Search results for: carbon fibre reinforced polymer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5554

Search results for: carbon fibre reinforced polymer

1744 Synthesis and Characterization of Chitosan Schiff Base Supported Pd(II) Catalyst and Its Application in Suzuki Coupling Reactions

Authors: Talat Baran

Abstract:

Palladium-catalyzed Suzuki coupling reactions are powerful ways for synthesis of biaryls compounds and so far different palladium sources as have been used in catalyst systems. However, the high cost of the ligands using as support materials for palladium ion and so researchers have explored alternative low-cost support materials such as silica, cellule and zeolite. A natural polymer chitosan is suitable for support material because of it unique properties such as eco-friendly, renewable, abundant, low cost, biodegradable and it has free reactive -NH2 and –OH groups. Especially, pendant amino groups of chitosan can easily react with carbonyl groups of aldehyde or ketone by Schiff base formation and thus palladium ions can coordinate with imine groups of Schiff base. This purpose, in this study, firstly a new chitosan Schiff base supported palladium (II) catalyst was synthesized and its chemical structure was characterized with FT-IR, SEM/EDAX, XRD, TG-DTG, ICP-OES and magnetic moment techniques. Then catalytic performance of the catalyst was investigated in Suzuki cross coupling reactions under simple and fast microwave heating methods. Also, recycle activity of palladium catalyst was tested under optimum condition and the catalyst showed long life time. At the end of catalytic performance tests of chitosan supported palladium (II) catalysts indicated high turnover numbers, turnover frequency and selectivity with very small loading catalyst

Keywords: catalyst, chitosan, Schiff base, Suzuki coupling

Procedia PDF Downloads 325
1743 Impact of the Energy Transition on Security of Supply - A Case Study of Vietnam Power System in 2030

Authors: Phuong Nguyen, Trung Tran

Abstract:

Along with the global ongoing energy transition, Vietnam has indicated a strong commitment in the last COP events on the zero-carbon emission target. However, it is a real challenge for the nation to replace fossil-fired power plants by a significant amount of renewable energy sources (RES) while maintaining security of supply. The unpredictability and variability of RES would cause technical issues for supply-demand balancing, network congestions, system balancing, among others. It is crucial to take these into account while planning the future grid infrastructure. This study will address both generation and transmission adequacy and reveal a comprehensive analysis about the impact of ongoing energy transition on the development of Vietnam power system in 2030. This will provide insight for creating an secure, stable, and affordable pathway for the country in upcoming years.

Keywords: generation adequacy, transmission adequacy, security of supply, energy transition

Procedia PDF Downloads 86
1742 Formulation and Evaluation of Lisinopril Microspheres for Nasal Delivery

Authors: S. S. Patil, R. M. Mhetre, S. V. Patil

Abstract:

Lisinopril is an angiotensin converting enzyme inhibitor used in the treatment of hypertension and heart failure in prophylactic treatment after myocardial infarction and in diabetic nephropathy. However, it is very poorly absorbed from gastro-intestinal tract. Intranasal administration is an ideal alternative to the parenteral route for systemic drug delivery. Formulating multiparticulate system with mucoadhesive polymers provide a significant increase in the nasal residence time. The aim of the present approach was to overcome the drawbacks of the conventional dosage forms of lisinopril by formulating intranasal microspheres with Carbopol 974P NF and HPMC K4 M along with film forming polymer ethyl cellulose.The microspheres were prepared by emulsion solvent evaporation method. The prepared microspheres were characterized for encapsulation efficiency, drug loading, particle size, and surface morphology, degree of swelling, ex vivo mucoadhesion, drug release, ex vivo diffusion studies. All formulations has shown entrapment efficiency between 80 to more than 95%, mucoadhesion was more than 80 % and drug release up to 90 %. Ex vivo studies revealed tht the improved bioavailability of drug compared to oral drug administration. Both in vitro and in vivo studies conclude that combination of Carbopol and HPMC based microspheres shown better results than single carbopol based microspheres for the delivery of lisinopril.

Keywords: microspheres, lisinopril, nasal delivery, solvent evaporation method

Procedia PDF Downloads 528
1741 Co₂Fe LDH on Aromatic Acid Functionalized N Doped Graphene: Hybrid Electrocatalyst for Oxygen Evolution Reaction

Authors: Biswaranjan D. Mohapatra, Ipsha Hota, Swarna P. Mantry, Nibedita Behera, Kumar S. K. Varadwaj

Abstract:

Designing highly active and low-cost oxygen evolution (2H₂O → 4H⁺ + 4e⁻ + O₂) electrocatalyst is one of the most active areas of advanced energy research. Some precious metal-based electrocatalysts, such as IrO₂ and RuO₂, have shown excellent performance for oxygen evolution reaction (OER); however, they suffer from high-cost and low abundance which limits their applications. Recently, layered double hydroxides (LDHs), composed of layers of divalent and trivalent transition metal cations coordinated to hydroxide anions, have gathered attention as an alternative OER catalyst. However, LDHs are insulators and coupled with carbon materials for the electrocatalytic applications. Graphene covalently doped with nitrogen has been demonstrated to be an excellent electrocatalyst for energy conversion technologies such as; oxygen reduction reaction (ORR), oxygen evolution reaction (OER) & hydrogen evolution reaction (HER). However, they operate at high overpotentials, significantly above the thermodynamic standard potentials. Recently, we reported remarkably enhanced catalytic activity of benzoate or 1-pyrenebutyrate functionalized N-doped graphene towards the ORR in alkaline medium. The molecular and heteroatom co-doping on graphene is expected to tune the electronic structure of graphene. Therefore, an innovative catalyst architecture, in which LDHs are anchored on aromatic acid functionalized ‘N’ doped graphene may presumably boost the OER activity to a new benchmark. Herein, we report fabrication of Co₂Fe-LDH on aromatic acid (AA) functionalized ‘N’ doped reduced graphene oxide (NG) and studied their OER activities in alkaline medium. In the first step, a novel polyol method is applied for synthesis of AA functionalized NG, which is well dispersed in aqueous medium. In the second step, Co₂Fe LDH were grown on AA functionalized NG by co-precipitation method. The hybrid samples are abbreviated as Co₂Fe LDH/AA-NG, where AA is either Benzoic acid or 1, 3-Benzene dicarboxylic acid (BDA) or 1, 3, 5 Benzene tricarboxylic acid (BTA). The crystal structure and morphology of the samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). These studies confirmed the growth of layered single phase LDH. The electrocatalytic OER activity of these hybrid materials was investigated by rotating disc electrode (RDE) technique on a glassy carbon electrode. The linear sweep voltammetry (LSV) on these catalyst samples were taken at 1600rpm. We observed significant OER performance enhancement in terms of onset potential and current density on Co₂Fe LDH/BTA-NG hybrid, indicating the synergic effect. This exploration of molecular functionalization effect in doped graphene and LDH system may provide an excellent platform for innovative design of OER catalysts.

