Search results for: neural network models
7385 A New Approach to Interval Matrices and Applications
Authors: Obaid Algahtani
Abstract:
An interval may be defined as a convex combination as follows: I=[a,b]={x_α=(1-α)a+αb: α∈[0,1]}. Consequently, we may adopt interval operations by applying the scalar operation point-wise to the corresponding interval points: I ∙J={x_α∙y_α ∶ αϵ[0,1],x_α ϵI ,y_α ϵJ}, With the usual restriction 0∉J if ∙ = ÷. These operations are associative: I+( J+K)=(I+J)+ K, I*( J*K)=( I*J )* K. These two properties, which are missing in the usual interval operations, will enable the extension of the usual linear system concepts to the interval setting in a seamless manner. The arithmetic introduced here avoids such vague terms as ”interval extension”, ”inclusion function”, determinants which we encounter in the engineering literature that deal with interval linear systems. On the other hand, these definitions were motivated by our attempt to arrive at a definition of interval random variables and investigate the corresponding statistical properties. We feel that they are the natural ones to handle interval systems. We will enable the extension of many results from usual state space models to interval state space models. The interval state space model we will consider here is one of the form X_((t+1) )=AX_t+ W_t, Y_t=HX_t+ V_t, t≥0, where A∈ 〖IR〗^(k×k), H ∈ 〖IR〗^(p×k) are interval matrices and 〖W 〗_t ∈ 〖IR〗^k,V_t ∈〖IR〗^p are zero – mean Gaussian white-noise interval processes. This feeling is reassured by the numerical results we obtained in a simulation examples.Keywords: interval analysis, interval matrices, state space model, Kalman Filter
Procedia PDF Downloads 4267384 Intellectual Property and SMEs in the Baltic Sea Region: A Comparative Study on the Use of the Utility Model Protection
Authors: Christina Wainikka, Besrat Tesfaye
Abstract:
Several of the countries in the Baltic Sea region are ranked high in international innovations rankings, such as the Global Innovation Index and European Innovation Scoreboard. There are however some concerns in the performance of different countries. For example, there is a widely spread notion about “The Swedish Paradox”. Sweden is ranked high due to investments in R&D and patent activity, but the outcome is not as high as could be expected. SMEs in Sweden are also below EU average when it comes to registering intellectual property rights such as patents and trademarks. This study is concentrating on the protection of utility model. This intellectual property right does not exist in Sweden, but in for example Finland and Germany. The utility model protection is sometimes referred to as a “patent light” since it is easier to obtain than the patent protection but at the same time does cover technical solutions. In examining statistics on patent activities and activities in registering utility models it is clear that utility model protection is scarcely used in the countries that have the protection. In Germany 10 577 applications were made in 2021. In Finland there were 259 applications made in 2021. This can be compared with patent applications that were 58 568 in Germany in 2021 and 1 662 in Finland in 2021. In Sweden there has never been a protection for utility models. The only protection for technical solutions is patents and business secrets. The threshold for obtaining a patent is high, due to the legal requirements and the costs. The patent protection is there for often not chosen by SMEs in Sweden. This study examines whether the protection of utility models in other countries in the Baltic region provide SMEs in these countries with better options to protect their innovations. The legal methodology is comparative law. In order to study the effects of the legal differences statistics are examined and interviews done with SMEs from different industries.Keywords: baltic sea region, comparative law, SME, utility model
Procedia PDF Downloads 1197383 [Keynote Talk]: Software Reliability Assessment and Fault Tolerance: Issues and Challenges
Authors: T. Gayen
Abstract:
Although, there are several software reliability models existing today there does not exist any versatile model even today which can be used for the reliability assessment of software. Complex software has a large number of states (unlike the hardware) so it becomes practically difficult to completely test the software. Irrespective of the amount of testing one does, sometimes it becomes extremely difficult to assure that the final software product is fault free. The Black Box Software Reliability models are found be quite uncertain for the reliability assessment of various systems. As mission critical applications need to be highly reliable and since it is not always possible to ensure the development of highly reliable system. Hence, in order to achieve fault-free operation of software one develops some mechanism to handle faults remaining in the system even after the development. Although, several such techniques are currently in use to achieve fault tolerance, yet these mechanisms may not always be very suitable for various systems. Hence, this discussion is focused on analyzing the issues and challenges faced with the existing techniques for reliability assessment and fault tolerance of various software systems.Keywords: black box, fault tolerance, failure, software reliability
Procedia PDF Downloads 4297382 Application of MALDI-MS to Differentiate SARS-CoV-2 and Non-SARS-CoV-2 Symptomatic Infections in the Early and Late Phases of the Pandemic
Authors: Dmitriy Babenko, Sergey Yegorov, Ilya Korshukov, Aidana Sultanbekova, Valentina Barkhanskaya, Tatiana Bashirova, Yerzhan Zhunusov, Yevgeniya Li, Viktoriya Parakhina, Svetlana Kolesnichenko, Yeldar Baiken, Aruzhan Pralieva, Zhibek Zhumadilova, Matthew S. Miller, Gonzalo H. Hortelano, Anar Turmuhambetova, Antonella E. Chesca, Irina Kadyrova
Abstract:
Introduction: The rapidly evolving COVID-19 pandemic, along with the re-emergence of pathogens causing acute respiratory infections (ARI), has necessitated the development of novel diagnostic tools to differentiate various causes of ARI. MALDI-MS, due to its wide usage and affordability, has been proposed as a potential instrument for diagnosing SARS-CoV-2 versus non-SARS-CoV-2 ARI. The aim of this study was to investigate the potential of MALDI-MS in conjunction with a machine learning model to accurately distinguish between symptomatic infections caused by SARS-CoV-2 and non-SARS-CoV-2 during both the early and later phases of the pandemic. Furthermore, this study aimed to analyze mass spectrometry (MS) data obtained from nasal swabs of healthy individuals. Methods: We gathered mass spectra from 252 samples, comprising 108 SARS-CoV-2-positive samples obtained in 2020 (Covid 2020), 7 SARS-CoV- 2-positive samples obtained in 2023 (Covid 2023), 71 samples from symptomatic individuals without SARS-CoV-2 (Control non-Covid ARVI), and 66 samples from healthy individuals (Control healthy). All the samples were subjected to RT-PCR testing. For data analysis, we employed the caret R package to train and test seven machine-learning algorithms: C5.0, KNN, NB, RF, SVM-L, SVM-R, and XGBoost. We conducted a training process using a five-fold (outer) nested repeated (five times) ten-fold (inner) cross-validation with a randomized stratified splitting approach. Results: In this study, we utilized the Covid 2020 dataset as a case group and the non-Covid ARVI dataset as a control