Search results for: perceptual linear prediction (PLP’s)
1639 Exploring Hydrogen Embrittlement and Fatigue Crack Growth in API 5L X52 Steel Pipeline Under Cyclic Internal Pressure
Authors: Omar Bouledroua, Djamel Zelmati, Zahreddine Hafsi, Milos B. Djukic
Abstract:
Transporting hydrogen gas through the existing natural gas pipeline network offers an efficient solution for energy storage and conveyance. Hydrogen generated from excess renewable electricity can be conveyed through the API 5L steel-made pipelines that already exist. In recent years, there has been a growing demand for the transportation of hydrogen through existing gas pipelines. Therefore, numerical and experimental tests are required to verify and ensure the mechanical integrity of the API 5L steel pipelines that will be used for pressurized hydrogen transportation. Internal pressure loading is likely to accelerate hydrogen diffusion through the internal pipe wall and consequently accentuate the hydrogen embrittlement of steel pipelines. Furthermore, pre-cracked pipelines are susceptible to quick failure, mainly under a time-dependent cyclic pressure loading that drives fatigue crack propagation. Meanwhile, after several loading cycles, the initial cracks will propagate to a critical size. At this point, the remaining service life of the pipeline can be estimated, and inspection intervals can be determined. This paper focuses on the hydrogen embrittlement of API 5L steel-made pipeline under cyclic pressure loading. Pressurized hydrogen gas is transported through a network of pipelines where demands at consumption nodes vary periodically. The resulting pressure profile over time is considered a cyclic loading on the internal wall of a pre-cracked pipeline made of API 5L steel-grade material. Numerical modeling has allowed the prediction of fatigue crack evolution and estimation of the remaining service life of the pipeline. The developed methodology in this paper is based on the ASME B31.12 standard, which outlines the guidelines for hydrogen pipelines.Keywords: hydrogen embrittlement, pipelines, transient flow, cyclic pressure, fatigue crack growth
Procedia PDF Downloads 881638 Preschoolers’ Involvement in Indoor and Outdoor Learning Activities as Predictors of Social Learning Skills in Niger State, Nigeria
Authors: Okoh Charity N.
Abstract:
This study investigated the predictive power of preschoolers’ involvement in indoor and outdoor learning activities on their social learning skills in Niger state, Nigeria. Two research questions and two null hypotheses guided the study. Correlational research design was employed in the study. The population of the study consisted of 8,568 Nursery III preschoolers across the 549 preschools in the five Local Education Authorities in Niger State. A sample of 390 preschoolers drawn through multistage sampling procedure. Two instruments; Preschoolers’ Learning Activities Rating Scale (PLARS) and Preschoolers’ Social Learning Skills Rating Scale (PSLSRS) developed by the researcher were used for data collection. The reliability coefficients obtained for the PLARS and PSLSRS were 0.83 and 0.82, respectively. Data collected were analyzed using simple linear regression. Results showed that 37% of preschoolers’ social learning skills are predicted by their involvement in indoor learning activities, which is statistically significant (p < 0.05). It also shows that 11% of preschoolers’ social learning skills are predicted by their involvement in outdoor learning activities, which is statistically significant (p < 0.05). Therefore, it was recommended among others, that government and school administrators should employ qualified teachers who will stand as role models for preschoolers’ social skills development and provide indoor and outdoor activities and materials for preschoolers in schools.Keywords: preschooler, social learning, indoor activities, outdoor activities
Procedia PDF Downloads 1301637 Effect of Pressure and Dissolved Oxygen on Stress Corrosion Cracking Susceptibility of Inconel 617 in Steam and Supercritical Water
Authors: Hasan Izhar Khan, Naiqiang Zhang, Hong Xu, Zhongliang Zhu, Dongfang Jiang
Abstract:
Inconel 617, a nickel-based alloy designed for high-temperature applications, got an excellent amalgamation of strength and oxidation resistance at high temperatures. For a better understanding of its suitability to be used in superheater and reheater tubes in ultra-supercritical power plants, stress corrosion cracking (SCC) susceptibility must be evaluated. In the present study, the effect of medium environment on SCC behavior of Inconel 617, in the form of a round bar tensile specimen, was tested via slow strain rate tensile tests in steam and supercritical water (SCW) at 650 °C. The results showed that SCC susceptibility has a linear relationship with exposed pressure and increases monotonically with an increase in pressure. A severe SCC susceptibility was observed in SCW followed by that in a steam environment. Fracture and gage surface showed apparent characteristics of brittle fracture. Intergranular cracks initiated from the edge region and propagated into the matrix through cross section until ductile rupture. When dissolved oxygen contents were decreased in SCW environment, it showed no noticeable effect on mechanical properties but SCC susceptibility slightly decreased. The research revealed the influence of environment on SCC susceptibility of Inconel 617 in steam and SCW.Keywords: Inconel 617, steam, supercritical water, stress corrosion cracking
Procedia PDF Downloads 1571636 Off-Shore Wind Turbines: The Issue of Soil Plugging during Pile Installation
Authors: Mauro Iannazzone, Carmine D'Agostino
Abstract:
Off-shore wind turbines are currently considered as a reliable source of renewable energy Worldwide and especially in the UK. Most of the operational off-shore wind turbines located in shallow waters (i.e. < 30 m) are supported on monopiles. Monopiles are open-ended steel tubes with diameter ranging between 4 to 6 m. It is expected that future off-shore wind farms will be located in water depths as high as 70 m. Therefore, alternative foundation arrangements are needed. Foundations for off-shore structures normally consist of open-ended piles driven into the soil by means of impact hammers. During pile installation, the soil inside the pile may be mobilized by the increasing shear strength such as to prevent more soil from entering the pile. This phenomenon is known as soil plugging, and represents an important issue as it may change significantly the driving resistance of open-ended piles. In fact, if the plugging formation is unexpected, the installation may require more powerful and more expensive hammers. Engineers need to estimate whether the driven pile will be installed in a plugged or unplugged mode. As a consequence, a prediction of the degree of soil plugging is required in order to correctly predict the drivability of the pile. This work presents a brief review of the state-of-the-art of pile driving and approaches used to predict formation of soil plugs. In addition, a novel analytical approach is proposed, which is based on the vertical equilibrium of a plugged pile. Differently from previous studies, this research takes into account the enhancement of the stress within the soil plug. Finally, the work presents and discusses a series of experimental tests, which are carried out on small-scale models piles to validate the analytical solution.Keywords: off-shore wind turbines, pile installation, soil plugging, wind energy