Keywords: π-π functionalization, layered double hydroxide, oxygen evolution reaction, reduced graphene oxide

Procedia PDF Downloads 207
1740 A Study on the Etching Characteristics of High aspect ratio Oxide Etching Using C4F6 Plasma in Inductively Coupled Plasma with Low Frequency Bias

Authors: ByungJun Woo

Abstract:

In this study, high-aspect-ratio (HAR) oxide etching characteristics in inductively coupled plasma were investigated using low frequency (2 MHz) bias power with C4F6 gas. An experiment was conducted using CF4/C4F6/He as the mixed gas. A 100 nm (etch area)/500 nm (mask area) line patterns were used, and the etch cross-section and etch selectivity of the amorphous carbon layer thin film were derived using a scanning electron microscope. Ion density was extracted using a double Langmuir probe, and CFx and F neutral species were observed via optical emission spectroscopy. Based on these results, the possibility for HAR oxide etching using C4F6 gas chemistry was suggested in this work. These etching results also indicate that the use of C4F6 gas can significantly contribute to the development of next-generation HAR oxide etching.

Keywords: plasma, etching, C4F6, high aspect ratio, inductively coupled plasma

Procedia PDF Downloads 73
1739 Silicon-To-Silicon Anodic Bonding via Intermediate Borosilicate Layer for Passive Flow Control Valves

Authors: Luc Conti, Dimitry Dumont-Fillon, Harald van Lintel, Eric Chappel

Abstract:

Flow control valves comprise a silicon flexible membrane that deflects against a substrate, usually made of glass, containing pillars, an outlet hole, and anti-stiction features. However, there is a strong interest in using silicon instead of glass as substrate material, as it would simplify the process flow by allowing the use of well controlled anisotropic etching. Moreover, specific devices demanding a bending of the substrate would also benefit from the inherent outstanding mechanical strength of monocrystalline silicon. Unfortunately, direct Si-Si bonding is not easily achieved with highly structured wafers since residual stress may prevent the good adhesion between wafers. Using a thermoplastic polymer, such as parylene, as intermediate layer is not well adapted to this design as the wafer-to-wafer alignment is critical. An alternative anodic bonding method using an intermediate borosilicate layer has been successfully tested. This layer has been deposited onto the silicon substrate. The bonding recipe has been adapted to account for the presence of the SOI buried oxide and intermediate glass layer in order not to exceed the breakdown voltage. Flow control valves dedicated to infusion of viscous fluids at very high pressure have been made and characterized. The results are compared to previous data obtained using the standard anodic bonding method.

Keywords: anodic bonding, evaporated glass, flow control valve, drug delivery

Procedia PDF Downloads 200
1738 Silver Nanoparticles in Drinking Water Purification

Authors: S. Pooja Pragati, B. Sudarsan, S. Rajkumar

Abstract:

Silver nanoparticles (AgNP) are known for their excellent antimicrobial agents, and thus can be used as alternative disinfectant agents. However, released silver nanoparticles is a threat to naturally occurring microorganisms. This paper exhibits information on the environmental fate, toxicological effects, and application of AgNP and the current estimate on the physicochemical and antimicrobial properties of AgNP in different aqueous solutions, as well as their application as alternative disinfectants in water-treatment systems. It also gives a better approximation and experimental data of AgNP’s antimicrobial properties at different water chemistry conditions. A saturation-type fitting curve was established, showing the survival of bacteria under different water chemistry conditions as a function of the size of the nanoparticles. The results obtained show that silver nanoparticles in surface water, ground water, and brackish water are stable. The paper demonstrates the comparative study of AgNP-impregnated point-of-use ceramic water filters and ceramic filters impregnated with silver nitrate. It is observed that AgNP-impregnated ceramic water filters are more appropriate for this application due to the lesser amount of silver desorbed. Experimental data of the comparison of a polymer-based quaternary amine functionalized silsesquioxanes compound and AgNP are also tabulated and conclusions are analysed with the goal of optimizing. The simplicity of synthesis and application of Silver nanoparticles enables us to consider its effective modified version for the purification of water.

Keywords: disinfectant agent, purification of water, nano particles, water treatment

Procedia PDF Downloads 337
1737 Management of Soil Borne Plant Diseases Using Agricultural Waste Residues as Green Waste and Organic Amendment

Authors: Temitayo Tosin Alawiye

Abstract:

