Search results for: shear reaction modulus
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4221

Search results for: shear reaction modulus

381 An Extended Domain-Specific Modeling Language for Marine Observatory Relying on Enterprise Architecture

Authors: Charbel Aoun, Loic Lagadec

Abstract:

A Sensor Network (SN) is considered as an operation of two phases: (1) the observation/measuring, which means the accumulation of the gathered data at each sensor node; (2) transferring the collected data to some processing center (e.g., Fusion Servers) within the SN. Therefore, an underwater sensor network can be defined as a sensor network deployed underwater that monitors underwater activity. The deployed sensors, such as Hydrophones, are responsible for registering underwater activity and transferring it to more advanced components. The process of data exchange between the aforementioned components perfectly defines the Marine Observatory (MO) concept which provides information on ocean state, phenomena and processes. The first step towards the implementation of this concept is defining the environmental constraints and the required tools and components (Marine Cables, Smart Sensors, Data Fusion Server, etc). The logical and physical components that are used in these observatories perform some critical functions such as the localization of underwater moving objects. These functions can be orchestrated with other services (e.g. military or civilian reaction). In this paper, we present an extension to our MO meta-model that is used to generate a design tool (ArchiMO). We propose new constraints to be taken into consideration at design time. We illustrate our proposal with an example from the MO domain. Additionally, we generate the corresponding simulation code using our self-developed domain-specific model compiler. On the one hand, this illustrates our approach in relying on Enterprise Architecture (EA) framework that respects: multiple views, perspectives of stakeholders, and domain specificity. On the other hand, it helps reducing both complexity and time spent in design activity, while preventing from design modeling errors during porting this activity in the MO domain. As conclusion, this work aims to demonstrate that we can improve the design activity of complex system based on the use of MDE technologies and a domain-specific modeling language with the associated tooling. The major improvement is to provide an early validation step via models and simulation approach to consolidate the system design.

Keywords: smart sensors, data fusion, distributed fusion architecture, sensor networks, domain specific modeling language, enterprise architecture, underwater moving object, localization, marine observatory, NS-3, IMS

Procedia PDF Downloads 153
380 Preparation of Silver and Silver-Gold, Universal and Repeatable, Surface Enhanced Raman Spectroscopy Platforms from SERSitive

Authors: Pawel Albrycht, Monika Ksiezopolska-Gocalska, Robert Holyst

Abstract:

Surface Enhanced Raman Spectroscopy (SERS) is a technique of growing importance not only in purely scientific research related to analytical chemistry. It finds more and more applications in broadly understood testing - medical, forensic, pharmaceutical, food - and everywhere works perfectly, on one condition that SERS substrates used for testing give adequate enhancement, repeatability, and homogeneity of SERS signal. This is a problem that has existed since the invention of this technique. Some laboratories use as SERS amplifiers colloids with silver or gold nanoparticles, others form rough silver or gold surfaces, but results are generally either weak or unrepeatable. Furthermore, these structures are very often highly specific - they amplify the signal only of a small group of compounds. It means that they work with some kinds of analytes but only with those which were used at a developer’s laboratory. When it comes to research on different compounds, completely new SERS 'substrates' are required. That underlay our decision to develop universal substrates for the SERS spectroscopy. Generally, each compound has different affinity for both silver and gold, which have the best SERS properties, and that's what depends on what signal we get in the SERS spectrum. Our task was to create the platform that gives a characteristic 'fingerprint' of the largest number of compounds with very high repeatability - even at the expense of the intensity of the enhancement factor (EF) (possibility to repeat research results is of the uttermost importance). As specified above SERS substrates are offered by SERSitive company. Applied method is based on cyclic potentiodynamic electrodeposition of silver or silver-gold nanoparticles on the conductive surface of ITO-coated glass at controlled temperature of the reaction solution. Silver nanoparticles are supplied in the form of silver nitrate (AgNO₃, 10 mM), gold nanoparticles are derived from tetrachloroauric acid (10 mM) while sodium sulfite (Na₂O₃, 5 mM) is used as a reductor. To limit and standardize the size of the SERS surface on which nanoparticles are deposited, photolithography is used. We secure the desired ITO-coated glass surface, and then etch the unprotected ITO layer which prevents nanoparticles from settling at these sites. On the prepared surface, we carry out the process described above, obtaining SERS surface with nanoparticles of sizes 50-400 nm. The SERSitive platforms present highly sensitivity (EF = 10⁵-10⁶), homogeneity and repeatability (70-80%).

Keywords: electrodeposition, nanoparticles, Raman spectroscopy, SERS, SERSitive, SERS platforms, SERS substrates

Procedia PDF Downloads 133
379 Men’s Attendance in Labour and Birth Room: A Choice and Coercion in Childbirth

Authors: A/Prof Marjan Khajehei

Abstract:

In the last century, the role of fathers in the birth has changed exponentially. Before the 1970s, the principal view was that birth was a female business and not a man’s place. Changing cultural and professional attitudes around the emotional bond between a man and a woman, family structure and the more proactive involved role of men in the family have encouraged fathers’ attendance at birth. There is evidence that fathers’ support can make birthing less traumatic for some women and can make couples closer. This has made some clinicians to believe the fathers should be more involved throughout the birth process. Some clinicians even go further and ask the fathers to watch the medical procedures, such as inserting vaginal speculum, forceps or vacuum, episiotomy and stitches. Although birth can unfold like a beautiful picture captured by birth photographers, with fathers massaging women’s backs by candle light and the miraculous moment of birth, it can be overshadowed by less attractive images of cervical mucous, emptying bowels and the invasive medical procedures. What happens in the birth room and the fathers’ reaction to the graphic experience of birthing can be unpredictable. Despite the fact that most men are absolutely thrilled to be in the delivery room, for some men, a very intimate body part can become completely desexualised, and they can experience psychological and sexual scarring. They see someone they cherish dramatically sliced open and can then associate their partners with a disturbing scene, and it can dramatically affect their relationships. While most women want the expectant fathers by their side for this life-changing event, not all of them may be happy for their partners to watch the perineum to be cut or stitched or when large blades of forceps are inserted inside the vagina. Anecdotal reports have shown that consent is not sought from the labouring women as to whether they want their partners to watch these procedures. The majority of research1, 2, 3 focuses on men’s and women’s retrospective attitudes towards their birth experience. However, the effect of witnessing invasive procedures during childbirth on a man's attraction to his partner, while she is most vulnerable, and also an increased risk of post-traumatic stress disorder in fathers have not been widely investigated. There is a lack of sufficient research investigating whether women need to be asked for their consent before inviting their partners to closely watch medical procedures during childbirth. Future research is required to provide a basis for better awareness and involve the consumers to understanding the men’s and women’s experience and their expectations for labour and birth.

Keywords: birth, childbirth, father, labour, men, women

Procedia PDF Downloads 108
378 Impact of COVID-19 Disease on Reproductive Health in Women

Authors: Mikailzade Parvin, Gurbanova Jamila, Alizade Samaya, Hasanova Afat

Abstract:

It is known that in March 2020, the World Health Organization (WHO) declared a global pandemic of the 2019 coronovirus disease COVID-19, caused by the severe acute respiratory syndrome coronovirus (SARS-CoV-2). In this period, ensuring the safety of pregnancy and childbirth has become one of the necessary issues. The measures taken in this direction naturally consisted of strengthening and improving preventive measures among pregnant women. It should be noted that the lethality of SARS-CoV-2 infection among women reached 25%. The relevance of studying the effect of COVID-19 on reproductive health in women is due to its wide spread worldwide, severe clinical course, and the occurrence of numerous complications or lethality. It is of urgent importance to study the impact of the mentioned coronavirus infection on the health of pregnant women and the serious complications caused by it.Taking these into account, 230 pregnant women infected with the COVID-19 virus infection were registered. The average age of the pregnant women included in the study was: 29.24±6.0. The diagnosis of corona virus infection was made on the basis of polymerase chain reaction (PCR), serological tests (IgG, IgM). In 57.4% of cases, bilateral pneumonia was recorded in pregnant women and confirmed on the basis of radiological (RH) examination. RH examination revealed pneumonia with infiltrate in the lungs. Among clinical symptoms in pregnant women infected with COVID-19 virus infection: in 86 (37.4%) cases, symptoms such as high fever (t-39.0oC), shortness of breath, fatigue, and hypoxia were noted in pregnant women. A decrease in SpO2 to a minimal level was recorded. Laboratory-instrumental examinations were carried out. The obtained results showed: the average limit of D-dimer was 0.8±0.5; prothrombin time 13.2±1.1 seconds; INR 0.98±0.08, prothrombin index 104.3±19.5%, EHS - 34.8±13.6 mm/s. It should be noted that respiratory distress syndrome (RDS), premature birth, malformed and extremely malformed newborns, asphyxia or hypoxia have been reported in infants born to pregnant women infected with the coronavirus disease.Thus, from the obtained indicators, it is known that pregnant women infected with the virus have a high risk of serious illness and death for both themselves and their babies. It has been proven that the majority of babies born to SARS-CoV-2 positive mothers have a negative impact on their health.