Procedia PDF Downloads 3121635 Two-Dimensional Seismic Response of Concrete Gravity Dams Including Base Sliding
Authors: Djamel Ouzandja, Boualem Tiliouine
Abstract:
The safety evaluation of the concrete gravity dams subjected to seismic excitations is really very complex as the earthquake response of the concrete gravity dam depends upon its contraction joints with foundation soil. This paper presents the seismic response of concrete gravity dams considering friction contact and welded contact. Friction contact is provided using contact elements. Two-dimensional (2D) finite element model of Oued Fodda concrete gravity dam, located in Chlef at the west of Algeria, is used for this purpose. Linear and nonlinear analyses considering dam-foundation soil interaction are performed using ANSYS software. The reservoir water is modeled as added mass using the Westergaard approach. The Drucker-Prager model is preferred for dam and foundation rock in nonlinear analyses. The surface-to-surface contact elements based on the Coulomb's friction law are used to describe the friction. These contact elements use a target surface and a contact surface to form a contact pair. According to this study, the seismic analysis of concrete gravity dams including base sliding. When the friction contact is considered in joints, the base sliding displacement occurs along the dam-foundation soil contact interface. Besides, the base sliding may generally decrease the principal stresses in the dam.Keywords: concrete gravity dam, dynamic soil-structure interaction, friction contact, sliding
Procedia PDF Downloads 4071634 Dynamics Characterizations of Dielectric Electro- Active Polymer Pull Actuator for Vibration Control
Authors: A. M. Wahab, E. Rustighi
Abstract:
Elastomeric dielectric material has recently become a new alternative for actuator technology. The characteristics of dielectric elastomers placed between two electrodes to withstand large strain when electrodes are charged has attracted the attention of many researcher to study this material for actuator technology. Thus, in the past few years Danfoss Ventures A/S has established their own dielectric electro-active polymer (DEAP), which was called PolyPower. The main objective of this work was to investigate the dynamic characteristics for vibration control of a PolyPower actuator folded in ‘pull’ configuration. A range of experiments was carried out on the folded actuator including passive (without electrical load) and active (with electrical load) testing. For both categories static and dynamic testing have been done to determine the behavior of folded DEAP actuator. Voltage-Strain experiments show that the DEAP folded actuator is a non-linear system. It is also shown that the voltage supplied has no effect on the natural frequency. Finally, varying AC voltage with different amplitude and frequency shows the parameters that influence the performance of DEAP folded actuator. As a result, the actuator performance dominated by the frequency dependence of the elastic response and was less influenced by dielectric properties.Keywords: dielectric electro-active polymer, pull actuator, static, dynamic, electromechanical
Procedia PDF Downloads 2511633 Enhanced Energy Powers via Composites of Piezoelectric CH₃NH₃PbI₃ and Flexoelectric Zn-Al:Layered Double Hydroxides (LDH) Nanosheets
Authors: Soon-Gil Yoon, Min-Ju Choi, Sung-Ho Shin, Junghyo Nah, Jin-Seok Choi, Hyun-A Song, Goeun Choi, Jin-Ho Choy
Abstract:
Layered double hydroxides (LDHs) with positively charged brucite-like layers and negatively charged interlayer anions are considered a critical nanoscale building block with potential for application in catalysts, biological sensors, and optical, electrical, and magnetic devices. LDHs also have a great potential as an energy conversion device, a key component in common modern electronics. Although LDHs are theoretically predicted to be centrosymmetric, we report here the first observations of the flexoelectric nature of LDHs and demonstrate their potential as an effective energy conversion material. We clearly show a linear energy conversion relationship between the output powers and curvature radius via bending with both the LDH nanosheets and thin films, revealing a direct evidence for flexoelectric effects. These findings potentially open up avenues to incorporate a flexoelectric coupling phenomenon into centrosymmetric materials such as LDHs and to harvest high-power energy using LDH nanosheets. In the present study, for enhancement of the output power, Zn-Al:LDH nanosheets were composited with piezoelectric CH3NH3PbI3 (MAPbI3) dye films and their enhanced energy harvesting was demonstrated in detail.Keywords: layered double hydroxides, flexoelectric, piezoelectric, energy harvesting
Procedia PDF Downloads 4921632 Rumination Time and Reticuloruminal Temperature around Calving in Eutocic and Dystocic Dairy Cows
Authors: Levente Kovács, Fruzsina Luca Kézér, Ottó Szenci
Abstract:
Prediction of the onset of calving and recognizing difficulties at calving has great importance in decreasing neonatal losses and reducing the risk of health problems in the early postpartum period. In this study, changes of rumination time, reticuloruminal pH and temperature were investigated in eutocic (EUT, n = 10) and dystocic (DYS, n = 8) dairy cows around parturition. Rumination time was continuously recorded using an acoustic biotelemetry system, whereas reticuloruminal pH and temperature were recorded using an indwelling and wireless data transmitting system. The recording period lasted from 3 d before calving until 7 days in milk. For the comparison of rumination time and reticuloruminal characteristics between groups, time to return to baseline (the time interval required to return to baseline from the delivery of the calf) and area under the curve (AUC, both for prepartum and postpartum periods) were calculated for each parameter. Rumination time decreased from baseline 28 h before calving both for EUT and DYS cows (P = 0.023 and P = 0.017, respectively). After 20 h before calving, it decreased onwards to reach 32.4 ± 2.3 and 13.2 ± 2.0 min/4 h between 8 and 4 h before delivery in EUT and DYS cows, respectively, and then it decreased below 10 and 5 min during the last 4 h before calving (P = 0.003 and P = 0.008, respectively). Until 12 h after delivery rumination