Plant disease control is important in maintaining plant vigour, grain quantity, abundance of food, feed, and fibre produced by farmers all over the world. Farmers make use of different methods in controlling these diseases but one of the commonly used method is the use of chemicals. However, the continuous and excessive usages of these agrochemicals pose a danger to the environment, man and wildlife. The more the population growth the more the food security challenge which leads to more pressure on agronomic growth. Agricultural waste also known as green waste are the residues from the growing and processing of raw agricultural products such as fruits, vegetables, rice husk, corn cob, mushroom growth medium waste, coconut husk. They are widely used in land bioremediation, crop production and protection which include disease control. These agricultural wastes help the crop by improving the soil fertility, increase soil organic matter and reduce in many cases incidence and severity of disease. The objective was to review the agricultural waste that has worked effectively against certain soil-borne diseases such as Fusarium oxysporum, Pythiumspp, Rhizoctonia spp so as to help minimize the use of chemicals. Climate change is a major problem of agriculture and vice versa. Climate change and agriculture are interrelated. Change in climatic conditions is already affecting agriculture with effects unevenly distributed across the world. It will increase the risk of food insecurity for some vulnerable groups such as the poor in Sub Saharan Africa. The food security challenge will become more difficult as the world will need to produce more food estimated to feed billions of people in the near future with Africa likely to be the biggest hit. In order to surmount this hurdle, smallholder farmers in Africa must embrace climate-smart agricultural techniques and innovations which includes the use of green waste in agriculture, conservative agriculture, pasture and manure management, mulching, intercropping, etc. Training and retraining of smallholder farmers on the use of green energy to mitigate the effect of climate change should be encouraged. Policy makers, academia, researchers, donors, and farmers should pay more attention to the use of green energy as a way of reducing incidence and severity of soilborne plant diseases to solve looming food security challenges.

Keywords: agricultural waste, climate change, green energy, soil borne plant disease

Procedia PDF Downloads 269
1736 Size Selective Synthesis of Sulfur Nanoparticles and Their Anticancer Activity

Authors: Anas Al-Ali, Mohammed Suleiman, Ayman Hussein

Abstract:

Sulfur is an important element has many practical applications in present as nanoparticles. Nanosize sulfur particles also have many important applications like in pharmaceuticals, medicine, syn-thesis of nano-composites for lithium batteries, modification of carbon nano tubes. Different methods were used for nano-sized particle synthesis; among those, chemical precipitation, electrochemical method, micro emulsion technique, composing of oil, surfactant, co-surfactant, aqueous phases with the specific compositions and ultrasonic treatment of sulfur-cystine solution. In this work Sulfur nanoparticles (S NPs) were prepared by a quick precipitation method with and without using a surfactant to stabilize the formed S NPs. The synthesized S NPs were characterized by XRD, SEM and TEM in order to confirm their sizes and structures.Application of nanotechnology is suggested for diag-nosis and treatment of cancer. The anticancer activity of the prepared S NPs has been tested on various types of cancer cell clones including leukemia, kidney and colon cancers.

Keywords: sulfur nanoparticles (S-NPs), TEM, SEM, XRD

Procedia PDF Downloads 654
1735 Contributing Factors to Building Failures and Defects in the Nigerian Construction Industry

Authors: Ndibarafinia Tobin

Abstract:

Building defect and failure are common phenomena in the Nigerian construction industry. The activities of the inexperienced labor force in the Nigerian construction industry have tarnished the image of practicing construction professionals in recent past. Defects and collapse can cause unnecessary expenditure, delays, loss of lives, property and left many people injured. They are also generating controversies among parties involved. Also, if this situation is left unanswered and untreated, it will lead to more serious problems in the future upcoming construction projects in Nigeria. Quite a number of factors are responsible for collapse of high-rise, reinforced concrete buildings in Nigeria. Government, professional bodies and stakeholders are asking countless questions as to who should be responsible and how solutions could be proffered. Therefore this study is aimed to identify the contributing factors to high-rise buildings defects and failures in Nigeria, which frequently occur in construction project in order to minimize time and cost and also the roles of professionals and other participants play in the industry in terms of the use of building materials, placement and curing of concrete, modification in the use of a building, collapse of building induced by fire and other causes. The data is collected from questionnaire from various players in construction industry in Nigeria. This study is succeeds in identifying the causes of building failure and also suggesting possible measures to be taken by government and other regulatory bodies in the building industry to avert this and also improve the effectiveness of managing appraisal process of failures and defects in the future.

Keywords: building defects, building failures, Nigerian construction industry, professionals

Procedia PDF Downloads 297
1734 Size Selective Synthesis of Sulfur Nanoparticles and Their Anti Cancer Activity

Authors: Anas Al-Ali, Mohammed Suleiman, Ayman Hussein

Abstract:

Sulfur is an important element has many practical applications in present as nanoparticles. Nanosize sulfur particles also have many important applications like in pharmaceuticals, medicine, synthesis of nanocomposites for lithium batteries, modification of carbon nanotubes. Different methods were used for nano-sized particle synthesis; among those, chemical precipitation, electrochemical method, micro-emulsion technique, composing of oil, surfactant, co-surfactant, aqueous phases with the specific compositions and ultrasonic treatment of sulfur-cystine solution. In this work, sulfur nanoparticles (S NPs) were prepared by a quick precipitation method with and without using a surfactant to stabilize the formed S NPs. The synthesized S NPs were characterized by XRD, SEM, and TEM in order to confirm their sizes and structures. Application of nanotechnology is suggested for diagnosis and treatment of cancer. The anticancer activity of the prepared S NPs has been tested on various types of cancer cell clones including leukemia, kidney and colon cancers.

Keywords: sulfur nanoparticles (S-NPs), TEM, SEM, anti cancer activity, XRD

Procedia PDF Downloads 515
1733 Shear Behavior of Steel-Fiber-Reinforced Precast/Prestressed Concrete Hollow Core Slabs

Authors: Thi Nguyet Hang Nguyen, Kang Hai Tan

Abstract:

Precast/prestressed concrete hollow core (PCHC) slabs, especially ones with depth more than 300 mm, are susceptible to web-shear failure. The reasons lie on the fact that the production process of PCHC slabs, i.e., the extrusion method (the most common method to cast PCHC slabs nowadays), does not allow them to contain any shear reinforcement. Moreover, due to the presence of the longitudinal voids, cross sections of PCHC slabs are reduced. Therefore, the shear capacity of the slabs depends solely on the tensile strength of concrete which is relatively low. Given that shear is a major concern in using hollow-core slabs, this paper investigates the possibility of adopting steel fibers in PCHC slabs produced by the extrusion method to enhance the shear capacity of the slabs. Three full-scale PCHC slabs with and without hooked-steel fibers were cast and tested until failure. Three different volumetric fiber contents of 0, 0.51 and 0.89% were investigated. The test results showed that there were substantial increases in shear capacity and ductility with the use of hooked-steel fibers. Ultimate shear strength increased with fiber content. In addition, while the specimen without steel fibers and the one with the steel-fiber volume fraction of 0.51% failed in web-shear mode, the specimen with the higher fiber content (0.89%) collapsed in flexural-shear mode. However, as the hooked-steel fibers with the fiber content of 0.89% were used, difficulties in concrete consolidation were observed while concrete was being cast. This could lead to a lower ultimate shear capacity due to a poorer bond between the concrete and the steel fibers.

