Search results for: auto tuning
294 Forecasting Performance Comparison of Autoregressive Fractional Integrated Moving Average and Jordan Recurrent Neural Network Models on the Turbidity of Stream Flows
Authors: Daniel Fulus Fom, Gau Patrick Damulak
Abstract:
In this study, the Autoregressive Fractional Integrated Moving Average (ARFIMA) and Jordan Recurrent Neural Network (JRNN) models were employed to model the forecasting performance of the daily turbidity flow of White Clay Creek (WCC). The two methods were applied to the log difference series of the daily turbidity flow series of WCC. The measurements of error employed to investigate the forecasting performance of the ARFIMA and JRNN models are the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE). The outcome of the investigation revealed that the forecasting performance of the JRNN technique is better than the forecasting performance of the ARFIMA technique in the mean square error sense. The results of the ARFIMA and JRNN models were obtained by the simulation of the models using MATLAB version 8.03. The significance of using the log difference series rather than the difference series is that the log difference series stabilizes the turbidity flow series than the difference series on the ARFIMA and JRNN.Keywords: auto regressive, mean absolute error, neural network, root square mean error
Procedia PDF Downloads 268293 Nature of Polaronic Hopping Conduction Mechanism in Polycrystalline and Nanocrystalline Gd0.5Sr0.5MnO3 Compounds
Authors: Soma Chatterjee, I. Das
Abstract:
In the present study, we have investigated the structural, electrical and magneto-transport properties of polycrystalline and nanocrystalline Gd0.5Sr0.5MnO3 compounds. The variation of transport properties is modified by tuning the grain size of the material. In the high-temperature semiconducting region, temperature-dependent resistivity data can be well explained by the non-adiabatic small polaron hopping (SPH) mechanism. In addition, the resistivity data for all compounds in the low-temperature paramagnetic region can also be well explained by the variable range hopping (VRH) model. The parameters obtained from SPH and VRH mechanisms are found to be reasonable. In the case of nanocrystalline compounds, there is an overlapping temperature range where both SPH and VRH models are valid simultaneously, and a new conduction mechanism - variable range hopping of small polaron s(VR-SPH) is satisfactorily valid for the whole temperature range of these compounds. However, for the polycrystalline compound, the overlapping temperature region between VRH and SPH models does not exist and the VR-SPH mechanism is not valid here. Thus, polarons play a leading role in selecting different conduction mechanisms in different temperature ranges.Keywords: electrical resistivity, manganite, small polaron hopping, variable range hopping, variable range of small polaron hopping
Procedia PDF Downloads 89292 Support Vector Regression Combined with Different Optimization Algorithms to Predict Global Solar Radiation on Horizontal Surfaces in Algeria
Authors: Laidi Maamar, Achwak Madani, Abdellah El Ahdj Abdellah
Abstract:
The aim of this work is to use Support Vector regression (SVR) combined with dragonfly, firefly, Bee Colony and particle swarm Optimization algorithm to predict global solar radiation on horizontal surfaces in some cities in Algeria. Combining these optimization algorithms with SVR aims principally to enhance accuracy by fine-tuning the parameters, speeding up the convergence of the SVR model, and exploring a larger search space efficiently; these parameters are the regularization parameter (C), kernel parameters, and epsilon parameter. By doing so, the aim is to improve the generalization and predictive accuracy of the SVR model. Overall, the aim is to leverage the strengths of both SVR and optimization algorithms to create a more powerful and effective regression model for various cities and under different climate conditions. Results demonstrate close agreement between predicted and measured data in terms of different metrics. In summary, SVM has proven to be a valuable tool in modeling global solar radiation, offering accurate predictions and demonstrating versatility when combined with other algorithms or used in hybrid forecasting models.Keywords: support vector regression (SVR), optimization algorithms, global solar radiation prediction, hybrid forecasting models
Procedia PDF Downloads 35291 Tail-Binding Effect of Kinesin-1 Auto Inhibition Using Elastic Network Model
Authors: Hyun Joon Chang, Jae In Kim, Sungsoo Na
Abstract:
Kinesin-1 (hereafter called kinesin) is a molecular motor protein that moves cargos toward the end of microtubules using the energy of adenosine triphosphate (ATP) hydrolysis. When kinesin is inactive, its tail autoinhibits the motor chain in order to prevent from reacting with the ATP by cross-linking of the tail domain to the motor domains at two positions. However, the morphological study of kinesin during autoinhibition is yet remained obscured. In this study, we report the effect of the binding site of the tail domain using the normal mode analysis of the elastic network model on kinesin in the tail-free form and tail-bind form. Considering the relationship between the connectivity of conventional network model with respect to the cutoff length and the functionality of the binding site of the tail, we revaluated the network model to observe the key role of the tail domain in its structural aspect. Contingent on the existence of the tail domain, the results suggest the morphological stability of the motor domain. Furthermore, employing the results from normal mode analysis, we have determined the strain energy of the neck linker, an essential portion of the motor domain for ATP hydrolysis. The results of the neck linker also converge to the same indication, i.e. the morphological analysis of the motor domain.Keywords: elastic network model, Kinesin-1, autoinhibition
