Search results for: gender behavior of heroes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8818

Search results for: gender behavior of heroes

4978 Stagnation Point Flow Over a Stretching Cylinder with Variable Thermal Conductivity and Slip Conditions

Authors: M. Y. Malik, Farzana Khan

Abstract:

In this article, we discuss the behavior of viscous fluid near stagnation point over a stretching cylinder with variable thermal conductivity. The effects of slip conditions are also encountered. Thermal conductivity is considered as a linear function of temperature. By using homotopy analysis method and Fehlberg method we compare the graphical results for both momentum and energy equations. The effect of different parameters on velocity and temperature fields are shown graphically.

Keywords: slip conditions, stretching cylinder, heat generation/absorption, stagnation point flow, variable thermal conductivity

Procedia PDF Downloads 425
4977 Grain Structure Evolution during Friction-Stir Welding of 6061-T6 Aluminum Alloy

Authors: Aleksandr Kalinenko, Igor Vysotskiy, Sergey Malopheyev, Sergey Mironov, Rustam Kaibyshev

Abstract:

From a thermo-mechanical standpoint, friction-stir welding (FSW) represents a unique combination of very large strains, high temperature and relatively high strain rate. The material behavior under such extreme deformation conditions is not studied well and thus, the microstructural examinations of the friction-stir welded materials represent an essential academic interest. Moreover, a clear understanding of the microstructural mechanisms operating during FSW should improve our understanding of the microstructure-properties relationship in the FSWed materials and thus enables us to optimize their service characteristics. Despite extensive research in this field, the microstructural behavior of some important structural materials remains not completely clear. In order to contribute to this important work, the present study was undertaken to examine the grain structure evolution during the FSW of 6061-T6 aluminum alloy. To provide an in-depth insight into this process, the electron backscatter diffraction (EBSD) technique was employed for this purpose. Microstructural observations were conducted by using an FEI Quanta 450 Nova field-emission-gun scanning electron microscope equipped with TSL OIMTM software. A suitable surface finish for EBSD was obtained by electro-polishing in a solution of 25% nitric acid in methanol. A 15° criterion was employed to differentiate low-angle boundaries (LABs) from high-angle boundaries (HABs). In the entire range of the studied FSW regimes, the grain structure evolved in the stir zone was found to be dominated by nearly-equiaxed grains with a relatively high fraction of low-angle boundaries and the moderate-strength B/-B {112}<110> simple-shear texture. In all cases, the grain-structure development was found to be dictated by an extensive formation of deformation-induced boundaries, their gradual transformation to the high-angle grain boundaries. Accordingly, the grain subdivision was concluded to the key microstructural mechanism. Remarkably, a gradual suppression of this mechanism has been observed at relatively high welding temperatures. This surprising result has been attributed to the reduction of dislocation density due to the annihilation phenomena.

Keywords: electron backscatter diffraction, friction-stir welding, heat-treatable aluminum alloys, microstructure

Procedia PDF Downloads 238
4976 Optimization of Temperature Coefficients for MEMS Based Piezoresistive Pressure Sensor

Authors: Vijay Kumar, Jaspreet Singh, Manoj Wadhwa

Abstract:

Piezo-resistive pressure sensors were one of the first developed micromechanical system (MEMS) devices and still display a significant growth prompted by the advancements in micromachining techniques and material technology. In MEMS based piezo-resistive pressure sensors, temperature can be considered as the main environmental condition which affects the system performance. The study of the thermal behavior of these sensors is essential to define the parameters that cause the output characteristics to drift. In this work, a study on the effects of temperature and doping concentration in a boron implanted piezoresistor for a silicon-based pressure sensor is discussed. We have optimized the temperature coefficient of resistance (TCR) and temperature coefficient of sensitivity (TCS) values to determine the effect of temperature drift on the sensor performance. To be more precise, in order to reduce the temperature drift, a high doping concentration is needed. And it is well known that the Wheatstone bridge in a pressure sensor is supplied with a constant voltage or a constant current input supply. With a constant voltage supply, the thermal drift can be compensated along with an external compensation circuit, whereas the thermal drift in the constant current supply can be directly compensated by the bridge itself. But it would be beneficial to also compensate the temperature coefficient of piezoresistors so as to further reduce the temperature drift. So, with a current supply, the TCS is dependent on both the TCπ and TCR. As TCπ is a negative quantity and TCR is a positive quantity, it is possible to choose an appropriate doping concentration at which both of them cancel each other. An exact cancellation of TCR and TCπ values is not readily attainable; therefore, an adjustable approach is generally used in practical applications. Thus, one goal of this work has been to better understand the origin of temperature drift in pressure sensor devices so that the temperature effects can be minimized or eliminated. This paper describes the optimum doping levels for the piezoresistors where the TCS of the pressure transducers will be zero due to the cancellation of TCR and TCπ values. Also, the fabrication and characterization of the pressure sensor are carried out. The optimized TCR value obtained for the fabricated die is 2300 ± 100ppm/ᵒC, for which the piezoresistors are implanted at a doping concentration of 5E13 ions/cm³ and the TCS value of -2100ppm/ᵒC is achieved. Therefore, the desired TCR and TCS value is achieved, which are approximately equal to each other, so the thermal effects are considerably reduced. Finally, we have calculated the effect of temperature and doping concentration on the output characteristics of the sensor. This study allows us to predict the sensor behavior against temperature and to minimize this effect by optimizing the doping concentration.

Keywords: piezo-resistive, pressure sensor, doping concentration, TCR, TCS

Procedia PDF Downloads 183
4975 Correlation Analysis to Quantify Learning Outcomes for Different Teaching Pedagogies

Authors: Kanika Sood, Sijie Shang

Abstract:

A fundamental goal of education includes preparing students to become a part of the global workforce by making beneficial contributions to society. In this paper, we analyze student performance for multiple courses that involve different teaching pedagogies: a cooperative learning technique and an inquiry-based learning strategy. Student performance includes student engagement, grades, and attendance records. We perform this study in the Computer Science department for online and in-person courses for 450 students. We will perform correlation analysis to study the relationship between student scores and other parameters such as gender, mode of learning. We use natural language processing and machine learning to analyze student feedback data and performance data. We assess the learning outcomes of two teaching pedagogies for undergraduate and graduate courses to showcase the impact of pedagogical adoption and learning outcome as determinants of academic achievement. Early findings suggest that when using the specified pedagogies, students become experts on their topics and illustrate enhanced engagement with peers.