Keywords: hollow-core slabs, shear strength, steel fibers, web-shear failure

Procedia PDF Downloads 172
1732 A Comparative Study on Electrical Characteristics of Au/n-SiC structure, with and Without Zn-Doped PVA Interfacial Layer at Room Temperature

Authors: M. H. Aldahrob, A. Kokce, S. Altindal, H. E. Lapa

Abstract:

In order to obtain the detailed information about the effect of (Zn-doped PVA) interfacial layer, surface states (Nss) and series resistance (Rs) on electrical characteristics, both Au/n- type 4H-SiC (MS) with and without (Zn doped PVA) interfacial layer were fabricated to compare. The main electrical parameters of them were investigated using forward and reverse bias current-voltage (I-V), capacitance-voltage (C-V) and conductance –voltage (G/W –V) measurements were performed at room temperature. Experimental results show that the value of ideality factor (n), zero –bias barrier height (ΦBo), Rs, rectifier rate (RR=IF/IR) and the density of Nss are strong functions interfacial layer and applied bias voltage. The energy distribution profile of Nss was obtained from forward bias I-V data by taking into account voltage dependent effective BH (ΦBo) and ideality factor (n(V)). Voltage dependent profile of Rs was also obtained both by using Ohm’s law and Nicollian and Brew methods. The other main diode parameters such as the concentration of doping donor atom (ND), Fermi energy level (EF).BH (ΦBo), depletion layer with (WD) were obtained by using the intercept and slope of the reverse bias C-2 vs V plots. It was found that (Zn-doped PVA) interfacial layer lead to a quite decrease in the values Nss, Rs and leakage current and increase in shunt resistance (Rsh) and RR. Therefore, we can say that the use of thin (Zn-doped PVA) interfacial layer can quite improved the performance of MS structure.

Keywords: interfacial polymer layer, thickness dependence, electric and dielectric properties, series resistance, interface state

Procedia PDF Downloads 248
1731 Refining Waste Spent Hydroprocessing Catalyst and Their Metal Recovery

Authors: Meena Marafi, Mohan S. Rana

Abstract:

Catalysts play an important role in producing valuable fuel products in petroleum refining; but, due to feedstock’s impurities catalyst gets deactivated with carbon and metal deposition. The disposal of spent catalyst falls under the category of hazardous industrial waste that requires strict agreement with environmental regulations. The spent hydroprocessing catalyst contains Mo, V and Ni at high concentrations that have been found to be economically significant for recovery. Metal recovery process includes deoiling, decoking, grinding, dissolving and treatment with complexing leaching agent such as ethylene diamine tetra acetic acid (EDTA). The process conditions have been optimized as a function of time, temperature and EDTA concentration in presence of ultrasonic agitation. The results indicated that optimum condition established through this approach could recover 97%, 94% and 95% of the extracted Mo, V and Ni, respectively, while 95% EDTA was recovered after acid treatment.

Keywords: atmospheric residue desulfurization (ARDS), deactivation, hydrotreating, spent catalyst

Procedia PDF Downloads 323
1730 Behavior of Composite Construction Precast Reactive Powder RC Girder and Ordinary RC Deck Slab

Authors: Nameer A. Alwash, Dunia A. Abd AlRadha, Arshed M. Aljanaby

Abstract:

This study present an experimental investigation of composite behavior for hybrid reinforced concrete slab on girder from locale material in Iraq, ordinary concrete, NC, in slab and reactive powder concrete in girder ,RPC, with steel fibers of different types(straight, hook, and mix between its), tested as simply supported span subjected under two point loading, also study effects on overall behavior such as the ultimate load, crack width and deflection. The result shows that the most suitable for production girder from RPC by using 2% micro straight steel fiber, in terms of ultimate strength and min crack width. Also the results shows that using RPC in girder of composite section increased ultimate load by 79% when compared with same section made of NC, and increased the shear strength which erased the effect of changing reinforcement in shear, and using RPC in girder and epoxy (in shear transfer between composite section) (meaning no stirrups) equivalent presence of shear reinforcement by 90% when compared with same section using Φ8@100 as shear reinforcement. And the result shows that changing the cross section girder shape of the composite section to inverted T, with same section area, increased the ultimate load by 5% when compared with same section of rectangular shape girder.

Keywords: reactive powder concrete, RPC, hybrid concrete, composite section, RC girder, RC slab, shear connecters, inverted T section, shear reinforcment, shear span over effective depth

Procedia PDF Downloads 362
1729 Effects of the Type of Soil on the Efficiency of a Bioremediation Dispositive by Using Bacterium Hydrocarbonoclastes

Authors: Amel Bouderhem, Aminata Ould El Hadj Khelil, Amina N. Djrarbaoui, Aroussi Aroussi

Abstract:

The present work aims to find the influence of the nature of the soil on the effectiveness of the biodegradation of hydrocarbons by a mixture of bacterial strains hydrocarbonoclastes. Processes of bioaugmentation and biostimulation trial are applied to samples of soils polluted voluntarily by the crude oil. For the evaluation of the biodegradation of hydrocarbons, the bacterial load, the pH and organic carbon total are followed in the different experimental batches. He bacterial load of the sandy soil varies among the witnesses of 45,2 .108 CFU/ml at the beginning of the experimentation to 214,07.108 CFU/ml at the end of the experiment. Of the soil silty-clay varies between 103,31 .108 CFU/ml and 614,86.108 CFU/ml . It was found a strong increase in the bacterial biomass during the processing of all samples. This increase is more important in the samples of sand bioaugmente or biomass increased from 63.16 .108 CFU/ml to 309.68 .108 CFU/ml than in soil samples silty clay- bioaugmente whose content in bacteria evolved of 73,01 .108 CFU/ml to 631.80 . 108CFU/ml

