Search results for: cognitive models
4667 Reservoir Characterization of the Pre-Cenomanian Sandstone: Central Sinai, Egypt
Authors: Abdel Moktader A. El Sayed, Nahla A. El Sayed
Abstract:
Fifty-one sandstone core samples were obtained from the wadi Saal area. They belong to the Pre-Cenomanian age. These samples were subjected to various laboratory measurements such as density, porosity, permeability, electrical resistivity, grain size analysis and ultrasonic wave velocity. The parameters describing reservoir properties are outlined. The packing index, reservoir quality index, flow zone indicator and pore throat radius (R35 and R36) were calculated. The obtained interrelationships among these parameters allow improving petrophysical knowledge about the Pre-Cenomanian reservoir information. The obtained rock physics models could be employed with some precautions to the subsurface existences of the Pre-Cenomanian sandstone reservoirs, especially in the surrounding areas.Keywords: resevoir sandstone, Egypt, Sinai, permeability
Procedia PDF Downloads 1024666 The Future of Reduced Instruction Set Computing and Complex Instruction Set Computing and Suggestions for Reduced Instruction Set Computing-V Development
Authors: Can Xiao, Ouanhong Jiang
Abstract:
Based on the two instruction sets of complex instruction set computing (CISC) and reduced instruction set computing (RISC), processors developed in their respective “expertise” fields. This paper will summarize research on the differences in performance and energy efficiency between CISC and RISC and strive to eliminate the influence of peripheral configuration factors. We will discuss whether processor performance is centered around instruction sets or implementation. In addition, the rapidly developing RISC-V poses a challenge to existing models. We will analyze research results, analyze the impact of instruction sets themselves, and finally make suggestions for the development of RISC-V.Keywords: ISA, RISC-V, ARM, X86, power, energy efficiency
Procedia PDF Downloads 934665 The Ultimate Challenge of Teaching Nursing
Authors: Crin N. Marcean, Mihaela A. Alexandru, Eugenia S. Cristescu
Abstract:
By definition, nursing means caring. It is a profession within the health care sector focused on the care of individuals, families, and communities so they may attain, maintain or recover optimal health and quality of life. However, there is a subtle difference between the two: nursing is widely considered as an art and a science, wherein caring forms the theoretical framework of nursing. Nursing and caring are grounded in a relational understanding, unity, and connection between the professional nurse and the patient. Task-oriented approaches challenge nurses in keeping care in nursing. This challenge is on-going as professional nurses strive to maintain the concept, art, and act of caring as the moral centre of the nursing profession. Keeping the care in nursing involves the application of art and science through theoretical concepts, scientific research, conscious commitment to the art of caring as an identity of nursing, and purposeful efforts to include caring behaviours during each nurse-patient interaction. The competencies, abilities, as well as the psycho-motor, cognitive, and relational skills necessary for the nursing practice are conveyed and improved by the nursing teachers’ art of teaching. They must select and use the teaching methods which shape the personalities of the trainers or students, enabling them to provide individualized, personalized care in real-world context of health problems. They have the ultimate responsibility of shaping the future health care system by educating skilful nurses.Keywords: art of nursing, health care, teacher-student relationship, teaching innovations
Procedia PDF Downloads 5014664 A Unified Fitting Method for the Set of Unified Constitutive Equations for Modelling Microstructure Evolution in Hot Deformation
Abstract:
Constitutive equations are very important in finite element (FE) modeling, and the accuracy of the material constants in the equations have significant effects on the accuracy of the FE models. A wide range of constitutive equations are available; however, fitting the material constants in the constitutive equations could be complex and time-consuming due to the strong non-linearity and relationship between the constants. This work will focus on the development of a set of unified MATLAB programs for fitting the material constants in the constitutive equations efficiently. Users will only need to supply experimental data in the required format and run the program without modifying functions or precisely guessing the initial values, or finding the parameters in previous works and will be able to fit the material constants efficiently.Keywords: constitutive equations, FE modelling, MATLAB program, non-linear curve fitting
Procedia PDF Downloads 1004663 Investigations on Pyrolysis Model for Radiatively Dominant Diesel Pool Fire Using Fire Dynamic Simulator
Authors: Siva K. Bathina, Sudheer Siddapureddy
Abstract:
Pool fires are formed when the flammable liquid accidentally spills on the ground or water and ignites. Pool fire is a kind of buoyancy-driven and diffusion flame. There have been many pool fire accidents caused during processing, handling and storing of liquid fuels in chemical and oil industries. Such kind of accidents causes enormous damage to property as well as the loss of lives. Pool fires are complex in nature due to the strong interaction among the combustion, heat and mass transfers and pyrolysis at the fuel surface. Moreover, the experimental study of such large complex fires involves fire safety issues and difficulties in performing experiments. In the present work, large eddy simulations are performed to study such complex fire scenarios using fire dynamic simulator. A 1 m diesel pool fire is considered for the studied cases, and diesel is chosen as it is most commonly involved fuel in fire accidents. Fire simulations are performed by specifying two different boundary conditions: one the fuel is in liquid state