Keywords: Covid 19, reproductive health, preqnancy, premature birth

Procedia PDF Downloads 61
377 Anti-Inflammatory Effect of Carvedilol 1% Ointment in Topical Application to the Animal Model

Authors: Berina Pilipović, Saša Pilipović, Maja Pašić-Kulenović

Abstract:

Inflammation is the body's response to impaired homeostasis caused by infection, injury or trauma resulting in systemic and local effects. Inflammation causes the body's response to injury and is characterized by a series of events including inflammatory response, response to pain receptors and the recovery process. Inflammation can be acute and chronic. The inflammatory response is described in three different phases. Free radical is an atom or molecule that has the unpaired electron and is therefore generally very reactive chemical species. Biologically important example of reaction with free radicals is called Lipid peroxidation (LP). Lipid peroxidation reactions occur in biological membranes, and if at the outset is not stopped with the action of antioxidants, it will bring damage to the membrane, which results in partial or complete loss of their physiological functions. Calcium antagonists and beta-adrenergic receptor antagonists are known drugs, and for many years and widely used in the treatment of cardiovascular diseases. Some of these compounds also show antioxidant activity. The mechanism of antioxidant activities of calcium antagonists and beta-blockers is unknown, since their structure varies widely. This research investigated the possible local anti-inflammatory activity of ointments containing 1% carvedilol in the white petrolatum USP. Ear inflammation was induced by 3% croton oil acetone solution, in quantity of 10 µl on both mouse ears. Albino Swiss mouse (n = 8) are treated with 2.5 mg/ear ointment, and control group was treated on the same way as previous with hydrocortisone 1% ointment (2.5 mg/ear). The other ear of the same animal was used as control one. Ointments were administered once per day, on the left ear. After treatment, ears were observed for three days. After three days, we measured mass (mg) of 6 mm ear punch of treated and controlled ears. The results of testing anti-inflammatory effects of ointments with carvedilol in the mouse ear model show stronger observed effect than ointment with 1% hydrocortisone in the same basis. Identical results were confirmed by the difference between the mass of 6 mm ears punch. The results were also confirmed by histological examination. Ointments with carvedilol showed significant reduction of the inflammation process caused by croton oil on the mouse inflammation model.

Keywords: antioxidant, carvedilol, inflammation, mouse ear

Procedia PDF Downloads 215
376 Physicochemical-Mechanical, Thermal and Rheological Properties Analysis of Pili Tree (Canarium Ovatum) Resin as Aircraft Integral Fuel Tank Sealant

Authors: Mark Kennedy, E. Bantugon, Noruane A. Daileg

Abstract:

Leaks arising from aircraft fuel tanks is a protracted problem for the aircraft manufacturers, operators, and maintenance crews. It principally arises from stress, structural defects, or degraded sealants as the aircraft age. It can be ignited by different sources, which can result in catastrophic flight and consequences, exhibiting a major drain both on time and budget. In order to mitigate and eliminate this kind of problem, the researcher produced an experimental sealant having a base material of natural tree resin, the Pili Tree Resin. Aside from producing an experimental sealant, the main objective of this research is to analyze its physical, chemical, mechanical, thermal, and rheological properties, which is beneficial and effective for specific aircraft parts, particularly the integral fuel tank. The experimental method of research was utilized in this study since it is a product invention. This study comprises two parts, specifically the Optimization Process and the Characterization Process. In the Optimization Process, the experimental sealant was subjected to the Flammability Test, an important test and consideration according to 14 Code of Federal Regulation Appendix N, Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis, to get the most suitable formulation. Followed by the Characterization Process, where the formulated experimental sealant has undergone thirty-eight (38) different standard testing including Organoleptic, Instrumental Color Measurement Test, Smoothness of Appearance Test, Miscibility Test, Boiling Point Test, Flash Point Test, Curing Time, Adhesive Test, Toxicity Test, Shore A Hardness Test, Compressive Strength, Shear Strength, Static Bending Strength, Tensile Strength, Peel Strength Test, Knife Test, Adhesion by Tape Test, Leakage Test), Drip Test, Thermogravimetry-Differential Thermal Analysis (TG-DTA), Differential Scanning Calorimetry, Calorific Value, Viscosity Test, Creep Test, and Anti-Sag Resistance Test to determine and analyze the five (5) material properties of the sealant. The numerical values of the mentioned tests are determined using product application, testing, and calculation. These values are then used to calculate the efficiency of the experimental sealant. Accordingly, this efficiency is the means of comparison between the experimental and commercial sealant. Based on the results of the different standard testing conducted, the experimental sealant exceeded all the data results of the commercial sealant. This result shows that the physicochemical-mechanical, thermal, and rheological properties of the experimental sealant are far more effective as an aircraft integral fuel tank sealant alternative in comparison to the commercial sealant. Therefore, Pili Tree possesses a new role and function: a source of ingredients in sealant production.

Keywords: Aircraft Integral Fuel Tank, Physicochemi-mechanical, Pili Tree Resin, Properties, Rheological, Sealant, Thermal

Procedia PDF Downloads 257
375 Evaluating the Potential of a Fast Growing Indian Marine Cyanobacterium by Reconstructing and Analysis of a Genome Scale Metabolic Model

Authors: Ruchi Pathania, Ahmad Ahmad, Shireesh Srivastava

Abstract:

Cyanobacteria is a promising microbe that can capture and convert atmospheric CO₂ and light into valuable industrial bio-products like biofuels, biodegradable plastics, etc. Among their most attractive traits are faster autotrophic growth, whole year cultivation using non-arable land, high photosynthetic activity, much greater biomass and productivity and easy for genetic manipulations. Cyanobacteria store carbon in the form of glycogen which can be hydrolyzed to release glucose and fermented to form bioethanol or other valuable products. Marine cyanobacterial species are especially attractive for countries with scarcity of freshwater. We recently identified a marine native cyanobacterium Synechococcus sp. BDU 130192 which has good growth rate and high level of polyglucans accumulation compared to Synechococcus PCC 7002. In this study, firstly we sequenced the whole genome and the sequences were annotated using the RAST server. Genome scale metabolic model (GSMM) was reconstructed through COBRA toolbox. GSMM is a computational representation of the metabolic reactions and metabolites of the target strain. GSMMs construction through the application of Flux Balance Analysis (FBA), which uses external nutrient uptake rates and estimate steady state intracellular and extracellular reaction fluxes, including maximization of cell growth. The model, which we have named isyn942, includes 942 reactions and 913 metabolites having 831 metabolic, 78 transport and 33 exchange reactions. The phylogenetic tree obtained by BLAST search revealed that the strain was a close relative of Synechococcus PCC 7002. The flux balance analysis (FBA) was applied on the model iSyn942 to predict the theoretical yields (mol product produced/mol CO₂ consumed) for native and non-native products like acetone, butanol, etc. under phototrophic condition by applying metabolic engineering strategies. The reported strain can be a viable strain for biotechnological applications, and the model will be helpful to researchers interested in understanding the metabolism as well as to design metabolic engineering strategies for enhanced production of various bioproducts.

Keywords: cyanobacteria, flux balance analysis, genome scale metabolic model, metabolic engineering

Procedia PDF Downloads 137
374 Structure and Magnetic Properties of M-Type Sr-Hexaferrite with Ca, La Substitutions

Authors: Eun-Soo Lim, Young-Min Kang

Abstract:

M-type Sr-hexaferrite (SrFe₁₂O₁₉) have been studied during the past decades because it is the most utilized materials in permanent magnets due to their low price, outstanding chemical stability, and appropriate hard magnetic properties. Many attempts have been made to improve the intrinsic magnetic properties of M-type Sr-hexaferrites (SrM), such as by improving the saturation magnetization (MS) and crystalline anisotropy by cation substitution. It is well proved that the Ca-La-Co substitutions are one of the most successful approaches, which lead to a significant enhancement in the crystalline anisotropy without reducing MS, and thus the Ca-La-Co-doped SrM have been commercialized in high-grade magnet products. In this research, the effect of respective doping of Ca and La into the SrM lattices were studied with assumptions that these elements could substitute both of Fe and Sr sites. The hexaferrite samples of stoichiometric SrFe₁₂O₁₉ (SrM) and the Ca substituted SrM with formulae of Sr₁₋ₓCaₓFe₁₂Oₐ (x = 0.1, 0.2, 0.3, 0.4) and SrFe₁₂₋ₓCaₓOₐ (x = 0.1, 0.2, 0.3, 0.4), and also La substituted SrM of Sr₁₋ₓLaₓFe₁₂Oₐ (x = 0.1, 0.2, 0.3, 0.4) and SrFe₁₂₋ₓLaₓOₐ (x = 0.1, 0.2, 0.3, 0.4) were prepared by conventional solid state reaction processes. X-ray diffraction (XRD) with a Cu Kα radiation source (λ=0.154056 nm) was used for phase analysis. Microstructural observation was conducted with a field emission scanning electron microscopy (FE-SEM). M-H measurements were performed using a vibrating sample magnetometer (VSM) at 300 K. Almost pure M-type phase could be obtained in the all series of hexaferrites calcined at > 1250 ºC. Small amount of Fe₂O₃ phases were detected in the XRD patterns of Sr₁₋ₓCaₓFe₁₂Oₐ (x = 0.2, 0.3, 0.4) and Sr₁₋ₓLaₓFe₁₂Oₐ (x = 0.1, 0.2, 0.3, 0.4) samples. Also, small amount of unidentified secondary phases without the Fe₂O₃ phase were found in the samples of SrFe₁₂₋ₓCaₓOₐ (x = 0.4) and SrFe₁₂₋ₓLaₓOₐ (x = 0.3, 0.4). Although the Ca substitution (x) into SrM structure did not exhibit a clear tendency in the cell parameter change in both series of samples, Sr₁₋ₓCaₓFe₁₂Oₐ and SrFe₁₂₋ₓCaₓOₐ , the cell volume slightly decreased with doping of Ca in the Sr₁₋ₓCaₓFe₁₂Oₐ samples and increased in the SrFe₁₂₋ₓCaₓOₐ samples. Considering relative ion sizes between Sr²⁺ (0.113 nm), Ca²⁺ (0.099 nm), Fe³⁺ (0.064 nm), these results imply that the Ca substitutes both of Sr and Fe in the SrM. A clear tendency of cell parameter change was observed in case of La substitution into Sr site of SrM ( Sr₁₋ₓLaₓFe₁₂Oₐ); the cell volume decreased with increase of x. It is owing to the similar but smaller ion size of La³⁺ (0.106 nm) than that of Sr²⁺. In case of SrFe₁₂₋ₓLaₓOₐ, the cell volume first decreased at x = 0.1 and then remained almost constant with increase of x from 0.2 to 0.4. These results mean that La only substitutes Sr site in the SrM structure. Besides, the microstructure and magnetic properties of these samples, and correlation between them will be revealed.