Keywords: pollution, hydrocarbons, bioremediation, bacteria hydrocarbonoclastes, ground, texture

Procedia PDF Downloads 476
1728 Towards Addressing the Cultural Snapshot Phenomenon in Cultural Mapping Libraries

Authors: Mousouris Spiridon, Kavakli Evangelia

Abstract:

This paper focuses on Digital Libraries (DLs) that contain and geovisualise cultural data, highlighting the need to define them as a separate category termed Cultural Mapping Libraries, based on their inherent connection of culture with geographic location and their design requirements in support of visual representation of cultural data on the map. An exploratory analysis of DLs that conform to the above definition brought forward the observation that existing Cultural Mapping Libraries fail to geovisualise the entirety of cultural data per point of interest thus resulting in a Cultural Snapshot phenomenon. The existence of this phenomenon was reinforced by the results of a systematic bibliographic research. In order to address the Cultural Snapshot, this paper proposes the use of the Semantic Web principles to efficiently interconnect spatial cultural data through time, per geographic location. In this way points of interest are transformed into scenery where culture evolves over time. This evolution is expressed as occurrences taking place chronologically, in an event oriented approach, a conceptualization also endorsed by the CIDOC Conceptual Reference Model (CIDOC CRM). In particular, we posit the use of CIDOC CRM as the baseline for defining the logic of Cultural Mapping Libraries as part of the Culture Domain in accordance with the Digital Library Reference Model, in order to define the rules of cultural data management by the system. Our future goal is to transform this conceptual definition in to inferencing rules that resolve the Cultural Snapshot and lead to a more complete geovisualisation of cultural data.

Keywords: digital libraries, semantic web, geovisualization, CIDOC-CRM

Procedia PDF Downloads 109
1727 Seismic Assessment of an Existing Dual System RC Buildings in Madinah City

Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail

Abstract:

A 15-storey RC building, studied in this paper, is representative of modern building type constructed in Madina City in Saudi Arabia before 10 years ago. These buildings are almost consisting of reinforced concrete skeleton, i. e. columns, beams and flat slab as well as shear walls in the stairs and elevator areas arranged in the way to have a resistance system for lateral loads (wind–earthquake loads). In this study, the dynamic properties of the 15-storey RC building were identified using ambient motions recorded at several spatially-distributed locations within each building. After updating the mathematical models for this building with the experimental results, three dimensional pushover analysis (nonlinear static analysis) was carried out using SAP2000 software incorporating inelastic material properties for concrete, infill and steel. The effect of modeling the building with and without infill walls on the performance point as well as capacity and demand spectra due to EQ design spectrum function in Madina area has been investigated. The response modification factor (R) for the 15 storey RC building is evaluated from capacity and demand spectra (ATC-40). The purpose of this analysis is to evaluate the expected performance of structural systems by estimating, strength and deformation demands in design, and comparing these demands to available capacities at the performance levels of interest. The results are summarized and discussed.

Keywords: seismic assessment, pushover analysis, ambient vibration, modal update

Procedia PDF Downloads 391
1726 Different Methods of Producing Bioemulsifier by Bacillus licheniformis Strains

Authors: Saba Pajuhan, Afshin Farahbakhsh, S. M. M. Dastgheib

Abstract:

Biosurfactants and bioemulsifiers are a structurally diverse group of surface-active molecules synthesized by microorganisms, they are amphipathic molecules which reduce surface and interfacial tensions and widely used in pharmaceutical, cosmetic, food and petroleum industries. In this paper, several methods of bioemulsifer synthesis and purification by Bacillus licheniformis strains (namely ACO1, PTCC 1595 and ACO4) were investigated. Strains were grown in nutrient broth with different conditions in order to get maximum production of bioemulsifer. The purification of bio emulsifier and the quality evaluation of the product was done by adding sulfuric acid (H₂SO₄) (98%), Ethanol or HCl to the solution followed by centrifuging. To determine the optimal conditions yielding the highest bioemulsifier production, the effect of various carbon and nitrogen sources, temperature, NaCl concentration, pH, O₂ levels, incubation time are indispensable and all of them were highly effective in bioemulsifiers production.

Keywords: biosurfactant, bioemulsifier, purification, surface tension, interfacial tension

Procedia PDF Downloads 271
1725 Production of Biodiesel Using Tannery Fleshing as a Feedstock via Solid-State Fermentation

Authors: C. Santhana Krishnan, A. M. Mimi Sakinah, Lakhveer Singh, Zularisam A. Wahid

Abstract:

This study was initiated to evaluate and optimize the conversion of animal fat from tannery wastes into methyl ester. In the pre-treatment stage, animal fats feedstock was hydrolysed and esterified through solid state fermentation (SSF) using Microbacterium species immobilized onto sand silica matrix. After 72 hours of fermentation, predominant esters in the animal fats were found to be with 83.9% conversion rate. Later, esterified animal fats were transesterified at 3 hour reaction time with 1% NaOH (w/v %), 6% methanol to oil ratio (w/v %) to produce 89% conversion rate. C13 NMR revealed long carbon chain in fatty acid methyl esters at 22.2817-31.9727 ppm. Methyl esters of palmitic, stearic, oleic represented the major components in biodiesel.