Procedia PDF Downloads 455290 Fuzzy and Fuzzy-PI Controller for Rotor Speed of Gas Turbine
Authors: Mandar Ghodekar, Sharad Jadhav, Sangram Jadhav
Abstract:
Speed control of rotor during startup and under varying load conditions is one of the most difficult tasks of gas turbine operation. In this paper, power plant gas turbine (GE9001E) is considered for this purpose and fuzzy and fuzzy-PI rotor speed controllers are designed. The goal of the presented controllers is to keep the turbine rotor speed within predefined limits during startup condition as well as during operating condition. The fuzzy controller and fuzzy-PI controller are designed using Takagi-Sugeno method and Mamdani method, respectively. In applying the fuzzy-PI control to a gas-turbine plant, the tuning parameters (Kp and Ki) are modified online by fuzzy logic approach. Error and rate of change of error are inputs and change in fuel flow is output for both the controllers. Hence, rotor speed of gas turbine is controlled by modifying the fuel flow. The identified linear ARX model of gas turbine is considered while designing the controllers. For simulations, demand power is taken as disturbance input. It is assumed that inlet guide vane (IGV) position is fixed. In addition, the constraint on the fuel flow is taken into account. The performance of the presented controllers is compared with each other as well as with H∞ robust and MPC controllers for the same operating conditions in simulations.Keywords: gas turbine, fuzzy controller, fuzzy PI controller, power plant
Procedia PDF Downloads 334289 Intelligent Control of Doubly Fed Induction Generator Wind Turbine for Smart Grid
Authors: Amal A. Hassan, Faten H. Fahmy, Abd El-Shafy A. Nafeh, Hosam K. M. Youssef
Abstract:
Due to the growing penetration of wind energy into the power grid, it is very important to study its interactions with the power system and to provide good control technique in order to deliver high quality power. In this paper, an intelligent control methodology is proposed for optimizing the controllers’ parameters of doubly fed induction generator (DFIG) based wind turbine generation system (WTGS). The genetic algorithm (GA) and particle swarm optimization (PSO) are employed and compared for the parameters adaptive tuning of the proposed proportional integral (PI) multiple controllers of the back to back converters of the DFIG based WTGS. For this purpose, the dynamic model of WTGS with DFIG and its associated controllers is presented. Furthermore, the simulation of the system is performed using MATLAB/SIMULINK and SIMPOWERSYSTEM toolbox to illustrate the performance of the optimized controllers. Finally, this work is validated to 33-bus test radial system to show the interaction between wind distributed generation (DG) systems and the distribution network.Keywords: DFIG wind turine, intelligent control, distributed generation, particle swarm optimization, genetic algorithm
Procedia PDF Downloads 267288 Colour Quick Response Code with High Damage Resistance Capability
Authors: Minh Nguyen
Abstract:
Today, QR or Quick Response Codes are prevalent, and mobile/smart devices can efficiently read and understand them. Therefore, we can see their appearance in many areas, such as storing web pages/websites, business phone numbers, redirecting to an app download, business location, social media. The popularity of the QR Code is mainly because of its many advantages, such as it can hold a good amount of information, is small, easy to scan and read by a general RGB camera, and it can still work with some damages on its surface. However, there are still some issues. For instance, some areas needed to be kept untouched for its successful decode (e.g., the “Finder Patterns,” the “Quiet Zone,” etc.), the capability of built-in auto-correction is not robust enough, and it is not flexible enough for many application such as Augment Reality (AR). We proposed a new Colour Quick Response Code that has several advantages over the original ones: (1) there is no untouchable area, (2) it allows up to 40% of the entire code area to be damaged, (3) it is more beneficial for Augmented Reality applications, and (4) it is back-compatible and readable by available QR Code scanners such as Pyzbar. From our experience, our Colour Quick Response Code is significantly more flexible on damage compared to the original QR Code. Our code is believed to be suitable in situations where standard 2D Barcodes fail to work, such as curved and shiny surfaces, for instance, medical blood test sample tubes and syringes.Keywords: QR code, computer vision, image processing, 2D barcode
Procedia PDF Downloads 118287 Computational Determination of the Magneto Electronic Properties of Ce₁₋ₓCuₓO₂ (x=12.5%): Emerging Material for Spintronic Devices
Authors: Aicha Bouhlala, Sabah Chettibi
Abstract:
Doping CeO₂ with transition metals is an effective way of tuning its properties. In the present work, we have performed self-consistent ab-initio calculation using the full-potential linearized augmented plane-wave method (FP-LAPW), based on the density functional theory (DFT) as implemented in the Wien2k simulation code to study the structural, electronic, and magnetic properties of the compound Ce₁₋ₓCuₓO₂ (x=12.5%) fluorite type oxide and to explore the effects of dopant Cu in ceria. The exchange correlation potential has been treated using the Perdew-Burke-Eenzerhof revised of solid (PBEsol). In structural properties, the equilibrium lattice constant is observed for the compound, which exists within the value of 5.382 A°. In electronic properties, the spin-polarized electronic bandstructure elucidates the semiconductor nature of the material in both spin channels, with the compound was observed to have a narrow bandgap on the spin-down configuration (0.162 EV) and bandgap on the spin-up (2.067 EV). Hence, the doped atom Cu plays a vital role in increasing the magnetic moments of the supercell, and the value of the total magnetic moment is found to be 2.99438 μB. Therefore, the compound Cu-doped CeO₂ shows a strong ferromagnetic behavior. The predicted results propose the compound could be a good candidate for spintronics applications.Keywords: Cu-doped CeO₂, DFT, Wien2k, properties