Keywords: bag-of-words, cooperative learning, education, inquiry-based learning, in-person learning, natural language processing, online learning, sentiment analysis, teaching pedagogy

Procedia PDF Downloads 78
4974 A Homogenized Mechanical Model of Carbon Nanotubes/Polymer Composite with Interface Debonding

Authors: Wenya Shu, Ilinca Stanciulescu

Abstract:

Carbon nanotubes (CNTs) possess attractive properties, such as high stiffness and strength, and high thermal and electrical conductivities, making them promising filler in multifunctional nanocomposites. Although CNTs can be efficient reinforcements, the expected level of mechanical performance of CNT-polymers is not often reached in practice due to the poor mechanical behavior of the CNT-polymer interfaces. It is believed that the interactions of CNT and polymer mainly result from the Van der Waals force. The interface debonding is a fracture and delamination phenomenon. Thus, the cohesive zone modeling (CZM) is deemed to give good capture of the interface behavior. The detailed, cohesive zone modeling provides an option to consider the CNT-matrix interactions, but brings difficulties in mesh generation and also leads to high computational costs. Homogenized models that smear the fibers in the ground matrix and treat the material as homogeneous are studied in many researches to simplify simulations. But based on the perfect interface assumption, the traditional homogenized model obtained by mixing rules severely overestimates the stiffness of the composite, even comparing with the result of the CZM with artificially very strong interface. A mechanical model that can take into account the interface debonding and achieve comparable accuracy to the CZM is thus essential. The present study first investigates the CNT-matrix interactions by employing cohesive zone modeling. Three different coupled CZM laws, i.e., bilinear, exponential and polynomial, are considered. These studies indicate that the shapes of the CZM constitutive laws chosen do not influence significantly the simulations of interface debonding. Assuming a bilinear traction-separation relationship, the debonding process of single CNT in the matrix is divided into three phases and described by differential equations. The analytical solutions corresponding to these phases are derived. A homogenized model is then developed by introducing a parameter characterizing interface sliding into the mixing theory. The proposed mechanical model is implemented in FEAP8.5 as a user material. The accuracy and limitations of the model are discussed through several numerical examples. The CZM simulations in this study reveal important factors in the modeling of CNT-matrix interactions. The analytical solutions and proposed homogenized model provide alternative methods to efficiently investigate the mechanical behaviors of CNT/polymer composites.

Keywords: carbon nanotube, cohesive zone modeling, homogenized model, interface debonding

Procedia PDF Downloads 132
4973 The Analysis of Indian Culture through the Lexicographical Discourse of Hindi-French Dictionary

Authors: Tanzil Ansari

Abstract:

A dictionary is often considered as a list of words, arranged in alphabetical orders, providing information on a language or languages and it informs us about the spelling, the pronunciation, the origin, the gender and the grammatical functions of new and unknown words. In other words, it is first and foremost a linguistic tool. But, the research across the world in the field of linguistic and lexicography proved that a dictionary is not only a linguistic tool but also a cultural product through which a lexicographer transmits the culture of a country or a linguistic community from his or her ideology. It means, a dictionary does not present only language and its metalinguistic functions but also its culture. Every language consists of some words and expressions which depict the culture of its language. In this way, it is impossible to disassociate language from its culture. There is always an ideology that plays an important role in the depiction of any culture. Using the orientalism theory of Edward Said to represent the east, the objective of the present research is to study the representation of Indian culture through the lexicographical discourse of Hindi-French Dictionary of Federica Boschetti, a French lexicographer. The results show that the Indian culture is stereotypical and monolithic. It also shows India as male oriented country where women are exploited by male-dominated society. The study is focused on Hindi-French dictionary, but its line of argument can be compared to dictionaries produced in other languages.

Keywords: culture, dictionary, lexicographical discourse, stereotype image

Procedia PDF Downloads 303
4972 Numerical Simulation of the Remaining Life of Ramshir Bridge over the Karoon River

Authors: M. Jalali Azizpour, V.Tavvaf, E. Akhlaghi, H. Mohammadi Majd, A. Shirani, S. M. Moravvej, M. Kazemi, A. R. Aboudi Asl, A. Jaderi

Abstract:

The static and corrosion behavior of the bridge using for pipelines in the south of country have been evaluated. The bridge was constructed more than 40 years ago on the Karoon River. Mentioned bridge is located in Khuzestan province and at a distance of 15 km east from the suburbs of Ahwaz. In order to determine the mechanical properties, the experimental tools such as measuring the thickness and static simulations based on the actual load were used. In addition, the metallurgical studies were used to achieve a rate of corrosion of pipes in the river and in the river bed. The aim of this project is to determine the remaining life of the bridge using mechanical and metallurgical studies.

Keywords: FEM, stress, corrosion, bridge

Procedia PDF Downloads 476
4971 Colonization Pattern and Growth of Reintroduced Tiger (Panthera tigris) Population at Central India

Authors: M. S. Sarkar, J. A. Johnson, S. Sen, G. K. Saha, K. Ramesh

Abstract:

There is growing recognition of several important roles played by tigers for maintaining sustainable biodiversity at diverse ecosystems in South and South-East Asia. Only <3200 individuals are left in the wild because of poaching and habitat loss. Thus, restoring wild population is an emerging as well as important conservation initiative, but such efforts still remain challenging due to their elusive and solitary behavior. After careful translocation of few individuals, how reintroduced individuals colonize into suitable habitat and achieve stable stage population through reproduction is vital information for forest managers and policy makers of its 13 distribution range countries. Four wild and two captive radio collared tigers were reintroduced at Panna Tiger Reserve, Madhya-pradesh, India during 2009-2014. We critically examined their settlement behavior and population growth over the period. Results from long term telemetry data showed that male explored larger areas rapidly in short time span, while females explored small area in long time period and with significant high rate of movement in both sexes during exploratory period. Significant difference in home range sizes of tigers were observed in exploratory and settlement period. Though all reintroduced tigers preferred densely vegetated undisturbed forest patches within the core area of tiger reserve, a niche based k select analysis showed that individual variation in habitat selection was prominent among reintroduced tigers. Total 18 litter of >42 known cubs were born with low mortality rate, high maternity rate, high observed growth rate and short generation time in both the sexes. The population achieved its carrying capacity in a very short time span, marking success of this current tiger conservation programme. Our study information could provide significant insights on the tiger biology of translocated tigers with implication for future conservation strategies that consider translocation based recovery in their range countries.