Keywords: tannery wastes, fatty animal fleshing, trans-esterification, immobilization, solid state fermentation

Procedia PDF Downloads 267
1724 Neuroplasticity in Language Acquisition in English as Foreign Language Classrooms

Authors: Sabitha Rahim

Abstract:

In the context of teaching vocabulary of English as Foreign Language (EFL), the confluence of memory and retention is one of the most significant factors in students' language acquisition. The progress of students engaged in foreign language acquisition is often stymied by vocabulary attrition, which leads to learners' lack of confidence and motivation. However, among other factors, little research has investigated the importance of neuroplasticity in Foreign Language acquisition and how underused neural pathways lead to the loss of plasticity, thereby affecting the learners’ vocabulary retention and motivation. This research explored the effect of enhancing vocabulary acquisition of EFL students in the Foundation Year at King Abdulaziz University through various methods and neuroplasticity exercises that reinforced their attention, motivation, and engagement. It analyzed the results to determine if stimulating the brain of EFL learners by various physical and mental activities led to the improvement in short and long term memory in vocabulary retention. The main data collection methods were student surveys, assessment records of teachers, student achievement test results, and students' follow-up interviews. A key implication of this research is for the institutions to consider having multiple varieties of student activities promoting brain plasticity within the classrooms as an effective tool for foreign language acquisition. Building awareness among the faculty and adapting the curriculum to include activities that promote brain plasticity ensures an enhanced learning environment and effective language acquisition in EFL classrooms.

Keywords: language acquisition, neural paths, neuroplasticity, vocabulary attrition

Procedia PDF Downloads 176
1723 Precise Electrochemical Metal Recovery from Emerging Waste Streams

Authors: Wei Jin

Abstract:

Efficient and selective metal recovery from emerging solid waste, such as spent lithium batteries, electronic waste and SCR catalysts, is of great importance from both environmental and resource considerations. In order to overcome the bottlenecks of long flow-sheet and severe secondary pollution in conventional processes, the rational design of 2-electron oxygen reduction reaction (ORR) and capacitive deionization (CDI) nanomaterials were developed for the precise electrochemical metal recovery. It has been demonstrated that the modified carbon nanomaterials can be employed as 2e ORR to produce H2O2 in aqueous solution, in which the metal can be leached out from the solid waste as ions. Moreover, the multi-component metallic solution can be electrochemically extracted with good efficiency and selectivity with the nanoporous aerogel. Each system presents stable performance for long-term operation and can be used in industrial solid waste treatment. This study provides a materials-oriented, cleaner metal recovery approach for strategic metal resources sustainability.

Keywords: electrochemistry, metal recovery, waste steams, nanomaterials

Procedia PDF Downloads 9
1722 Allylation of Active Methylene Compounds with Cyclic Baylis-Hillman Alcohols: Why Is It Direct and Not Conjugate?

Authors: Karim Hrratha, Khaled Essalahb, Christophe Morellc, Henry Chermettec, Salima Boughdiria

Abstract:

Among the carbon-carbon bond formation types, allylation of active methylene compounds with cyclic Baylis-Hillman (BH) alcohols is a reliable and widely used method. This reaction is a very attractive tool in organic synthesis of biological and biodiesel compounds. Thus, in view of an insistent and peremptory request for an efficient and straightly method for synthesizing the desired product, a thorough analysis of various aspects of the reaction processes is an important task. The product afforded by the reaction of active methylene with BH alcohols depends largely on the experimental conditions, notably on the catalyst properties. All experiments reported that catalysis is needed for this reaction type because of the poor ability of alcohol hydroxyl group to be as a suitable leaving group. Within the catalysts, several transition- metal based have been used such as palladium in the presence of acid or base and have been considered as reliable methods. Furthemore, acid catalysts such as BF3.OEt2, BiX3 (X= Cl, Br, I, (OTf)3), InCl3, Yb(OTf)3, FeCl3, p-TsOH and H-montmorillonite have been employed to activate the C-C bond formation through the alkylation of active methylene compounds. Interestingly a report of a smoothly process for the ability of 4-imethyaminopyridine(DMAP) to catalyze the allylation reaction of active methylene compounds with cyclic Baylis-Hillman (BH) alcohol appeared recently. However, the reaction mechanism remains ambiguous, since the C- allylation process leads to an unexpected product (noted P1), corresponding to a direct allylation instead of conjugate allylation, which involves the most electrophilic center according to the electron withdrawing group CO effect. The main objective of the present theoretical study is to better understand the role of the DMAP catalytic activity as well as the process leading to the end- product (P1) for the catalytic reaction of a cyclic BH alcohol with active methylene compounds. For that purpose, we have carried out computations of a set of active methylene compounds varying by R1 and R2 toward the same alcohol, and we have attempted to rationalize the mechanisms thanks to the acid–base approach, and conceptual DFT tools such as chemical potential, hardness, Fukui functions, electrophilicity index and dual descriptor, as these approaches have shown a good prediction of reactions products.The present work is then organized as follows: In a first part some computational details will be given, introducing the reactivity indexes used in the present work, then Section 3 is dedicated to the discussion of the prediction of the selectivity and regioselectivity. The paper ends with some concluding remarks. In this work, we have shown, through DFT method at the B3LYP/6-311++G(d,p) level of theory that: The allylation of active methylene compounds with cyclic BH alcohol is governed by orbital control character. Hence the end- product denoted P1 is generated by direct allylation.

Keywords: DFT calculation, gas phase pKa, theoretical mechanism, orbital control, charge control, Fukui function, transition state

Procedia PDF Downloads 306
1721 The Effect of Immobilization Conditions on Hydrogen Production from Palm Oil Mill Effluent

Authors: A. W. Zularisam, Lakhveer Singh, Mimi Sakinah Abdul Munaim

Abstract:

In this study, the optimization of hydrogen production using polyethylene glycol (PEG) immobilized sludge was investigated in batch tests. Palm oil mill effluent (POME) is used as a substrate that can act as a carbon source. Experiment focus on the effect of some important affecting factors on fermentative hydrogen production. Results showed that immobilized sludge demonstrated the maximum hydrogen production rate of 340 mL/L-POME/h under follow optimal condition: amount of biomass 10 mg VSS/ g bead, PEG concentration 10%, and cell age 24 h or 40 h. More importantly, immobilized sludge not only enhanced hydrogen production but can also tolerate the harsh environment and produce hydrogen at the wide ranges of pH. The present results indicate the potential of PEG-immobilized sludge for large-scale operations as well; these factors play an important role in stable and continuous hydrogen production.