group to train and test various machine learning (ML) models. Among these models, XGBoost and SVM-R demonstrated the highest performance, with accuracy values of 0.97 [0.93, 0.97] and 0.95 [0.95; 0.97], specificity values of 0.86 [0.71; 0.93] and 0.86 [0.79; 0.87], and sensitivity values of 0.984 [0.984; 1.000] and 1.000 [0.968; 1.000], respectively. When examining the Covid 2023 dataset, the Naive Bayes model achieved the highest classification accuracy of 43%, while XGBoost and SVM-R achieved accuracies of 14%. For the healthy control dataset, the accuracy of the models ranged from 0.27 [0.24; 0.32] for k-nearest neighbors to 0.44 [0.41; 0.45] for the Support Vector Machine with a radial basis function kernel. Conclusion: Therefore, ML models trained on MALDI MS of nasopharyngeal swabs obtained from patients with Covid during the initial phase of the pandemic, as well as symptomatic non-Covid individuals, showed excellent classification performance, which aligns with the results of previous studies. However, when applied to swabs from healthy individuals and a limited sample of patients with Covid in the late phase of the pandemic, ML models exhibited lower classification accuracy.Keywords: SARS-CoV-2, MALDI-TOF MS, ML models, nasopharyngeal swabs, classification
Procedia PDF Downloads 1157381 Russian Spatial Impersonal Sentence Models in Translation Perspective
Authors: Marina Fomina
Abstract:
The paper focuses on the category of semantic subject within the framework of a functional approach to linguistics. The semantic subject is related to similar notions such as the grammatical subject and the bearer of predicative feature. It is the multifaceted nature of the category of subject that 1) triggers a number of issues that, syntax-wise, remain to be dealt with (cf. semantic vs. syntactic functions / sentence parts vs. parts of speech issues, etc.); 2) results in a variety of approaches to the category of subject, such as formal grammatical, semantic/syntactic (functional), communicative approaches, etc. Many linguists consider the prototypical approach to the category of subject to be the most instrumental as it reveals the integrity of denotative and linguistic components of the conceptual category. This approach relates to subject as a source of non-passive predicative feature, an element of subject-predicate-object situation that can take on a variety of semantic roles, cf.: 1) an agent (He carefully surveyed the valley stretching before him), 2) an experiencer (I feel very bitter about this), 3) a recipient (I received this book as a gift), 4) a causee (The plane broke into three pieces), 5) a patient (This stove cleans easily), etc. It is believed that the variety of roles stems from the radial (prototypical) structure of the category with some members more central than others. Translation-wise, the most “treacherous” subject types are the peripheral ones. The paper 1) features a peripheral status of spatial impersonal sentence models such as U menia v ukhe zvenit (lit. I-Gen. in ear buzzes) within the category of semantic subject, 2) makes a structural and semantic analysis of the models, 3) focuses on their Russian-English translation patterns, 4) reveals non-prototypical features of subjects in the English equivalents.Keywords: bearer of predicative feature, grammatical subject, impersonal sentence model, semantic subject
Procedia PDF Downloads 3757380 Social Structure of Corporate Social Responsibility Programme in Pantai Harapan Jaya Village, Bekasi Regency, West Java
Authors: Auliya Adzilatin Uzhma, Ismu Rini Dwi, I. Nyoman Suluh Wijaya
Abstract:
Corporate Social Responsibility (CSR) programme in Pantai Harapan Jaya village is cultivation of mangrove and fishery capital distribution, to achieve the goal the CSR programme needed participation from the society in it. Moeliono in Fahrudin (2011) mentioned that participation from society is based by intrinsic reason from inside people it self and extrinsic reason from the other who related to him. The fundamental connection who caused more boundaries from action which the organization can do called the social structure. The purpose of this research is to know the form of public participation and the social structure typology of the villager and people who is participated in CSR programme. The key actors of the society and key actors of the people who’s participated also can be known. This research use Social Network Analysis method by knew the Rate of Participation, Density and Centrality. The result of the research is people who is involved in the programme is lived in Dusun Pondok Dua and they work in fisheries field. The density value from the participant is 0.516 it’s mean that 51.6% of the people that participated is involved in the same step of CSR programme.Keywords: social structure, social network analysis, corporate social responsibility, public participation
Procedia PDF Downloads 4857379 Bilateral Telecontrol of AutoMerlin Mobile Robot Using Time Domain Passivity Control
Authors: Aamir Shahzad, Hubert Roth
Abstract:
This paper is presenting the bilateral telecontrol of AutoMerlin Mobile Robot having communication delay. Passivity Observers has been designed to monitor the net energy at both ports of a two port network and if any or both ports become active making net energy negative, then the passivity controllers dissipate the proper energy to make the overall system passive in the presence of time delay. The environment force is modeled and sent back to human operator so that s/he can feel it and has additional information about the environment in the vicinity of mobile robot. The experimental results have been presented to show the performance and stability of bilateral controller. The results show the whenever the passivity observers observe active behavior then the passivity controller come into action to neutralize the active behavior to make overall system passive.Keywords: bilateral control, human operator, haptic device, communication network, time domain passivity control, passivity observer, passivity controller, time delay, mobile robot, environment force
Procedia PDF Downloads 3957378 Deep Learning Strategies for Mapping Complex Vegetation Patterns in Mediterranean Environments Undergoing Climate Change
Authors: Matan Cohen, Maxim Shoshany
Abstract:
Climatic, topographic and geological diversity, together with frequent disturbance and recovery cycles, produce highly complex spatial patterns of trees, shrubs, dwarf shrubs and bare ground patches. Assessment of spatial and temporal variations of these life-forms patterns under climate change is of high ecological priority. Here we report on one of the first attempts to discriminate between images of three Mediterranean life-forms patterns at three densities. The development of an extensive database of orthophoto images representing these 9 pattern categories was instrumental for training and testing pre-trained and newly-trained DL models utilizing DenseNet architecture. Both models demonstrated the advantages of using Deep Learning approaches over existing spectral and spatial (pattern or texture) algorithmic methods in differentiation 9 life-form spatial mixtures categories.Keywords: texture classification, deep learning, desert fringe ecosystems, climate change
Procedia PDF Downloads 967377 Modeling Breathable Particulate Matter Concentrations over Mexico City Retrieved from Landsat 8 Satellite Imagery
