Search results for: water cycle algorithm
9986 Artificial Bee Colony Based Modified Energy Efficient Predictive Routing in MANET
Authors: Akhil Dubey, Rajnesh Singh
Abstract:
In modern days there occur many rapid modifications in field of ad hoc network. These modifications create many revolutionary changes in the routing. Predictive energy efficient routing is inspired on the bee’s behavior of swarm intelligence. Predictive routing improves the efficiency of routing in the energetic point of view. The main aim of this routing is the minimum energy consumption during communication and maximized intermediate node’s remaining battery power. This routing is based on food searching behavior of bees. There are two types of bees for the exploration phase the scout bees and for the evolution phase forager bees use by this routing. This routing algorithm computes the energy consumption, fitness ratio and goodness of the path. In this paper we review the literature related with predictive routing, presenting modified routing and simulation result of this algorithm comparison with artificial bee colony based routing schemes in MANET and see the results of path fitness and probability of fitness.Keywords: mobile ad hoc network, artificial bee colony, PEEBR, modified predictive routing
Procedia PDF Downloads 4169985 An Assessment of Floodplain Vegetation Response to Groundwater Changes Using the Soil & Water Assessment Tool Hydrological Model, Geographic Information System, and Machine Learning in the Southeast Australian River Basin
Authors: Newton Muhury, Armando A. Apan, Tek N. Marasani, Gebiaw T. Ayele
Abstract:
The changing climate has degraded freshwater availability in Australia that influencing vegetation growth to a great extent. This study assessed the vegetation responses to groundwater using Terra’s moderate resolution imaging spectroradiometer (MODIS), Normalised Difference Vegetation Index (NDVI), and soil water content (SWC). A hydrological model, SWAT, has been set up in a southeast Australian river catchment for groundwater analysis. The model was calibrated and validated against monthly streamflow from 2001 to 2006 and 2007 to 2010, respectively. The SWAT simulated soil water content for 43 sub-basins and monthly MODIS NDVI data for three different types of vegetation (forest, shrub, and grass) were applied in the machine learning tool, Waikato Environment for Knowledge Analysis (WEKA), using two supervised machine learning algorithms, i.e., support vector machine (SVM) and random forest (RF). The assessment shows that different types of vegetation response and soil water content vary in the dry and wet seasons. The WEKA model generated high positive relationships (r = 0.76, 0.73, and 0.81) between NDVI values of all vegetation in the sub-basins against soil water content (SWC), the groundwater flow (GW), and the combination of these two variables, respectively, during the dry season. However, these responses were reduced by 36.8% (r = 0.48) and 13.6% (r = 0.63) against GW and SWC, respectively, in the wet season. Although the rainfall pattern is highly variable in the study area, the summer rainfall is very effective for the growth of the grass vegetation type. This study has enriched our knowledge of vegetation responses to groundwater in each season, which will facilitate better floodplain vegetation management.Keywords: ArcSWAT, machine learning, floodplain vegetation, MODIS NDVI, groundwater
Procedia PDF Downloads 1019984 Concentration of Waste Waters by Enzyme-Assisted Low-Temperature Evaporation
Authors: Ahokas Mikko, Taskila Sanna, Varrio Kalle, Tanskanen Juha
Abstract:
The present research aimed at the development of an energy efficient process for the concentration of starchy waste waters. The selected principle is mechanical vapor recompression evaporation (MVR) which leads to concentrated solid material and evaporated water phase. Evaporation removes water until a certain viscosity limit is reached. Materials with high viscosity cannot be concentrated using standard evaporators due to limitations of pumps and other constraints, such as wetting. Control of viscosity is thus essential for efficient evaporation. This applies especially to fluids in which due starch or other compounds the viscosity tends to increase via removal of water. In the present research, the effect of enzymes on evaporation of highly viscous starch industry waste waters was investigated. Wastewater samples were received from starch industry at pH of 4.8. Response surface methodology (RSM) was applied for the investigation of factor effects on the behaviour of concentrate during evaporation. The RSM was prepared using quadratic face-centered central composite design (CCF). The evaporation performance was evaluated by monitoring the viscosity of fluid during processing. Based on viscosity curves, the addition of glucoamylase reduced the viscosity during evaporation. This assumption was confirmed by CCF, suggesting that the use of starch decomposing glucoamylase allowed evaporation of the starchy wastewater to a relatively high total solid concentration without a detrimental increase in the viscosity. The results suggest that use of enzymes for reduction of viscosity during the evaporation allows more effective concentration of the wastewater and thereby recovery of potable water.Keywords: viscous, wastewater, treatment, evaporation, concentration