Keywords: reintroduction, tiger, home range, demography

Procedia PDF Downloads 219
4970 Factors in a Sustainability Assessment of New Types of Closed Cavity Facades

Authors: Zoran Veršić, Josip Galić, Marin Binički, Lucija Stepinac

Abstract:

With the current increase in CO₂ emissions and global warming, the sustainability of both existing and new solutions must be assessed on a wide scale. As the implementation of closed cavity facades (CCF) is on the rise, a variety of factors must be included in the analysis of new types of CCF. This paper aims to cover the relevant factors included in the sustainability assessment of new types of CCF. Several mathematical models are being used to describe the physical behavior of CCF. Depending on the type of CCF, they cover the main factors which affect the durability of the façade: thermal behavior of various elements in the façade, stress, and deflection of the glass panels, pressure inside a cavity, exchange rate, and the moisture buildup in the cavity. CCF itself represents a complex system in which all mentioned factors must be considered mutually. Still, the façade is only an envelope of a more complex system, the building. Choice of the façade dictates the heat loss and the heat gain, thermal comfort of inner space, natural lighting, and ventilation. Annual consumption of energy for heating, cooling, lighting, and maintenance costs will present the operational advantages or disadvantages of the chosen façade system in both the economic and environmental aspects. Still, the only operational viewpoint is not all-inclusive. As the building codes constantly demand higher energy efficiency as well as transfer to renewable energy sources, the ratio of embodied and lifetime operational energy footprint of buildings is changing. With the drop in operational energy CO₂ emissions, embodied energy emissions present a larger and larger share in the lifecycle emissions of the building. Taken all into account, the sustainability assessment of a façade, as well as other major building elements, should include all mentioned factors during the lifecycle of an element. The challenge of such an approach is a timescale. Depending on the climatic conditions on the building site, the expected lifetime of CCF can exceed 25 years. In such a time span, some of the factors can be estimated more precisely than others. The ones depending on the socio-economic conditions are more likely to be harder to predict than the natural ones like the climatic load. This work recognizes and summarizes the relevant factors needed for the assessment of new types of CCF, considering the entire lifetime of a façade element and economic and environmental aspects.

Keywords: assessment, closed cavity façade, life cycle, sustainability

Procedia PDF Downloads 195
4969 Effect of Upper Face Sheet Material on Flexural Strength of Polyurethane Foam Hybrid Sandwich Material

Authors: M. Atef Gabr, M. H. Abdel Latif, Ramadan El Gamsy

Abstract:

Sandwich panels comprise a thick, light-weight plastic foam such as polyurethane (PU) sandwiched between two relatively thin faces. One or both faces may be flat, lightly profiled or fully profiled. Until recently sandwich panel construction in Egypt has been widely used in cold-storage buildings, cold trucks, prefabricated buildings and insulation in construction. Recently new techniques are used in mass production of Sandwich Materials such as Reaction Injection Molding (RIM) and Vacuum bagging technique. However, in recent times their use has increased significantly due to their widespread structural applications in building systems. Structural sandwich panels generally used in Egypt comprise polyurethane foam core and thinner (0.42 mm) and high strength about 550 MPa (yield strength) flat steel faces bonded together using separate adhesives and By RIM technique. In this paper, we will use a new technique in sandwich panel preparation by using different face sheet materials in combination with polyurethane foam to form sandwich panel structures. Previously, PU Foam core with same thin 2 faces material was used, but in this work, we use different face materials and thicknesses for the upper face sheet such as Galvanized steel sheets (G.S),Aluminum sheets (Al),Fiberglass sheets (F.G) and Aluminum-Rubber composite sheets (Al/R) with polyurethane foam core 10 mm thickness and 45 Kg/m3 Density and Galvanized steel as lower face sheet. Using Aluminum-Rubber composite sheets as face sheet is considered a hybrid composite sandwich panel which is built by Hand-Layup technique by using PU glue as adhesive. This modification increases the benefits of the face sheet that will withstand different working environments with relatively small increase in its weight and will be useful in several applications. In this work, a 3-point bending test is used assistant professor to measure the most important factor in sandwich materials that is strength to weight ratio(STW) for different combinations of sandwich structures and make a comparison to study the effect of changing the face sheet material on the mechanical behavior of PU sandwich material. Also, the density of the different prepared sandwich materials will be measured to obtain the specific bending strength.

Keywords: hybrid sandwich panel, mechanical behavior, PU foam, sandwich panel, 3-point bending, flexural strength

Procedia PDF Downloads 317
4968 A Graph SEIR Cellular Automata Based Model to Study the Spreading of a Transmittable Disease

Authors: Natasha Sharma, Kulbhushan Agnihotri

Abstract:

Cellular Automata are discrete dynamical systems which are based on local character and spatial disparateness of the spreading process. These factors are generally neglected by traditional models based on differential equations for epidemic spread. The aim of this work is to introduce an SEIR model based on cellular automata on graphs to imitate epidemic spreading. Distinctively, it is an SEIR-type model where the population is divided into susceptible, exposed, infected and recovered individuals. The results obtained from simulations are in accordance with the spreading behavior of a real time epidemics.

