses, like Parkinson's disease. It is also useful in the development of a prosthesis that receives the electromyography signals and generates force as a reaction. Since we have focused on computational efficiency in this research, the model can compute the calculations very fast. As far as it concerns prostheses, the model can be known as a charge-efficient method. In this paper, we are about to illustrate an agent-based model. Then, we will use it to simulate the human gait cycle. This method can also be done reversely in the analysis of gait in motion sicknesses.

Keywords: agent-based modeling and simulation, human muscle, gait cycle, motion sickness

Procedia PDF Downloads 83
18938 Sustainable Material Selection for Buildings: Analytic Network Process Method and Life Cycle Assessment Approach

Authors: Samira Mahmoudkelayeh, Katayoun Taghizade, Mitra Pourvaziri, Elnaz Asadian

Abstract:

Over the recent decades, depletion of resources and environmental concerns made researchers and practitioners present sustainable approaches. Since construction process consumes a great deal of both renewable and non-renewable resources, it is of great significance regarding environmental impacts. Choosing sustainable construction materials is a remarkable strategy presented in many researches and has a significant effect on building’s environmental footprint. This paper represents an assessment framework for selecting best sustainable materials for exterior enclosure in the city of Tehran based on sustainability principles (eco-friendly, cost effective and socio-cultural viable solutions). To perform a comprehensive analysis of environmental impacts, life cycle assessment, a cradle to grave approach is used. A questionnaire survey of construction experts has been conducted to determine the relative importance of criteria. Analytic Network Process (ANP) is applied as a multi-criteria decision-making method to choose sustainable material which consider interdependencies of criteria and sub-criteria. Finally, it prioritizes and aggregates relevant criteria into ultimate assessed score.

Keywords: sustainable materials, building, analytic network process, life cycle assessment

Procedia PDF Downloads 220
18937 Design and Analysis of a Combined Cooling, Heating and Power Plant for Maximum Operational Flexibility

Authors: Salah Hosseini, Hadi Ramezani, Bagher Shahbazi, Hossein Rabiei, Jafar Hooshmand, Hiwa Khaldi

Abstract:

Diversity of energy portfolio and fluctuation of urban energy demand establish the need for more operational flexibility of combined Cooling, Heat, and Power Plants. Currently, the most common way to achieve these specifications is the use of heat storage devices or wet operation of gas turbines. The current work addresses using variable extraction steam turbine in conjugation with a gas turbine inlet cooling system as an alternative way for enhancement of a CCHP cycle operating range. A thermodynamic model is developed and typical apartments building in PARDIS Technology Park (located at Tehran Province) is chosen as a case study. Due to the variable Heat demand and using excess chiller capacity for turbine inlet cooling purpose, the mentioned steam turbine and TIAC system provided an opportunity for flexible operation of the cycle and boosted the independence of the power and heat generation in the CCHP plant. It was found that the ratio of power to the heat of CCHP cycle varies from 12.6 to 2.4 depending on the City heating and cooling demands and ambient condition, which means a good independence between power and heat generation. Furthermore, selection of the TIAC design temperature is done based on the amount of ratio of power gain to TIAC coil surface area, it was found that for current cycle arrangement the TIAC design temperature of 15 C is most economical. All analysis is done based on the real data, gathered from the local weather station of the PARDIS site.

Keywords: CCHP plant, GTG, HRSG, STG, TIAC, operational flexibility, power to heat ratio

Procedia PDF Downloads 258
18936 Pantawid Pamilyang Pilipino Program, '4P’s': Breaking the Vicious Poverty Cycle

Authors: Bernadette F. De La Cruz, Susan Marie R. Dela Cruz, Georgia D. Demavibas

Abstract:

Pantawid Pamilyang Pilipino Program (4P) is a conditional cash transfer program in the Philippines pay extremely poor household-beneficiaries in order to fulfill the country’s commitment to the number one of the Millennium Development Goals (MDG). 4P's send 10,235,256 school children aged 6-18 from a total of 4,353,597 registered households with an average of two to three children. We analyze this program in Iloilo, Philippines. We show that this program can be made efficient by selecting beneficiaries and calibrating transfer for a maximum breaking of intergenerational poverty cycle of hunger, health and achieve higher education.