Procedia PDF Downloads 2449983 Multidirectional Product Support System for Decision Making in Textile Industry Using Collaborative Filtering Methods
Authors: A. Senthil Kumar, V. Murali Bhaskaran
Abstract:
In the information technology ground, people are using various tools and software for their official use and personal reasons. Nowadays, people are worrying to choose data accessing and extraction tools at the time of buying and selling their products. In addition, worry about various quality factors such as price, durability, color, size, and availability of the product. The main purpose of the research study is to find solutions to these unsolved existing problems. The proposed algorithm is a Multidirectional Rank Prediction (MDRP) decision making algorithm in order to take an effective strategic decision at all the levels of data extraction, uses a real time textile dataset and analyzes the results. Finally, the results are obtained and compared with the existing measurement methods such as PCC, SLCF, and VSS. The result accuracy is higher than the existing rank prediction methods.Keywords: Knowledge Discovery in Database (KDD), Multidirectional Rank Prediction (MDRP), Pearson’s Correlation Coefficient (PCC), VSS (Vector Space Similarity)
Procedia PDF Downloads 2869982 Preparation of Corn Flour Based Extruded Product and Evaluate Its Physical Characteristics
Authors: C. S. Saini
Abstract:
The composite flour blend consisting of corn, pearl millet, black gram and wheat bran in the ratio of 80:5:10:5 was taken to prepare the extruded product and their effect on physical properties of extrudate was studied. The extrusion process was conducted in laboratory by using twin screw extruder. The physical characteristics evaluated include lateral expansion, bulk density, water absorption index, water solubility index, rehydration ratio and moisture retention. The Central Composite Rotatable Design (CCRD) was used to decide the level of processing variables i.e. feed moisture content (%), screw speed (rpm), and barrel temperature (oC) for the experiment. The data obtained after extrusion process were analyzed by using response surface methodology. A second order polynomial model for the dependent variables was established to fit the experimental data. The numerical optimization studies resulted in 127°C of barrel temperature, 246 rpm of screw speed, and 14.5% of feed moisture as optimum variables to produce acceptable extruded product. The responses predicted by the software for the optimum process condition resulted in lateral expansion 126 %, bulk density 0.28 g/cm3, water absorption index 4.10 g/g, water solubility index 39.90 %, rehydration ratio 544 % and moisture retention 11.90 % with 75 % desirability.Keywords: black gram, corn flour, extrusion, physical characteristics
Procedia PDF Downloads 4799981 Modeling Floodplain Vegetation Response to Groundwater Variability Using ArcSWAT Hydrological Model, Moderate Resolution Imaging Spectroradiometer - Normalised Difference Vegetation Index Data, and Machine Learning
Authors: Newton Muhury, Armando A. Apan, Tek Maraseni
Abstract:
This study modelled the relationships between vegetation response and available water below the soil surface using the Terra’s Moderate Resolution Imaging Spectroradiometer (MODIS) generated Normalised Difference Vegetation Index (NDVI) and soil water content (SWC) data. The Soil & Water Assessment Tool (SWAT) interface known as ArcSWAT was used in ArcGIS for the groundwater analysis. The SWAT model was calibrated and validated in SWAT-CUP software using 10 years (2001-2010) of monthly streamflow data. The average Nash-Sutcliffe Efficiency during the calibration and validation was 0.54 and 0.51, respectively, indicating that the model performances were good. Twenty years (2001-2020) of monthly MODIS NDVI data for three different types of vegetation (forest, shrub, and grass) and soil water content for 43 sub-basins were analysed using the WEKA, machine learning tool with a selection of two supervised machine learning algorithms, i.e., support vector machine (SVM) and random forest (RF). The modelling results show that different types of vegetation response and soil water content vary in the dry and wet season. For example, the model generated high positive relationships (r=0.76, 0.73, and 0.81) between the measured and predicted NDVI values of all vegetation in the study area against the groundwater flow (GW), soil water content (SWC), and the combination of these two variables, respectively, during the dry season. However, these relationships were reduced by 36.8% (r=0.48) and 13.6% (r=0.63) against GW and SWC, respectively, in the wet season. On the other hand, the model predicted a moderate positive relationship (r=0.63) between shrub vegetation type and soil water content during the dry season, which was reduced by 31.7% (r=0.43) during the wet season. Our models also predicted that vegetation in the top location (upper part) of the sub-basin is highly responsive to GW and SWC (r=0.78, and 0.70) during the dry season. The results of this study indicate the study region is suitable for seasonal crop production in dry season. Moreover, the results predicted that the growth of vegetation in the top-point location is highly dependent on groundwater flow in both dry and wet seasons, and any instability or long-term drought can negatively affect these floodplain vegetation communities. This study has enriched our knowledge of vegetation responses to groundwater in each season, which will facilitate better floodplain vegetation management.Keywords: ArcSWAT, machine learning, floodplain vegetation, MODIS NDVI, groundwater