Keywords: cellular automata, epidemic spread, graph, susceptible

Procedia PDF Downloads 460
4967 Bond Strength of Nano Silica Concrete Subjected to Corrosive Environments

Authors: Muhammad S. El-Feky, Mohamed I. Serag, Ahmed M. Yasien, Hala Elkady

Abstract:

Reinforced concrete requires steel bars in order to provide the tensile strength that is needed in structural concrete. However, when steel bars corrode, a loss in bond between the concrete and the steel bars occurs due to the formation of rust on the bars surface. Permeability of concrete is a fundamental property in perspective of the durability of concrete as it represents the ease with which water or other fluids can move through concrete, subsequently transporting corrosive agents. Nanotechnology is a standout amongst active research zones that envelops varies disciplines including construction materials. The application of nanotechnology in the corrosion protection of metal has lately gained momentum as nano scale particles have ultimate physical, chemical and physicochemical properties, which may enhance the corrosion protection in comparison to large size materials. The presented research aims to study the bond performance of concrete containing relatively high volume nano silica (up to 4.5%) exposed to corrosive conditions. This was extensively studied through tensile, bond strengths as well as the permeability of nano silica concrete. In addition micro-structural analysis was performed in order to evaluate the effect of nano silica on the properties of concrete at both; the micro and nano levels. The results revealed that by the addition of nano silica, the permeability of concrete mixes decreased significantly to reach about 50% of the control mix by the addition of 4.5% nano silica. As for the corrosion resistance, the nano silica concrete is comparatively higher resistance than ordinary concrete. Increasing Nano Silica percentage increased significantly the critical time corresponding to a metal loss (equal to 50 ϻm) which usually corresponding to the first concrete cracking due to the corrosion of reinforcement to reach about 49 years instead of 40 years as for the normal concrete. Finally, increasing nano Silica percentage increased significantly the residual bond strength of concrete after being subjected to corrosive environment. After being subjected to corrosive environment, the pullout behavior was observed for the bars embedded in all of the mixes instead of the splitting behavior that was observed before being corroded. Adding 4.5% nano silica in concrete increased the residual bond strength to reach 79% instead of 27% only as compared to control mix (0%W) before the subjection of the corrosive environment. From the conducted study we can conclude that the Nano silica proved to be a significant pore blocker material.

Keywords: bond strength, concrete, corrosion resistance, nano silica, permeability

Procedia PDF Downloads 310
4966 Prevalence Of Periodontal Disease In Felines In The Outskirts Of The City Of Manaus, Brazil: An Epidemiological Study

Authors: Pármenas Costa Macedo do Nascimento

Abstract:

Periodontal disease is the most common disease in the oral cavity of felines. It starts with the accumulation of bacteria on the tooth surface supporting the tissues of the periodontal tissue, namely gums, alveolar bone, cementum, and periodontal ligament. The main clinical symptom observed by the owner is bad breath, which may lead to local and systemic consequences depending on the stage of periodontal disease, such as bleeding and bone loss. Therefore, the study is important to educate tutors to take better care of the felines oral health in order to try to prevent the disease. For this epidemiological study, the target population has been felines, located on the outskirts of Manaus, in the state of Amazonas, with a geographic area of 155.68 km², with no defined breed, from October 1st to 10th, 2021, whose samples has been randomly selected, with a detailed profile. The variables of interest for this study have been: absence or presence of periodontal disease, gender, age (delimited by age group), and condition (domiciled or homeless). Using a sample of 40 felines from 4 districts of the east side of Manaus chosen at random, an oral exam has been made to identify the studied disease. The animal's apparent age, condition, sex, and presence or absence of periodontal disease has been noted. It has been observed that 70% (28/40) of them had periodontal disease, mostly females, aged between 0 and 5 years and domiciled, totaling 30% (12/40).

Keywords: felines, oral cavity, oral exam, periodontal disease

Procedia PDF Downloads 214
4965 A Phenomenological Expression for Self-Attractive Energy of Singlelayer Graphene Sheets

Authors: Bingjie Wu, C. Q. Ru

Abstract:

The present work studies several reasonably expected candidate integral forms for self-attractive potential energy of a free monolayer graphene sheet. The admissibility of a specific integral form for ripple formation is verified, while all others most of the candidate integral forms are rejected based on the non-existence of stable periodic ripples. Based on the selected integral form of self-attractive potential energy, some mechanical behavior, including ripple formation and buckling, of a free monolayer grapheme sheet are discussed in details

Keywords: graphene, monolayer, ripples, van der Waals energy

Procedia PDF Downloads 392
4964 Empowering and Educating Young People Against Cybercrime by Playing: The Rayuela Method

Authors: Jose L. Diego, Antonio Berlanga, Gregorio López, Diana López

Abstract:

The Rayuela method is a success story, as it is part of a project selected by the European Commission to face the challenge launched by itself for achieving a better understanding of human factors, as well as social and organisational aspects that are able to solve issues in fighting against crime. Rayuela's method specifically focuses on the drivers of cyber criminality, including approaches to prevent, investigate, and mitigate cybercriminal behavior. As the internet has become an integral part of young people’s lives, they are the key target of the Rayuela method because they (as a victim or as a perpetrator) are the most vulnerable link of the chain. Considering the increased time spent online and the control of their internet usage and the low level of awareness of cyber threats and their potential impact, it is understandable the proliferation of incidents due to human mistakes. 51% of Europeans feel not well informed about cyber threats, and 86% believe that the risk of becoming a victim of cybercrime is rapidly increasing. On the other hand, Law enforcement has noted that more and more young people are increasingly committing cybercrimes. This is an international problem that has considerable cost implications; it is estimated that crimes in cyberspace will cost the global economy $445B annually. Understanding all these phenomena drives to the necessity of a shift in focus from sanctions to deterrence and prevention. As a research project, Rayuela aims to bring together law enforcement agencies (LEAs), sociologists, psychologists, anthropologists, legal experts, computer scientists, and engineers, to develop novel methodologies that allow better understanding the factors affecting online behavior related to new ways of cyber criminality, as well as promoting the potential of these young talents for cybersecurity and technologies. Rayuela’s main goal is to better understand the drivers and human factors affecting certain relevant ways of cyber criminality, as well as empower and educate young people in the benefits, risks, and threats intrinsically linked to the use of the Internet by playing, thus preventing and mitigating cybercriminal behavior. In order to reach that goal it´s necessary an interdisciplinary consortium (formed by 17 international partners) carries out researches and actions like Profiling and case studies of cybercriminals and victims, risk assessments, studies on Internet of Things and its vulnerabilities, development of a serious gaming environment, training activities, data analysis and interpretation using Artificial intelligence, testing and piloting, etc. For facilitating the real implementation of the Rayuela method, as a community policing strategy, is crucial to count on a Police Force with a solid background in trust-building and community policing in order to do the piloting, specifically with young people. In this sense, Valencia Local Police is a pioneer Police Force working with young people in conflict solving, through providing police mediation and peer mediation services and advice. As an example, it is an official mediation institution, so agreements signed by their police mediators have once signed by the parties, the value of a judicial decision.