Procedia PDF Downloads 255286 A Hybrid Algorithm for Collaborative Transportation Planning among Carriers
Authors: Elham Jelodari Mamaghani, Christian Prins, Haoxun Chen
Abstract:
In this paper, there is concentration on collaborative transportation planning (CTP) among multiple carriers with pickup and delivery requests and time windows. This problem is a vehicle routing problem with constraints from standard vehicle routing problems and new constraints from a real-world application. In the problem, each carrier has a finite number of vehicles, and each request is a pickup and delivery request with time window. Moreover, each carrier has reserved requests, which must be served by itself, whereas its exchangeable requests can be outsourced to and served by other carriers. This collaboration among carriers can help them to reduce total transportation costs. A mixed integer programming model is proposed to the problem. To solve the model, a hybrid algorithm that combines Genetic Algorithm and Simulated Annealing (GASA) is proposed. This algorithm takes advantages of GASA at the same time. After tuning the parameters of the algorithm with the Taguchi method, the experiments are conducted and experimental results are provided for the hybrid algorithm. The results are compared with those obtained by a commercial solver. The comparison indicates that the GASA significantly outperforms the commercial solver.Keywords: centralized collaborative transportation, collaborative transportation with pickup and delivery, collaborative transportation with time windows, hybrid algorithm of GA and SA
Procedia PDF Downloads 392285 Detecting Port Maritime Communities in Spain with Complex Network Analysis
Authors: Nicanor Garcia Alvarez, Belarmino Adenso-Diaz, Laura Calzada Infante
Abstract:
In recent years, researchers have shown an interest in modelling maritime traffic as a complex network. In this paper, we propose a bipartite weighted network to model maritime traffic and detect port maritime communities. The bipartite weighted network considers two different types of nodes. The first one represents Spanish ports, while the second one represents the countries with which there is major import/export activity. The flow among both types of nodes is modeled by weighting the volume of product transported. To illustrate the model, the data is segmented by each type of traffic. This will allow fine tuning and the creation of communities for each type of traffic and therefore finding similar ports for a specific type of traffic, which will provide decision-makers with tools to search for alliances or identify their competitors. The traffic with the greatest impact on the Spanish gross domestic product is selected, and the evolution of the communities formed by the most important ports and their differences between 2019 and 2009 will be analyzed. Finally, the set of communities formed by the ports of the Spanish port system will be inspected to determine global similarities between them, analyzing the sum of the membership of the different ports in communities formed for each type of traffic in particular.Keywords: bipartite networks, competition, infomap, maritime traffic, port communities
Procedia PDF Downloads 148284 State Estimation of a Biotechnological Process Using Extended Kalman Filter and Particle Filter
Authors: R. Simutis, V. Galvanauskas, D. Levisauskas, J. Repsyte, V. Grincas
Abstract:
This paper deals with advanced state estimation algorithms for estimation of biomass concentration and specific growth rate in a typical fed-batch biotechnological process. This biotechnological process was represented by a nonlinear mass-balance based process model. Extended Kalman Filter (EKF) and Particle Filter (PF) was used to estimate the unmeasured state variables from oxygen uptake rate (OUR) and base consumption (BC) measurements. To obtain more general results, a simplified process model was involved in EKF and PF estimation algorithms. This model doesn’t require any special growth kinetic equations and could be applied for state estimation in various bioprocesses. The focus of this investigation was concentrated on the comparison of the estimation quality of the EKF and PF estimators by applying different measurement noises. The simulation results show that Particle Filter algorithm requires significantly more computation time for state estimation but gives lower estimation errors both for biomass concentration and specific growth rate. Also the tuning procedure for Particle Filter is simpler than for EKF. Consequently, Particle Filter should be preferred in real applications, especially for monitoring of industrial bioprocesses where the simplified implementation procedures are always desirable.Keywords: biomass concentration, extended Kalman filter, particle filter, state estimation, specific growth rate
Procedia PDF Downloads 428283 The Impacts of Gentrification in Transit-Oriented Development on Mode Choice and Equity
Authors: Steve Apell
Abstract:
Transit-oriented development (TOD) is a popular intervention for local governments endeavoring to reduce auto-dependency and the adverse effects of sprawl. At the same time, American households such as the millennial generation, are shifting their residential preferences from the suburbs to the central city. These changes have intensified demand for TOD housing which generates high rents. This leads to displacement of low-income, transit-dependent households by more affluent middle class families. Critics argue that, the effectiveness of TOD might be compromised as newer affluent residents drive more and use transit less. However, there has not been a comprehensive study to test this hypothesis. Using census data ( 1990 – 2012) from six metropolitans areas, this research investigated if block groups within one-mile radius of TOD are gentrifying. Our findings reveal that the price of housing and number of college graduates, increased more in TODs compared to the metropolitan area. Similarly, the percentage of immigrants increased in TOD, while those of blacks and whites declined. Most importantly, TOD residents generally commuted less by car, while transit use increased in some metropolitan areas. TOD in the south of the United States registered higher cost of housing and less transit use. These findings have significant implications for the future of equitable and sustainable transportation policy.Keywords: commuting, equity, gentrification, mode choice, transit oriented development