Keywords: bioydrogen, immobilization, polyethylene glycol, palm oil mill effluent, dark fermentation

Procedia PDF Downloads 342
1720 Long-Term Conservation Tillage Impact on Soil Properties and Crop Productivity

Authors: Danute Karcauskiene, Dalia Ambrazaitiene, Regina Skuodiene, Monika Vilkiene, Regina Repsiene, Ieva Jokubauskaite

Abstract:

The main ambition for nowadays agriculture is to get the economically effective yield and to secure the soil ecological sustainability. According to the effect on the main soil quality indexes, tillage systems may be separated into two types, conventional and conservation tillage. The goal of this study was to determine the impact of conservation and conventional primary soil tillage methods and soil fertility improvement measures on soil properties and crop productivity. Methods: The soil of the experimental site is Dystric Glossic Retisol (WRB 2014) with texture of sandy loam. The trial was established in 2003 in the experimental field of crop rotation of Vėžaičiai Branch of Lithuanian Research Centre for Agriculture and Forestry. Trial factors and treatments: factor A- primary soil tillage in (autumn): deep ploughing (20-25cm), shallow ploughing (10-12cm), shallow ploughless tillage (8-10cm); factor B – soil fertility improvement measures: plant residues, plant residues + straw, green manure 1st cut + straw, farmyard manure 40tha-1 + straw. The four - course crop rotation consisted of red clover, winter wheat, spring rape and spring barley with undersown. Results: The tillage had no statistically significant effect on topsoil (0-10 cm) pHKCl level, it was 5.5 - 5.7. During all experiment period, the highest soil pHKCl level (5.65) was in the shallow ploughless tillage. The organic fertilizers particularly the biomass of grass and farmyard manure had tendency to increase the soil pHKCl. The content of plant - available phosphorus and potassium significantly increase in the shallow ploughing compared with others tillage systems. The farmyard manure increases those elements in whole arable layer. The dissolved organic carbon concentration was significantly higher in the 0 - 10 cm soil layer in the shallow ploughless tillage compared with deep ploughing. After the incorporation of clover biomass and farmyard manure the concentration of dissolved organic carbon increased in the top soil layer. During all experiment period the largest amount of water stable aggregates was determined in the soil where the shallow ploughless tillage was applied. It was by 12% higher compared with deep ploughing. During all experiment time, the soil moisture was higher in the shallow ploughing and shallow ploughless tillage (9-27%) compared to deep ploughing. The lowest emission of CO2 was determined in the deep ploughing soil. The highest rate of CO2 emission was in shallow ploughless tillage. The addition of organic fertilisers had a tendency to increase the CO2 emission, but there was no statistically significant effect between the different types of organic fertilisers. The crop yield was larger in the deep ploughing soil compared to the shallow and shallow ploughless tillage.

Keywords: reduced tillage, soil structure, soil pH, biological activity, crop productivity

Procedia PDF Downloads 267
1719 On Compression Properties of Honeycomb Structures Using Flax/PLA Composite as Core Material

Authors: S. Alsubari, M. Y. M. Zuhri, S. M. Sapuan, M. R. Ishaks

Abstract:

Sandwich structures based on cellular cores are increasingly being utilized as energy-absorbing components in the industry. However, determining ideal structural configurations remains challenging. This chapter compares the compression properties of flax fiber-reinforced polylactic acid (PLA) of empty honeycomb core, foam-filled honeycomb and double cell wall square interlocking core sandwich structure under quasi-static compression loading. The square interlocking core is fabricated through a slotting technique, whereas the honeycomb core is made using a corrugated mold that was initially used to create the corrugated core composite profile, which is then cut into corrugated webs and assembled to form the honeycomb core. The sandwich structures are tested at a crosshead displacement rate of 2 mm/min. The experimental results showed that honeycomb outperformed the square interlocking core in terms of their strength capability and SEA by around 14% and 34%, respectively. It is observed that the foam-filled honeycomb collapse in a progressive mode, exhibiting noticeable advantages over the empty honeycomb; this is attributed to the interaction between the honeycomb wall and foam filler. Interestingly, the average SEAs of foam-filled and empty honeycomb cores have no significant difference, around 8.7kJ/kg and 8.2kJ/kg, respectively. In contrast, its strength capability is clearly pronounced, in which the foam-filled core outperforms the empty counterparts by around 33%. Finally, the results for empty and foam-filled cores were significantly superior to aluminum cores published in the literature.

Keywords: compressive strength, flax, honeycomb core, specific energy absorption

Procedia PDF Downloads 83
1718 Improvisation of N₂ Foam with Black Rice Husk Ash in Enhanced Oil Recovery

Authors: Ishaq Ahmad, Zhaomin Li, Liu Chengwen, Song yan Li, Wang Lei, Zhoujie Wang, Zheng Lei

Abstract:

Because nanoparticles have the potential to improve foam stability, only a small amount of surfactant or polymer is required to control gas mobility in the reservoir. Numerous researches have revealed that this specific application is in use. The goal is to improve foam formation and foam stability. As a result, the foam stability and foam ability of black rice husk ash were investigated. By injecting N₂ gases into a core flood condition, black rice husk ash was used to produce stable foam. The properties of black rice husk ash were investigated using a variety of characterization techniques. The black rice husk ash was mixed with the best-performing anionic foaming surfactants at various concentrations (ppm). Sodium dodecyl benzene sulphonate was the anionic surfactant used (SDBS). In this article, the N₂ gas- black rice husk ash (BRHA) with high Silica content is shown to be beneficial for foam stability and foam ability. For the test, a 30 cm sand pack was prepared. For the experiment, N₂ gas cylinders and SDBS surfactant liquid cylinders were used. Two N₂ gas experiments were carried out: one without a sand pack and one with a sand pack and oil addition. The black rice husk and SDBS surfactant concentration was 0.5 percent. The high silica content of black rice husk ash has the potential to improve foam stability in sand pack conditions, which is beneficial. On N₂ foam, there is an increase in black rice husk ash particles, which may play an important role in oil recovery.