Procedia PDF Downloads 1199980 Solar-Electric Pump-out Boat Technology: Impacts on the Marine Environment, Public Health, and Climate Change
Authors: Joy Chiu, Colin Hemez, Emma Ryan, Jia Sun, Robert Dubrow, Michael Pascucilla
Abstract:
The popularity of recreational boating is on the rise in the United States, which raises numerous national-level challenges in the management of air and water pollution, aquatic habitat destruction, and waterway access. The need to control sewage discharge from recreational vessels underlies all of these challenges. The release of raw human waste into aquatic environments can lead to eutrophication and algal blooms; can increase human exposure to pathogenic viruses, bacteria, and parasites; can financially impact commercial shellfish harvest/fisheries and marine bathing areas; and can negatively affect access to recreational and/or commercial waterways to the detriment of local economies. Because of the damage that unregulated sewage discharge can do to environments and human health/marine life, recreational vessels in the United States are required by law to 'pump-out' sewage from their holding tanks into sewage treatment systems in all designated 'no discharge areas'. Many pump-out boats, which transfer waste out of recreational vessels, are operated and maintained using funds allocated through the Federal Clean Vessel Act (CVA). The East Shore District Health Department of Branford, Connecticut is protecting this estuary by pioneering the design and construction of the first-in-the-nation zero-emissions, the solar-electric pump-out boat of its size to replace one of its older traditional gasoline-powered models through a Connecticut Department of Energy and Environmental Protection CVA Grant. This study, conducted in collaboration with the East Shore District Health Department, the Connecticut Department of Energy and Environmental Protection, States Organization for Boating Access and Connecticut’s CVA program coordinators, had two aims: (1) To perform a national assessment of pump-out boat programs, supplemented by a limited international assessment, to establish best pump-out boat practices (regardless of how the boat is powered); and (2) to estimate the cost, greenhouse gas emissions, and environmental and public health impacts of solar-electric versus traditional gasoline-powered pump-out boats. A national survey was conducted of all CVA-funded pump-out program managers and selected pump-out boat operators to gauge best practices; costs associated with gasoline-powered pump-out boat operation and management; and the regional, cultural, and policy-related issues that might arise from the adoption of solar-electric pump-out boat technology. We also conducted life-cycle analyses of gasoline-powered and solar-electric pump-out boats to compare their greenhouse gas emissions; production of air, soil and water pollution; and impacts on human health. This work comprises the most comprehensive study into pump-out boating practices in the United States to date, in which information obtained at local, state, national, and international levels is synthesized. This study aims to enable CVA programs to make informed recommendations for sustainable pump-out boating practices and identifies the challenges and opportunities that remain for the wide adoption of solar-electric pump-out boat technology.Keywords: pump-out boat, marine water, solar-electric, zero emissions
Procedia PDF Downloads 1289979 Bio-Mimetic Foam Fractionation Technology for the Treatment of Per- and PolyFluoroAlkyl Substances (PFAS) in Contaminated Water
Authors: Hugo Carronnier, Wassim Almouallem, Eric Branquet
Abstract:
Per- and polyfluoroalkyl Substances (PFAS) are a group of man-made refractory compounds that have been widely used in a variety of industrial and commercial products since the 1940s, leading to contamination of groundwater and surface water systems. They are persistent, bioaccumulative and toxic chemicals. Foam fractionation is a potential remedial technique for treating PFAS-contaminated water, taking advantage of the high surface activity to remove them from the solution by adsorption onto the surface of the air bubbles. Nevertheless, traditional foam fractionation technology developed for PFAS is challenging and found to be ineffective in treating the less surface-active compounds. Different chemicals were the subject of investigation as amendments to achieve better removal. However, most amendments