Keywords: M-type hexaferrite, substitution, cell parameter, magnetic properties

Procedia PDF Downloads 188
373 Temperamental Determinants of Eye-Hand Coordination Formation in the Special Aerial Gymnastics Instruments (SAGI)

Authors: Zdzisław Kobos, Robert Jędrys, Zbigniew Wochyński

Abstract:

Motor activity and good health are sine qua non determinants of a proper practice of the profession, especially aviation. Therefore, candidates to the aviation are selected according their psychomotor ability by both specialist medical commissions. Moreover, they must past an examination of the physical fitness. During the studies in the air force academy, eye-hand coordination is formed in two stages. The future aircraft pilots besides all-purpose physical education must practice specialist training on SAGI. Training includes: looping, aerowheel, and gyroscope. Aim of the training on the above listed apparatuses is to form eye-hand coordination during the tasks in the air. Such coordination is necessary to perform various figures in the real flight. Therefore, during the education of the future pilots, determinants of the effective ways of this important parameter of the human body functioning are sought for. Several studies of the sport psychology indicate an important role of the temperament as a factor determining human behavior during the task performance and acquiring operating skills> Polish psychologist Jan Strelau refers to the basic, relatively constant personality features which manifest themselves in the formal characteristics of the human behavior. Temperament, being initially determined by the inborn physiological mechanisms, changes in the course of maturation and some environmental factors and concentrates on the energetic level and reaction characteristics in time. Objectives. This study aimed at seeking a relationship between temperamental features and eye-hand coordination formation during training on SAGI. Material and Methods: Group of 30 students of pilotage was examined in two situations. The first assessment of the eye-hand coordination level was carried out before the beginning of a 30-hour training on SAGI. The second assessment was carried out after training completion. Training lasted for 2 hours once a week. Temperament was evaluated with The Formal Characteristics of Behavior − Temperament Inventory (FCB-TI) developed by Bogdan Zawadzki and Jan Strelau. Eye-hand coordination was assessed with a computer version of the Warsaw System of Psychological Tests. Results: It was found that the training on SAGI increased the level of eye-hand coordination in the examined students. Conclusions: Higher level of the eye-hand coordination was obtained after completion of the training. Moreover, a relationship between eye-hand coordination level and selected temperamental features was statistically significant.

Keywords: temperament, eye-hand coordination, pilot, SAGI

Procedia PDF Downloads 423
372 Quantum Chemical Investigation of Hydrogen Isotopes Adsorption on Metal Ion Functionalized Linde Type A and Faujasite Type Zeolites

Authors: Gayathri Devi V, Aravamudan Kannan, Amit Sircar

Abstract:

In the inner fuel cycle system of a nuclear fusion reactor, the Hydrogen Isotopes Removal System (HIRS) plays a pivoted role. It enables the effective extraction of the hydrogen isotopes from the breeder purge gas which helps to maintain the tritium breeding ratio and sustain the fusion reaction. One of the components of HIRS, Cryogenic Molecular Sieve Bed (CMSB) columns with zeolites adsorbents are considered for the physisorption of hydrogen isotopes at 1 bar and 77 K. Even though zeolites have good thermal stability and reduced activation properties making them ideal for use in nuclear reactor applications, their modest capacity for hydrogen isotopes adsorption is a cause of concern. In order to enhance the adsorbent capacity in an informed manner, it is helpful to understand the adsorption phenomena at the quantum electronic structure level. Physicochemical modifications of the adsorbent material enhances the adsorption capacity through the incorporation of active sites. This may be accomplished through the incorporation of suitable metal ions in the zeolite framework. In this work, molecular hydrogen isotopes adsorption on the active sites of functionalized zeolites are investigated in detail using Density Functional Theory (DFT) study. This involves the utilization of hybrid Generalized Gradient Approximation (GGA) with dispersion correction to account for the exchange and correlation functional of DFT. The electronic energies, adsorption enthalpy, adsorption free energy, Highest Occupied Molecular Orbital (HOMO), Lowest Unoccupied Molecular Orbital (LUMO) energies are computed on the stable 8T zeolite clusters as well as the periodic structure functionalized with different active sites. The characteristics of the dihydrogen bond with the active metal sites and the isotopic effects are also studied in detail. Validation studies with DFT will also be presented for adsorption of hydrogen on metal ion functionalized zeolites. The ab-inito screening analysis gave insights regarding the mechanism of hydrogen interaction with the zeolites under study and also the effect of the metal ion on adsorption. This detailed study provides guidelines for selection of the appropriate metal ions that may be incorporated in the zeolites framework for effective adsorption of hydrogen isotopes in the HIRS.

Keywords: adsorption enthalpy, functionalized zeolites, hydrogen isotopes, nuclear fusion, physisorption

Procedia PDF Downloads 159
371 Introducing an Innovative Structural Fuse for Creation of Repairable Buildings with See-Saw Motion during Earthquake and Investigating It by Nonlinear Finite Element Modeling

Authors: M. Hosseini, N. Ghorbani Amirabad, M. Zhian

Abstract:

Seismic design codes accept structural and nonstructural damages after the sever earthquakes (provided that the building is prevented from collapse), so that in many cases demolishing and reconstruction of the building is inevitable, and this is usually very difficult, costly and time consuming. Therefore, designing and constructing of buildings in such a way that they can be easily repaired after earthquakes, even major ones, is quite desired. For this purpose giving the possibility of rocking or see-saw motion to the building structure, partially or as a whole, has been used by some researchers in recent decade .the central support which has a main role in creating the possibility of see-saw motion in the building’s structural system. In this paper, paying more attention to the key role of the central fuse and support, an innovative energy dissipater which can act as the central fuse and support of the building with seesaw motion is introduced, and the process of reaching an optimal geometry for that by using finite element analysis is presented. Several geometric shapes were considered for the proposed central fuse and support. In each case the hysteresis moment rotation behavior of the considered fuse were obtained under simultaneous effect of vertical and horizontal loads, by nonlinear finite element analyses. To find the optimal geometric shape, the maximum plastic strain value in the fuse body was considered as the main parameter. The rotational stiffness of the fuse under the effect of acting moments is another important parameter for finding the optimum shape. The proposed fuse and support can be called Yielding Curved Bars and Clipped Hemisphere Core (YCB&CHC or more briefly YCB) energy dissipater. Based on extensive nonlinear finite element analyses it was found out the using rectangular section for the curved bars gives more reliable results. Then, the YCB energy dissipater with the optimal shape was used in a structural model of a 12 story regular building as its central fuse and support to give it the possibility of seesaw motion, and its seismic responses were compared to those of a the building in the fixed based conditions, subjected to three-components acceleration of several selected earthquakes including Loma Prieta, Northridge, and Park Field. In building with see-saw motion some simple yielding-plate energy dissipaters were also used under circumferential columns.The results indicated that equipping the buildings with central and circumferential fuses result in remarkable reduction of seismic responses of the building, including the base shear, inter story drift, and roof acceleration. In fact by using the proposed technique the plastic deformations are concentrated in the fuses in the lowest story of the building, so that the main body of the building structure remains basically elastic, and therefore, the building can be easily repaired after earthquake.