Authors: Rodrigo T. Sepulveda-Hirose, Ana B. Carrera-Aguilar, Magnolia G. Martinez-Rivera, Pablo de J. Angeles-Salto, Carlos Herrera-Ventosa
Abstract:
In order to diminish health risks, it is of major importance to monitor air quality. However, this process is accompanied by the high costs of physical and human resources. In this context, this research is carried out with the main objective of developing a predictive model for concentrations of inhalable particles (PM10-2.5) using remote sensing. To develop the model, satellite images, mainly from Landsat 8, of the Mexico City’s Metropolitan Area were used. Using historical PM10 and PM2.5 measurements of the RAMA (Automatic Environmental Monitoring Network of Mexico City) and through the processing of the available satellite images, a preliminary model was generated in which it was possible to observe critical opportunity areas that will allow the generation of a robust model. Through the preliminary model applied to the scenes of Mexico City, three areas were identified that cause great interest due to the presumed high concentration of PM; the zones are those that present high plant density, bodies of water and soil without constructions or vegetation. To date, work continues on this line to improve the preliminary model that has been proposed. In addition, a brief analysis was made of six models, presented in articles developed in different parts of the world, this in order to visualize the optimal bands for the generation of a suitable model for Mexico City. It was found that infrared bands have helped to model in other cities, but the effectiveness that these bands could provide for the geographic and climatic conditions of Mexico City is still being evaluated.Keywords: air quality, modeling pollution, particulate matter, remote sensing
Procedia PDF Downloads 1607376 Networking the Biggest Challenge in Hybrid Cloud Deployment
Authors: Aishwarya Shekhar, Devesh Kumar Srivastava
Abstract:
Cloud computing has emerged as a promising direction for cost efficient and reliable service delivery across data communication networks. The dynamic location of service facilities and the virtualization of hardware and software elements are stressing the communication networks and protocols, especially when data centres are interconnected through the internet. Although the computing aspects of cloud technologies have been largely investigated, lower attention has been devoted to the networking services without involving IT operating overhead. Cloud computing has enabled elastic and transparent access to infrastructure services without involving IT operating overhead. Virtualization has been a key enabler for cloud computing. While resource virtualization and service abstraction have been widely investigated, networking in cloud remains a difficult puzzle. Even though network has significant role in facilitating hybrid cloud scenarios, it hasn't received much attention in research community until recently. We propose Network as a Service (NaaS), which forms the basis of unifying public and private clouds. In this paper, we identify various challenges in adoption of hybrid cloud. We discuss the design and implementation of a cloud platform.Keywords: cloud computing, networking, infrastructure, hybrid cloud, open stack, naas
Procedia PDF Downloads 4317375 Quantification of Dispersion Effects in Arterial Spin Labelling Perfusion MRI
Authors: Rutej R. Mehta, Michael A. Chappell
Abstract:
Introduction: Arterial spin labelling (ASL) is an increasingly popular perfusion MRI technique, in which arterial blood water is magnetically labelled in the neck before flowing into the brain, providing a non-invasive measure of cerebral blood flow (CBF). The accuracy of ASL CBF measurements, however, is hampered by dispersion effects; the distortion of the ASL labelled bolus during its transit through the vasculature. In spite of this, the current recommended implementation of ASL – the white paper (Alsop et al., MRM, 73.1 (2015): 102-116) – does not account for dispersion, which leads to the introduction of errors in CBF. Given that the transport time from the labelling region to the tissue – the arterial transit time (ATT) – depends on the region of the brain and the condition of the patient, it is likely that these errors will also vary with the ATT. In this study, various dispersion models are assessed in comparison with the white paper (WP) formula for CBF quantification, enabling the errors introduced by the WP to be quantified. Additionally, this study examines the relationship between the errors associated with the WP and the ATT – and how this is influenced by dispersion. Methods: Data were simulated using the standard model for pseudo-continuous ASL, along with various dispersion models, and then quantified using the formula in the WP. The ATT was varied from 0.5s-1.3s, and the errors associated with noise artefacts were computed in order to define the concept of significant error. The instantaneous slope of the error was also computed as an indicator of the sensitivity of the error with fluctuations in ATT. Finally, a regression analysis was performed to obtain the mean error against ATT. Results: An error of 20.9% was found to be comparable to that introduced by typical measurement noise. The WP formula was shown to introduce errors exceeding 20.9% for ATTs beyond 1.25s even when dispersion effects were ignored. Using a Gaussian dispersion model, a mean error of 16% was introduced by using the WP, and a dispersion threshold of σ=0.6 was determined, beyond which the error was found to increase considerably with ATT. The mean error ranged from 44.5% to 73.5% when other physiologically plausible dispersion models were implemented, and the instantaneous slope varied from 35 to 75 as dispersion levels were varied. Conclusion: It has been shown that the WP quantification formula holds only within an ATT window of 0.5 to 1.25s, and that this window gets narrower as dispersion occurs. Provided that the dispersion levels fall below the threshold evaluated in this study, however, the WP can measure CBF with reasonable accuracy if dispersion is correctly modelled by the Gaussian model. However, substantial errors were observed with other common models for dispersion with dispersion levels similar to those that have been observed in literature.Keywords: arterial spin labelling, dispersion, MRI, perfusion
Procedia PDF Downloads 3737374 South Asia’s Political Landscape: Precipitating Terrorism
Authors: Saroj Kumar Rath
Abstract:
India's Muslims represent 15 percent of the nation's population, the world's third largest group in any nation after Indonesia and Pakistan. Extremist groups like the Islamic State, Al Qaeda, the Taliban and the Haqqani network increasingly view India as a target. Several trends explain the rise: Terrorism threats in South Asia are linked and mobile - if one source is batted down, jihadists relocate to find another Islamic cause. As NATO withdraws from Afghanistan, some jihadists will eye India. Pakistan regards India as a top enemy and some officials even encourage terrorists to target areas like Kashmir or Mumbai. Meanwhile, a stream of Wahhabi preachers have visited India, offering hard-line messages; extremist groups like Al Qaeda and the Islamic State compete for influence, and militants even pay jihadists. Muslims as a minority population in India could offer fertile ground for the extremist recruiters. This paper argues that there is an urgent need for the Indian government to profile militants and examine social media sites to attack Wahhabi indoctrination while supporting education and entrepreneurship for all of India's citizens.Keywords: Al Qaeda, terrorism, Islamic state, India, haqqani network, Pakistan, Taliban