and pyrolysis model is invoked, and the other by assuming the fuel is initially in a vapor state and thereby prescribing the mass loss rate. A domain of size 11.2 m × 11.2 m × 7.28 m with uniform structured grid is chosen for the numerical simulations. Grid sensitivity analysis is performed, and a non-dimensional grid size of 12 corresponding to 8 cm grid size is considered. Flame properties like mass burning rate, irradiance, and time-averaged axial flame temperature profile are predicted. The predicted steady-state mass burning rate is 40 g/s and is within the uncertainty limits of the previously reported experimental data (39.4 g/s). Though the profile of the irradiance at a distance from the fire along the height is somewhat in line with the experimental data and the location of the maximum value of irradiance is shifted to a higher location. This may be due to the lack of sophisticated models for the species transportation along with combustion and radiation in the continuous zone. Furthermore, the axial temperatures are not predicted well (for any of the boundary conditions) in any of the zones. The present study shows that the existing models are not sufficient enough for modeling blended fuels like diesel. The predictions are strongly dependent on the experimental values of the soot yield. Future experiments are necessary for generalizing the soot yield for different fires.Keywords: burning rate, fire accidents, fire dynamic simulator, pyrolysis
Procedia PDF Downloads 2034662 Development of an Elastic Functionally Graded Interphase Model for the Micromechanics Response of Composites
Authors: Trevor Sabiston, Mohsen Mohammadi, Mohammed Cherkaoui, Kaan Inal
Abstract:
A new micromechanics framework is developed for long fibre reinforced composites using a single fibre surrounded by a functionally graded interphase and matrix as a representative unit cell. The unit cell is formulated to represent any number of aligned fibres by a single fibre. Using this model the elastic response of long fibre composites is predicted in all directions. The model is calibrated to experimental results and shows very good agreement in the elastic regime. The differences between the proposed model and existing models are discussed.Keywords: computational mechanics, functionally graded interphase, long fibre composites, micromechanics
Procedia PDF Downloads 3214661 GIS Based Project Management Information System for Infrastructure Projects
Authors: Riki Panchal, Debasis Sarkar
Abstract:
This paper describes the work done for the GIS-based project management for different infrastructure projects. It is a review paper which gives the idea of the trends in the construction project management and various models adopted for the betterment of the project planning and execution. Traditional scheduling and progress control techniques such as bar charts and the critical path method fail to provide information pertaining to the spatial aspects of a construction project. An integrated system was developed to represent construction progress not only in terms of a CPM schedule but also in terms of a graphical representation of the construction that is synchronized with the work schedule. Hence, it is suggested to work on the common platform from where all the data can be shared and analyzed.Keywords: GIS, project management, integrated model, infrastructure project
Procedia PDF Downloads 5224660 Investigating the Relationship between Place Attachment and Sustainable Development of Urban Spaces
Authors: Hamid Reza Zeraatpisheh, Ali Akbar Heidari, Soleiman Mohammadi Doust
Abstract:
This study has examined the relationship between place attachment and sustainable development of urban spaces. To perform this, the components of place identity, emotional attachment, place attachment and social bonding which totally constitute the output of place attachment, by means of the standardized questionnaire measure place attachment in three domains of (cognitive) the place identity, (affective) emotional attachment and (behavioral) place attachment and social bonding. To measure sustainable development, three components of sustainable development, including society, economy and environment has been considered. The study is descriptive. The assessment instrument is the standard questionnaire of Safarnia which has been used to measure the variable of place attachment and to measure the variable of sustainable development, a questionnaire has been made by the researcher and been based on the combined theoretical framework. The statistical population of this research has been the city of Shiraz. The statistical sample has been Hafeziyeh. SPSS software has been used to analyze the data and examined the results of both descriptive and inferential statistics. In inferential statistics, Pearson correlation coefficient has been used to examine the hypotheses. In this study, the variable of place attachment is high and sustainable development is also in a high level. These results suggest a positive relationship between attachment to place and sustainable development.Keywords: place attachment, sustainable development, economy-society-environment, Hafez's tomb
Procedia PDF Downloads 7034659 Influence of Social Norms and Perceived Government Roles on Environmental Consciousness: A Multi-Socio-Economic Approach
Authors: Mona Francesca B. Dela Cruz, Katrina Marie R. Mamaril, Mariah Hannah Kassandra Salazar, Emerald Jay D. Ilac
Abstract:
One key factor that should be considered when determining sustainable solutions to various environmental problems is the potential impact of individual human beings. In order to understand an individual, there is a need to examine cognitive, emotional, dispositional, and behavioral factors which are all indicative of one’s environmental consciousness. This quantitative study explored the moderated mediation between environmental consciousness, socio-economic status, social norms as a mediator, and the perceived role of government as a moderator for 381 Filipinos, aged 25 to 65, in urban and suburban settings. Results showed social norms do not have a mediating effect between socio-economic status and environmental consciousness. This may be influenced by the collectivist culture of the Philippines and the tendency for people to copy behaviors according to the descriptive norm effect. Meanwhile, there exists a moderating effect of the perceived role of government between the relationship of social norms and environmental consciousness which can be explained by the government’s ability to impose social norms that can induce a person to think and act pro-environmentally. Practical applications of this study can be used to tap the ability of the government to strengthen their influence and control over environmental protection and to provide a basis for the development of class-specific environmental solutions that can be done by individuals depending on their socioeconomic status.Keywords: environmental consciousness, role of government, social norms, socio-economic status
Procedia PDF Downloads 1674658 Big Data Strategy for Telco: Network Transformation
Abstract:
Big data has the potential to improve the quality of services; enable infrastructure that businesses depend on to adapt continually and efficiently; improve the performance of employees; help organizations better understand customers; and reduce liability risks. Analytics and marketing models of fixed and mobile operators are falling short in combating churn and declining revenue per user. Big Data presents new method to reverse the way and improve profitability. The benefits of Big Data and next-generation network, however, are more exorbitant than improved customer relationship management. Next generation of networks are in a prime position to monetize rich supplies of customer information—while being mindful of legal and privacy issues. As data assets are transformed into new revenue streams will become integral to high performance.Keywords: big data, next generation networks, network transformation, strategy
Procedia PDF Downloads 3624657 OFDM Radar for Detecting a Rayleigh Fluctuating Target in Gaussian Noise
Authors: Mahboobeh Eghtesad, Reza Mohseni
Abstract:
We develop methods for detecting a target for orthogonal frequency division multiplexing (OFDM) based radars. As a preliminary step we introduce the target and Gaussian noise models in discrete–time form. Then, resorting to match filter (MF) we derive a detector for two different scenarios: a non-fluctuating target and a Rayleigh fluctuating target. It will be shown that a MF is not suitable for Rayleigh fluctuating targets. In this paper we propose a reduced-complexity method based on fast Fourier transfrom (FFT) for such a situation. The proposed method has better detection performance.Keywords: constant false alarm rate (CFAR), match filter (MF), fast Fourier transform (FFT), OFDM radars, Rayleigh fluctuating target
Procedia PDF Downloads 3634656 Development of Mobile Application for Energy Consumption Assessment of University Buildings
Authors: MinHee Chung, BoYeob Lee, Yuri Kim, Eon Ku Rhee
Abstract:
With an increase in the interest in the energy conservation for buildings, and the emergence of many methods and easily-understandable approaches to it, energy conservation has now become the public’s main interest, as compared to in the past when it was only focused upon by experts. This study aims to help the occupants of a building to understand the energy efficiency and consumption of the building by providing them information on the building’s energy efficiency through a mobile application. The energy performance assessment models are proposed on the basis of the actual energy usage and building characteristics such as the architectural scheme and the building equipment. The university buildings in Korea are used as a case to demonstrate the mobile application.Keywords: energy consumption, energy performance assessment, mobile application, university buildings
Procedia PDF Downloads 5474655 Microwave Dielectric Relaxation Study of Diethanolamine with Triethanolamine from 10 MHz-20 GHz
Authors: A. V. Patil
Abstract:
The microwave dielectric relaxation study of diethanolamine with triethanolamine binary mixture have been determined over the frequency range of 10 MHz to 20 GHz, at various temperatures using time domain reflectometry (TDR) method for 11 concentrations of the system. The present work reveals molecular interaction between same multi-functional groups [−OH and –NH2] of the alkanolamines (diethanolamine and triethanolamine) using different models such as Debye model, Excess model, and Kirkwood model. The dielectric parameters viz. static dielectric constant (ε0) and relaxation time (τ) have been obtained with Debye equation characterized by a single relaxation time without relaxation time distribution by the least squares fit method.Keywords: diethanolamine, excess properties, kirkwood properties, time domain reflectometry, triethanolamine
Procedia PDF Downloads 3064654 Zn-, Mg- and Ni-Al-NO₃ Layered Double Hydroxides Intercalated by Nitrate Anions for Treatment of Textile Wastewater
Authors: Fatima Zahra Mahjoubi, Abderrahim Khalidi, Mohamed Abdennouri, Omar Cherkaoui, Noureddine Barka
Abstract:
Industrial effluents are one of the major causes of environmental pollution, especially effluents discharged from various dyestuff manufactures, plastic, and paper making industries. These effluents can give rise to certain hazards and environmental problems for their highly colored suspended organic solid. Dye effluents are not only aesthetic pollutants, but coloration of water by the dyes may affect photochemical activities in aquatic systems by reducing light penetration. It has been also reported that several commonly used dyes are carcinogenic and mutagenic for aquatic organisms. Therefore, removing dyes from effluents is of significant importance. Many adsorbent materials have been prepared in the removal of dyes from wastewater, including anionic clay or layered double hydroxyde. The zinc/aluminium (Zn-AlNO₃), magnesium/aluminium (Mg-AlNO₃) and nickel/aluminium (Ni-AlNO₃) layered double hydroxides (LDHs) were successfully synthesized via