Procedia PDF Downloads 370282 The Syllable Structure and Syllable Processes in Suhwa Arabic: An Autosegmental Analysis
Authors: Muhammad Yaqub Olatunde
Abstract:
Arabic linguistic science is redirecting its focus towards the analysis and description of social, regional, and temporal varieties of social, regional, and temporal varieties in order to show how they vary in pronunciation, vocabulary, and grammar. This is not to say that the traditional Arabic linguists did not mention scores of dialectical variations but such works focused on the geographical boundaries of the Arabic speaking countries. There is need for a comprehensive survey of various Arabic dialects within the boundary of Arabic speaking countries and outside showing both the similarities and differences of linguistic and extra linguistic elements. This study therefore examines the syllable structure and process in noun and verb in the shuwa Arabic dialect speaking in North East Nigeria [mainly in Borno state]. The work seeks to establish the facts about this phenomenon, using auto- segmental analysis. These facts are compared, where necessary; using possible alternative analysis, with what operate in other related dialects within and outside Arabic speaking countries. The interaction between epenthesis and germination in the language also generate an interesting issue. The paper then conclude that syllable structure and process in the language need to recognize the existence of complex onset and a complex rhyme producing a consonant cluster in the former and a closed syllable in the letter. This emerges as result of resyllabification, which is motivated by these processes.Keywords: Arabic, dialect, linguistics, processes, resyllabification
Procedia PDF Downloads 422281 Optimal Tuning of Linear Quadratic Regulator Controller Using a Particle Swarm Optimization for Two-Rotor Aerodynamical System
Authors: Ayad Al-Mahturi, Herman Wahid
Abstract:
This paper presents an optimal state feedback controller based on Linear Quadratic Regulator (LQR) for a two-rotor aero-dynamical system (TRAS). TRAS is a highly nonlinear multi-input multi-output (MIMO) system with two degrees of freedom and cross coupling. There are two parameters that define the behavior of LQR controller: state weighting matrix and control weighting matrix. The two parameters influence the performance of LQR. Particle Swarm Optimization (PSO) is proposed to optimally tune weighting matrices of LQR. The major concern of using LQR controller is to stabilize the TRAS by making the beam move quickly and accurately for tracking a trajectory or to reach a desired altitude. The simulation results were carried out in MATLAB/Simulink. The system is decoupled into two single-input single-output (SISO) systems. Comparing the performance of the optimized proportional, integral and derivative (PID) controller provided by INTECO, results depict that LQR controller gives a better performance in terms of both transient and steady state responses when PSO is performed.Keywords: LQR controller, optimal control, particle swarm optimization (PSO), two rotor aero-dynamical system (TRAS)
Procedia PDF Downloads 322280 Reactive Power Control with Plug-In Electric Vehicles
Authors: Mostafa Dastori, Sirus Mohammadi
Abstract:
While plug-in electric vehicles (PEVs) potentially have the capability to fulfill the energy storage needs of the electric grid, the degradation on the battery during this operation makes it less preferable by the auto manufacturers and consumers. On the other hand, the on-board chargers can also supply energy storage system applications such as reactive power compensation, voltage regulation, and power factor correction without the need of engaging the battery with the grid and thereby preserving its lifetime. It presents the design motives of single-phase on-board chargers in detail and makes a classification of the chargers based on their future vehicle-to-grid usage. The pros and cons of each different ac–dc topology are discussed to shed light on their suit- ability for reactive power support. This paper also presents and analyzes the differences between charging-only operation and capacitive reactive power operation that results in increased demand from the dc-link capacitor (more charge/discharge cycles and in- creased second harmonic ripple current). Moreover, battery state of charge is spared from losses during reactive power operation, but converter output power must be limited below its rated power rating to have the same stress on the dc-link capacitor.Keywords: energy storage system, battery unit, cost, optimal sizing, plug-in electric vehicles (PEVs), smart grid
Procedia PDF Downloads 343279 A Novel Computer-Generated Hologram (CGH) Achieved Scheme Generated from Point Cloud by Using a Lens Array
Authors: Wei-Na Li, Mei-Lan Piao, Nam Kim
Abstract:
We proposed a novel computer-generated hologram (CGH) achieved scheme, wherein the CGH is generated from a point cloud which is transformed by a mapping relationship of a series of elemental images captured from a real three-dimensional (3D) object by using a lens array. This scheme is composed of three procedures: mapping from elemental images to point cloud, hologram generation, and hologram display. A mapping method is figured out to achieve a virtual volume date (point cloud) from a series of elemental images. This mapping method consists of two steps. Firstly, the coordinate (x, y) pairs and its appearing number are calculated from the series of sub-images, which are generated from the elemental images. Secondly, a series of corresponding coordinates (x, y, z) are calculated from the elemental images. Then a hologram is generated from the volume data that is calculated by the previous two steps. Eventually, a spatial light modulator (SLM) and a green laser beam are utilized to display this hologram and reconstruct the original 3D object. In this paper, in order to show a more auto stereoscopic display of a real 3D object, we successfully obtained the actual depth data of every discrete point of the real 3D object, and overcame the inherent drawbacks of the depth camera by obtaining point cloud from the elemental images.Keywords: elemental image, point cloud, computer-generated hologram (CGH), autostereoscopic display
Procedia PDF Downloads 584278 A Distributed Cryptographically Generated Address Computing Algorithm for Secure Neighbor Discovery Protocol in IPv6
Authors: M. Moslehpour, S. Khorsandi
Abstract:
Due to shortage in IPv4 addresses, transition to IPv6 has gained significant momentum in recent years. Like Address Resolution Protocol (ARP) in IPv4, Neighbor Discovery Protocol (NDP) provides some functions like address resolution in IPv6. Besides functionality of NDP, it is vulnerable to some attacks. To mitigate these attacks, Internet Protocol Security (IPsec) was introduced, but it was not efficient due to its limitation. Therefore, SEND protocol is proposed to automatic protection of auto-configuration process. It is secure neighbor discovery and address resolution process. To defend against threats on NDP’s integrity and identity, Cryptographically Generated Address (CGA) and asymmetric cryptography are used by SEND. Besides advantages of SEND, its disadvantages like the computation process of CGA algorithm and sequentially of CGA generation algorithm are considerable. In this paper, we parallel this process between network resources in order to improve it. In addition, we compare the CGA generation time in self-computing and distributed-computing process. We focus on the impact of the malicious nodes on the CGA generation time in the network. According to the result, although malicious nodes participate in the generation process, CGA generation time is less than when it is computed in a one-way. By Trust Management System, detecting and insulating malicious nodes is easier.Keywords: NDP, IPsec, SEND, CGA, modifier, malicious node, self-computing, distributed-computing
Procedia PDF Downloads 278277 Spatial Cluster Analysis of Human Cases of Crimean Congo Hemorrhagic Fever Reported in Pakistan
Authors: Tariq Abbas, Younus Muhammad, Sayyad Aun Muhammad
Abstract:
Background : Crimean Congo hemorrhagic fever (CCHF) is a tick born viral zoonotic disease that has been notified from almost all regions of Pakistan. The aim of this study was to investigate spatial distribution of CCHF cases reported to National Institue of Health , Islamabad during year 2013. Methods : Spatial statistics tools were applied to detect extent spatial auto-correlation and clusters of the disease based on adjusted cumulative incidence per million population for each district. Results : The data analyses revealed a large multi-district cluster of high values in the uplands of Balochistan province near Afghanistan border. Conclusion : The cluster included following districts: Pishin; Qilla Abdullah; Qilla Saifullah; Quetta, Sibi; Zhob; and Ziarat. These districts may be given priority in CCHF surveillance, control programs, and further epidemiological research . The location of the cluster close to border of Afghanistan and Iran highlight importance of the findings for organizations dealing with disease at national, regional and global levels.Keywords: Crimean Congo hemorrhagic fever, Pakistan, spatial autocorrelation, clusters , adjusted cumulative incidence
Procedia PDF Downloads 412276 Data Mining of Students' Performance Using Artificial Neural Network: Turkish Students as a Case Study
Authors: Samuel Nii Tackie, Oyebade K. Oyedotun, Ebenezer O. Olaniyi, Adnan Khashman
Abstract:
Artificial neural networks have been used in different fields of artificial intelligence, and more specifically in machine learning. Although, other machine learning options are feasible in most situations, but the ease with which neural networks lend themselves to different problems which include pattern recognition, image compression, classification, computer vision, regression etc. has earned it a remarkable place in the machine learning field. This research exploits neural networks as a data mining tool in predicting the number of times a student repeats a course, considering some attributes relating to the course itself, the teacher, and the particular student. Neural networks were used in this work to map the relationship between some attributes related to students’ course assessment and the number of times a student will possibly repeat a course before he passes. It is the hope that the possibility to predict students’ performance from such complex relationships can help facilitate the fine-tuning of academic systems and policies implemented in learning environments. To validate the power of neural networks in data mining, Turkish students’ performance database has been used; feedforward and radial basis function networks were trained for this task; and the performances obtained from these networks evaluated in consideration of achieved recognition rates and training time.Keywords: artificial neural network, data mining, classification, students’ evaluation
Procedia PDF Downloads 613275 Design and Implementation of a Counting and Differentiation System for Vehicles through Video Processing
Authors: Derlis Gregor, Kevin Cikel, Mario Arzamendia, Raúl Gregor
Abstract:
This paper presents a self-sustaining mobile system for counting and classification of vehicles through processing video. It proposes a counting and classification algorithm divided in four steps that can be executed multiple times in parallel in a SBC (Single Board Computer), like the Raspberry Pi 2, in such a way that it can be implemented in real time. The first step of the proposed algorithm limits the zone of the image that it will be processed. The second step performs the detection of the mobile objects using a BGS (Background Subtraction) algorithm based on the GMM (Gaussian Mixture Model), as well as a shadow removal algorithm using physical-based features, followed by morphological operations. In the first step the vehicle detection will be performed by using edge detection algorithms and the vehicle following through Kalman filters. The last step of the proposed algorithm registers the vehicle passing and performs their classification according to their areas. An auto-sustainable system is proposed, powered by batteries and photovoltaic solar panels, and the data transmission is done through GPRS (General Packet Radio Service)eliminating the need of using external cable, which will facilitate it deployment and translation to any location where it could operate. The self-sustaining trailer will allow the counting and classification of vehicles in specific zones with difficult access.Keywords: intelligent transportation system, object detection, vehicle couting, vehicle classification, video processing
Procedia PDF Downloads 322274 Structural, Magnetic and Magnetocaloric Properties of Iron-Doped Nd₀.₆Sr₀.₄MnO₃ Perovskite
Authors: Ismail Al-Yahmadi, Abbasher Gismelseed, Fatma Al-Mammari, Ahmed Al-Rawas, Ali Yousif, Imaddin Al-Omari, Hisham Widatallah, Mohamed Elzain
Abstract:
The influence of Fe-doping on the structural, magnetic and magnetocaloric properties of Nd₀.₆Sr₀.₄FeₓMn₁₋ₓO₃ (0≤ x ≤0.5) were investigated. The samples were synthesized by auto-combustion Sol-Gel method. The phase purity, crystallinity, and the structural properties for all prepared samples were examined by X-ray diffraction. XRD refinement indicates that the samples are crystallized in the orthorhombic single-phase with Pnma space group. Temperature dependence of magnetization measurements under a magnetic applied field of 0.02 T reveals that the samples with (x=0.0, 0.1, 0.2 and 0.3) exhibit a paramagnetic (PM) to ferromagnetic (FM) transition with decreasing temperature. The Curie temperature decreased with increasing Fe content from 256 K for x =0.0 to 80 K for x =0.3 due to increasing of antiferromagnetic superexchange (SE) interaction coupling. Moreover, the magnetization as a function of applied magnetic field (M-H) curves was measured at 2 K, and 300 K. the results of such measurements confirm the temperature dependence of magnetization measurements. The magnetic entropy change|∆SM | was evaluated using Maxwell's relation. The maximum values of the magnetic entropy change |-∆SMax |for x=0.0, 0.1, 0.2, 0.3 are found to be 15.35, 5.13, 3.36, 1.08 J/kg.K for an applied magnetic field of 9 T. Our result on magnetocaloric properties suggests that the parent sample Nd₀.₆Sr₀.₄MnO₃ could be a good refrigerant for low-temperature magnetic refrigeration.Keywords: manganite perovskite, magnetocaloric effect, X-ray diffraction, relative cooling power
Procedia PDF Downloads 159273 Strap Tension Adjusting Device for Non-Invasive Positive Pressure Ventilation Mask Fitting
Authors: Yoshie Asahara, Hidekuni Takao
Abstract:
Non-invasive positive pressure ventilation (NPPV), a type of ventilation therapy, is a treatment in which a mask is attached to the patient's face and delivers gas into the mask to support breathing. The NPPV mask uses a strap, which is necessary to attach and secure the mask in the appropriate facial position, but the tensile strength of the strap is adjusted by the sensation of the hands. The strap uniformity and fine-tuning strap tension are judged by the skill of the operator and the amount felt by the finger. In the future, additional strap operation and adjustment methods will be required to meet the needs for reducing the burden on the patient’s face. In this study, we fabricated a mechanism that can measure, adjust and fix the tension of the straps. A small amount of strap tension can be adjusted by rotating the shaft. This makes it possible to control the slight strap tension that is difficult to grasp with the sense of the operator's hand. In addition, this mechanism allows the operator to control the strap while controlling the movement of the mask body. This leads to the establishment of a suitable mask fitting method for each patient. The developed mechanism enables the operation and fine reproducible adjustment of the strap tension and the mask balance, reducing the burden on the face.Keywords: balance of the mask strap, fine adjustment, film sensor, mask fitting technique, mask strap tension
Procedia PDF Downloads 238272 Trajectory Tracking of a Redundant Hybrid Manipulator Using a Switching Control Method
Authors: Atilla Bayram
Abstract:
This paper presents the trajectory tracking control of a spatial redundant hybrid manipulator. This manipulator consists of two parallel manipulators which are a variable geometry truss (VGT) module. In fact, each VGT module with 3-degress of freedom (DOF) is a planar parallel manipulator and their operational planes of these VGT modules are arranged to be orthogonal to each other. Also, the manipulator contains a twist motion part attached to the top of the second VGT module to supply the missing orientation of the endeffector. These three modules constitute totally 7-DOF hybrid (parallel-parallel) redundant spatial manipulator. The forward kinematics equations of this manipulator are obtained, then, according to these equations, the inverse kinematics is solved based on an optimization with the joint limit avoidance. The dynamic equations are formed by using virtual work method. In order to test the performance of the redundant manipulator and the controllers presented, two different desired trajectories are followed by using the computed force control method and a switching control method. The switching control method is combined with the computed force control method and genetic algorithm. In the switching control method, the genetic algorithm is only used for fine tuning in the compensation of the trajectory tracking errors.Keywords: computed force method, genetic algorithm, hybrid manipulator, inverse kinematics of redundant manipulators, variable geometry truss