Procedia PDF Downloads 6207373 Assessment of the Impact of Traffic Safety Policy in Barcelona, 2010-2019
Authors: Lluís Bermúdez, Isabel Morillo
Abstract:
Road safety involves carrying out a determined and explicit policy to reduce accidents. In the city of Barcelona, through the Local Road Safety Plan 2013-2018, in line with the framework that has been established at the European and state level, a series of preventive, corrective and technical measures are specified, with the priority objective of reducing the number of serious injuries and fatalities. In this work, based on the data from the accidents managed by the local police during the period 2010-2019, an analysis is carried out to verify whether the measures established in the Plan to reduce the accident rate have had an effect or not and to what extent. The analysis focuses on the type of accident and the type of vehicles involved. Different count regression models have been fitted, from which it can be deduced that the number of serious and fatal victims of the accidents that have occurred in the city of Barcelona has been reduced as the measures approved by the authorities.Keywords: accident reduction, count regression models, road safety, urban traffic
Procedia PDF Downloads 1377372 An End-to-end Piping and Instrumentation Diagram Information Recognition System
Authors: Taekyong Lee, Joon-Young Kim, Jae-Min Cha
Abstract:
Piping and instrumentation diagram (P&ID) is an essential design drawing describing the interconnection of process equipment and the instrumentation installed to control the process. P&IDs are modified and managed throughout a whole life cycle of a process plant. For the ease of data transfer, P&IDs are generally handed over from a design company to an engineering company as portable document format (PDF) which is hard to be modified. Therefore, engineering companies have to deploy a great deal of time and human resources only for manually converting P&ID images into a computer aided design (CAD) file format. To reduce the inefficiency of the P&ID conversion, various symbols and texts in P&ID images should be automatically recognized. However, recognizing information in P&ID images is not an easy task. A P&ID image usually contains hundreds of symbol and text objects. Most objects are pretty small compared to the size of a whole image and are densely packed together. Traditional recognition methods based on geometrical features are not capable enough to recognize every elements of a P&ID image. To overcome these difficulties, state-of-the-art deep learning models, RetinaNet and connectionist text proposal network (CTPN) were used to build a system for recognizing symbols and texts in a P&ID image. Using the RetinaNet and the CTPN model carefully modified and tuned for P&ID image dataset, the developed system recognizes texts, equipment symbols, piping symbols and instrumentation symbols from an input P&ID image and save the recognition results as the pre-defined extensible markup language format. In the test using a commercial P&ID image, the P&ID information recognition system correctly recognized 97% of the symbols and 81.4% of the texts.Keywords: object recognition system, P&ID, symbol recognition, text recognition
Procedia PDF Downloads 1587371 UPPAAL-based Design and Analysis of Intelligent Parking System
Authors: Abobaker Mohammed Qasem Farhan, Olof M. A. Saif
Abstract:
The demand for parking spaces in urban areas, particularly in developing countries, has led to a significant issue in the absence of sufficient parking spaces in crowded areas, which results in daily traffic congestion as drivers search for parking. This not only affects the appearance of the city but also has indirect impacts on the economy, society, and environment. In response to these challenges, researchers from various countries have sought technical and intelligent solutions to mitigate the problem through the development of smart parking systems. This paper aims to analyze and design three models of parking lots, with a focus on parking time and security. The study used computer software and Uppaal tools to simulate the models and determine the best among them. The results and suggestions provided in the paper aim to reduce the parking problems and improve the overall efficiency and safety of the parking process. The conclusion of the study highlights the importance of utilizing advanced technology to address the pressing issue of insufficient parking spaces in urban areas.Keywords: preliminaries, system requirements, timed Au- tomata, Uppaal
Procedia PDF Downloads 1537370 Convectory Policing-Reconciling Historic and Contemporary Models of Police Service Delivery
Authors: Mark Jackson
Abstract:
Description: This paper is based on an theoretical analysis of the efficacy of the dominant model of policing in western jurisdictions. Those results are then compared with a similar analysis of a traditional reactive model. It is found that neither model provides for optimal delivery of services. Instead optimal service can be achieved by a synchronous hybrid model, termed the Convectory Policing approach. Methodology and Findings: For over three decades problem oriented policing (PO) has been the dominant model for western police agencies. Initially based on the work of Goldstein during the 1970s the problem oriented framework has spawned endless variants and approaches, most of which embrace a problem solving rather than a reactive approach to policing. This has included the Area Policing Concept (APC) applied in many smaller jurisdictions in the USA, the Scaled Response Policing Model (SRPM) currently under trial in Western Australia and the Proactive Pre-Response Approach (PPRA) which has also seen some success. All of these, in some way or another, are largely based on a model that eschews a traditional reactive model of policing. Convectory Policing (CP) is an alternative model which challenges the underpinning assumptions which have seen proliferation of the PO approach in the last three decades and commences by questioning the economics on which PO is based. It is argued that in essence, the PO relies on an unstated, and often unrecognised assumption that resources will be available to meet demand for policing services, while at the same time maintaining the capacity to deploy staff to develop solutions to the problems which were ultimately manifested in those same calls for service. The CP model relies on the observations from a numerous western jurisdictions to challenge the validity of that underpinning assumption, particularly in fiscally tight environment. In deploying staff to pursue and develop solutions to underpinning problems, there is clearly an opportunity cost. Those same staff cannot be allocated to alternative duties while engaged in a problem solution role. At the same time, resources in use responding to calls for service are unavailable, while committed to that role, to pursue solutions to the problems giving rise to those same calls for service. The two approaches, reactive and PO are therefore dichotomous. One cannot be optimised while the other is being pursued. Convectory Policing is a pragmatic response to the schism between the competing traditional and contemporary models. If it is not possible to serve either model with any real rigour, it becomes necessary to taper an approach to deliver specific outcomes against which success or otherwise might be measured. CP proposes that a structured roster-driven approach to calls for service, combined with the application of what is termed a resource-effect response capacity has the potential to resolve the inherent conflict between traditional and models of policing and the expectations of the community in terms of community policing based problem solving models.Keywords: policing, reactive, proactive, models, efficacy