coprecipitation method. Samples were characterized by XRD, FTIR, TGA/DTA, TEM and pHPZC analysis. XRD patterns showed a basal spacing increase in the order of Zn-AlNO₃ (8.85Å)> Mg-AlNO₃ (7.95Å)> Ni-AlNO₃ (7.82Å). FTIR spectrum confirmed the presence of nitrate anions in the LDHs interlayer. The TEM images indicated that the Zn-AlNO3 presents circular to shaped particles with an average particle size of approximately 30 to 40 nm. Small plates assigned to sheets with hexagonal form were observed in the case of Mg-AlNO₃. Ni-AlNO₃ display nanostructured sphere in diameter between 5 and 10 nm. The LDHs were used as adsorbents for the removal of methyl orange (MO), as a model dye and for the treatment of an effluent generated by a textile factory. Adsorption experiments for MO were carried out as function of solution pH, contact time and initial dye concentration. Maximum adsorption was occurred at acidic solution pH. Kinetic data were tested using pseudo-first-order and pseudo-second-order kinetic models. The best fit was obtained with the pseudo-second-order kinetic model. Equilibrium data were correlated to Langmuir and Freundlich isotherm models. The best conditions for color and COD removal from textile effluent sample were obtained at lower values of pH. Total color removal was obtained with Mg-AlNO₃ and Ni-AlNO₃ LDHs. Reduction of COD to limits authorized by Moroccan standards was obtained with 0.5g/l LDHs dose.Keywords: chemical oxygen demand, color removal, layered double hydroxides, textile wastewater treatment
Procedia PDF Downloads 3584653 Modern Information Security Management and Digital Technologies: A Comprehensive Approach to Data Protection
Authors: Mahshid Arabi
Abstract:
With the rapid expansion of digital technologies and the internet, information security has become a critical priority for organizations and individuals. The widespread use of digital tools such as smartphones and internet networks facilitates the storage of vast amounts of data, but simultaneously, vulnerabilities and security threats have significantly increased. The aim of this study is to examine and analyze modern methods of information security management and to develop a comprehensive model to counteract threats and information misuse. This study employs a mixed-methods approach, including both qualitative and quantitative analyses. Initially, a systematic review of previous articles and research in the field of information security was conducted. Then, using the Delphi method, interviews with 30 information security experts were conducted to gather their insights on security challenges and solutions. Based on the results of these interviews, a comprehensive model for information security management was developed. The proposed model includes advanced encryption techniques, machine learning-based intrusion detection systems, and network security protocols. AES and RSA encryption algorithms were used for data protection, and machine learning models such as Random Forest and Neural Networks were utilized for intrusion detection. Statistical analyses were performed using SPSS software. To evaluate the effectiveness of the proposed model, T-Test and ANOVA statistical tests were employed, and results were measured using accuracy, sensitivity, and specificity indicators of the models. Additionally, multiple regression analysis was conducted to examine the impact of various variables on information security. The findings of this study indicate that the comprehensive proposed model reduced cyber-attacks by an average of 85%. Statistical analysis showed that the combined use of encryption techniques and intrusion detection systems significantly improves information security. Based on the obtained results, it is recommended that organizations continuously update their information security systems and use a combination of multiple security methods to protect their data. Additionally, educating employees and raising public awareness about information security can serve as an effective tool in reducing security risks. This research demonstrates that effective and up-to-date information security management requires a comprehensive and coordinated approach, including the development and implementation of advanced techniques and continuous training of human resources.Keywords: data protection, digital technologies, information security, modern management
Procedia PDF Downloads 354652 Practical Simulation Model of Floating-Gate MOS Transistor in Sub 100 nm Technologies
Authors: Zina Saheb, Ezz El-Masry
Abstract:
As CMOS technology scaling down, Silicon oxide thickness (SiO2) become very thin (few Nano meters). When SiO2 is less than 3nm, gate direct tunneling (DT) leakage current becomes a dormant problem that impacts the transistor performance. Floating gate MOSFET (FGMOSFET) has been used in many low-voltage and low-power applications. Most of the available simulation models of FGMOSFET for analog circuit design does not account for gate DT current and there is no accurate analysis for the gate DT. It is a crucial to use an accurate mode in order to get a realistic simulation result that account for that DT impact on FGMOSFET performance effectively.Keywords: CMOS transistor, direct-tunneling current, floating-gate, gate-leakage current, simulation model
Procedia PDF Downloads 5314651 Impact of Tourists on HIV (Human Immunodeficiency Virus) Incidence
Authors: Ofosuhene O. Apenteng, Noor Azina Ismail
Abstract:
Recently tourism is a major foreign exchange earner in the World. In this paper, we propose the mathematical model to study the impact of tourists on the spread of HIV incidences using compartmental differential equation models. Simulation studies of reproduction number are used to demonstrate new insights on the spread of HIV disease. The periodogram analysis of a time series was used to determine the speed at which the disease is spread. The results indicate that with the persistent flow of tourism into a country, the disease status has increased the epidemic rate. The result suggests that the government must put more control on illegal prostitution, unprotected sexual activity as well as to emphasis on prevention policies that include the safe sexual activity through the campaign by the tourism board.Keywords: HIV/AIDS, mathematical transmission modeling, tourists, stability, simulation