Procedia PDF Downloads 347271 Performance Evaluation of Distributed Deep Learning Frameworks in Cloud Environment
Authors: Shuen-Tai Wang, Fang-An Kuo, Chau-Yi Chou, Yu-Bin Fang
Abstract:
2016 has become the year of the Artificial Intelligence explosion. AI technologies are getting more and more matured that most world well-known tech giants are making large investment to increase the capabilities in AI. Machine learning is the science of getting computers to act without being explicitly programmed, and deep learning is a subset of machine learning that uses deep neural network to train a machine to learn features directly from data. Deep learning realizes many machine learning applications which expand the field of AI. At the present time, deep learning frameworks have been widely deployed on servers for deep learning applications in both academia and industry. In training deep neural networks, there are many standard processes or algorithms, but the performance of different frameworks might be different. In this paper we evaluate the running performance of two state-of-the-art distributed deep learning frameworks that are running training calculation in parallel over multi GPU and multi nodes in our cloud environment. We evaluate the training performance of the frameworks with ResNet-50 convolutional neural network, and we analyze what factors that result in the performance among both distributed frameworks as well. Through the experimental analysis, we identify the overheads which could be further optimized. The main contribution is that the evaluation results provide further optimization directions in both performance tuning and algorithmic design.Keywords: artificial intelligence, machine learning, deep learning, convolutional neural networks
Procedia PDF Downloads 211270 Design and Implementation of LabVIEW Based Relay Autotuning Controller for Level Setup
Authors: Manoj M. Sarode, Sharad P. Jadhav, Mukesh D. Patil, Pushparaj S. Suryawanshi
Abstract:
Even though the PID controller is widely used in industrial process, tuning of PID parameters are not easy. It is a time consuming and requires expert people. Another drawback of PID controller is that process dynamics might change over time. This can happen due to variation of the process load, normal wear and tear etc. To compensate for process behavior change over time, expert users are required to recalibrate the PID gains. Implementation of model based controllers usually needs a process model. Identification of process model is time consuming job and no guaranty of model accuracy. If the identified model is not accurate, performance of the controller may degrade. Model based controllers are quite expensive and the whole procedure for the implementation is sometimes tedious. To eliminate such issues Autotuning PID controller becomes vital element. Software based Relay Feedback Autotuning Controller proves to be efficient, upgradable and maintenance free controller. In Relay Feedback Autotune controller PID parameters can be achieved with a very short span of time. This paper presents the real time implementation of LabVIEW based Relay Feedback Autotuning PID controller. It is successfully developed and implemented to control level of a laboratory setup. Its performance is analyzed for different setpoints and found satisfactorily.Keywords: autotuning, PID, liquid level control, recalibrate, labview, controller
Procedia PDF Downloads 394269 Hybrid Genetic Approach for Solving Economic Dispatch Problems with Valve-Point Effect
Authors: Mohamed I. Mahrous, Mohamed G. Ashmawy
Abstract:
Hybrid genetic algorithm (HGA) is proposed in this paper to determine the economic scheduling of electric power generation over a fixed time period under various system and operational constraints. The proposed technique can outperform conventional genetic algorithms (CGAs) in the sense that HGA make it possible to improve both the quality of the solution and reduce the computing expenses. In contrast, any carefully designed GA is only able to balance the exploration and the exploitation of the search effort, which means that an increase in the accuracy of a solution can only occure at the sacrifice of convergent speed, and vice visa. It is unlikely that both of them can be improved simultaneously. The proposed hybrid scheme is developed in such a way that a simple GA is acting as a base level search, which makes a quick decision to direct the search towards the optimal region, and a local search method (pattern search technique) is next employed to do the fine tuning. The aim of the strategy is to achieve the cost reduction within a reasonable computing time. The effectiveness of the proposed hybrid technique is verified on two real public electricity supply systems with 13 and 40 generator units respectively. The simulation results obtained with the HGA for the two real systems are very encouraging with regard to the computational expenses and the cost reduction of power generation.Keywords: genetic algorithms, economic dispatch, pattern search
Procedia PDF Downloads 444268 Evaluation and Compression of Different Language Transformer Models for Semantic Textual Similarity Binary Task Using Minority Language Resources
Authors: Ma. Gracia Corazon Cayanan, Kai Yuen Cheong, Li Sha
Abstract:
Training a language model for a minority language has been a challenging task. The lack of available corpora to train and fine-tune state-of-the-art language models is still a challenge in the area of Natural Language Processing (NLP). Moreover, the need for high computational resources and bulk data limit the attainment of this task. In this paper, we presented the following contributions: (1) we introduce and used a translation pair set of Tagalog and English (TL-EN) in pre-training a language model to a minority language resource; (2) we fine-tuned and evaluated top-ranking and pre-trained semantic textual similarity binary task (STSB) models, to both TL-EN and STS dataset pairs. (3) then, we reduced the size of the model to offset the need for high computational resources. Based on our results, the models that were pre-trained to translation pairs and STS pairs can perform well for STSB task. Also, having it reduced to a smaller dimension has no negative effect on the performance but rather has a notable increase on the similarity scores. Moreover, models that were pre-trained to a similar dataset have a tremendous effect on the model’s performance scores.Keywords: semantic matching, semantic textual similarity binary task, low resource minority language, fine-tuning, dimension reduction, transformer models
Procedia PDF Downloads 211267 High Pressure Multiphase Flow Experiments: The Impact of Pressure on Flow Patterns Using an X-Ray Tomography Visualisation System
Authors: Sandy Black, Calum McLaughlin, Alessandro Pranzitelli, Marc Laing
Abstract:
Multiphase flow structures of two-phase multicomponent fluids were experimentally investigated in a large diameter high-pressure pipeline up to 130 bar at TÜV SÜD’s National Engineering Laboratory Advanced Multiphase Facility. One of the main objectives of the experimental test campaign was to evaluate the impact of pressure on multiphase flow patterns as much of the existing information is based on low-pressure measurements. The experiments were performed in a horizontal and vertical orientation in both 4-inch and 6-inch pipework using nitrogen, ExxsolTM D140 oil, and a 6% aqueous solution of NaCl at incremental pressures from 10 bar to 130 bar. To visualise the detailed structure of the flow of the entire cross-section of the pipe, a fast response X-ray tomography system was used. A wide range of superficial velocities from 0.6 m/s to 24.0 m/s for gas and 0.04 m/s and 6.48 m/s for liquid was examined to evaluate different flow regimes. The results illustrated the suppression of instabilities between the gas and the liquid at the measurement location and that intermittent or slug flow was observed less frequently as the pressure was increased. CFD modellings of low and high-pressure simulations were able to successfully predict the likelihood of intermittent flow; however, further tuning is necessary to predict the slugging frequency. The dataset generated is unique as limited datasets exist above 100 bar and is of considerable value to multiphase flow specialists and numerical modellers.Keywords: computational fluid dynamics, high pressure, multiphase, X-ray tomography
Procedia PDF Downloads 142266 Selective and Highly Sensitive Measurement of ¹⁵NH₃ Using Photoacoustic Spectroscopy for Environmental Applications
Authors: Emily Awuor, Helga Huszar, Zoltan Bozoki
Abstract:
Isotope analysis has found numerous applications in the environmental science discipline, most common being the tracing of environmental contaminants on both regional and global scales. Many environmental contaminants contain ammonia (NH₃) since it is the most abundant gas in the atmosphere and its largest sources are from agricultural and industrial activities. NH₃ isotopes (¹⁴NH₃ and ¹⁵NH₃) are therefore important and can be used in the traceability studies of these atmospheric pollutants. The goal of the project is the construction of a photoacoustic spectroscopy system that is capable of measuring ¹⁵NH₃ isotope selectively in terms of its concentration. A further objective is for the system to be robust, easy-to-use, and automated. This is provided by using two telecommunication type near-infrared distributed feedback (DFB) diode lasers and a laser coupler as the light source in the photoacoustic measurement system. The central wavelength of the lasers in use was 1532 nm, with the tuning range of ± 1 nm. In this range, strong absorption lines can be found for both ¹⁴NH₃ and ¹⁵NH₃. For the selective measurement of ¹⁵NH₃, wavelengths were chosen where the cross effect of ¹⁴NH₃ and water vapor is negligible. We completed the calibration of the photoacoustic system, and as a result, the lowest detectable concentration was 3.32 ppm (3Ϭ) in the case of ¹⁵NH₃ and 0.44 ppm (3Ϭ) in the case of ¹⁴NH₃. The results are most useful in the environmental pollution measurement and analysis.Keywords: ammonia isotope, near-infrared DFB diode laser, photoacoustic spectroscopy, environmental monitoring
Procedia PDF Downloads 148265 JaCoText: A Pretrained Model for Java Code-Text Generation
Authors: Jessica Lopez Espejel, Mahaman Sanoussi Yahaya Alassan, Walid Dahhane, El Hassane Ettifouri
Abstract:
Pretrained transformer-based models have shown high performance in natural language generation tasks. However, a new wave of interest has surged: automatic programming language code generation. This task consists of translating natural language instructions to a source code. Despite the fact that well-known pre-trained models on language generation have achieved good performance in learning programming languages, effort is still needed in automatic code generation. In this paper, we introduce JaCoText, a model based on Transformer neural network. It aims to generate java source code from natural language text. JaCoText leverages the advantages of both natural language and code generation models. More specifically, we study some findings from state of the art and use them to (1) initialize our model from powerful pre-trained models, (2) explore additional pretraining on our java dataset, (3) lead experiments combining the unimodal and bimodal data in training, and (4) scale the input and output length during the fine-tuning of the model. Conducted experiments on CONCODE dataset show that JaCoText achieves new state-of-the-art results.Keywords: java code generation, natural language processing, sequence-to-sequence models, transformer neural networks
Procedia PDF Downloads 284