Procedia PDF Downloads 4877369 Fast Bayesian Inference of Multivariate Block-Nearest Neighbor Gaussian Process (NNGP) Models for Large Data
Authors: Carlos Gonzales, Zaida Quiroz, Marcos Prates
Abstract:
Several spatial variables collected at the same location that share a common spatial distribution can be modeled simultaneously through a multivariate geostatistical model that takes into account the correlation between these variables and the spatial autocorrelation. The main goal of this model is to perform spatial prediction of these variables in the region of study. Here we focus on a geostatistical multivariate formulation that relies on sharing common spatial random effect terms. In particular, the first response variable can be modeled by a mean that incorporates a shared random spatial effect, while the other response variables depend on this shared spatial term, in addition to specific random spatial effects. Each spatial random effect is defined through a Gaussian process with a valid covariance function, but in order to improve the computational efficiency when the data are large, each Gaussian process is approximated to a Gaussian random Markov field (GRMF), specifically to the block nearest neighbor Gaussian process (Block-NNGP). This approach involves dividing the spatial domain into several dependent blocks under certain constraints, where the cross blocks allow capturing the spatial dependence on a large scale, while each individual block captures the spatial dependence on a smaller scale. The multivariate geostatistical model belongs to the class of Latent Gaussian Models; thus, to achieve fast Bayesian inference, it is used the integrated nested Laplace approximation (INLA) method. The good performance of the proposed model is shown through simulations and applications for massive data.Keywords: Block-NNGP, geostatistics, gaussian process, GRMF, INLA, multivariate models.
Procedia PDF Downloads 1027368 Sharing Experience in Authentic Learning for Mobile Security
Abstract:
Mobile devices such as smartphones are getting more and more popular in our daily lives. The security vulnerability and threat attacks become a very emerging and important research and education topic in computing security discipline. There is a need to have an innovative mobile security hands-on laboratory to provide students with real world relevant mobile threat analysis and protection experience. This paper presents an authentic teaching and learning mobile security approach with smartphone devices which covers most important mobile threats in most aspects of mobile security. Each lab focuses on one type of mobile threats, such as mobile messaging threat, and conveys the threat analysis and protection in multiple ways, including lectures and tutorials, multimedia or app-based demonstration for threats analysis, and mobile app development for threat protections. This authentic learning approach is affordable and easily-adoptable which immerse students in a real world relevant learning environment with real devices. This approach can also be applied to many other mobile related courses such as mobile Java programming, database, network, and any security relevant courses so that can learn concepts and principles better with the hands-on authentic learning experience.Keywords: mobile computing, Android, network, security, labware
Procedia PDF Downloads 4117367 Reducing the Imbalance Penalty Through Artificial Intelligence Methods Geothermal Production Forecasting: A Case Study for Turkey
Authors: Hayriye Anıl, Görkem Kar
Abstract:
In addition to being rich in renewable energy resources, Turkey is one of the countries that promise potential in geothermal energy production with its high installed power, cheapness, and sustainability. Increasing imbalance penalties become an economic burden for organizations since geothermal generation plants cannot maintain the balance of supply and demand due to the inadequacy of the production forecasts given in the day-ahead market. A better production forecast reduces the imbalance penalties of market participants and provides a better imbalance in the day ahead market. In this study, using machine learning, deep learning, and, time series methods, the total generation of the power plants belonging to Zorlu Natural Electricity Generation, which has a high installed capacity in terms of geothermal, was estimated for the first one and two weeks of March, then the imbalance penalties were calculated with these estimates and compared with the real values. These modeling operations were carried out on two datasets, the basic dataset and the dataset created by extracting new features from this dataset with the feature engineering method. According to the results, Support Vector Regression from traditional machine learning models outperformed other models and exhibited the best performance. In addition, the estimation results in the feature engineering dataset showed lower error rates than the basic dataset. It has been concluded that the estimated imbalance penalty calculated for the selected organization is lower than the actual imbalance penalty, optimum and profitable accounts.Keywords: machine learning, deep learning, time series models, feature engineering, geothermal energy production forecasting
Procedia PDF Downloads 1147366 Improving Cryptographically Generated Address Algorithm in IPv6 Secure Neighbor Discovery Protocol through Trust Management
Authors: M. Moslehpour, S. Khorsandi
Abstract:
As transition to widespread use of IPv6 addresses has gained momentum, it has been shown to be vulnerable to certain security attacks such as those targeting Neighbor Discovery Protocol (NDP) which provides the address resolution functionality in IPv6. To protect this protocol, Secure Neighbor Discovery (SEND) is introduced. This protocol uses Cryptographically Generated Address (CGA) and asymmetric cryptography as a defense against threats on integrity and identity of NDP. Although SEND protects NDP against attacks, it is computationally intensive due to Hash2 condition in CGA. To improve the CGA computation speed, we parallelized CGA generation process and used the available resources in a trusted network. Furthermore, we focused on the influence of the existence of malicious nodes on the overall load of un-malicious ones in the network. According to the evaluation results, malicious nodes have adverse impacts on the average CGA generation time and on the average number of tries. We utilized a Trust Management that is capable of detecting and isolating the malicious node to remove possible incentives for malicious behavior. We have demonstrated the effectiveness of the Trust Management System in detecting the malicious nodes and hence improving the overall system performance.Keywords: CGA, ICMPv6, IPv6, malicious node, modifier, NDP, overall load, SEND, trust management