Keywords: ESGP-PA, millennium development goals, house hold beneficiaries, cash transfer

Procedia PDF Downloads 377
18935 Two-Warehouse Inventory Model for Deteriorating Items with Inventory-Level-Dependent Demand under Two Dispatching Policies

Authors: Lei Zhao, Zhe Yuan, Wenyue Kuang

Abstract:

This paper studies two-warehouse inventory models for a deteriorating item considering that the demand is influenced by inventory levels. The problem mainly focuses on the optimal order policy and the optimal order cycle with inventory-level-dependent demand in two-warehouse system for retailers. It considers the different deterioration rates and the inventory holding costs in owned warehouse (OW) and rented warehouse (RW), and the conditions of transportation cost, allowed shortage and partial backlogging. Two inventory models are formulated: last-in first-out (LIFO) model and first-in-first-out (FIFO) model based on the policy choices of LIFO and FIFO, and a comparative analysis of LIFO model and FIFO model is made. The study finds that the FIFO policy is more in line with realistic operating conditions. Especially when the inventory holding cost of OW is high, and there is no difference or big difference between deterioration rates of OW and RW, the FIFO policy has better applicability. Meanwhile, this paper considers the differences between the effects of warehouse and shelf inventory levels on demand, and then builds retailers’ inventory decision model and studies the factors of the optimal order quantity, the optimal order cycle and the average inventory cost per unit time. To minimize the average total cost, the optimal dispatching policies are provided for retailers’ decisions.

Keywords: FIFO model, inventory-level-dependent, LIFO model, two-warehouse inventory

Procedia PDF Downloads 255
18934 A Modular Solution for Large-Scale Critical Industrial Scheduling Problems with Coupling of Other Optimization Problems

Authors: Ajit Rai, Hamza Deroui, Blandine Vacher, Khwansiri Ninpan, Arthur Aumont, Francesco Vitillo, Robert Plana

Abstract:

Large-scale critical industrial scheduling problems are based on Resource-Constrained Project Scheduling Problems (RCPSP), that necessitate integration with other optimization problems (e.g., vehicle routing, supply chain, or unique industrial ones), thus requiring practical solutions (i.e., modular, computationally efficient with feasible solutions). To the best of our knowledge, the current industrial state of the art is not addressing this holistic problem. We propose an original modular solution that answers the issues exhibited by the delivery of complex projects. With three interlinked entities (project, task, resources) having their constraints, it uses a greedy heuristic with a dynamic cost function for each task with a situational assessment at each time step. It handles large-scale data and can be easily integrated with other optimization problems, already existing industrial tools and unique constraints as required by the use case. The solution has been tested and validated by domain experts on three use cases: outage management in Nuclear Power Plants (NPPs), planning of future NPP maintenance operation, and application in the defense industry on supply chain and factory relocation. In the first use case, the solution, in addition to the resources’ availability and tasks’ logical relationships, also integrates several project-specific constraints for outage management, like, handling of resource incompatibility, updating of tasks priorities, pausing tasks in a specific circumstance, and adjusting dynamic unit of resources. With more than 20,000 tasks and multiple constraints, the solution provides a feasible schedule within 10-15 minutes on a standard computer device. This time-effective simulation corresponds with the nature of the problem and requirements of several scenarios (30-40 simulations) before finalizing the schedules. The second use case is a factory relocation project where production lines must be moved to a new site while ensuring the continuity of their production. This generates the challenge of merging job shop scheduling and the RCPSP with location constraints. Our solution allows the automation of the production tasks while considering the rate expectation. The simulation algorithm manages the use and movement of resources and products to respect a given relocation scenario. The last use case establishes a future maintenance operation in an NPP. The project contains complex and hard constraints, like on Finish-Start precedence relationship (i.e., successor tasks have to start immediately after predecessors while respecting all constraints), shareable coactivity for managing workspaces, and requirements of a specific state of "cyclic" resources (they can have multiple states possible with only one at a time) to perform tasks (can require unique combinations of several cyclic resources). Our solution satisfies the requirement of minimization of the state changes of cyclic resources coupled with the makespan minimization. It offers a solution of 80 cyclic resources with 50 incompatibilities between levels in less than a minute. Conclusively, we propose a fast and feasible modular approach to various industrial scheduling problems that were validated by domain experts and compatible with existing industrial tools. This approach can be further enhanced by the use of machine learning techniques on historically repeated tasks to gain further insights for delay risk mitigation measures.

Keywords: deterministic scheduling, optimization coupling, modular scheduling, RCPSP

Procedia PDF Downloads 161