Keywords: rocking mechanism, see-saw motion, finite element analysis, hysteretic behavior

Procedia PDF Downloads 391
370 Synthesis and Characterization of LiCoO2 Cathode Material by Sol-Gel Method

Authors: Nur Azilina Abdul Aziz, Tuti Katrina Abdullah, Ahmad Azmin Mohamad

Abstract:

Lithium-transition metals and some of their oxides, such as LiCoO2, LiMn2O2, LiFePO4, and LiNiO2 have been used as cathode materials in high performance lithium-ion rechargeable batteries. Among the cathode materials, LiCoO2 has potential to been widely used as a lithium-ion battery because of its layered crystalline structure, good capacity, high cell voltage, high specific energy density, high power rate, low self-discharge, and excellent cycle life. This cathode material has been widely used in commercial lithium-ion batteries due to its low irreversible capacity loss and good cycling performance. However, there are several problems that interfere with the production of material that has good electrochemical properties, including the crystallinity, the average particle size and particle size distribution. In recent years, synthesis of nanoparticles has been intensively investigated. Powders prepared by the traditional solid-state reaction have a large particle size and broad size distribution. On the other hand, solution method can reduce the particle size to nanometer range and control the particle size distribution. In this study, LiCoO2 was synthesized using the sol–gel preparation method, which Lithium acetate and Cobalt acetate were used as reactants. The stoichiometric amounts of the reactants were dissolved in deionized water. The solutions were stirred for 30 hours using magnetic stirrer, followed by heating at 80°C under vigorous stirring until a viscous gel was formed. The as-formed gel was calcined at 700°C for 7 h under a room atmosphere. The structural and morphological analysis of LiCoO2 was characterized using X-ray diffraction and Scanning electron microscopy. The diffraction pattern of material can be indexed based on the α-NaFeO2 structure. The clear splitting of the hexagonal doublet of (006)/(102) and (108)/(110) in this patterns indicates materials are formed in a well-ordered hexagonal structure. No impurity phase can be seen in this range probably due to the homogeneous mixing of the cations in the precursor. Furthermore, SEM micrograph of the LiCoO2 shows the particle size distribution is almost uniform while particle size is between 0.3-0.5 microns. In conclusion, LiCoO2 powder was successfully synthesized using the sol–gel method. LiCoO2 showed a hexagonal crystal structure. The sample has been prepared clearly indicate the pure phase of LiCoO2. Meanwhile, the morphology of the sample showed that the particle size and size distribution of particles is almost uniform.

Keywords: cathode material, LiCoO2, lithium-ion rechargeable batteries, Sol-Gel method

Procedia PDF Downloads 344
369 Rhizospheric Oxygen Release of Hydroponically Grown Wetland Macrophytes as Passive Source for Cathodic Reduction in Microbial Fuel Cell

Authors: Chabungbam Niranjit Khuman, Makarand Madhao Ghangrekar, Arunabha Mitra

Abstract:

The cost of aeration is one of the limiting factors in the upscaling of microbial fuel cells (MFC) for field-scale applications. Wetland macrophytes have the ability to release oxygen into the water to maintain aerobic conditions in their root zone. In this experiment, the efficacy of rhizospheric oxygen release of wetland macrophytes as a source of oxygen in the cathodic chamber of MFC was conducted. The experiment was conducted in an MFC consisting of a three-liter anodic chamber made of ceramic cylinder and a 27 L cathodic chamber. Untreated carbon felts were used as electrodes (i.e., anode and cathode) and connected to an external load of 100 Ω using stainless steel wire. Wetland macrophytes (Canna indica) were grown in the cathodic chamber of the MFC in a hydroponic fashion using a styrofoam sheet (termed as macrophytes assisted-microbial fuel cell, M-MFC). The catholyte (i.e., water) in the M-MFC had negligible contact with atmospheric air due to the styrofoam sheet used for maintaining the hydroponic condition. There was no mixing of the catholyte in the M-MFC. Sucrose based synthetic wastewater having chemical oxygen demand (COD) of 3000 mg/L was fed into the anodic chamber of the MFC in fed-batch mode with a liquid retention time of four days. The C. indica thrived well throughout the duration of the experiment without much care. The average dissolved oxygen (DO) concentration and pH value in the M-MFC were 3.25 mg/L and 7.07, respectively, in the catholyte. Since the catholyte was not in contact with air, the DO in the catholyte might be considered as solely liberated from the rhizospheric oxygen release of C. indica. The maximum COD removal efficiency of M-MFC observed during the experiment was 76.9%. The inadequacy of terminal electron acceptor in the cathodic chamber in M-MFC might have hampered the electron transfer, which in turn, led to slower specific microbial activity, thereby resulting in lower COD removal efficiency than the traditional MFC with aerated catholyte. The average operating voltage (OV) and open-circuit voltage (OCV) of 294 mV and 594 mV, respectively, were observed in M-MFC. The maximum power density observed during polarization was 381 mW/m³, and the maximum sustainable power density observed during the experiment was 397 mW/m³ in M-MFC. The maximum normalized energy recovery and coulombic efficiency of 38.09 Wh/m³ and 1.27%, respectively, were observed. Therefore, it was evidenced that rhizospheric oxygen release of wetland macrophytes (C. indica) was capable of sustaining the cathodic reaction in MFC for field-scale applications.

Keywords: hydroponic, microbial fuel cell, rhizospheric oxygen release, wetland macrophytes

Procedia PDF Downloads 111
368 Synthesis of Porphyrin-Functionalized Beads for Flow Cytometry

Authors: William E. Bauta, Jennifer Rebeles, Reggie Jacob

Abstract:

Porphyrins are noteworthy in biomedical science for their cancer tissue accumulation and photophysical properties. The preferential accumulation of some porphyrins in cancerous tissue has been known for many years. This, combined with their characteristic photophysical and photochemical properties, including their strong fluorescence and their ability to generate reactive oxygen species in vivo upon laser irradiation, has led to much research into the application of porphyrins as cancer diagnostic and therapeutic agents. Porphyrins have been used as dyes to detect cancer cells both in vivo and, less commonly, in vitro. In one example, human sputum samples from lung cancer patients and patients without the disease were dissociated and stained with the porphyrin TCPP (5,10,15,20-tetrakis-(4-carboxyphenyl)-porphine). Cells were analyzed by flow cytometry. Cancer samples were identified by their higher TCPP fluorescence intensity relative to the no-cancer controls. However, quantitative analysis of fluorescence in cell suspensions stained with multiple fluorophores requires particles stained with each of the individual fluorophores as controls. Fluorescent control particles must be compatible in size with flow cytometer fluidics and have favorable hydrodynamic properties in suspension. They must also display fluorescence comparable to the cells of interest and be stable upon storage amine-functionalized spherical polystyrene beads in the 5 to 20-micron diameter range that was reacted with TCPP and EDC in aqueous pH six buffer overnight to form amide bonds. Beads were isolated by centrifugation and tested by flow cytometry. The 10-micron amine-functionalized beads displayed the best combination of fluorescence intensity and hydrodynamic properties, such as lack of clumping and remaining in suspension during the experiment. These beads were further optimized by varying the stoichiometry of EDC and TCPP relative to the amine. The reaction was accompanied by the formation of a TCPP-related particulate, which was removed, after bead centrifugation, using a microfiltration process. The resultant TCPP-functionalized beads were compatible with flow cytometry conditions and displayed a fluorescence comparable to that of stained cells, which allowed their use as fluorescence standards. The beads were stable in refrigerated storage in the dark for more than eight months. This work demonstrates the first preparation of porphyrin-functionalized flow cytometry control beads.

Keywords: tetraaryl porphyrin, polystyrene beads, flow cytometry, peptide coupling

Procedia PDF Downloads 70
367 Comparative Appraisal of Polymeric Matrices Synthesis and Characterization Based on Maleic versus Itaconic Anhydride and 3,9-Divinyl-2,4,8,10-Tetraoxaspiro[5.5]-Undecane

Authors: Iordana Neamtu, Aurica P. Chiriac, Loredana E. Nita, Mihai Asandulesa, Elena Butnaru, Nita Tudorachi, Alina Diaconu

Abstract:

In the last decade, the attention of many researchers is focused on the synthesis of innovative “intelligent” copolymer structures with great potential for different uses. This considerable scientific interest is stimulated by possibility of the significant improvements in physical, mechanical, thermal and other important specific properties of these materials. Functionalization of polymer in synthesis by designing a suitable composition with the desired properties and applications is recognized as a valuable tool. In this work is presented a comparative study of the properties of the new copolymers poly(maleic anhydride maleic-co-3,9-divinyl-2,4,8,10-tetraoxaspiro[5.5]undecane) and poly(itaconic-anhydride-co-3,9-divinyl-2,4,8,10-tetraoxaspiro[5.5]undecane) obtained by radical polymerization in dioxane, using 2,2′-azobis(2-methylpropionitrile) as free-radical initiator. The comonomers are able for generating special effects as for example network formation, biodegradability and biocompatibility, gel formation capacity, binding properties, amphiphilicity, good oxidative and thermal stability, good film formers, and temperature and pH sensitivity. Maleic anhydride (MA) and also the isostructural analog itaconic anhydride (ITA) as polyfunctional monomers are widely used in the synthesis of reactive macromolecules with linear, hyperbranched and self & assembled structures to prepare high performance engineering, bioengineering and nano engineering materials. The incorporation of spiroacetal groups in polymer structures improves the solubility and the adhesive properties, induce good oxidative and thermal stability, are formers of good fiber or films with good flexibility and tensile strength. Also, the spiroacetal rings induce interactions on ether oxygen such as hydrogen bonds or coordinate bonds with other functional groups determining bulkiness and stiffness. The synthesized copolymers are analyzed by DSC, oscillatory and rotational rheological measurements and dielectric spectroscopy with the aim of underlying the heating behavior, solution viscosity as a function of shear rate and temperature and to investigate the relaxation processes and the motion of functional groups present in side chain around the main chain or bonds of the side chain. Acknowledgments This work was financially supported by the grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-132/2014 “Magnetic biomimetic supports as alternative strategy for bone tissue engineering and repair’’ (MAGBIOTISS).