Keywords: fight against crime and insecurity, avert and prepare young people against aggression, ICT, serious gaming and artificial intelligence against cybercrime, conflict solving and mediation with young people

Procedia PDF Downloads 129
4963 Use of Oral Midazolam in Endoscopy

Authors: Alireza Javadzadeh

Abstract:

Background: The purpose of this prospective, randomized study was to compare the safety and efficacy of oral versus i.v. midazolam in providing sedation for pediatric upper gastrointestinal (GI) endoscopy. Methods: Sixty-one children (age < 16 years) scheduled for upper GI endoscopy were studied. Patients were randomly assigned to receive oral or i.v. midazolam. Measurements were made and compared for vital signs, level of sedation, pre- and post-procedure comfort, anxiety during endoscopy, ease of separation from parents, ease and duration of procedure, and recovery time. Results: Patients were aged 1–16 years (mean 7.5 ± 3.42 years); 30 patients received oral medication, and 31 received i.v. medication. There were no statistically significant differences in age or gender between groups. There were no significant differences in level of sedation, ease of separation from parents, ease of ability to monitor the patient during the procedure, heart rate, systolic arterial pressure, or respiratory rate. Oxygen saturation was significantly lower in the i.v. group than the oral group 10 and 30 min after removal of the endoscope, and recovery time was longer in the oral than the i.v. group. Conclusions: Oral administration of midazolam is a safe and effective method of sedation that significantly reduces anxiety and improves overall tolerance for children undergoing esophagogastroduodenoscopy.

Keywords: children, endoscopy, midazolam, oral, sedation

Procedia PDF Downloads 345
4962 Influence of Titanium Oxide on Crystallization, Microstructure and Mechanical Behavior of Barium Fluormica Glass-Ceramics

Authors: Amit Mallik, Anil K. Barik, Biswajit Pal

Abstract:

The galloping advancement of research work on glass-ceramics stems from their wide applications in electronic industry and also to some extent in application oriented medical dentistry. TiO2, even in low concentration has been found to strongly influence the physical and mechanical properties of the glasses. Glass-ceramics is a polycrystalline ceramic material produced through controlled crystallization of glasses. Crystallization is accomplished by subjecting the suitable parent glasses to a regulated heat treatment involving the nucleation and growth of crystal phases in the glass. Mica glass-ceramics is a new kind of glass-ceramics based on the system SiO2•MgO•K2O•F. The predominant crystalline phase is synthetic fluormica, named fluorophlogopite. Mica containing glass-ceramics flaunt an exceptional feature of machinability apart from their unique thermal and chemical properties. Machinability arises from the randomly oriented mica crystals with a 'house of cards' microstructures allowing cracks to propagate readily along the mica plane but hindering crack propagation across the layers. In the present study, we have systematically investigated the crystallization, microstructure and mechanical behavior of barium fluorophlogopite mica-containing glass-ceramics of composition BaO•4MgO•Al2O3•6SiO2•2MgF2 nucleated by addition of 2, 4, 6 and 8 wt% TiO2. The glass samples were prepared by the melting technique. After annealing, different batches of glass samples for nucleation were fired at 730°C (2wt% TiO2), 720°C (4 wt% TiO2), 710°C (6 wt% TiO2) and 700°C (8 wt% TiO2) batches respectively for 2 h and ultimately heated to corresponding crystallization temperatures. The glass batches were analyzed by differential thermal analysis (DTA) and x-ray diffraction (XRD), scanning electron microscopy (SEM) and micro hardness indenter. From the DTA study, it is found that the fluorophlogopite mica crystallization exotherm appeared in the temperature range 886–903°C. Glass transition temperature (Tg) and crystallization peak temperature (Tp) increased with increasing TiO2 content up to 4 wt% beyond this weight% the glass transition temperature (Tg) and crystallization peak temperature (Tp) start to decrease with increasing TiO2 content up to 8 wt%. Scanning electron microscopy confirms the development of an interconnected ‘house of cards’ microstructure promoted by TiO2 as a nucleating agent. The increase in TiO2 content decreases the vicker’s hardness values in glass-ceramics.

Keywords: crystallization, fluormica glass, ‘house of cards’ microstructure, hardness

Procedia PDF Downloads 240
4961 Study of Variation in Linear Growth and Other Parameters of Male Albino Rats on Exposure to Chronic Multiple Stress after Birth

Authors: Potaliya Pushpa, Kataria Sushma, D. S. Chowdhary, Dadhich Abhilasha

Abstract:

Introduction: Stress is a nonspecific response of the body to a stressor or triggering stimulus. Chronic stress exposure contributes to various remarkable alterations o growth and development. Collective effects of stressors lead to several changes which are physical, physiological and behavioral in nature. Objective: To understand on an animal model how various chronic stress affect the somatic body growth as it can be useful for effective stress treatment and prevention of stress related illnesses. Material and Method: By selective fostering only male pup colonies were made and 102 male albino rats were studied. They were divided two groups as Control and Stressed. The experimental groups were exposed to four major types of stress as maternal deprivation, Restraint stress, electric foot shock and noise stress for affecting emotional, physical and physiological activities. Exposure was from birth to 17 week of life. Roentgenographs were taken in two planes as Dorso-ventral and Lateral and then measured for each rat. Various parameters were observed at specific intervals. Parameters recorded were Body weight and for linear growth it was summation of Cranial length, Head rump length and tail length. Behavior changes were also observed. Result: Multiple chronic stresses resulted in loss of approx. 25% of mean body weight. Maximal difference was found on 119th day (i.e. 87.81 gm) between the control and stressed group. Linear growth showed retardation which was found to be significant in stressed group on statistical analysis. Cranial Length and Head-rump Length showed maximum difference after maternal deprivation stress. After maternal deprivation (Day 21) and electric foot shock (Day 101) maximum difference i.e. 0.39 cm and 0.47 cm were found in cranial length of two groups. Electric foot shock had considerable impact on tail length. Noise Stress affected moreover behavior as compact to physical growth. Conclusion: Collective study showed that chronic stress not only resulted in reduced body weight in albino rats but also total linear size of rat thus affecting whole growth and development.