Procedia PDF Downloads 3944650 Multidisciplinary Approach to Mio-Plio-Quaternary Aquifer Study in the Zarzis Region (Southeastern Tunisia)
Authors: Ghada Ben Brahim, Aicha El Rabia, Mohamed Hedi Inoubli
Abstract:
Climate change has exacerbated disparities in the distribution of water resources in Tunisia, resulting in significant degradation in quantity and quality over the past five decades. The Mio-Plio-Quaternary aquifer, the primary water source in the Zarzis region, is subject to climatic, geographical, and geological challenges, as well as human stress. The region is experiencing uneven distribution and growing threats from groundwater salinity and saltwater intrusion. Addressing this challenge is critical for the arid region’s socioeconomic development, and effective water resource management is required to combat climate change and reduce water deficits. This study uses a multidisciplinary approach to determine the groundwater potential of this aquifer, involving geophysics and hydrogeology data analysis. We used advanced techniques such as 3D Euler deconvolution and power spectrum analysis to generate detailed anomaly maps and estimate the depths of density sources, identifying significant Bouguer anomalies trending E-W, NW-SE, and NE-SW. Various techniques, such as wavelength filtering, upward continuation, and horizontal and vertical derivatives, were used to improve the gravity data, resulting in consistent results for anomaly shapes and amplitudes. The Euler deconvolution method revealed two prominent surface faults, trending NE-SW and NW-SE, that have a significant impact on the distribution of sedimentary facies and water quality within the Mio-Plio-Quaternary aquifer. Additionally, depth maxima greater than 1400 m to the North indicate the presence of a Cretaceous paleo-fault. Geoelectrical models and resistivity pseudo-sections were used to interpret the distribution of electrical facies in the Mio-Plio-Quaternary aquifer, highlighting lateral variation and depositional environment type. AI optimises the analysis and interpretation of exploration data, which is important to long-term management and water security. Machine learning algorithms and deep learning models analyse large datasets to provide precise interpretations of subsurface conditions, such as aquifer salinisation. However, AI has limitations, such as the requirement for large datasets, the risk of overfitting, and integration issues with traditional geological methods.Keywords: mio-plio-quaternary aquifer, Southeastern Tunisia, geophysical methods, hydrogeological analysis, artificial intelligence
Procedia PDF Downloads 214649 Analysis of Some Solutions to Protect the Western Tombolo of Giens
Authors: Yves Lacroix, Van Van Than, Didier Léandri, Pierre Liardet
Abstract:
The tombolo of Giens is located in the town of Hyères (France). We recall the history of coastal erosion, and prominent factors affecting the evolution of the western tombolo. We then discuss the possibility of stabilizing the western tombolo. Our argumentation relies on a coupled model integrating swells, currents, water levels and sediment transport. We present the conclusions of the simulations of various scenarios, including pre-existing propositions from coastal engineering offices. We conclude that beach replenishment seems to be necessary but not sufficient for the stabilization of the beach. Breakwaters reveal effective particularly in the most exposed northern area. Some solutions fulfill conditions so as to be elected as satisfactory. We give a comparative analysis of the efficiency of 14 alternatives for the protection of the tombolo.Keywords: breakwaters, coupled models, replenishment, silting
Procedia PDF Downloads 3904648 Rain Gauges Network Optimization in Southern Peninsular Malaysia
Authors: Mohd Khairul Bazli Mohd Aziz, Fadhilah Yusof, Zulkifli Yusop, Zalina Mohd Daud, Mohammad Afif Kasno
Abstract:
Recent developed rainfall network design techniques have been discussed and compared by many researchers worldwide due to the demand of acquiring higher levels of accuracy from collected data. In many studies, rain-gauge networks are designed to provide good estimation for areal rainfall and for flood modelling and prediction. In a certain study, even using lumped models for flood forecasting, a proper gauge network can significantly improve the results. Therefore existing rainfall network in Johor must be optimized and redesigned in order to meet the required level of accuracy preset by rainfall data users. The well-known geostatistics method (variance-reduction method) that is combined with simulated annealing was used as an algorithm of optimization in this study to obtain the optimal number and locations of the rain gauges. Rain gauge network structure is not only dependent on the station density; station location also plays an important role in determining whether information is acquired accurately. The existing network of 84 rain gauges in Johor is optimized and redesigned by using rainfall, humidity, solar radiation, temperature and wind speed data during monsoon season (November – February) for the period of 1975 – 2008. Three different semivariogram models which are Spherical, Gaussian and Exponential were used and their performances were also compared in this study. Cross validation technique was applied to compute the errors and the result showed that exponential model is the best semivariogram. It was found that the proposed method was satisfied by a network of 64 rain gauges with the minimum estimated variance and 20 of the existing ones were removed and relocated. An existing network may consist of redundant stations that may make little or no contribution to the network performance for providing quality data. Therefore, two different cases were considered in this study. The first case considered the removed stations that were optimally relocated into new locations to investigate their influence in the calculated estimated variance and the second case explored the possibility to relocate all 84 existing stations into new locations to determine the optimal position. The relocations of the stations in both cases have shown that the new optimal locations have managed to reduce the estimated variance and it has proven that locations played an important role in determining the optimal network.Keywords: geostatistics, simulated annealing, semivariogram, optimization