Keywords: black rice husk ash nanoparticle, surfactant, N₂ foam, sand pack

Procedia PDF Downloads 206
1717 Optimization of Process Parameters for Rotary Electro Discharge Machining Using EN31 Tool Steel: Present and Future Scope

Authors: Goutam Dubey, Varun Dutta

Abstract:

In the present study, rotary-electro discharge machining of EN31 tool steel has been carried out using a pure copper electrode. Various response variables such as Material Removal Rate (MRR), Tool Wear Rate (TWR), and Machining Rate (MR) have been studied against the selected process variables. The selected process variables were peak current (I), voltage (V), duty cycle, and electrode rotation (N). EN31 Tool Steel is hardened, high carbon steel which increases its hardness and reduces its machinability. Reduced machinability means it not economical to use conventional methods to machine EN31 Tool Steel. So, non-conventional methods play an important role in machining of such materials.

Keywords: electric discharge machining, EDM, tool steel, tool wear rate, optimization techniques

Procedia PDF Downloads 203
1716 Iron Oxide Reduction Using Solar Concentration and Carbon-Free Reducers

Authors: Bastien Sanglard, Simon Cayez, Guillaume Viau, Thomas Blon, Julian Carrey, Sébastien Lachaize

Abstract:

The need to develop clean production processes is a key challenge of any industry. Steel and iron industries are particularly concerned since they emit 6.8% of global anthropogenic greenhouse gas emissions. One key step of the process is the high-temperature reduction of iron ore using coke, leading to large amounts of CO2 emissions. One route to decrease impacts is to get rid of fossil fuels by changing both the heat source and the reducer. The present work aims at investigating experimentally the possibility to use concentrated solar energy and carbon-free reducing agents. Two sets of experimentations were realized. First, in situ X-ray diffraction on pure and industrial powder of hematite was realized to study the phase evolution as a function of temperature during reduction under hydrogen and ammonia. Secondly, experiments were performed on industrial iron ore pellets, which were reduced by NH3 or H2 into a “solar furnace” composed of a controllable 1600W Xenon lamp to simulate and control the solar concentrated irradiation of a glass reactor and of a diaphragm to control light flux. Temperature and pressure were recorded during each experiment via thermocouples and pressure sensors. The percentage of iron oxide converted to iron (called thereafter “reduction ratio”) was found through Rietveld refinement. The power of the light source and the reduction time were varied. Results obtained in the diffractometer reaction chamber show that iron begins to form at 300°C with pure Fe2O3 powder and 400°C with industrial iron ore when maintained at this temperature for 60 minutes and 80 minutes, respectively. Magnetite and wuestite are detected on both powders during the reduction under hydrogen; under ammonia, iron nitride is also detected for temperatures between400°C and 600°C. All the iron oxide was converted to iron for a reaction of 60 min at 500°C, whereas a conversion ratio of 96% was reached with industrial powder for a reaction of 240 min at 600°C under hydrogen. Under ammonia, full conversion was also reached after 240 min of reduction at 600 °C. For experimentations into the solar furnace with iron ore pellets, the lamp power and the shutter opening were varied. An 83.2% conversion ratio was obtained with a light power of 67 W/cm2 without turning over the pellets. Nevertheless, under the same conditions, turning over the pellets in the middle of the experiment permits to reach a conversion ratio of 86.4%. A reduction ratio of 95% was reached with an exposure of 16 min by turning over pellets at half time with a flux of 169W/cm2. Similar or slightly better results were obtained under an ammonia reducing atmosphere. Under the same flux, the highest reduction yield of 97.3% was obtained under ammonia after 28 minutes of exposure. The chemical reaction itself, including the solar heat source, does not produce any greenhouse gases, so solar metallurgy represents a serious way to reduce greenhouse gas emission of metallurgy industry. Nevertheless, the ecological impact of the reducers must be investigated, which will be done in future work.

Keywords: solar concentration, metallurgy, ammonia, hydrogen, sustainability

Procedia PDF Downloads 138
1715 Proximate Composition, Minerals and Sensory Attributes of Cake, Cookies, Cracker, and Chin-Chin Prepared from Cassava-Gari Residue Flour

Authors: Alice Nwanyioma Ohuoba, Rose Erdoo Kukwa, Ukpabi Joseph Ukpabi

Abstract:

Cassava root (Manihot esculenta) is one of the important carbohydrates containing crops in Nigeria. It is a staple food, mostly in the southern part of the country, and a source of income to farmers and processors. Cassava gari processing methods result to residue fiber (solid waste) from the sieving operation, these residue fibers ( solid wastes) can be dried and milled into flour and used to prepare cakes, cookies, crackers and chin-chin instead of being thrown away mostly on farmland or near the residential area. Flour for baking or frying may contain carbohydrates and protein (wheat flour) or rich in only carbohydrates (cassava flour). Cake, cookies, crackers, and chin-chin were prepared using the residue flour obtained from the residue fiber of cassava variety NR87184 roots, processed into gari. This study is aimed at evaluating the proximate composition, mineral content and sensory attributes of these selected snacks produced. The proximate composition results obtained showed that crackers had the lowest value in moisture (2.3390%) and fat (1.7130%), but highest in carbohydrates (85.2310%). Amongst the food products, cakes recorded the highest value in protein (8.0910%). Crude fibre values ranges from 2.5265% (cookies) to 3.4165% (crackers). The result of the mineral contents showed cookies ranking the highest in Phosphorus (65.8535 ppm) and Iron (0.1150 mg/L), Calcium (1.3800mg/L) and Potassium (7.2850 mg/L) contents, while chin-chin and crackers were lowest in Sodium ( 2.7000 mg/L). The food products were also subjected to sensory attributes evaluation by thirty member panelists using 9-hedonic scale which ranged from 1 ( dislike extremely) to 9 (like extremely). The means score obtained shows all the food products having above 7.00 (above “like moderately”). This study has shown that food products that may be functional or nutraceuticals could be prepared from the residue flour. There is a call for the use of gluten-free flour in baking due to ciliac disease and other allergic causes by gluten. Therefore local carbohydrates food crops like cassava residue flour that are gluten-free, could be the solution. In addition, this could aid cassava gari processing waste management thereby reducing post-harvest losses of cassava root.

Keywords: allergy, flour, food-products, gluten-free

Procedia PDF Downloads 155