Procedia PDF Downloads 1887365 Estimating the Traffic Impacts of Green Light Optimal Speed Advisory Systems Using Microsimulation
Authors: C. B. Masera, M. Imprialou, L. Budd, C. Morton
Abstract:
Even though signalised intersections are necessary for urban road traffic management, they can act as bottlenecks and disrupt traffic operations. Interrupted traffic flow causes congestion, delays, stop-and-go conditions (i.e. excessive acceleration/deceleration) and longer journey times. Vehicle and infrastructure connectivity offers the potential to provide improved new services with additional functions of assisting drivers. This paper focuses on one of the applications of vehicle-to-infrastructure communication namely Green Light Optimal Speed Advisory (GLOSA). To assess the effectiveness of GLOSA in the urban road network, an integrated microscopic traffic simulation framework is built into VISSIM software. Vehicle movements and vehicle-infrastructure communications are simulated through the interface of External Driver Model. A control algorithm is developed for recommending an optimal speed that is continuously updated in every time step for all vehicles approaching a signal-controlled point. This algorithm allows vehicles to pass a traffic signal without stopping or to minimise stopping times at a red phase. This study is performed with all connected vehicles at 100% penetration rate. Conventional vehicles are also simulated in the same network as a reference. A straight road segment composed of two opposite directions with two traffic lights per lane is studied. The simulation is implemented under 150 vehicles per hour and 200 per hour traffic volume conditions to identify how different traffic densities influence the benefits of GLOSA. The results indicate that traffic flow is improved by the application of GLOSA. According to this study, vehicles passed through the traffic lights more smoothly, and waiting times were reduced by up to 28 seconds. Average delays decreased for the entire network by 86.46% and 83.84% under traffic densities of 150 vehicles per hour per lane and 200 vehicles per hour per lane, respectively.Keywords: connected vehicles, GLOSA, intelligent transport systems, vehicle-to-infrastructure communication
Procedia PDF Downloads 1757364 The Scientific Study of the Relationship Between Physicochemical and Microstructural Properties of Ultrafiltered Cheese: Protein Modification and Membrane Separation
Authors: Shahram Naghizadeh Raeisi, Ali Alghooneh
Abstract:
The loss of curd cohesiveness and syneresis are two common problems in the ultrafiltered cheese industry. In this study, by using membrane technology and protein modification, a modified cheese was developed and its properties were compared with a control sample. In order to decrease the lactose content and adjust the protein, acidity, dry matter and milk minerals, a combination of ultrafiltration, nanofiltration and reverse osmosis technologies was employed. For protein modification, a two-stage chemical and enzymatic reaction was employed before and after ultrafiltration. The physicochemical and microstructural properties of the modified ultrafiltered cheese were compared with the control one. Results showed that the modified protein enhanced the functional properties of the final cheese significantly (pvalue< 0.05), even if the protein content was 50% lower than the control one. The modified cheese showed 21 ± 0.70, 18 ± 1.10 & 25±1.65% higher hardness, cohesiveness and water-holding capacity values, respectively, than the control sample. This behavior could be explained by the developed microstructure of the gel network. Furthermore, chemical-enzymatic modification of milk protein induced a significant change in the network parameter of the final cheese. In this way, the indices of network linkage strength, network linkage density, and time scale of junctions were 10.34 ± 0.52, 68.50 ± 2.10 & 82.21 ± 3.85% higher than the control sample, whereas the distance between adjacent linkages was 16.77 ± 1.10% lower than the control sample. These results were supported by the results of the textural analysis. A non-linear viscoelastic study showed a triangle waveform stress of the modified protein contained cheese, while the control sample showed rectangular waveform stress, which suggested a better sliceability of the modified cheese. Moreover, to study the shelf life of the products, the acidity, as well as molds and yeast population, were determined in 120 days. It’s worth mentioning that the lactose content of modified cheese was adjusted at 2.5% before fermentation, while the lactose of the control one was at 4.5%. The control sample showed 8 weeks shelf life, while the shelf life of the modified cheese was 18 weeks in the refrigerator. During 18 weeks, the acidity of modified and control samples increased from 82 ± 1.50 to 94 ± 2.20 °D and 88 ± 1.64 to 194 ± 5.10 °D, respectively. The mold and yeast populations, with time, followed the semicircular shape model (R2 = 0.92, R2adj = 0.89, RMSE = 1.25). Furthermore, the mold and yeast counts and their growth rate in the modified cheese were lower than those for control one; Aforementioned result could be explained by the shortage of the source of energy for the microorganism in the modified cheese. The lactose content of the modified sample was less than 0.2 ± 0.05% at the end of fermentation, while this was 3.7 ± 0.68% in the control sample.Keywords: non-linear viscoelastic, protein modification, semicircular shape model, ultrafiltered cheese
Procedia PDF Downloads 787363 The Influence of Infiltration and Exfiltration Processes on Maximum Wave Run-Up: A Field Study on Trinidad Beaches
Authors: Shani Brathwaite, Deborah Villarroel-Lamb
Abstract:
Wave run-up may be defined as the time-varying position of the landward extent of the water’s edge, measured vertically from the mean water level position. The hydrodynamics of the swash zone and the accurate prediction of maximum wave run-up, play a critical role in the study of coastal engineering. The understanding of these processes is necessary for the modeling of sediment transport, beach recovery and the design and maintenance of coastal engineering structures. However, due to the complex nature of the swash zone, there remains a lack of detailed knowledge in this area. Particularly, there has been found to be insufficient consideration of bed porosity and ultimately infiltration/exfiltration processes, in the development of wave run-up models. Theoretically, there should be an inverse relationship between maximum wave run-up and beach porosity. The greater the rate of infiltration during an event, associated with a larger bed porosity, the lower the magnitude of the maximum wave run-up. Additionally, most models have been developed using data collected on North American or Australian beaches and may have limitations when used for operational forecasting in Trinidad. This paper aims to assess the influence and significance of infiltration and exfiltration processes on wave run-up magnitudes within the swash zone. It also seeks to pay particular attention to how well various empirical formulae can predict maximum run-up on contrasting beaches in Trinidad. Traditional surveying techniques will be used to collect wave run-up and cross-sectional data on various beaches. Wave data from wave gauges and wave models will be used as well as porosity measurements collected using a double ring infiltrometer. The relationship between maximum wave run-up and differing physical parameters will be investigated using correlation analyses. These physical parameters comprise wave and beach characteristics such as wave height, wave direction, period, beach slope, the magnitude of wave setup, and beach porosity. Most parameterizations to determine the maximum wave run-up are described using differing parameters and do not always have a good predictive capability. This study seeks to improve the formulation of wave run-up by using the aforementioned parameters to generate a formulation with a special focus on the influence of infiltration/exfiltration processes. This will further contribute to the improvement of the prediction of sediment transport, beach recovery and design of coastal engineering structures in Trinidad.Keywords: beach porosity, empirical models, infiltration, swash, wave run-up