Procedia PDF Downloads 3054647 Numerical Investigation of the Effect of the Spark Plug Gap on Engine-Like Conditions
Authors: Fernanda Pinheiro Martins, Pedro Teixeira Lacava
Abstract:
The objective of this research is to analyze the effects of different spark plug conditions in engine-like conditions by applying computational fluid dynamics analysis. The 3D models applied consist of 3-Zones Extended Coherent Flame (ECFM-3Z) and Imposed Stretch Spark Ignition Model (ISSIM), respectively, for the combustion and the spark plug modelling. For this study, it was applied direct injection fuel system in a single cylinder engine operating with E0. The application of realistic operating conditions (load and speed) to the different cases studied will provide a deeper understanding of the effects of the spark plug gap, a result of parts outwearing in most of the cases, to the development of the combustion in engine-like conditions.Keywords: engine, CFD, direct injection, combustion, spark plug
Procedia PDF Downloads 1334646 Enabling Self-Care and Shared Decision Making for People Living with Dementia
Authors: Jonathan Turner, Julie Doyle, Laura O’Philbin, Dympna O’Sullivan
Abstract:
People living with dementia should be at the centre of decision-making regarding goals for daily living. These goals include basic activities (dressing, hygiene, and mobility), advanced activities (finances, transportation, and shopping), and meaningful activities that promote well-being (pastimes and intellectual pursuits). However, there is limited involvement of people living with dementia in the design of technology to support their goals. A project is described that is co-designing intelligent computer-based support for, and with, people affected by dementia and their carers. The technology will support self-management, empower participation in shared decision-making with carers and help people living with dementia remain healthy and independent in their homes for longer. It includes information from the patient’s care plan, which documents medications, contacts, and the patient's wishes on end-of-life care. Importantly for this work, the plan can outline activities that should be maintained or worked towards, such as exercise or social contact. The authors discuss how to integrate care goal information from such a care plan with data collected from passive sensors in the patient’s home in order to deliver individualized planning and interventions for persons with dementia. A number of scientific challenges are addressed: First, to co-design with dementia patients and their carers computerized support for shared decision-making about their care while allowing the patient to share the care plan. Second, to develop a new and open monitoring framework with which to configure sensor technologies to collect data about whether goals and actions specified for a person in their care plan are being achieved. This is developed top-down by associating care quality types and metrics elicited from the co-design activities with types of data that can be collected within the home, from passive and active sensors, and from the patient’s feedback collected through a simple co-designed interface. These activities and data will be mapped to appropriate sensors and technological infrastructure with which to collect the data. Third, the application of machine learning models to analyze data collected via the sensing devices in order to investigate whether and to what extent activities outlined via the care plan are being achieved. The models will capture longitudinal data to track disease progression over time; as the disease progresses and captured data show that activities outlined in the care plan are not being achieved, the care plan may recommend alternative activities. Disease progression may also require care changes, and a data-driven approach can capture changes in a condition more quickly and allow care plans to evolve and be updated.Keywords: care goals, decision-making, dementia, self-care, sensors
Procedia PDF Downloads 1734645 Implicit U-Net Enhanced Fourier Neural Operator for Long-Term Dynamics Prediction in Turbulence
Authors: Zhijie Li, Wenhui Peng, Zelong Yuan, Jianchun Wang
Abstract:
Turbulence is a complex phenomenon that plays a crucial role in various fields, such as engineering, atmospheric science, and fluid dynamics. Predicting and understanding its behavior over long time scales have been challenging tasks. Traditional methods, such as large-eddy simulation (LES), have provided valuable insights but are computationally expensive. In the past few years, machine learning methods have experienced rapid development, leading to significant improvements in computational speed. However, ensuring stable and accurate long-term predictions remains a challenging task for these methods. In this study, we introduce the implicit U-net enhanced Fourier neural operator (IU-FNO) as a solution for stable and efficient long-term predictions of the nonlinear dynamics in three-dimensional (3D) turbulence. The IU-FNO model combines implicit re-current Fourier layers to deepen the network and incorporates the U-Net architecture to accurately capture small-scale flow structures. We evaluate the performance of the IU-FNO model through extensive large-eddy simulations of three types of 3D turbulence: forced homogeneous isotropic turbulence (HIT), temporally evolving turbulent mixing layer, and decaying homogeneous isotropic turbulence. The results demonstrate that the IU-FNO model outperforms other FNO-based models, including