Keywords: Poly(maleic anhydride-co-3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5)undecane); Poly(itaconic anhydride-co-3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5)undecane); DSC; oscillatory and rotational rheological analysis; dielectric spectroscopy

Procedia PDF Downloads 205
366 Kinematic of Thrusts and Tectonic Vergence in the Paleogene Orogen of Eastern Iran, Sechangi Area

Authors: Shahriyar Keshtgar, Mahmoud Reza Heyhat, Sasan Bagheri, Ebrahim Gholami, Seyed Naser Raiisosadat

Abstract:

The eastern Iranian range is a Z-shaped sigmoidal outcrop appearing with a NS-trending general strike on the satellite images, has already been known as the Sistan suture zone, recently identified as the product of an orogenic event introduced either by the Paleogene or Sistan orogen names. The flysch sedimentary basin of eastern Iran was filled by a huge volume of fine-grained Eocene turbiditic sediments, smaller amounts of pelagic deposits and Cretaceous ophiolitic slices, which are entirely remnants of older accretionary prisms appeared in a fold-thrust belt developed onto a subduction zone under the Lut/Afghan block, portions of the Cimmerian superterrane. In these ranges, there are Triassic sedimentary and carbonate sequences (equivalent to Nayband and Shotori Formations) along with scattered outcrops of Permian limestones (equivalent to Jamal limestone) and greenschist-facies metamorphic rocks, probably belonging to the basement of the Lut block, which have tectonic contacts with younger rocks. Moreover, the younger Eocene detrital-volcanic rocks were also thrusted onto the Cretaceous or younger turbiditic deposits. The first generation folds (parallel folds) and thrusts with slaty cleavage appeared parallel to the NE edge of the Lut block. Structural analysis shows that the most vergence of thrusts is toward the southeast so that the Permo-Triassic units in Lut have been thrusted on the younger rocks, including older (probably Jurassic) granites. Additional structural studies show that the regional transport direction in this deformation event is from northwest to the southeast where, from the outside to the inside of the orogen in the Sechengi area. Younger thrusts of the second deformation event were either directly formed as a result of the second deformation event, or they were older thrusts that reactivated and folded so that often, two sets or more slickenlines can be recognized on the thrust planes. The recent thrusts have been redistributed in directions nearly perpendicular to the edge of the Lut block and parallel to the axial surfaces of the northwest second generation large-scale folds (radial folds). Some of these younger thrusts follow the out-of-the-syncline thrust system. The both axial planes of these folds and associated penetrative shear cleavage extended towards northwest appeared with both northeast and southwest dips parallel to the younger thrusts. The large-scale buckling with the layer-parallel stress field has created this deformation event. Such consecutive deformation events perpendicular to each other cannot be basically explained by the simple linear orogen models presented for eastern Iran so far and are more consistent with the oroclinal buckling model.

Keywords: thrust, tectonic vergence, orocline buckling, sechangi, eastern iranian ranges

Procedia PDF Downloads 56
365 Strategic Analysis of Energy and Impact Assessment of Microalgae Based Biodiesel and Biogas Production in Outdoor Raceway Pond: A Life Cycle Perspective

Authors: T. Sarat Chandra, M. Maneesh Kumar, S. N. Mudliar, V. S. Chauhan, S. Mukherji, R. Sarada

Abstract:

The life cycle assessment (LCA) of biodiesel production from freshwater microalgae Scenedesmus dimorphus cultivated in open raceway pond is performed. Various scenarios for biodiesel production were simulated using primary and secondary data. The parameters varied in the modelled scenarios were related to biomass productivity, mode of culture mixing and type of energy source. The process steps included algae cultivation in open raceway ponds, harvesting by chemical flocculation, dewatering by mechanical drying option (MDO) followed by extraction, reaction and purification. Anaerobic digestion of defatted algal biomass (DAB) for biogas generation is considered as a co-product allocation and the energy derived from DAB was thereby used in the upstream of the process. The scenarios were analysed for energy demand, emissions and environmental impacts within the boundary conditions grounded on "cradle to gate" inventory. Across all the Scenarios, cultivation via raceway pond was observed to be energy intensive process. The mode of culture mixing and biomass productivity determined the energy requirements of the cultivation step. Emissions to Freshwater were found to be maximum contributing to 93-97% of total emissions in all the scenarios. Global warming potential (GWP) was the found to be major environmental impact accounting to about 99% of total environmental impacts in all the modelled scenarios. It was noticed that overall emissions and impacts were directly related to energy demand and an inverse relationship was observed with biomass productivity. The geographic location of an energy source affected the environmental impact of a given process. The integration of defatted algal remnants derived electricity with the cultivation system resulted in a 2% reduction in overall energy demand. Direct biogas generation from microalgae post harvesting is also analysed. Energy surplus was observed after using part of the energy in upstream for biomass production. Results suggest biogas production from microalgae post harvesting as an environmentally viable and sustainable option compared to biodiesel production.

Keywords: biomass productivity, energy demand, energy source, Lifecycle Assessment (LCA), microalgae, open raceway pond

Procedia PDF Downloads 271
364 Study of Oxidative Processes in Blood Serum in Patients with Arterial Hypertension

Authors: Laura M. Hovsepyan, Gayane S. Ghazaryan, Hasmik V. Zanginyan

Abstract:

Hypertension (HD) is the most common cardiovascular pathology that causes disability and mortality in the working population. Most often, heart failure (HF), which is based on myocardial remodeling, leads to death in hypertension. Recently, endothelial dysfunction (EDF) or a violation of the functional state of the vascular endothelium has been assigned a significant role in the structural changes in the myocardium and the occurrence of heart failure in patients with hypertension. It has now been established that tissues affected by inflammation form increased amounts of superoxide radical and NO, which play a significant role in the development and pathogenesis of various pathologies. They mediate inflammation, modify proteins and damage nucleic acids. The aim of this work was to study the processes of oxidative modification of proteins (OMP) and the production of nitric oxide in hypertension. In the experimental work, the blood of 30 donors and 33 patients with hypertension was used. For the quantitative determination of OMP products, the based on the reaction of the interaction of oxidized amino acid residues of proteins and 2,4-dinitrophenylhydrazine (DNPH) with the formation of 2,4-dinitrophenylhydrazones, the amount of which was determined spectrophotometrically. The optical density of the formed carbonyl derivatives of dinitrophenylhydrazones was recorded at different wavelengths: 356 nm - aliphatic ketone dinitrophenylhydrazones (KDNPH) of neutral character; 370 nm - aliphatic aldehyde dinirophenylhydrazones (ADNPH) of neutral character; 430 nm - aliphatic KDNFG of the main character; 530 nm - basic aliphatic ADNPH. Nitric oxide was determined by photometry using Grace's solution. Adsorption was measured on a Thermo Scientific Evolution 201 SF at a wavelength of 546 nm. Thus, the results of the studies showed that in patients with arterial hypertension, an increased level of nitric oxide in the blood serum is observed, and there is also a tendency to an increase in the intensity of oxidative modification of proteins at a wavelength of 270 nm and 363 nm, which indicates a statistically significant increase in aliphatic aldehyde and ketone dinitrophenylhydrazones. The increase in the intensity of oxidative modification of blood plasma proteins in the studied patients, revealed by us, actually reflects the general direction of free radical processes and, in particular, the oxidation of proteins throughout the body. A decrease in the activity of the antioxidant system also leads to a violation of protein metabolism. The most important consequence of the oxidative modification of proteins is the inactivation of enzymes.

Keywords: hypertension (HD), oxidative modification of proteins (OMP), nitric oxide (NO), oxidative stress

Procedia PDF Downloads 76
363 Fabrication of Al/Al2O3 Functionally Graded Composites via Centrifugal Method by Using a Polymeric Suspension

Authors: Majid Eslami

Abstract:

Functionally graded materials (FGMs) exhibit heterogeneous microstructures in which the composition and properties gently change in specified directions. The common type of FGMs consist of a metal in which ceramic particles are distributed with a graded concentration. There are many processing routes for FGMs. An important group of these methods is casting techniques (gravity or centrifugal). However, the main problem of casting molten metal slurry with dispersed ceramic particles is a destructive chemical reaction between these two phases which deteriorates the properties of the materials. In order to overcome this problem, in the present investigation a suspension of 6061 aluminum and alumina powders in a liquid polymer was used as the starting material and subjected to centrifugal force for making FGMs. The size rang of these powders was 45-63 and 106-125 μm. The volume percent of alumina in the Al/Al2O3 powder mixture was in the range of 5 to 20%. PMMA (Plexiglas) in different concentrations (20-50 g/lit) was dissolved in toluene and used as the suspension liquid. The glass mold contaning the suspension of Al/Al2O3 powders in the mentioned liquid was rotated at 1700 rpm for different times (4-40 min) while the arm length was kept constant (10 cm) for all the experiments. After curing the polymer, burning out the binder, cold pressing and sintering , cylindrical samples (φ=22 mm h=20 mm) were produced. The density of samples before and after sintering was quantified by Archimedes method. The results indicated that by using the same sized alumina and aluminum powders particles, FGM sample can be produced by rotation times exceeding 7 min. However, by using coarse alumina and fine alumina powders the sample exhibits step concentration. On the other hand, using fine alumina and coarse alumina results in a relatively uniform concentration of Al2O3 along the sample height. These results are attributed to the effects of size and density of different powders on the centrifugal force induced on the powders during rotation. The PMMA concentration and the vol.% of alumina in the suspension did not have any considerable effect on the distribution of alumina particles in the samples. The hardness profiles along the height of samples were affected by both the alumina vol.% and porosity content. The presence of alumina particles increased the hardness while increased porosity reduced the hardness. Therefore, the hardness values did not show the expected gradient in same sample. The sintering resulted in decreased porosity for all the samples investigated.