time reached 42.6 ± 2.7 and 51.0 ± 3.1 min/4 h in DYS and EUT dams, respectively, however, AUC and time to return to baseline suggested lower rumination activity in DYS cows than in EUT dams for the 168-h postpartum observational period (P = 0.012 and P = 0.002, respectively). Reticuloruminal pH decreased from baseline 56 h before calving both for EUT and DYS cows (P = 0.012 and P = 0.016, respectively), but did not differ between groups before delivery. In DYS cows, reticuloruminal temperature decreased from baseline 32 h before calving by 0.23 ± 0.02 °C (P = 0.012), whereas in EUT cows such a decrease was found only 20 h before delivery (0.48 ± 0.05 °C, P < 0.01). AUC of reticuloruminal temperature calculated for the prepartum period was greater in EUT cows than in DYS cows (P = 0.042). During the first 4 h after calving, it decreased from 39.7 ± 0.1 to 39.00 ± 0.1 °C and from 39.8 ± 0.1 to 38.8 ± 0.1 °C in EUT and DYS cows, respectively (P < 0.01 for both groups) and reached baseline levels after 35.4 ± 3.4 and 37.8 ± 4.2 h after calving in EUT and DYS cows, respectively. Based on our results, continuous monitoring of changes in rumination time and reticuloruminal temperature seems to be promising in the early detection of cows with a higher risk of dystocia. Depressed postpartum rumination time of DYS cows highlights the importance of the monitoring of cows experiencing difficulties at calving.Keywords: reticuloruminal pH, reticuloruminal temperature, rumination time, dairy cows, dystocia
Procedia PDF Downloads 3161631 Cognitive Science Based Scheduling in Grid Environment
Authors: N. D. Iswarya, M. A. Maluk Mohamed, N. Vijaya
Abstract:
Grid is infrastructure that allows the deployment of distributed data in large size from multiple locations to reach a common goal. Scheduling data intensive applications becomes challenging as the size of data sets are very huge in size. Only two solutions exist in order to tackle this challenging issue. First, computation which requires huge data sets to be processed can be transferred to the data site. Second, the required data sets can be transferred to the computation site. In the former scenario, the computation cannot be transferred since the servers are storage/data servers with little or no computational capability. Hence, the second scenario can be considered for further exploration. During scheduling, transferring huge data sets from one site to another site requires more network bandwidth. In order to mitigate this issue, this work focuses on incorporating cognitive science in scheduling. Cognitive Science is the study of human brain and its related activities. Current researches are mainly focused on to incorporate cognitive science in various computational modeling techniques. In this work, the problem solving approach of human brain is studied and incorporated during the data intensive scheduling in grid environments. Here, a cognitive engine is designed and deployed in various grid sites. The intelligent agents present in CE will help in analyzing the request and creating the knowledge base. Depending upon the link capacity, decision will be taken whether to transfer data sets or to partition the data sets. Prediction of next request is made by the agents to serve the requesting site with data sets in advance. This will reduce the data availability time and data transfer time. Replica catalog and Meta data catalog created by the agents assist in decision making process.Keywords: data grid, grid workflow scheduling, cognitive artificial intelligence
Procedia PDF Downloads 3941630 Synthesis and Performance Adsorbent from Coconut Shells Polyetheretherketone for Natural Gas Storage
Authors: Umar Hayatu Sidik
Abstract:
The natural gas vehicle represents a cost-competitive, lower-emission alternative to the gasoline-fuelled vehicle. The immediate challenge that confronts natural gas is increasing its energy density. This paper addresses the question of energy density by reviewing the storage technologies for natural gas with improved adsorbent. Technical comparisons are made between storage systems containing adsorbent and conventional compressed natural gas based on the associated amount of moles contained with Compressed Natural Gas (CNG) and Adsorbed Natural Gas (ANG). We also compare gas storage in different cylinder types (1, 2, 3 and 4) based on weight factor and storage capacity. For the storage tank system, we discussed the concept of carbon adsorbents, when used in CNG tanks, offer a means of increasing onboard fuel storage and, thereby, increase the driving range of the vehicle. It confirms that the density of the stored gas in ANG is higher than that of compressed natural gas (CNG) operated at the same pressure. The obtained experimental data were correlated using linear regression analysis with common adsorption kinetic (Pseudo-first order and Pseudo-second order) and isotherm models (Sip and Toth). The pseudo-second-order kinetics describe the best fitness with a correlation coefficient of 9945 at 35 bar. For adsorption isotherms, the Sip model shows better fitness with the regression coefficient (R2) of 0.9982 and with the lowest RSMD value of 0.0148. The findings revealed the potential of adsorbent in natural gas storage applications.Keywords: natural gas, adsorbent, compressed natural gas, adsorption
Procedia PDF Downloads 601629 Evaluation of Earthquake Induced Cost for Mid-Rise Buildings
Authors: Gulsah Olgun, Ozgur Bozdag, Yildirim Ertutar
Abstract:
This paper mainly focuses on performance assessment of buildings by associating the damage level with the damage cost. For this purpose a methodology is explained and applied to the representative mid-rise concrete building residing in Izmir. In order to consider uncertainties in occurrence of earthquakes, the structural analyses are conducted for all possible earthquakes in the region through the hazard curve. By means of the analyses, probability of the structural response being in different limit states are obtained and used to calculate expected damage cost. The expected damage cost comprises diverse cost components related to earthquake such as cost of casualties, replacement or repair cost of building etc. In this study, inter-story drift is used as an effective response variable to associate expected damage cost with different damage levels. The structural analysis methods performed to obtain inter story drifts are response spectrum method as a linear one, accurate push-over and time history methods to demonstrate the nonlinear effects on loss estimation. Comparison of the results indicates that each method provides similar values of expected damage cost. To sum up, this paper explains an approach which enables to minimize the expected damage cost of buildings and relate performance level to damage cost.Keywords: expected damage cost, limit states, loss estimation, performance based design
Procedia PDF Downloads 2691628 Parameters Identification and Sensitivity Study for Abrasive WaterJet Milling Model