vanilla FNO, implicit FNO (IFNO), and U-net enhanced FNO (U-FNO), as well as the dynamic Smagorinsky model (DSM), in predicting various turbulence statistics. Specifically, the IU-FNO model exhibits improved accuracy in predicting the velocity spectrum, probability density functions (PDFs) of vorticity and velocity increments, and instantaneous spatial structures of the flow field. Furthermore, the IU-FNO model addresses the stability issues encountered in long-term predictions, which were limitations of previous FNO models. In addition to its superior performance, the IU-FNO model offers faster computational speed compared to traditional large-eddy simulations using the DSM model. It also demonstrates generalization capabilities to higher Taylor-Reynolds numbers and unseen flow regimes, such as decaying turbulence. Overall, the IU-FNO model presents a promising approach for long-term dynamics prediction in 3D turbulence, providing improved accuracy, stability, and computational efficiency compared to existing methods.Keywords: data-driven, Fourier neural operator, large eddy simulation, fluid dynamics
Procedia PDF Downloads 754644 Investigating the Role of Dystrophin in Neuronal Homeostasis
Authors: Samantha Shallop, Hakinya Karra, Tytus Bernas, Gladys Shaw, Gretchen Neigh, Jeffrey Dupree, Mathula Thangarajh
Abstract:
Abnormal neuronal homeostasis is considered a structural correlate of cognitive deficits in Duchenne Muscular Dystrophy. Neurons are highly polarized cells with multiple dendrites but a single axon. Trafficking of cellular organelles are highly regulated, with the cargo in the somatodendritic region of the neuron not permitted to enter the axonal compartment. We investigated the molecular mechanisms that regular organelle trafficking in neurons using a multimodal approach, including high-resolution structural illumination, proteomics, immunohistochemistry, and computational modeling. We investigated the expression of ankyrin-G, the master regulator controlling neuronal polarity. The expression of ankyrin G and the morphology of the axon initial segment was profoundly abnormal in the CA1 hippocampal neurons in the mdx52 animal model of DMD. Ankyrin-G colocalized with kinesin KIF5a, the anterograde protein transporter, with higher levels in older mdx52 mice than younger mdx52 mice. These results suggest that the functional trafficking from the somatodendritic compartment is abnormal. Our data suggests that dystrophin deficiency compromised neuronal homeostasis via ankyrin-G-based mechanisms.Keywords: neurons, axonal transport, duchenne muscular dystrophy, organelle transport
Procedia PDF Downloads 984643 Linear MIMO Model Identification Using an Extended Kalman Filter
Authors: Matthew C. Best
Abstract:
Linear Multi-Input Multi-Output (MIMO) dynamic models can be identified, with no a priori knowledge of model structure or order, using a new Generalised Identifying Filter (GIF). Based on an Extended Kalman Filter, the new filter identifies the model iteratively, in a continuous modal canonical form, using only input and output time histories. The filter’s self-propagating state error covariance matrix allows easy determination of convergence and conditioning, and by progressively increasing model order, the best fitting reduced-order model can be identified. The method is shown to be resistant to noise and can easily be extended to identification of smoothly nonlinear systems.Keywords: system identification, Kalman filter, linear model, MIMO, model order reduction
Procedia PDF Downloads 5984642 Fuzzy Optimization for Identifying Anticancer Targets in Genome-Scale Metabolic Models of Colon Cancer
Authors: Feng-Sheng Wang, Chao-Ting Cheng
Abstract:
Developing a drug from conception to launch is costly and time-consuming. Computer-aided methods can reduce research costs and accelerate the development process during the early drug discovery and development stages. This study developed a fuzzy multi-objective hierarchical optimization framework for identifying potential anticancer targets in a metabolic model. First, RNA-seq expression data of colorectal cancer samples and their healthy counterparts were used to reconstruct tissue-specific genome-scale metabolic models. The aim of the optimization framework was to identify anticancer targets that lead to cancer cell death and evaluate metabolic flux perturbations in normal cells that have been caused by cancer treatment. Four objectives were established in the optimization framework to evaluate the mortality of cancer cells for treatment and to minimize side effects causing toxicity-induced tumorigenesis on normal cells and smaller metabolic perturbations. Through fuzzy set theory, a multiobjective optimization problem was converted into a trilevel maximizing decision-making (MDM) problem. The applied nested hybrid differential evolution was applied to solve the trilevel MDM problem using two nutrient media to identify anticancer targets in the genome-scale metabolic model of colorectal cancer, respectively. Using Dulbecco’s Modified Eagle Medium (DMEM), the computational results reveal that the identified anticancer targets were mostly involved in cholesterol biosynthesis, pyrimidine and purine metabolisms, glycerophospholipid biosynthetic pathway and sphingolipid pathway. However, using Ham’s medium, the genes involved in cholesterol biosynthesis were unidentifiable. A comparison of the uptake reactions for the DMEM and Ham’s medium revealed that no cholesterol uptake reaction was included in DMEM. Two additional media, i.e., a cholesterol uptake reaction was included in DMEM and excluded in HAM, were respectively used to investigate the relationship of tumor cell growth with nutrient components and anticancer target genes. The genes involved in the cholesterol biosynthesis were also revealed to be determinable if a cholesterol uptake reaction was not induced when the cells were in the culture medium. However, the genes involved in cholesterol biosynthesis became unidentifiable if such a reaction was induced.Keywords: Cancer metabolism, genome-scale metabolic model, constraint-based model, multilevel optimization, fuzzy optimization, hybrid differential evolution