Procedia PDF Downloads 3587362 Evaluation of Tumor Microenvironment Using Molecular Imaging
Authors: Fakhrosadat Sajjadian, Ramin Ghasemi Shayan
Abstract:
The tumor microenvironment plays an fundamental part in tumor start, movement, metastasis, and treatment resistance. It varies from ordinary tissue in terms of its extracellular network, vascular and lymphatic arrange, as well as physiological conditions. The clinical application of atomic cancer imaging is regularly prevented by the tall commercialization costs of focused on imaging operators as well as the constrained clinical applications and little showcase measure of a few operators. . Since numerous cancer types share comparable characteristics of the tumor microenvironment, the capacity to target these biomarkers has the potential to supply clinically translatable atomic imaging advances for numerous types encompassing cancer and broad clinical applications. Noteworthy advance has been made in focusing on the tumor microenvironment for atomic cancer imaging. In this survey, we summarize the standards and methodologies of later progresses in atomic imaging of the tumor microenvironment, utilizing distinctive imaging modalities for early discovery and conclusion of cancer. To conclude, The tumor microenvironment (TME) encompassing tumor cells could be a profoundly energetic and heterogeneous composition of safe cells, fibroblasts, forerunner cells, endothelial cells, flagging atoms and extracellular network (ECM) components.Keywords: molecular, imaging, TME, medicine
Procedia PDF Downloads 527361 Optimizing Heavy-Duty Green Hydrogen Refueling Stations: A Techno-Economic Analysis of Turbo-Expander Integration
Authors: Christelle Rabbat, Carole Vouebou, Sary Awad, Alan Jean-Marie
Abstract:
Hydrogen has been proven to be a viable alternative to standard fuels as it is easy to produce and only generates water vapour and zero carbon emissions. However, despite the hydrogen benefits, the widespread adoption of hydrogen fuel cell vehicles and internal combustion engine vehicles is impeded by several challenges. The lack of refueling infrastructures remains one of the main hindering factors due to the high costs associated with their design, construction, and operation. Besides, the lack of hydrogen vehicles on the road diminishes the economic viability of investing in refueling infrastructure. Simultaneously, the absence of accessible refueling stations discourages consumers from adopting hydrogen vehicles, perpetuating a cycle of limited market uptake. To address these challenges, the implementation of adequate policies incentivizing the use of hydrogen vehicles and the reduction of the investment and operation costs of hydrogen refueling stations (HRS) are essential to put both investors and customers at ease. Even though the transition to hydrogen cars has been rather slow, public transportation companies have shown a keen interest in this highly promising fuel. Besides, their hydrogen demand is easier to predict and regulate than personal vehicles. Due to the reduced complexity of designing a suitable hydrogen supply chain for public vehicles, this sub-sector could be a great starting point to facilitate the adoption of hydrogen vehicles. Consequently, this study will focus on designing a chain of on-site green HRS for the public transportation network in Nantes Metropole leveraging the latest relevant technological advances aiming to reduce the costs while ensuring reliability, safety, and ease of access. To reduce the cost of HRS and encourage their widespread adoption, a network of 7 H35-T40 HRS has been designed, replacing the conventional J-T valves with turbo-expanders. Each station in the network has a daily capacity of 1,920 kg. Thus, the HRS network can produce up to 12.5 tH2 per day. The detailed cost analysis has revealed a CAPEX per station of 16.6 M euros leading to a network CAPEX of 116.2 M euros. The proposed station siting prioritized Nantes metropole’s 5 bus depots and included 2 city-centre locations. Thanks to the turbo-expander technology, the cooling capacity of the proposed HRS is 19% lower than that of a conventional station equipped with J-T valves, resulting in significant CAPEX savings estimated at 708,560 € per station, thus nearly 5 million euros for the whole HRS network. Besides, the turbo-expander power generation ranges from 7.7 to 112 kW. Thus, the power produced can be used within the station or sold as electricity to the main grid, which would, in turn, maximize the station’s profit. Despite the substantial initial investment required, the environmental benefits, cost savings, and energy efficiencies realized through the transition to hydrogen fuel cell buses and the deployment of HRS equipped with turbo-expanders offer considerable advantages for both TAN and Nantes Metropole. These initiatives underscore their enduring commitment to fostering green mobility and combatting climate change in the long term.Keywords: green hydrogen, refueling stations, turbo-expander, heavy-duty vehicles
Procedia PDF Downloads 647360 Understanding Cyber Kill Chains: Optimal Allocation of Monitoring Resources Using Cooperative Game Theory
Authors: Roy. H. A. Lindelauf
Abstract:
Cyberattacks are complex processes consisting of multiple interwoven tasks conducted by a set of agents. Interdictions and defenses against such attacks often rely on cyber kill chain (CKC) models. A CKC is a framework that tries to capture the actions taken by a cyber attacker. There exists a growing body of literature on CKCs. Most of this work either a) describes the CKC with respect to one or more specific cyberattacks or b) discusses the tools and technologies used by the attacker at each stage of the CKC. Defenders, facing scarce resources, have to decide where to allocate their resources given the CKC and partial knowledge on the tools and techniques attackers use. In this presentation CKCs are analyzed through the lens of covert projects, i.e., interrelated tasks that have to be conducted by agents (human and/or computer) with the aim of going undetected. Various aspects of covert project models have been studied abundantly in the operations research and game theory domain, think of resource-limited interdiction actions that maximally delay completion times of a weapons project for instance. This presentation has investigated both cooperative and non-cooperative game theoretic covert project models and elucidated their relation to CKC modelling. To view a CKC as a covert project each step in the CKC is broken down into tasks and there are players of which each one is capable of executing a subset of the tasks. Additionally, task inter-dependencies are represented by a schedule. Using multi-glove cooperative games it is shown how a defender can optimize the allocation of his scarce resources (what, where and how to monitor) against an attacker scheduling a CKC. This study presents and compares several cooperative game theoretic solution concepts as metrics for assigning resources to the monitoring of agents.Keywords: cyber defense, cyber kill chain, game theory, information warfare techniques