Authors: Didier Auroux, Vladimir Groza
Abstract:
This work is part of STEEP Marie-Curie ITN project, and it focuses on the identification of unknown parameters of the proposed generic Abrasive WaterJet Milling (AWJM) PDE model, that appears as an ill-posed inverse problem. The necessity of studying this problem comes from the industrial milling applications where the possibility to predict and model the final surface with high accuracy is one of the primary tasks in the absence of any knowledge of the model parameters that should be used. In this framework, we propose the identification of model parameters by minimizing a cost function, measuring the difference between experimental and numerical solutions. The adjoint approach based on corresponding Lagrangian gives the opportunity to find out the unknowns of the AWJM model and their optimal values that could be used to reproduce the required trench profile. Due to the complexity of the nonlinear problem and a large number of model parameters, we use an automatic differentiation software tool (TAPENADE) for the adjoint computations. By adding noise to the artificial data, we show that in fact the parameter identification problem is highly unstable and strictly depends on input measurements. Regularization terms could be effectively used to deal with the presence of data noise and to improve the identification correctness. Based on this approach we present results in 2D and 3D of the identification of the model parameters and of the surface prediction both with self-generated data and measurements obtained from the real production. Considering different types of model and measurement errors allows us to obtain acceptable results for manufacturing and to expect the proper identification of unknowns. This approach also gives us the ability to distribute the research on more complex cases and consider different types of model and measurement errors as well as 3D time-dependent model with variations of the jet feed speed.Keywords: Abrasive Waterjet Milling, inverse problem, model parameters identification, regularization
Procedia PDF Downloads 3161627 Real-Time Recognition of Dynamic Hand Postures on a Neuromorphic System
Authors: Qian Liu, Steve Furber
Abstract:
To explore how the brain may recognize objects in its general,accurate and energy-efficient manner, this paper proposes the use of a neuromorphic hardware system formed from a Dynamic Video Sensor~(DVS) silicon retina in concert with the SpiNNaker real-time Spiking Neural Network~(SNN) simulator. As a first step in the exploration on this platform a recognition system for dynamic hand postures is developed, enabling the study of the methods used in the visual pathways of the brain. Inspired by the behaviours of the primary visual cortex, Convolutional Neural Networks (CNNs) are modeled using both linear perceptrons and spiking Leaky Integrate-and-Fire (LIF) neurons. In this study's largest configuration using these approaches, a network of 74,210 neurons and 15,216,512 synapses is created and operated in real-time using 290 SpiNNaker processor cores in parallel and with 93.0% accuracy. A smaller network using only 1/10th of the resources is also created, again operating in real-time, and it is able to recognize the postures with an accuracy of around 86.4% -only 6.6% lower than the much larger system. The recognition rate of the smaller network developed on this neuromorphic system is sufficient for a successful hand posture recognition system, and demonstrates a much-improved cost to performance trade-off in its approach.Keywords: spiking neural network (SNN), convolutional neural network (CNN), posture recognition, neuromorphic system
Procedia PDF Downloads 4721626 Numerical Simulation of Fluid-Structure Interaction on Wedge Slamming Impact by Using Particle Method
Authors: Sung-Chul Hwang, Di Ren, Sang-Moon Yoon, Jong-Chun Park, Abbas Khayyer, Hitoshi Gotoh
Abstract:
The slamming impact problem has a very important engineering background. For seaplane landing, recycling for the satellite re-entry capsule, and the impact load of the bow in the adverse sea conditions, the slamming problem always plays the important role. Due to its strong nonlinear effect, however, it seems to be not easy to obtain the accurate simulation results. Combined with the strong interaction between the fluid field and the elastic structure, the difficulty for the simulation leads to a new level for challenging. This paper presents a fully Lagrangian coupled solver for simulations of fluid-structure interactions, which is based on the Moving Particle Semi-implicit (MPS) method to solve the governing equations corresponding to incompressible flows as well as elastic structures. The developed solver is verified by reproducing the high velocity impact loads of deformable thin wedges with two different materials such as aluminum and steel on water entry. The present simulation results are compared with analytical solution derived using the hydrodynamic Wagner model and linear theory by Wan.Keywords: fluid-structure interaction, moving particle semi-implicit (MPS) method, elastic structure, incompressible flow, wedge slamming impact
Procedia PDF Downloads 6021625 Altered Lower Extremity Biomechanical Risk Factor Related to Anterior Cruciate Ligament Injury in Athlete with Functional Ankle Instability
Authors: Mohammad Karimizadehardakani, Hooman Minoonejad, Reza Rajabi, Ali Sharifnejad
Abstract:
Background: Ankle sprain is one of the most important risk factor of anterior cruciate ligament (ACL) injury. Also, functional ankle instability (FAI) population has alterations in lower extremity sagittal plane biomechanics during landing task. We want to examine whether biomechanical alterations demonstrated by FAI patients are associated with the mechanism of ACL injury during high risk and sport related tasks. Methods: Sixteen basketball player with FAI and 16 non-injured control performed a single-leg cross drop landing. Knee sagittal and frontal (ATSF) was calculated. Independent t-tests, multiple linear regression, and Pearson correlation were used for analysis data. Result: Subject with FAI showed more peak ATFS, posterior ground reaction force (GRF) and less knee flexion, compared to the controls (P= 0.001, P= 0.004, P= 0.011). Knee flexion (r= −0.824, P = 0.011) and posterior GRF (r= 0.901, P = .001) were correlated with ATSF; Posterior GRF was factor that most explained the variance in ATSF (R2= 0.645; P = .001) in the FAI group. Conclusions: Result of our study showed there is a potential biomechanical relationship between the presence of FAI and risk factors associated with ACL injury mechanism.Keywords: functional ankle instability, anterior cruciate ligament, biomechanics, risk factor
Procedia PDF Downloads 2231624 Quoting Jobshops Due Dates Subject to Exogenous Factors in Developing Nations
Authors: Idris M. Olatunde, Kareem B.