Procedia PDF Downloads 834641 An Improved Model of Estimation Global Solar Irradiation from in situ Data: Case of Oran Algeria Region
Authors: Houcine Naim, Abdelatif Hassini, Noureddine Benabadji, Alex Van Den Bossche
Abstract:
In this paper, two models to estimate the overall monthly average daily radiation on a horizontal surface were applied to the site of Oran (35.38 ° N, 0.37 °W). We present a comparison between the first one is a regression equation of the Angstrom type and the second model is developed by the present authors some modifications were suggested using as input parameters: the astronomical parameters as (latitude, longitude, and altitude) and meteorological parameters as (relative humidity). The comparisons are made using the mean bias error (MBE), root mean square error (RMSE), mean percentage error (MPE), and mean absolute bias error (MABE). This comparison shows that the second model is closer to the experimental values that the model of Angstrom.Keywords: meteorology, global radiation, Angstrom model, Oran
Procedia PDF Downloads 2374640 Investigations on the Influence of Optimized Charge Air Cooling for a Diesel Passenger Car
Authors: Christian Doppler, Gernot Hirschl, Gerhard Zsiga
Abstract:
Starting from 2020, an EU-wide CO2-limitation of 95g/km is scheduled for the average of an OEMs passenger car fleet. Considering that, further measures of optimization on the diesel cycle will be necessary in order to reduce fuel consumption and emissions while keeping performance values adequate at the least. The present article deals with charge air cooling (CAC) on the basis of a diesel passenger car model in a 0D/1D-working process calculation environment. The considered engine is a 2.4 litre EURO VI diesel engine with variable geometry turbocharger (VGT) and low-pressure exhaust gas recirculation (LP EGR). The object of study was the impact of charge air cooling on the engine working process at constant boundary conditions which could have been conducted with an available and validated engine model in AVL BOOST. Part load was realized with constant power and NOx-emissions, whereas full load was accomplished with a lambda control in order to obtain maximum engine performance. The informative results were used to implement a simulation model in Matlab/Simulink which is further integrated into a full vehicle simulation environment via coupling with ICOS (Independent Co-Simulation Platform). Next, the dynamic engine behavior was validated and modified with load steps taken from the engine test bed. Due to the modular setup in the Co-Simulation, different CAC-models have been simulated quickly with their different influences on the working process. In doing so, a new cooler variation isn’t needed to be reproduced and implemented into the primary simulation model environment, but is implemented quickly and easily as an independent component into the simulation entity. By means of the association of the engine model, longitudinal dynamics vehicle model and different CAC models (air/air & water/air variants) in both steady state and transient operational modes, statements are gained regarding fuel consumption, NOx-emissions and power behavior. The fact that there is no more need of a complex engine model is very advantageous for the overall simulation volume. Beside of the simulation with the mentioned demonstrator engine, there have also been conducted several experimental investigations on the engine test bench. Here the comparison of a standard CAC with an intake-manifold-integrated CAC was executed in particular. Simulative as well as experimental tests showed benefits for the water/air CAC variant (on test bed especially the intake manifold integrated variant). The benefits are illustrated by a reduced pressure loss and a gain in air efficiency and CAC efficiency, those who all lead to minimized emission and fuel consumption for stationary and transient operation.Keywords: air/water-charge air cooler, co-simulation, diesel working process, EURO VI fuel consumption
Procedia PDF Downloads 2744639 Parallel Particle Swarm Optimization Optimized LDI Controller with Lyapunov Stability Criterion for Nonlinear Structural Systems
Authors: P. W. Tsai, W. L. Hong, C. W. Chen, C. Y. Chen
Abstract:
In this paper, we present a neural network (NN) based approach represent a nonlinear Tagagi-Sugeno (T-S) system. A linear differential inclusion (LDI) state-space representation is utilized to deal with the NN models. Taking advantage of the LDI representation, the stability conditions and controller design are derived for a class of nonlinear structural systems. Moreover, the concept of utilizing the Parallel Particle Swarm Optimization (PPSO) algorithm to solve the common P matrix under the stability criteria is given in this paper.Keywords: Lyapunov stability, parallel particle swarm optimization, linear differential inclusion, artificial intelligence
Procedia PDF Downloads 6584638 Secret Security Smart Lock Using Artificial Intelligence Hybrid Algorithm
Authors: Vahid Bayrami Rad
Abstract:
Ever since humans developed a collective way of life to the development of urbanization, the concern of security has always been considered one of the most important challenges of life. To protect property, locks have always been a practical tool. With the advancement of technology, the form of locks has changed from mechanical to electric. One of the most widely used fields of using artificial intelligence is its application in the technology of surveillance security systems. Currently, the technologies used in smart anti-theft door handles are one of the most potential fields for using artificial intelligence. Artificial intelligence has the possibility to learn, calculate, interpret and process by analyzing data with the help of algorithms and mathematical models and make smart decisions. We will use Arduino board to process data.Keywords: arduino board, artificial intelligence, image processing, solenoid lock
Procedia PDF Downloads 71