Procedia PDF Downloads 1447359 Regression Analysis in Estimating Stream-Flow and the Effect of Hierarchical Clustering Analysis: A Case Study in Euphrates-Tigris Basin
Authors: Goksel Ezgi Guzey, Bihrat Onoz
Abstract:
The scarcity of streamflow gauging stations and the increasing effects of global warming cause designing water management systems to be very difficult. This study is a significant contribution to assessing regional regression models for estimating streamflow. In this study, simulated meteorological data was related to the observed streamflow data from 1971 to 2020 for 33 stream gauging stations of the Euphrates-Tigris Basin. Ordinary least squares regression was used to predict flow for 2020-2100 with the simulated meteorological data. CORDEX- EURO and CORDEX-MENA domains were used with 0.11 and 0.22 grids, respectively, to estimate climate conditions under certain climate scenarios. Twelve meteorological variables simulated by two regional climate models, RCA4 and RegCM4, were used as independent variables in the ordinary least squares regression, where the observed streamflow was the dependent variable. The variability of streamflow was then calculated with 5-6 meteorological variables and watershed characteristics such as area and height prior to the application. Of the regression analysis of 31 stream gauging stations' data, the stations were subjected to a clustering analysis, which grouped the stations in two clusters in terms of their hydrometeorological properties. Two streamflow equations were found for the two clusters of stream gauging stations for every domain and every regional climate model, which increased the efficiency of streamflow estimation by a range of 10-15% for all the models. This study underlines the importance of homogeneity of a region in estimating streamflow not only in terms of the geographical location but also in terms of the meteorological characteristics of that region.Keywords: hydrology, streamflow estimation, climate change, hydrologic modeling, HBV, hydropower
Procedia PDF Downloads 1337358 Short-Term Forecast of Wind Turbine Production with Machine Learning Methods: Direct Approach and Indirect Approach
Authors: Mamadou Dione, Eric Matzner-lober, Philippe Alexandre
Abstract:
The Energy Transition Act defined by the French State has precise implications on Renewable Energies, in particular on its remuneration mechanism. Until then, a purchase obligation contract permitted the sale of wind-generated electricity at a fixed rate. Tomorrow, it will be necessary to sell this electricity on the Market (at variable rates) before obtaining additional compensation intended to reduce the risk. This sale on the market requires to announce in advance (about 48 hours before) the production that will be delivered on the network, so to be able to predict (in the short term) this production. The fundamental problem remains the variability of the Wind accentuated by the geographical situation. The objective of the project is to provide, every day, short-term forecasts (48-hour horizon) of wind production using weather data. The predictions of the GFS model and those of the ECMWF model are used as explanatory variables. The variable to be predicted is the production of a wind farm. We do two approaches: a direct approach that predicts wind generation directly from weather data, and an integrated approach that estimâtes wind from weather data and converts it into wind power by power curves. We used machine learning techniques to predict this production. The models tested are random forests, CART + Bagging, CART + Boosting, SVM (Support Vector Machine). The application is made on a wind farm of 22MW (11 wind turbines) of the Compagnie du Vent (that became Engie Green France). Our results are very conclusive compared to the literature.Keywords: forecast aggregation, machine learning, spatio-temporal dynamics modeling, wind power forcast
Procedia PDF Downloads 2207357 Text-to-Speech in Azerbaijani Language via Transfer Learning in a Low Resource Environment
Authors: Dzhavidan Zeinalov, Bugra Sen, Firangiz Aslanova
Abstract:
Most text-to-speech models cannot operate well in low-resource languages and require a great amount of high-quality training data to be considered good enough. Yet, with the improvements made in ASR systems, it is now much easier than ever to collect data for the design of custom text-to-speech models. In this work, our work on using the ASR model to collect data to build a viable text-to-speech system for one of the leading financial institutions of Azerbaijan will be outlined. NVIDIA’s implementation of the Tacotron 2 model was utilized along with the HiFiGAN vocoder. As for the training, the model was first trained with high-quality audio data collected from the Internet, then fine-tuned on the bank’s single speaker call center data. The results were then evaluated by 50 different listeners and got a mean opinion score of 4.17, displaying that our method is indeed viable. With this, we have successfully designed the first text-to-speech model in Azerbaijani and publicly shared 12 hours of audiobook data for everyone to use.Keywords: Azerbaijani language, HiFiGAN, Tacotron 2, text-to-speech, transfer learning, whisper
Procedia PDF Downloads 517356 Participation in the Decision Making and Job Satisfaction in Greek Fish Farms
Authors: S. Anastasiou, C. Nathanailides
Abstract:
There is considerable evidence to suggest that employees participation in the decision-making process of an organisation, has a positive effect on job satisfaction and work performance of the employees. The purpose of the present work was to examine the HRM practices, demographics and the level of job satisfaction of employees in Greek Aquaculture fish farms. A survey of employees (n=86) in 6 Greek Aquaculture Firms was carried out. The results indicate that HRM practices such as recruitment of the personnel and communication between the departments did not vary between different firms. The most frequent method of recruitment was through the professional network or the personal network of the managers. The preferred method of HRM communication was through the line managers and through group meeting. The level of job satisfaction increased with work experience participation and participation in the decision making process. A high percentage of the employees (81,3%±8.39) felt that they frequently participated in the decision making process. The Aquaculture employees exhibited high level of job satisfaction (88,1±6.95). The level of job satisfaction was related with participation in the decision making process (-0.633, P<0.05) but was not related with as age or gender. In terms of the working conditions, employees were mostly satisfied with their work itself, their colleagues and mostly dissatisfied with working hours, salary issues and low prospects of pay rises.Keywords: aquaculture, human resources, job satisfaction
Procedia PDF Downloads 472