Abstract:
In manufacturing systems, especially job shops, service performance is a key factor that determines customer satisfaction. Service performance depends not only on the quality of the output but on the delivery lead times as well. Besides product quality enhancement, delivery lead time must be minimized for optimal patronage. Quoting accurate due dates is sine quo non for job shop operational survival in a global competitive environment. Quoting accurate due dates in job shops has been a herculean task that nearly defiled solutions from many methods employed due to complex jobs routing nature of the system. This class of NP-hard problems possessed no rigid algorithms that can give an optimal solution. Jobshop operational problem is more complex in developing nations due to some peculiar factors. Operational complexity in job shops emanated from political instability, poor economy, technological know-how, and the non-promising socio-political environment. The mentioned exogenous factors were hardly considered in the previous studies on scheduling problem related to due date determination in job shops. This study has filled the gap created in the past studies by developing a dynamic model that incorporated the exogenous factors for accurate determination of due dates for varying jobs complexity. Real data from six job shops selected from the different part of Nigeria, were used to test the efficacy of the model, and the outcomes were analyzed statistically. The results of the analyzes showed that the model is more promising in determining accurate due dates than the traditional models deployed by many job shops in terms of patronage and lead times minimization.Keywords: due dates prediction, improved performance, customer satisfaction, dynamic model, exogenous factors, job shops
Procedia PDF Downloads 4121623 Free Vibration of Axially Functionally Graded Simply Supported Beams Using Differential Transformation Method
Authors: A. Selmi
Abstract:
Free vibration analysis of homogenous and axially functionally graded simply supported beams within the context of Euler-Bernoulli beam theory is presented in this paper. The material properties of the beams are assumed to obey the linear law distribution. The effective elastic modulus of the composite was predicted by using the rule of mixture. Here, the complexities which appear in solving differential equation of transverse vibration of composite beams which limit the analytical solution to some special cases are overcome using a relatively new approach called the Differential Transformation Method. This technique is applied for solving differential equation of transverse vibration of axially functionally graded beams. Natural frequencies and corresponding normalized mode shapes are calculated for different Young’s modulus ratios. MATLAB code is designed to solve the transformed differential equation of the beam. Comparison of the present results with the exact solutions proves the effectiveness, the accuracy, the simplicity, and computational stability of the differential transformation method. The effect of the Young’s modulus ratio on the normalized natural frequencies and mode shapes is found to be very important.Keywords: differential transformation method, functionally graded material, mode shape, natural frequency
Procedia PDF Downloads 3091622 Analysis of Brain Specific Creatine Kinase of Postmortem Cerebrospinal Fluid and Serum in Blunt Head Trauma Cases
Authors: Rika Susanti, Eryati Darwin, Dedi Afandi, Yanwirasti, Syahruddin Said, Noverika Windasari, Zelly Dia Rofinda
Abstract:
Introduction: Blunt head trauma is one of the leading causes of death associated with murders and other deaths involved in criminal acts. Creatine kinase (CKBB) levels have been used as a biomarker for blunt head trauma. Therefore, it is now used as an alternative to an autopsy. The aim of this study is to investigate CKBB levels in cerebrospinal fluid (CSF) and post-mortem serum in order to deduce the cause and time of death. Method: This investigation was conducted through post-test–only group design involving deaths caused by blunt head trauma, which was compared to deaths caused by ketamine poisoning. Results: There were eight treatment groups, each consisting of six adult rats (Rattus norvegicus) Sprague-Dawley strain. Examinations were done at 0 hours, 1 hour, 2 hours, and 3 hours post-mortem, which followed by brain tissue observation. Data were then analyzed statistically with a repeated-measures general linear model. Conclusion: There were increases in the level of CKBB in CSF and postmortem serum in both blunt head trauma and ketamine poisoning treatment groups. However, there were no significant differences between these two groups.Keywords: blunt head trauma, CKBB, the cause of death, estimated time of death
Procedia PDF Downloads 1921621 Growth and Characterization of Bis-Thiourea Nickel Barium Chloride Single Crystals
Authors: Rakesh Hajiyani, Chetan Chauhan, Harshkant Jethva, Mihir Joshi
Abstract:
Metal bis-thiourea type organo-metallic crystals are popular as non-linear optical materials. Bis-thiourea nickel barium chloride was synthesized and crystals were grown by slow aqueous solvent evaporation technique. The transparent and colorless crystals having maximum dimensions of 13 mm x 8 mm x 2.2 mm were obtained. The EDAX was carried out to estimate the content of nickel and barium in the grown crystals. The powder XRD analysis suggested orthorhombic crystal structure with unit cell parameters as: a= 9.70 Å, b= 10.68 Å and c= 17.95 Å. The FTIR spectroscopy study confirmed the presence of various functional groups. The UV-vis spectroscopy study indicated that the crystals were transparent in the visible region with 90% transmittance level further optical parameters were studied. From the TGA it was found that the crystals remained stable up to 170 0C and then decomposed through two decomposition stages. The dielectric study was carried out in the frequency range of applied field from 500 Hz to 1 MHz. The variations of dielectric constant, dielectric loss were studied with frequency. It was found that the dielectric constant and the dielectric loss decreased as the frequency of applied field increased. The results are discussed.Keywords: crystal growth, dielectric study, optical parameters, organo-metallic crystals, powder xrd, slow evaporation technique, TGA
Procedia PDF Downloads 4501620 Integrative Transcriptomic Profiling of NK Cells and Monocytes: Advancing Diagnostic and Therapeutic Strategies for COVID-19
Authors: Salma Loukman, Reda Benmrid, Najat Bouchmaa, Hicham Hboub, Rachid El Fatimy, Rachid Benhida
Abstract:
In this study, it use integrated transcriptomic datasets from the GEO repository with the purpose of investigating immune dysregulation in COVID-19. Thus, in this context, we decided to be focused on NK cells and CD14+ monocytes gene expression, considering datasets GSE165461 and GSE198256, respectively. Other datasets with PBMCs, lung, olfactory, and sensory epithelium and lymph were used to provide robust validation for our results. This approach gave an integrated view of the immune responses in COVID-19, pointing out a set of potential biomarkers and therapeutic targets with special regard to standards of physiological conditions. IFI27, MKI67, CENPF, MBP, HBA2, TMEM158, THBD, HBA1, LHFPL2, SLA, and AC104564.3 were identified as key genes from our analysis that have critical biological processes related to inflammation, immune regulation, oxidative stress, and metabolic processes. Consequently, such processes are important in understanding the heterogeneous clinical manifestations of COVID-19—from acute to long-term effects now known as 'long COVID'. Subsequent validation with additional datasets consolidated these genes as robust biomarkers with an important role in the diagnosis of COVID-19 and the prediction of its severity. Moreover, their enrichment in key pathophysiological pathways presented them as potential targets for therapeutic intervention.The results provide insight into the molecular dynamics of COVID-19 caused by cells such as NK cells and other monocytes. Thus, this study constitutes a solid basis for targeted diagnostic and therapeutic development and makes relevant contributions to ongoing research efforts toward better management and mitigation of the pandemic.Keywords: SARS-COV-2, RNA-seq, biomarkers, severity, long COVID-19, bio analysis
Procedia PDF Downloads 121619 Shape Sensing and Damage Detection of Thin-Walled Cylinders Using an Inverse Finite Element Method
Authors: Ionel D. Craiu, Mihai Nedelcu
Abstract:
Thin-walled cylinders are often used by the offshore industry as columns of floating installations. Based on observed strains, the inverse Finite Element Method (iFEM) may rebuild the deformation of structures. Structural Health Monitoring uses this approach extensively. However, the number of in-situ strain gauges is what determines how accurate it is, and for shell structures with complicated deformation, this number can easily become too high for practical use. Any thin-walled beam member's complicated deformation can be modeled by the Generalized Beam Theory (GBT) as a linear combination of pre-specified cross-section deformation modes. GBT uses bar finite elements as opposed to shell finite elements. This paper proposes an iFEM/GBT formulation for the shape sensing of thin-walled cylinders based on these benefits. This method significantly reduces the number of strain gauges compared to using the traditional inverse-shell finite elements. Using numerical simulations, dent damage detection is achieved by comparing the strain distributions of the undamaged and damaged members. The effect of noise on strain measurements is also investigated.Keywords: damage detection, generalized beam theory, inverse finite element method, shape sensing
Procedia PDF Downloads 1131618 Design, Synthesis and Pharmacological Investigation of Novel 2-Phenazinamine Derivatives as a Mutant BCR-ABL (T315I) Inhibitor
Authors: Gajanan M. Sonwane
Abstract:
Nowadays, the entire pharmaceutical industry is facing the challenge of increasing efficiency and innovation. The major hurdles are the growing cost of research and development and a concurrent stagnating number of new chemical entities (NCEs). Hence, the challenge is to select the most druggable targets and to search the equivalent drug-like compounds, which also possess specific pharmacokinetic and toxicological properties that allow them to be developed as drugs. The present research work includes the studies of developing new anticancer heterocycles by using molecular modeling techniques. The heterocycles synthesized through such methodology are much effective as various physicochemical parameters have been already studied and the structure has been optimized for its best fit in the receptor. Hence, on the basis of the literature survey and considering the need to develop newer anticancer agents, new phenazinamine derivatives were designed by subjecting the nucleus to molecular modeling, viz., GQSAR analysis and docking studies. Simultaneously, these designed derivatives were subjected to in silico prediction of biological activity through PASS studies and then in silico toxicity risk assessment studies. In PASS studies, it was found that all the derivatives exhibited a good spectrum of biological activities confirming its anticancer potential. The toxicity risk assessment studies revealed that all the derivatives obey Lipinski’s rule. Amongst these series, compounds 4c, 5b and 6c were found to possess logP and drug-likeness values comparable with the standard Imatinib (used for anticancer activity studies) and also with the standard drug methotrexate (used for antimitotic activity studies). One of the most notable mutations is the threonine to isoleucine mutation at codon 315 (T315I), which is known to be resistant to all currently available TKI. Enzyme assay planned for confirmation of target selective activity.Keywords: drug design, tyrosine kinases, anticancer, Phenazinamine
Procedia PDF Downloads 1161617 Instrumentation of Urban Pavements Built with Construction and Demolition Waste
Authors: Sofia Figueroa, Efrain Bernal, Silvia Del Pilar Forero, Humberto Ramirez
Abstract:
This work shows a detailed review of the scope of global research on the road infrastructure using materials from Construction and Demolition Waste (C&DW), also called RCD. In the first phase of this research, a segment of road was designed using recycled materials such as Reclaimed Asphalt Pavement (RAP) on the top, the natural coarse base including 30% of RAP and recycled concrete blocks. The second part of this segment was designed using regular materials for each layer of the pavement. Both structures were built next to each other in order to analyze and measure the material properties as well as performance and environmental factors in the pavement under real traffic and weather conditions. Different monitoring devices were installed among the structure, based on the literature revision, such as soil cells, linear potentiometer, moisture sensors, and strain gauges that help us to know the C&DW as a part of the pavement structure. This research includes not only the physical characterization but also the measured parameters in a field such as an asphalt mixture (RAP) strain (ετ), vertical strain (εᵥ) and moisture control in coarse layers (%w), and the applied loads and strain in the subgrade (εᵥ). The results will show us what is happening with these materials in order to obtain not only a sustainable solution but also to know its behavior and lifecycle.Keywords: sustainable pavements, construction & demolition waste-C&DW, recycled rigid concrete, reclaimed asphalt pavement-rap
Procedia PDF Downloads 1631616 A Deep Learning Model with Greedy Layer-Wise Pretraining Approach for Optimal Syngas Production by Dry Reforming of Methane
Authors: Maryam Zarabian, Hector Guzman, Pedro Pereira-Almao, Abraham Fapojuwo