Keywords: stress, microscopic anatomy, macroscopic anatomy, chronic multiple stress, birth

Procedia PDF Downloads 266
4960 Divergent Preferences for Rice Variety Attributes among Farmers and Breeders in Nepal

Authors: Bibek Sapkota, Michael Burton, Krishna Prasad Timsina

Abstract:

This paper presents a discrete choice experiment (DCE)-based analysis of farmers' preferences for rice variety attributes involving 540 farmers from the Terai region of Nepal clustered into East, Mid, and Western Terai regions. Findings reveal that farmers prioritize grain yield, finer grain types, drought tolerance, and shorter crop duration when selecting rice varieties, with subtle gender-based differences observed. However, breeding programs have predominantly emphasized grain yield and crop duration, possibly neglecting other vital traits. Furthermore, the research reveals a concerning decline in the yield trends of both released and registered rice varieties. Notably, the limited availability of recommended rainfed varieties, despite strong farmer preferences for drought tolerance, underscores the imperative of bridging this gap to ensure food security. This study provides insights into the multifaceted nature of farmer preferences and calls for a more holistic approach to varietal development that aligns with farmers' needs and the evolving challenges of rice farming in the Terai region of Nepal.

Keywords: breeders’ preferences, discrete choice experiment, farmers’ preferences, rice variety attributes

Procedia PDF Downloads 137
4959 Mechanical Study Material on Low Environmental Impact

Authors: Fetta Ait Ahsene-Aissat, Messaoud Hachemi, Yacine Moussaoui, Yacine Kerchiche

Abstract:

Our study focuses on two important aspects, environmental by using a sub industrial product (FAD), by economic incorporation as an addition to Portland cement, thus improving resistance to compression and bending with different proportions ADF % up to 40 additions. We studied the effect of different substitutions 0%, 10%, 20%, and 40% of additions to the mechanical effect of the mortar. We obtained a compressive strength of 61 MPa at 90 days for the cement mixture porthland FAD-40% against a resistance of 58MPa for porthland cement without addition. The flexural strength also showed a marked increase in the cement substitution. We also monitored the behavior of the mixed ash-cement by XRD analysis and scanning electron microscopy (SEM).

Keywords: FAD, porthland, flexural strength, compressive strength, DRX

Procedia PDF Downloads 354
4958 Nanoporous Metals Reinforced with Fullerenes

Authors: Deni̇z Ezgi̇ Gülmez, Mesut Kirca

Abstract:

Nanoporous (np) metals have attracted considerable attention owing to their cellular morphological features at atomistic scale which yield ultra-high specific surface area awarding a great potential to be employed in diverse applications such as catalytic, electrocatalytic, sensing, mechanical and optical. As one of the carbon based nanostructures, fullerenes are also another type of outstanding nanomaterials that have been extensively investigated due to their remarkable chemical, mechanical and optical properties. In this study, the idea of improving the mechanical behavior of nanoporous metals by inclusion of the fullerenes, which offers a new metal-carbon nanocomposite material, is examined and discussed. With this motivation, tensile mechanical behavior of nanoporous metals reinforced with carbon fullerenes is investigated by classical molecular dynamics (MD) simulations. Atomistic models of the nanoporous metals with ultrathin ligaments are obtained through a stochastic process simply based on the intersection of spherical volumes which has been used previously in literature. According to this technique, the atoms within the ensemble of intersecting spherical volumes is removed from the pristine solid block of the selected metal, which results in porous structures with spherical cells. Following this, fullerene units are added into the cellular voids to obtain final atomistic configurations for the numerical tensile tests. Several numerical specimens are prepared with different number of fullerenes per cell and with varied fullerene sizes. LAMMPS code was used to perform classical MD simulations to conduct uniaxial tension experiments on np models filled by fullerenes. The interactions between the metal atoms are modeled by using embedded atomic method (EAM) while adaptive intermolecular reactive empirical bond order (AIREBO) potential is employed for the interaction of carbon atoms. Furthermore, atomic interactions between the metal and carbon atoms are represented by Lennard-Jones potential with appropriate parameters. In conclusion, the ultimate goal of the study is to present the effects of fullerenes embedded into the cellular structure of np metals on the tensile response of the porous metals. The results are believed to be informative and instructive for the experimentalists to synthesize hybrid nanoporous materials with improved properties and multifunctional characteristics.

Keywords: fullerene, intersecting spheres, molecular dynamic, nanoporous metals

Procedia PDF Downloads 240
4957 Environmental Pollution Impact on Lung Functions and Cognitive Functions Among School Adolescence

Authors: Sultan Ayoub Meo

Abstract:

Environmental pollution is a highly challenging global concern of the 21st century and is a major cause of various communicable and non-communicable diseases. We investigate the impact of air pollution on "lung function, fractional exhaled nitric oxide, and cognitive function"in a group of one hundred young students studying in a traffic-polluted school. The students wereselected based on their age, gender, height, weight, and ethnicity. After the clinical history, one hundred students were recruited from the schoolnear and away from the polluted areas. The lung and cognitive functions were recorded. The results revealed that lung and cognitive function parameters were reduced in groups of students studying in a school located in a traffic-polluted area compared to thosestudying in a schoolsituated away from the traffic-polluted area. Environmental pollution impairs students' lung and cognitive functions studying in schools located within traffic-polluted areas. The health officials and policymakers establish strategies to minimize environmental pollution and its allied health hazards. Prof. Sultan Ayoub Meo, MD, Ph.D Professor, Department of Physiology, College of Medicine, King Saud University, Saudi Arabia Email. [email protected] / [email protected]

Keywords: environmental pOllution, lung physiology, cognitive functions, air pollution

Procedia PDF Downloads 129
4956 Intensive Multidisciplinary Feeding Intervention for a Toddler with In-Utero Drug Exposure

Authors: Leandra Prempeh, Emily Malugen

Abstract:

Prenatal drug exposure can have a molecular impact on the hypothalamic and reward genes that regulate feeding behavior. This can impact feeding regulation, resulting in feeding difficulties and growth failure. This was potentially seen in “McKayla,” a 19- month old girl with a history of in-utero drug exposure, patent ductus arteriosus, and gastroesophageal reflux disease who presented for intensive day treatment feeding therapy. She was diagnosed with Avoidant Restrictive Food Intake Disorder, described as total food refusal and meeting 100% of her caloric needs from a gastrostomy tube. The primary goals during intensive feeding therapy were to increase her oral intake and decrease her reliance on supplementation with formula. Several behavioral antecedent manipulations were implemented to establish consistent responding and make progress towards treatment goals. This included multiple modified bolus placements (using underloaded and Nuk brush), reinforcement contingencies, and variety fading before stability was finally achieved. Following, increasing retention of bites then increasing volume and variety were goals targeted. From treatment onset to the last 3 days of treatment, McKayla's rate of rapid acceptance of bite presentations increased significantly from 33.33% to 93.13%, rapid swallowing went from 0.00% to 92.32%, and her percentage of inappropriate mealtime behavior and expels decreased from 58.33% and 100% to 2.31% and 7.68%, respectively. Overall, the treatment team successfully introduced and increased the bite size of 7 pureed foods, generalize the treatment to caregivers with high integrity, and began facilitating tube weaning. She was receiving about 33.42% of her needs by mouth at the time of discharge. Other nutritional concerns addressed during treatment included drinking a nutritionally complete drink out of an open cup and age appropriate growth. McKayla continued to have emesis almost daily, as was her baseline before starting treatment; however, the frequency during mealtime decreased. Overall, McKayla responded well to treatment. She had a very slow response to treatment and required a lot of antecedent manipulations to establish consistent responding. As the literature suggests, [drug]-exposed neonates, like McKayla, may be at increased risk for nutritional and growth challenges that may persist throughout development. This supports the need for longterm follow-up of infant growth.

Keywords: behavioral intervention, feeding problems, in-utero drug exposure, intensive multidisciplinary intervention

Procedia PDF Downloads 68
4955 The Artist and the Opera: An Analysis of Gaze, Spatiality, and Women’s Labor in Degas’s The Rehearsal of the Ballet Onstage, 1874

Authors: Moses Abrahamson

Abstract:

This paper examines Edgar Degas’s The Rehearsal of the Ballet Onstage (1874) through the lens of gaze, spatiality, and women’s labor within the context of 19th-century Parisian modernity. Degas’s depiction of ballet dancers, who were often subject to sexual exploitation by wealthy patrons of the Paris Opera, extends beyond a mere aesthetic rendering of performance. Instead, the painting highlights the Opera’s backstage dynamics, where class and gender intersect through power imbalances. By analyzing the gazes of the Opera’s male patrons and ballet masters, the paper explores the implicit commodification of the dancers, drawing on Mulvey’s theory of the male gaze and its manifestation in the portrayal of working-class women. Degas’s positioning of these figures, coupled with his perspective as both artist and patron, reveals his engagement with the spatial layout of the Opera and the modern social hierarchies it embodies. The painting serves as a microcosm of broader sociocultural transformations, where Degas reflects on the labor of ballet dancers as both private toil and public spectacle, connecting his artistic process to the gendered and classed politics of modern Parisian society.

Keywords: class dynamics, male gaze, spatiality, modernity

Procedia PDF Downloads 34
4954 Curcumin Loaded Modified Chitosan Nanocarrier for Tumor Specificity

Authors: S. T. Kumbhar, M. S. Bhatia, R. C. Khairate

Abstract:

An effective nanodrug delivery system was developed by using chitosan for increased encapsulation efficiency and retarded release of curcumin. Potential ionotropic gelation method was used for the development of chitosan nanoparticles with TPP as cross-linker. The characterization was done for analysis of size, structure, surface morphology, and thermal behavior of synthesized chitosan nanoparticles. The encapsulation efficiency was more than 80%, with improved drug loading capacity. The in-vitro drug release study showed that curcumin release rate was decreased significantly. These chitosan nanoparticles could be a suitable platform for co-delivery of curcumin and anticancer agent for enhanced cytotoxic effect on tumor cells.

Keywords: Curcumin, chitosan, nanoparticles, anticancer activity

Procedia PDF Downloads 178
4953 Stress-Strain Relation for Hybrid Fiber Reinforced Concrete at Elevated Temperature

Authors: Josef Novák, Alena Kohoutková

Abstract:

The performance of concrete structures in fire depends on several factors which include, among others, the change in material properties due to the fire. Today, fiber reinforced concrete (FRC) belongs to materials which have been widely used for various structures and elements. While the knowledge and experience with FRC behavior under ambient temperature is well-known, the effect of elevated temperature on its behavior has to be deeply investigated. This paper deals with an experimental investigation and stress‑strain relations for hybrid fiber reinforced concrete (HFRC) which contains siliceous aggregates, polypropylene and steel fibers. The main objective of the experimental investigation is to enhance a database of mechanical properties of concrete composites with addition of fibers subject to elevated temperature as well as to validate existing stress-strain relations for HFRC. Within the investigation, a unique heat transport test, compressive test and splitting tensile test were performed on 150 mm cubes heated up to 200, 400, and 600 °C with the aim to determine a time period for uniform heat distribution in test specimens and the mechanical properties of the investigated concrete composite, respectively. Both findings obtained from the presented experimental test as well as experimental data collected from scientific papers so far served for validating the computational accuracy of investigated stress-strain relations for HFRC which have been developed during last few years. Owing to the presence of steel and polypropylene fibers, HFRC becomes a unique material whose structural performance differs from conventional plain concrete when exposed to elevated temperature. Polypropylene fibers in HFRC lower the risk of concrete spalling as the fibers burn out shortly with increasing temperature due to low ignition point and as a consequence pore pressure decreases. On the contrary, the increase in the concrete porosity might affect the mechanical properties of the material. To validate this thought requires enhancing the existing result database which is very limited and does not contain enough data. As a result of the poor database, only few stress-strain relations have been developed so far to describe the structural performance of HFRC at elevated temperature. Moreover, many of them are inconsistent and need to be refined. Most of them also do not take into account the effect of both a fiber type and fiber content. Such approach might be vague especially when high amount of polypropylene fibers are used. Therefore, the existing relations should be validated in detail based on other experimental results.