Keywords: FGM, powder metallurgy, centrifugal method, polymeric suspension

Procedia PDF Downloads 193
362 Wastewater Treatment in the Abrasives Industry via Fenton and Photo-Fenton Oxidation Processes: A Case Study from Peru

Authors: Hernan Arturo Blas López, Gustavo Henndel Lopes, Antonio Carlos Silva Costa Teixeira, Carmen Elena Flores Barreda, Patricia Araujo Pantoja

Abstract:

Phenols are toxic for life and the environment and may come from many sources. Uncured phenolic monomers present in phenolic resins used as binders in grinding wheels and emery paper can contaminate industrial wastewaters in abrasives manufacture plants. Furthermore, vestiges of resol and novolacs resins generated by wear and tear of abrasives are also possible sources of water contamination by phenolics in these facilities. Fortunately, advanced oxidation by dark Fenton and photo-Fenton techniques are capable of oxidizing phenols and their degradation products up to their mineralization into H₂O and CO₂. The maximal allowable concentrations for phenols in Peruvian waterbodies is very low, such that insufficiently treated effluents from the abrasives industry are a potential environmental noncompliance. The current case study highlights findings obtained during the lab-scale application of Fenton’s and photo-assisted Fenton’s chemistries to real industrial wastewater samples from an abrasives manufacture plant in Peru. The goal was to reduce the phenolic content and sample toxicity. For this purpose, two independent variables-reaction time and effect of ultraviolet radiation–were studied as for their impacts on the concentration of total phenols, total organic carbon (TOC), biological oxygen demand (BOD) and chemical oxygen demand (COD). In this study, diluted samples (1 L) of the industrial effluent were treated with Fenton’s reagent (H₂O₂ and Fe²⁺ from FeSO₄.H₂O) during 10 min in a photochemical batch reactor (Alphatec RFS-500, Brazil) at pH 2.92. In the case of photo-Fenton tests with ultraviolet lamps of 9 W, UV-A, UV-B and UV-C lamps were evaluated. All process conditions achieved 100% of phenols degraded within 5 minutes. TOC, BOD and COD decreased by 49%, 52% and 86% respectively (all processes together). However, Fenton treatment was not capable of reducing BOD, COD and TOC below a certain value even after 10 minutes, contrarily to photo-Fenton. It was also possible to conclude that the processes here studied degrade other compounds in addition to phenols, what is an advantage. In all cases, elevated effluent dilution factors and high amounts of oxidant agent impact negatively the overall economy of the processes here investigated.

Keywords: fenton oxidation, wastewater treatment, phenols, abrasives industry

Procedia PDF Downloads 291
361 Production of Rhamnolipids from Different Resources and Estimating the Kinetic Parameters for Bioreactor Design

Authors: Olfat A. Mohamed

Abstract:

Rhamnolipids biosurfactants have distinct properties given them importance in many industrial applications, especially their great new future applications in cosmetic and pharmaceutical industries. These applications have encouraged the search for diverse and renewable resources to control the cost of production. The experimental results were then applied to find a suitable mathematical model for obtaining the design criteria of the batch bioreactor. This research aims to produce Rhamnolipids from different oily wastewater sources such as petroleum crude oil (PO) and vegetable oil (VO) by using Pseudomonas aeruginosa ATCC 9027. Different concentrations of the PO and the VO are added to the media broth separately are in arrangement (0.5 1, 1.5, 2, 2.5 % v/v) and (2, 4, 6, 8 and 10%v/v). The effect of the initial concentration of oil residues and the addition of glycerol and palmitic acid was investigated as an inducer in the production of rhamnolipid and the surface tension of the broth. It was found that 2% of the waste (PO) and 6% of the waste (VO) was the best initial substrate concentration for the production of rhamnolipids (2.71, 5.01 g rhamnolipid/l) as arrangement. Addition of glycerol (10-20% v glycerol/v PO) to the 2% PO fermentation broth led to increase the rhamnolipid production (about 1.8-2 times fold). However, the addition of palmitic acid (5 and 10 g/l) to fermentation broth contained 6% VO rarely enhanced the production rate. The experimental data for 2% initially (PO) was used to estimate the various kinetic parameters. The following results were obtained, maximum rate or velocity of reaction (Vmax) = 0.06417 g/l.hr), yield of cell weight per unit weight of substrate utilized (Yx/s = 0.324 g Cx/g Cs) maximum specific growth rate (μmax = 0.05791 hr⁻¹), yield of rhamnolipid weight per unit weight of substrate utilized (Yp/s)=0.2571gCp/g Cs), maintenance coefficient (Ms =0.002419), Michaelis-Menten constant, (Km=6.1237 gmol/l), endogenous decay coefficient (Kd=0.002375 hr⁻¹). Predictive parameters and advanced mathematical models were applied to evaluate the time of the batch bioreactor. The results were as follows: 123.37, 129 and 139.3 hours in respect of microbial biomass, substrate and product concentration, respectively compared with experimental batch time of 120 hours in all cases. The expected mathematical models are compatible with the laboratory results and can, therefore, be considered as tools for expressing the actual system.

Keywords: batch bioreactor design, glycerol, kinetic parameters, petroleum crude oil, Pseudomonas aeruginosa, rhamnolipids biosurfactants, vegetable oil

Procedia PDF Downloads 111
360 Parametric Study for Obtaining the Structural Response of Segmental Tunnels in Soft Soil by Using No-Linear Numerical Models

Authors: Arturo Galván, Jatziri Y. Moreno-Martínez, Israel Enrique Herrera Díaz, José Ramón Gasca Tirado

Abstract:

In recent years, one of the methods most used for the construction of tunnels in soft soil is the shield-driven tunneling. The advantage of this construction technique is that it allows excavating the tunnel while at the same time a primary lining is placed, which consists of precast segments. There are joints between segments, also called longitudinal joints, and joints between rings (called as circumferential joints). This is the reason because of this type of constructions cannot be considered as a continuous structure. The effect of these joints influences in the rigidity of the segmental lining and therefore in its structural response. A parametric study was performed to take into account the effect of different parameters in the structural response of typical segmental tunnels built in soft soil by using non-linear numerical models based on Finite Element Method by means of the software package ANSYS v. 11.0. In the first part of this study, two types of numerical models were performed. In the first one, the segments were modeled by using beam elements based on Timoshenko beam theory whilst the segment joints were modeled by using inelastic rotational springs considering the constitutive moment-rotation relation proposed by Gladwell. In this way, the mechanical behavior of longitudinal joints was simulated. On the other hand for simulating the mechanical behavior of circumferential joints elastic springs were considered. As well as, the stability given by the soil was modeled by means of elastic-linear springs. In the second type of models, the segments were modeled by means of three-dimensional solid elements and the joints with contact elements. In these models, the zone of the joints is modeled as a discontinuous (increasing the computational effort) therefore a discrete model is obtained. With these contact elements the mechanical behavior of joints is simulated considering that when the joint is closed, there is transmission of compressive and shear stresses but not of tensile stresses and when the joint is opened, there is no transmission of stresses. This type of models can detect changes in the geometry because of the relative movement of the elements that form the joints. A comparison between the numerical results with two types of models was carried out. In this way, the hypothesis considered in the simplified models were validated. In addition, the numerical models were calibrated with (Lab-based) experimental results obtained from the literature of a typical tunnel built in Europe. In the second part of this work, a parametric study was performed by using the simplified models due to less used computational effort compared to complex models. In the parametric study, the effect of material properties, the geometry of the tunnel, the arrangement of the longitudinal joints and the coupling of the rings were studied. Finally, it was concluded that the mechanical behavior of segment and ring joints and the arrangement of the segment joints affect the global behavior of the lining. As well as, the effect of the coupling between rings modifies the structural capacity of the lining.