Abstract:
Dry reforming of methane (DRM) has sparked significant industrial and scientific interest not only as a viable alternative for addressing the environmental concerns of two main contributors of the greenhouse effect, i.e., carbon dioxide (CO₂) and methane (CH₄), but also produces syngas, i.e., a mixture of hydrogen (H₂) and carbon monoxide (CO) utilized by a wide range of downstream processes as a feedstock for other chemical productions. In this study, we develop an AI-enable syngas production model to tackle the problem of achieving an equivalent H₂/CO ratio [1:1] with respect to the most efficient conversion. Firstly, the unsupervised density-based spatial clustering of applications with noise (DBSAN) algorithm removes outlier data points from the original experimental dataset. Then, random forest (RF) and deep neural network (DNN) models employ the error-free dataset to predict the DRM results. DNN models inherently would not be able to obtain accurate predictions without a huge dataset. To cope with this limitation, we employ reusing pre-trained layers’ approaches such as transfer learning and greedy layer-wise pretraining. Compared to the other deep models (i.e., pure deep model and transferred deep model), the greedy layer-wise pre-trained deep model provides the most accurate prediction as well as similar accuracy to the RF model with R² values 1.00, 0.999, 0.999, 0.999, 0.999, and 0.999 for the total outlet flow, H₂/CO ratio, H₂ yield, CO yield, CH₄ conversion, and CO₂ conversion outputs, respectively.Keywords: artificial intelligence, dry reforming of methane, artificial neural network, deep learning, machine learning, transfer learning, greedy layer-wise pretraining
Procedia PDF Downloads 861615 Language Anxiety and Learner Achievement among University Undergraduates in Sri Lanka: A Case Study of University of Sri Jayewardenepura
Authors: Sujeeva Sebastian Pereira
Abstract:
Language Anxiety (LA) – a distinct psychological construct of self-perceptions and behaviors related to classroom language learning – is perceived as a significant variable highly correlated with Second Language Acquisition (SLA). However, the existing scholarship has inadequately explored the nuances of LA in relation to South Asia, especially in terms of Sri Lankan higher education contexts. Thus, the current study, situated within the broad areas of Psychology of SLA and Applied Linguistics, investigates the impact of competency-based LA and identity-based LA on learner achievement among undergraduates of Sri Lanka. Employing a case study approach to explore the impact of LA, 750 undergraduates of the University of Sri Jayewardenepura, Sri Lanka, thus covering 25% of the student population from all seven faculties of the university, were selected as participants using stratified proportionate sampling in terms of ethnicity, gender, and disciplines. The qualitative and quantitative research inquiry utilized for data collection include a questionnaire consisting a set of structured and unstructured questions, and semi-structured interviews as research instruments. Data analysis includes both descriptive and statistical measures. As per the quantitative measures of data analysis, the study employed Pearson Correlation Coefficient test, Chi-Square test, and Multiple Correspondence Analysis; it used LA as the dependent variable, and two types of independent variables were used: direct and indirect variables. Direct variables encompass the four main language skills- reading, writing, speaking and listening- and test anxiety. These variables were further explored through classroom activities on grammar, vocabulary and individual and group presentations. Indirect variables are identity, gender and cultural stereotypes, discipline, social background, income level, ethnicity, religion and parents’ education level. Learner achievement was measured through final scores the participants have obtained for Compulsory English- a common first-year course unit mandatory for all undergraduates. LA was measured using the FLCAS. In order to increase the validity and reliability of the study, data collected were triangulated through descriptive content analysis. Clearly evident through both the statistical analysis and the qualitative analysis of the results is the significant linear negative correlation between LA and learner achievement, and the significant negative correlation between LA and culturally-operated gender stereotypes which create identity disparities in learners. The study also found that both competency-based LA and identity-based LA are experienced primarily and inescapably due to the apprehensions regarding speaking in English. Most participants who reported high levels of LA were from an urban socio-economic background of lower income families. Findings exemplify the linguistic inequality prevalent in the socio-cultural milieu in Sri Lankan society. This inequality makes learning English a dire need, yet, very much an anxiety provoking process because of many sociolinguistic, cultural and ideological factors related to English as a Second Language (ESL) in Sri Lanka. The findings bring out the intricate interrelatedness of both the dependent variable (LA) and the independent variables stated above, emphasizing that the significant linear negative correlation between LA and learner achievement is connected to the affective, cognitive and sociolinguistic domains of SLA. Thus, the study highlights the promise in linguistic practices such as code-switching, crossing and accommodating hybrid identities as strategies in minimizing LA and maximizing the experience of ESL.Keywords: language anxiety, identity-based anxiety, competence-based anxiety, TESL, Sri Lanka
Procedia PDF Downloads 1901614 Optimizing the Window Geometry Using Fractals
Authors: K. Geetha Ramesh, A. Ramachandraiah
Abstract:
In an internal building space, daylight becomes a powerful source of illumination. The challenge therefore, is to develop means of utilizing both direct and diffuse natural light in buildings while maintaining and improving occupant's visual comfort, particularly at greater distances from the windows throwing daylight. The geometrical features of windows in a building have significant effect in providing daylight. The main goal of this research is to develop an innovative window geometry, which will effectively provide the daylight component adequately together with internal reflected component(IRC) and also the external reflected component(ERC), if any. This involves exploration of a light redirecting system using fractal geometry for windows, in order to penetrate and distribute daylight more uniformly to greater depths, minimizing heat gain and glare, and also to reduce building energy use substantially. Of late the creation of fractal geometrical window and the occurrence of daylight illuminance due to such windows is becoming an interesting study. The amount of daylight can change significantly based on the window geometry and sky conditions. This leads to the (i) exploration of various fractal patterns suitable for window designs, and (ii) quantification of the effect of chosen fractal window based on the relationship between the fractal pattern, size, orientation and glazing properties for optimizing daylighting. There are a lot of natural lighting applications able to predict the behaviour of a light in a room through a traditional opening - a regular window. The conventional prediction methodology involves the evaluation of the daylight factor, the internal reflected component and the external reflected component. Having evaluated the daylight illuminance level for a conventional window, the technical performance of a fractal window for an optimal daylighting is to be studied and compared with that of a regular window. The methodologies involved are highlighted in this paper.Keywords: daylighting, fractal geometry, fractal window, optimization