Keywords: elevated temperature, fiber reinforced concrete, mechanical properties, stress strain relation

Procedia PDF Downloads 340
4952 Challenges of Technical and Engineering Students in the Application of Scientific Cancer Knowledge to Preserve the Future Generation in Sub-Saharan Africa

Authors: K. Shaloom Mbambu, M. Pascal Tshimbalanga, K. Ruth Mutala, K. Roger Kabuya, N. Dieudonné Kabeya, Y. L. Kabeya Mukeba

Abstract:

In this article, the authors examine the even more worrying situation of girls in sub-Saharan Africa. Two-girls on five are private of Global Education, which represents a real loss to the development of communities and countries. Cultural traditions, poverty, violence, early and forced marriages, early pregnancies, and many other gender inequalities were the causes of this cancer development. Namely, "it is no more efficient development tool that is educating girls." The non-schooling of girls and their lack of supervision by liberal professions have serious consequences for the life of each of them. To improve the conditions of their inferior status, girls to men introduce poverty and health risks. Raising awareness among parents and communities on the importance of girls' education, improving children's access to school, girl-boy equality with their rights, creating income, and generating activities for girls, girls, and girls learning of liberal trades to make them self-sufficient. Organizations such as the United Nations Organization can save the children. ASEAD and the AEDA group are predicting the impact of this cancer on the development of a nation's future generation must be preserved.

Keywords: young girl, Sub-Saharan Africa, higher and vocational education, development, society, environment

Procedia PDF Downloads 257
4951 The Analysis of Differential Item and Test Functioning between Sexes by Studying on the Scholastic Aptitude Test 2013

Authors: Panwasn Mahalawalert

Abstract:

The purposes of this research were analyzed differential item functioning and differential test functioning of SWUSAT aptitude test classification by sex variable. The data used in this research is the secondary data from Srinakharinwirot University Scholastic Aptitude Test 2013 (SWUSAT). SWUSAT test consists of four subjects. There are verbal ability test, number ability test, reasoning ability test and spatial ability test. The data analysis was analyzed in 2 steps. The first step was analyzing descriptive statistics. In the second step were analyzed differential item functioning (DIF) and differential test functioning (DTF) by using the DIFAS program. The research results were as follows: The results of DIF and DTF analysis for all 10 tests in year 2013. Gender was the characteristic that found DIF all 10 tests. The percentage of item number that found DIF is between 6.67% - 60%. There are 5 tests that most of items favors female group and 2 tests that most of items favors male group. There are 3 tests that the number of items favors female group equal favors male group. For Differential test functioning (DTF), there are 8 tests that have small level.

Keywords: aptitude test, differential item functioning, differential test functioning, educational measurement

Procedia PDF Downloads 415
4950 Predicting the Diagnosis of Alzheimer’s Disease: Development and Validation of Machine Learning Models

Authors: Jay L. Fu

Abstract:

Patients with Alzheimer's disease progressively lose their memory and thinking skills and, eventually, the ability to carry out simple daily tasks. The disease is irreversible, but early detection and treatment can slow down the disease progression. In this research, publicly available MRI data and demographic data from 373 MRI imaging sessions were utilized to build models to predict dementia. Various machine learning models, including logistic regression, k-nearest neighbor, support vector machine, random forest, and neural network, were developed. Data were divided into training and testing sets, where training sets were used to build the predictive model, and testing sets were used to assess the accuracy of prediction. Key risk factors were identified, and various models were compared to come forward with the best prediction model. Among these models, the random forest model appeared to be the best model with an accuracy of 90.34%. MMSE, nWBV, and gender were the three most important contributing factors to the detection of Alzheimer’s. Among all the models used, the percent in which at least 4 of the 5 models shared the same diagnosis for a testing input was 90.42%. These machine learning models allow early detection of Alzheimer’s with good accuracy, which ultimately leads to early treatment of these patients.

Keywords: Alzheimer's disease, clinical diagnosis, magnetic resonance imaging, machine learning prediction

Procedia PDF Downloads 143
4949 Intrathecal: Not Intravenous Administration of Evans Blue Reduces Pain Behavior in Neuropathic Rats

Authors: Kun Hua O., Dong Woon Kim, Won Hyung Lee

Abstract:

Introduction: Neuropathic pain induced by spinal or peripheral nerve injury is highly resistant to common painkillers, nerve blocks, and other pain management approaches. Recently, several new therapeutic drug candidates have been developed to control neuropathic pain. In this study, we used the spinal nerve L5 ligation (SNL) model to investigate the ability of intrathecal or intravenous Evans blue to decrease pain behavior and to study the relationship between Evans blue and the neural structure of pain transmission. Method: Neuropathic pain (allodynia) of the left hind paw was induced by unilateral SNL in Sprague-Dawley rats(n=10) in each group. Evans blue (5, 15, 50μg/10μl) or phosphate buffer saline(PBS,10μl) was injected intrathecally at 3days post-ligation or intravenously(1mg/200 μl) 3days and 5days post-ligation . Mechanical sensitivity was assessed using Von Frey filaments at 3 days post-ligation and at 2 hours, days 1, 2, 3, 5,7 after intrathecal Evans blue injection, and on days 2, 4, 7, and 11 at 14 days after intravenous injection. In the intrathecal group, microglia and glutaminergic neurons in the dorsal horn and VNUT(vesicular nucleotide transporter) in the dorsal root ganglia were tested to evaluate co-staining with Evans blue. The experimental procedures were performed in accordance with the animal care guideline of the Korean Academy of Medical Science(Animal ethic committee of Chungnam National University Hospital: CNUH-014-A0005-1). Results: Tight ligation of the L5 spinal nerve induced allodynia in the left hind paw 3 days post-ligation. Intrathecal Evans blue most significantly(P<0.001) alleviated allodynia at 2 days after intrathecal, but not an intravenous injection. Glutaminergic neurons in the dorsal horn and VNUT in the dorsal root ganglia were co-stained with Evans blue. On the other hand, microglia in the dorsal horn were partially co-stained with Evans blue. Conclusion: We confirmed that Evans blue might have an analgesic effect through the central nervous system, not another system in neuropathic pain of the SNL animal model. These results suggest Evans blue may be a potential new drug for the treatment of chronic pain. This research was supported by the National Research Foundation of Korea (NRF-2020R1A2C100757512), funded by the Ministry of Education.

Keywords: neuropathic pain, Evas blue, intrathecal, intravenous

Procedia PDF Downloads 95