Keywords: numerical models, parametric study, segmental tunnels, structural response

Procedia PDF Downloads 210
359 Study on the Post-Traumatic Stress Disorder and Its Psycho-Social-Genetic Risk Factors among Tibetan Alolescents in Heavily-Hit Area Three Years after Yushu Earthquake in Qinghai Province, China

Authors: Xiaolian Jiang, Dongling Liu, Kun Liu

Abstract:

Aims: To examine the prevalence of POST-TRAUMATIC STRESS DISORDER (PTSD) symptoms among Tibetan adolescents in heavily-hit disaster area three years after Yushu earthquake, and to explore the interactions of the psycho-social-genetic risk factors. Methods: This was a three-stage study. Firstly, demographic variables,PTSD Checklist-Civilian Version (PCL-C),the Internality、Powerful other、Chance Scale,(IPC),Coping Style Scale(CSS),and the Social Support Appraisal(SSA)were used to explore the psychosocial factors of PTSD symptoms among adolescent survivors. PCL-C was used to examine the PTSD symptoms among 4072 Tibetan adolescents,and the Structured Clinical Interview for DSM-IV Disorders(SCID)was used by psychiatrists to make the diagnosis precisely. Secondly,a case-control trial was used to explore the relationship between PTSD and gene polymorphisms. 287adolescents diagnosed with PTSD were recruited in study group, and 280 adolescents without PTSD in control group. Polymerase chain reaction-restriction fragment length polymorphism technology(PCR-RFLP)was used to test gene polymorphisms. Thirdly,SPSS 22.0 was used to explore the interactions of the psycho-social-genetic risk factors of PTSD on the basis of the above results. Results and conclusions: 1.The prevalence of PTSD was 9.70%. 2.The predictive psychosocial factors of PTSD included earthquake exposure, support from others, imagine, abreact, tolerant, powerful others and family support. 3.Synergistic interactions between A1 gene of DRD2 TaqIA and the external locus of control, negative coping style, severe earthquake exposure were found. Antagonism interactions between A1 gene of DRD2 TaqIA and poor social support was found. Synergistic interactions between A1/A1 genotype and the external locus of control, negative coping style were found. Synergistic interactions between 12 gene of 5-HTTVNTR and the external locus of control, negative coping style, severe earthquake exposure were found. Synergistic interactions between 12/12 genotype and the external locus of control, negative coping style, severe earthquake exposure were also found.

Keywords: adolescents, earthquake, PTSD, risk factors

Procedia PDF Downloads 123
358 Using Nature-Based Solutions to Decarbonize Buildings in Canadian Cities

Authors: Zahra Jandaghian, Mehdi Ghobadi, Michal Bartko, Alex Hayes, Marianne Armstrong, Alexandra Thompson, Michael Lacasse

Abstract:

The Intergovernmental Panel on Climate Change (IPCC) report stated the urgent need to cut greenhouse gas emissions to avoid the adverse impacts of climatic changes. The United Nations has forecasted that nearly 70 percent of people will live in urban areas by 2050 resulting in a doubling of the global building stock. Given that buildings are currently recognised as emitting 40 percent of global carbon emissions, there is thus an urgent incentive to decarbonize existing buildings and to build net-zero carbon buildings. To attain net zero carbon emissions in communities in the future requires action in two directions: I) reduction of emissions; and II) removal of on-going emissions from the atmosphere once de-carbonization measures have been implemented. Nature-based solutions (NBS) have a significant role to play in achieving net zero carbon communities, spanning both emission reductions and removal of on-going emissions. NBS for the decarbonisation of buildings can be achieved by using green roofs and green walls – increasing vertical and horizontal vegetation on the building envelopes – and using nature-based materials that either emit less heat to the atmosphere thus decreasing photochemical reaction rates, or store substantial amount of carbon during the whole building service life within their structure. The NBS approach can also mitigate urban flooding and overheating, improve urban climate and air quality, and provide better living conditions for the urban population. For existing buildings, de-carbonization mostly requires retrofitting existing envelopes efficiently to use NBS techniques whereas for future construction, de-carbonization involves designing new buildings with low carbon materials as well as having the integrity and system capacity to effectively employ NBS. This paper presents the opportunities and challenges in respect to the de-carbonization of buildings using NBS for both building retrofits and new construction. This review documents the effectiveness of NBS to de-carbonize Canadian buildings, identifies the missing links to implement these techniques in cold climatic conditions, and determine a road map and immediate approaches to mitigate the adverse impacts of climate change such as urban heat islanding. Recommendations are drafted for possible inclusion in the Canadian building and energy codes.

Keywords: decarbonization, nature-based solutions, GHG emissions, greenery enhancement, buildings

Procedia PDF Downloads 76
357 Control of the Sustainability of Decorative Topping for Bakery in Order to Extend the Shelf-Life of the Product

Authors: Radovan Čobanović, Milica Rankov Šicar

Abstract:

In the modern bakery various supplements are used to attract more customers. Analyzed sample decorative toppings are consisted of flax seeds, corn grits, oatmeal, wheat flakes, sesame seeds, sunflower seeds, soybean sprouts are used as decoration for the bread. Our goal was to extend the product shelf life based on the analysis. According to the plan of sustainability it was defined that sample which already had expired shelf life had to be stored for 5 months at 25°C and analyzed every month from the day of reception until spoilage occurs. Samples were subjected to sensory analysis (appearance, odor, taste, color, and consistency), microbiological analysis (Salmonella spp., Bacillus cereus, Enterobacteriaceae and moulds) and chemistry analysis (free fatty acids (as oleic), peroxide number, water content and degree of acidity). All analyses were tested according: sensory analysis ISO 6658, Salmonella spp ISO 6579, Bacillus cereus ISO 7932, Enterobacteriaceae ISO 21528-2 and moulds ISO 21527-1, free fatty acids (as oleic) ISO 660, peroxide number ISO 3960, water content and degree of acidity Serbian ordinance on the methods of chemical analysis. After five months of storage, there had been the first changes concerning of sensory properties of the product. In the sample were visible worms and creations which look like spider nets linking seeds and cereal. The sample had smell on rancid and pungent. The results of microbiological analysis showed that Salmonella spp was not detected, Enterobacteriaceae were < 10 cfu/g during all 5 months but in fifth month Bacillus cereus and moulds occurred 700 cfu/g and 1500 cfu/g respectively. Chemical analyzes showed that the water content did not exceed a maximum of 14%. The content of free fatty acids ranged from 3.06 to 3.26%, degree of acidity from 3.69 to 4.9. With increasing degree of acidity the degradation of the sample and the activity of microorganisms was increased which led to the formation of acid reaction which is accompanied by the appearance of unpleasant odor and taste. Based on the obtained results it can be concluded that this product can have longer shelf life for four months than shelf life which is already defined because there are no changes that could have influence on decision of customers when purchase of this product is concerned.

Keywords: bakery products, extension of shelf life, sensory and chemical and microbiological analyses, sustainability

Procedia PDF Downloads 363
356 Flexural Performance of the Sandwich Structures Having Aluminum Foam Core with Different Thicknesses

Authors: Emre Kara, Ahmet Fatih Geylan, Kadir Koç, Şura Karakuzu, Metehan Demir, Halil Aykul

Abstract:

The structures obtained with the use of sandwich technologies combine low weight with high energy absorbing capacity and load carrying capacity. Hence, there is a growing and markedly interest in the use of sandwiches with aluminium foam core because of very good properties such as flexural rigidity and energy absorption capability. The static (bending and penetration) and dynamic (dynamic bending and low velocity impact) tests were already performed on the aluminum foam cored sandwiches with different types of outer skins by some of the authors. In the current investigation, the static three-point bending tests were carried out on the sandwiches with aluminum foam core and glass fiber reinforced polymer (GFRP) skins at different values of support span distances (L= 55, 70, 80, 125 mm) aiming the analyses of their flexural performance. The influence of the core thickness and the GFRP skin type was reported in terms of peak load, energy absorption capacity and energy efficiency. For this purpose, the skins with two different types of fabrics ([0°/90°] cross ply E-Glass Woven and [0°/90°] cross ply S-Glass Woven which have same thickness value of 1.5 mm) and the aluminum foam core with two different thicknesses (h=10 and 15 mm) were bonded with a commercial polyurethane based flexible adhesive in order to combine the composite sandwich panels. The GFRP skins fabricated via Vacuum Assisted Resin Transfer Molding (VARTM) technique used in the study can be easily bonded to the aluminum foam core and it is possible to configure the base materials (skin, adhesive and core), fiber angle orientation and number of layers for a specific application. The main results of the bending tests are: force-displacement curves, peak force values, absorbed energy, energy efficiency, collapse mechanisms and the effect of the support span length and core thickness. The results of the experimental study showed that the sandwich with the skins made of S-Glass Woven fabrics and with the thicker foam core presented higher mechanical values such as load carrying and energy absorption capacities. The increment of the support span distance generated the decrease of the mechanical values for each type of panels, as expected, because of the inverse proportion between the force and span length. The most common failure types of the sandwiches are debonding of the upper or lower skin and the core shear. The obtained results have particular importance for applications that require lightweight structures with a high capacity of energy dissipation, such as the transport industry (automotive, aerospace, shipbuilding and marine industry), where the problems of collision and crash have increased in the last years.