Procedia PDF Downloads 3011613 Recurrent Neural Networks for Complex Survival Models
Authors: Pius Marthin, Nihal Ata Tutkun
Abstract:
Survival analysis has become one of the paramount procedures in the modeling of time-to-event data. When we encounter complex survival problems, the traditional approach remains limited in accounting for the complex correlational structure between the covariates and the outcome due to the strong assumptions that limit the inference and prediction ability of the resulting models. Several studies exist on the deep learning approach to survival modeling; moreover, the application for the case of complex survival problems still needs to be improved. In addition, the existing models need to address the data structure's complexity fully and are subject to noise and redundant information. In this study, we design a deep learning technique (CmpXRnnSurv_AE) that obliterates the limitations imposed by traditional approaches and addresses the above issues to jointly predict the risk-specific probabilities and survival function for recurrent events with competing risks. We introduce the component termed Risks Information Weights (RIW) as an attention mechanism to compute the weighted cumulative incidence function (WCIF) and an external auto-encoder (ExternalAE) as a feature selector to extract complex characteristics among the set of covariates responsible for the cause-specific events. We train our model using synthetic and real data sets and employ the appropriate metrics for complex survival models for evaluation. As benchmarks, we selected both traditional and machine learning models and our model demonstrates better performance across all datasets.Keywords: cumulative incidence function (CIF), risk information weight (RIW), autoencoders (AE), survival analysis, recurrent events with competing risks, recurrent neural networks (RNN), long short-term memory (LSTM), self-attention, multilayers perceptrons (MLPs)
Procedia PDF Downloads 901612 Fused Structure and Texture (FST) Features for Improved Pedestrian Detection
Authors: Hussin K. Ragb, Vijayan K. Asari
Abstract:
In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.Keywords: pedestrian detection, phase congruency, local phase, LBP features, CSLBP features, FST descriptor
Procedia PDF Downloads 4881611 Power System Stability Enhancement Using Self Tuning Fuzzy PI Controller for TCSC
Authors: Salman Hameed
Abstract:
In this paper, a self-tuning fuzzy PI controller (STFPIC) is proposed for thyristor controlled series capacitor (TCSC) to improve power system dynamic performance. In a STFPIC controller, the output scaling factor is adjusted on-line by an updating factor (α). The value of α is determined from a fuzzy rule-base defined on error (e) and change of error (Δe) of the controlled variable. The proposed self-tuning controller is designed using a very simple control rule-base and the most natural and unbiased membership functions (MFs) (symmetric triangles with equal base and 50% overlap with neighboring MFs). The comparative performances of the proposed STFPIC and the standard fuzzy PI controller (FPIC) have been investigated on a multi-machine power system (namely, 4 machine two area system) through detailed non-linear simulation studies using MATLAB/SIMULINK. From the simulation studies it has been found out that for damping oscillations, the performance of the proposed STFPIC is better than that obtained by the standard FPIC. Moreover, the proposed STFPIC as well as the FPIC have been found to be quite effective in damping oscillations over a wide range of operating conditions and are quite effective in enhancing the power carrying capability of the power system significantly.Keywords: genetic algorithm, power system stability, self-tuning fuzzy controller, thyristor controlled series capacitor
Procedia PDF Downloads 4231610 Sensitivity Analysis of the Thermal Properties in Early Age Modeling of Mass Concrete
Authors: Farzad Danaei, Yilmaz Akkaya
Abstract:
In many civil engineering applications, especially in the construction of large concrete structures, the early age behavior of concrete has shown to be a crucial problem. The uneven rise in temperature within the concrete in these constructions is the fundamental issue for quality control. Therefore, developing accurate and fast temperature prediction models is essential. The thermal properties of concrete fluctuate over time as it hardens, but taking into account all of these fluctuations makes numerical models more complex. Experimental measurement of the thermal properties at the laboratory conditions also can not accurately predict the variance of these properties at site conditions. Therefore, specific heat capacity and the heat conductivity coefficient are two variables that are considered constant values in many of the models previously recommended. The proposed equations demonstrate that these two quantities are linearly decreasing as cement hydrates, and their value are related to the degree of hydration. The effects of changing the thermal conductivity and specific heat capacity values on the maximum temperature and the time it takes for concrete to reach that temperature are examined in this study using numerical sensibility analysis, and the results are compared to models that take a fixed value for these two thermal properties. The current study is conducted in 7 different mix designs of concrete with varying amounts of supplementary cementitious materials (fly ash and ground granulated blast furnace slag). It is concluded that the maximum temperature will not change as a result of the constant conductivity coefficient, but variable specific heat capacity must be taken into account, also about duration when a concrete's central node reaches its max value again variable specific heat capacity can have a considerable effect on the final result. Also, the usage of GGBFS has more influence compared to fly ash.Keywords: early-age concrete, mass concrete, specific heat capacity, thermal conductivity coefficient
Procedia PDF Downloads 77