Keywords: aluminum foam, composite panel, flexure, transport application

Procedia PDF Downloads 307
355 Changing the Biopower Hierarchy between Women’s Bodily Knowledge and the Medical Knowledge about the Body: The Case of Female Ejaculation and #Notpee

Authors: Lior B. Navon

Abstract:

The objective of this study is to investigate how technology, such as social media, can influence the biopower hierarchy between the medical knowledge about the body and women’s bodily knowledge through the case study of the hashtag 'notpee'. In January 2015, the hashtag #notpee, relating to a feminine physiological phenomenon called female ejaculation (FE) or squirting (SQ) started circulating on twitter. This hashtag, born as a reaction to a medical study claiming that SQ is essentially involuntary emission of urine during sexual activity, sparked an unusual public discourse about FE, a phenomenon that is usually not discussed or referred to in socio-legitimate public spheres. This unusual backlash got the attention of women’s magazines and blogs, as well as more mainstream large and respected outlets such as The Guardian and CNN. Both the tweets on twitter, as well as the media coverage of them, were mainly aimed at rejecting the research’s findings. While not offering an alternative and choosing to define the phenomenon by negation, women argued that the fluid extracted was not pee based on their personal experiences. Based on a critical discourse analysis of 742 tweets with the hashtag 'notpee' between January 2015 and January 2016, and of 15 articles covering the backlash, this study suggests that the #notpee backlash challenged the power balance between the medical knowledge about the feminine body and the feminine bodily knowledge through two different, yet related, forms of resistance to biopower. The first resistance is to the authority over knowledge production — who has the power to produce 'true' statements when it comes to the body? Is it the women who experience the phenomenon, or is it the medical institution? The second resistance to biopower has to do with what we regard as facts or veracity. A critical discourse analysis reveals that while both the scientific field, as well as the women arguing against its findings, use empirical information, they, nevertheless, rely on two dichotomic databases- while the scientific research relies on samples from the 'dead like body', these woman are relying on their lived subjective senses as a source for fact making. Nevertheless, while #notpee is asking to change the power relations between the feminine subjective bodily knowledge and the seemingly objective masculine medical knowledge about the body, it by no means dismisses it. These women are essentially asking the medical institution to take into consideration the subjective body as well as the objective one while acknowledging and accepting the power of the latter over knowledge production.

Keywords: biopower, female ejaculation, new media, bodily knowledge

Procedia PDF Downloads 138
354 Molecular Epidemiology of Egyptian Biomphalaria Snail: The Identification of Species, Diagnostic of the Parasite in Snails and Host Parasite Relationship

Authors: Hanaa M. Abu El Einin, Ahmed T. Sharaf El- Din

Abstract:

Biomphalaria snails play an integral role in the transmission of Schistosoma mansoni, the causative agent for human schistosomiasis. Two species of Biomphalaria were reported from Egypt, Biomphalaria alexandrina and Biomphalaria glabrata, and later on a hybrid of B. alexandrina and B. glabrata was reported in streams at Nile Delta. All were known to be excellent hosts of S. mansoni. Host-parasite relationship can be viewed in terms of snail susceptibility and parasite infectivity. The objective of this study will highlight the progress that has been made in using molecular approaches to describe the correct identification of snail species that participating in transmission of schistosomiasis, rapid diagnose of infection in addition to susceptibility and resistance type. Snails were identified using of molecular methods involving Randomly Amplified Polymorphic DNA (RAPD), Polymerase Chain Reaction, Restriction Fragment Length Polymorphisms (PCR-RFLP) and Species - specific- PCR. Molecular approaches to diagnose parasite in snails from Egypt: Nested PCR assay and small subunit (SSU) rRNA gene. Also RAPD PCR for study susceptible and resistance phenotype. The results showed that RAPD- PCR, PCR-RFLP and species-specific-PCR techniques were confirmed that: no evidence for the presence of B. glabrata in Egypt, All Biomphalaria snails collected identified as B. alexandrina snail i-e B alexandrinia is a common and no evidence for hybridization with B. glabrata. The adopted specific nested PCR assay revealed much higher sensitivity which enables the detection of S. mansoni infected snails down to 3 days post infection. Nested PCR method for detection of infected snails using S. mansoni fructose -1,6- bisphosphate aldolase (SMALDO) primer, these primers are specific only for S. mansoni and not cross reactive with other schistosomes or molluscan aldolases Nested PCR for such gene is sensitive enough to detect one cercariae. Genetic variations between B. alexandrina strains that are susceptible and resistant to Schistosoma infec¬tion using a RAPD-PCR showed that 39.8% of the examined snails collected from the field were resistant, while 60.2% of these snails showed high infection rates. In conclusion the genetics of the intermediate host plays a more important role in the epidemiological control of schistosomiasis.

Keywords: biomphalaria, molecular differentiation, parasite detection, schistosomiasis

Procedia PDF Downloads 177
353 Structural and Microstructural Analysis of White Etching Layer Formation by Electrical Arcing Induced on the Surface of Rail Track

Authors: Ali Ahmed Ali Al-Juboori, H. Zhu, D. Wexler, H. Li, C. Lu, J. McLeod, S. Pannila, J. Barnes

Abstract:

A number of studies have focused on the formation mechanics of white etching layer and its origin in the railway operation. Until recently, the following hypotheses consider the precise mechanics of WELs formation: (i) WELs are the result of thermal process caused by wheel slip; (ii) WELs are mechanically induced by severe plastic deformation; (iii) WELs are caused by a combination of thermo-mechanical process. The mechanisms discussed above lead to occurrence of white etching layers on the area of wheel and rail contact. This is because the contact patch which is the active point of the wheel on the rail is exposed to highest shear stresses which result in localised severe plastic deformation; and highest rate of heat caused by wheel slipe during excessive traction or braking effort. However, if the WELs are not on the running band area, it would suggest that there is another cause of WELs formation. In railway system, particularly electrified railway, arcing phenomenon has been occurring more often and regularly on the rails. In electrified railway, the current is delivered to the train traction motor via contact wires and then returned to the station via the contact between the wheel and the rail. If the contact between the wheel and the rail is temporarily losing, due to dynamic vibration, entrapped dirt or water, lubricant effect or oxidation occurrences, high current can jump through the gap and results in arcing. The other resources of arcing also include the wheel passage the insulated joint and lightning on a train during bad weather. During the arcing, an extensive heat is generated and speared over a large area of top surface of rail. Thus, arcing is considered another heat source in the rail head (rather than wheel slipe) that results in microstructural changes and white etching layer formation. A head hardened (HH) rail steel, cut from a curved rail truck was used for the investigation. Samples were sectioned from a depth of 10 mm below the rail surface, where the material is considered to be still within the hardened layer but away from any microstructural changes on the top surface layer caused by train passage. These samples were subjected to electrical discharges by using Gas Tungsten Arc Welding (GTAW) machine. The arc current was controlled and moved along the samples surface in the direction of travel, as indicated by an arrow. Five different conditions were applied on the surface of the samples. Samples containing pre-existed WELs, taken from ex-service rail surface, were also considered in this study for comparison. Both simulated and ex-serviced WELs were characterised by advanced methods including SEM, TEM, TKD, EDS, XRD. Samples for TEM and TKFD were prepared by Focused Ion Beam (FIB) milling. The results showed that both simulated WELs by electrical arcing and ex-service WEL comprise similar microstructure. Brown etching layer was found with WELs and likely induced by a concurrent tempering process. This study provided a clear understanding of new formation mechanics of WELs which contributes to track maintenance procedure.

Keywords: white etching layer, arcing, brown etching layer, material characterisation

Procedia PDF Downloads 101
352 A Rare Cause of Abdominal Pain Post Caesarean Section

Authors: Madeleine Cox

Abstract:

Objective: discussion of diagnosis of vernix caseosa peritonitis, recovery and subsequent caesarean seciton Case: 30 year old G4P1 presented in labour at 40 weeks, planning a vaginal birth afterprevious caesarean section. She underwent an emergency caesarean section due to concerns for fetal wellbeing on CTG. She was found to have a thin lower segment with a very small area of dehiscence centrally. The operation was uncomplicated, and she recovered and went home 2 days later. She then represented to the emergency department day 6 post partum feeling very unwell, with significant abdominal pain, tachycardia as well as urinary retention. Raised white cell count of 13.7 with neutrophils of 11.64, CRP of 153. An abdominal ultrasound was poorly tolerated by the patient and did not aide in the diagnosis. Chest and abdominal xray were normal. She underwent a CT chest and abdomen, which found a small volume of free fluid with no apparent collection. Given no obvious cause of her symptoms were found and the patient did not improve, she had a repeat CT 2 days later, which showed progression of free fluid. A diagnostic laparoscopy was performed with general surgeons, which reveled turbid fluid, an inflamed appendix which was removed. The patient improved remarkably post operatively. The histology showed periappendicitis with acute appendicitis with marked serosal inflammatory reaction to vernix caseosa. Following this, the patient went on to recover well. 4 years later, the patient was booked for an elective caesarean section, on entry into the abdomen, there were very minimal adhesions, and the surgery and her subsequent recovery was uncomplicated. Discussion: this case represents the diagnostic dilemma of a patient who presents unwell without a clear cause. In this circumstance, multiple modes of imaging did not aide in her diagnosis, and so she underwent diagnostic surgery. It is important to evaluate if a patient is or is not responding to the typical causes of post operative pain and adjust management accordingly. A multiteam approach can help to provide a diagnosis for these patients. Conclusion: Vernix caseosa peritonitis is a rare cause of acute abdomen post partum. There are few reports in the literature of the initial presentation and no reports on the possible effects on future pregnancies. This patient did not have any complications in her following pregnancy or delivery secondary to her diagnosis of vernix caseosa peritonitis. This may assist in counselling other women who have had this uncommon diagnosis.

Keywords: peritonitis, obstetrics, caesarean section, pain

Procedia PDF Downloads 76