are toxic, expensive and complicated to use. In this situation, patent-pending PFAS technology overcomes these challenges by using rather biological amendments. Results from the first laboratory trial showed remarkable results using a simple and cheap BioFoam Fractionation (BioFF) process based on biomimetics. The study showed that the BioFF process is effective in removing greater than 99% of PFOA (C8), PFOS (C8), PFHpS (C7) and PFHxS (C6) in PFAS-contaminated water. For other PFAS such as PFDA (C10) and 6:2 FTAB, a slightly less stable removal between 94% and 96% was achieved while between 34% and 73% removal efficiency was observed for PFBA (C4), PFBS (C4), PFHxA (C6), and Gen-X. In sum, the advantages of the BioFF presented as a low-waste production, a cost and energy-efficient operation and the use of a biodegradable amendment requiring no separation step after treatment, coupled with these first findings, suggest that the BioFF process is a highly applicable treatment technology for PFAS contaminated water. Additional investigations are currently carried on in order to optimize the process and establish a promising strategy for on-site PFAS remediation.Keywords: PFAS, treatment, foam fractionation, contaminated amendments
Procedia PDF Downloads 789978 The Experimental Measurement of the LiBr Concentration of a Solar Absorption Machine
Authors: N. Hatraf, L. Merabti, Z. Neffah, W. Taane
Abstract:
The excessive consumption of fossil energies (electrical energy) during summer caused by the technological development involves more and more climate warming. In order to reduce the worst impact of gas emissions produced from classical air conditioning, heat driven solar absorption chiller is pretty promising; it consists on using solar as motive energy which is clean and environmentally friendly to provide cold. Solar absorption machine is composed by four components using Lithium Bromide /water as a refrigerating couple. LiBr- water is the most promising in chiller applications due to high safety, high volatility ratio, high affinity, high stability and its high latent heat. The lithium bromide solution is constitute by the salt lithium bromide which absorbs water under certain conditions of pressure and temperature however if the concentration of the solution is high in the absorption chillers; which exceed 70%, the solution will crystallize. The main aim of this article is to study the phenomena of the crystallization and to evaluate how the dependence between the electric conductivity and the concentration which should be controlled.Keywords: absorption, crystallization, experimental results, lithium bromide solution
Procedia PDF Downloads 3109977 Challenges of Implementing Participatory Irrigation Management for Food Security in Semi Arid Areas of Tanzania
Authors: Pilly Joseph Kagosi
Abstract:
The study aims at assessing challenges observed during the implementation of participatory irrigation management (PIM) approach for food security in semi-arid areas of Tanzania. Data were collected through questionnaire, PRA tools, key informants discussion, Focus Group Discussion (FGD), participant observation, and literature review. Data collected from the questionnaire was analysed using SPSS while PRA data was analysed with the help of local communities during PRA exercise. Data from other methods were analysed using content analysis. The study revealed that PIM approach has a contribution in improved food security at household level due to the involvement of communities in water management activities and decision making which enhanced the availability of water for irrigation and increased crop production. However, there were challenges observed during the implementation of the approach including; minimum participation of beneficiaries in decision-making during planning and designing stages, meaning inadequate devolution of power among scheme owners. Inadequate and lack of transparency on income expenditure in Water Utilization Associations’ (WUAs), water conflict among WUAs members, conflict between farmers and livestock keepers and conflict between WUAs leaders and village government regarding training opportunities and status; WUAs rules and regulation are not legally recognized by the National court and few farmers involved in planting trees around water sources. However, it was realized that some of the mentioned challenges were rectified by farmers themselves facilitated by government officials. The study recommends that the identified challenges need to be rectified for farmers to realize impotence of PIM approach as it was realized by other Asian countries.Keywords: challenges, participatory approach, irrigation management, food security, semi arid areas
Procedia PDF Downloads 3249976 Bitplanes Gray-Level Image Encryption Approach Using Arnold Transform
Authors: Ali Abdrhman M. Ukasha
Abstract:
Data security needed in data transmission, storage, and communication to ensure the security. The single step parallel contour extraction (SSPCE) method is used to create the edge map as a key image from the different Gray level/Binary image. Performing the X-OR operation between the key image and each bit plane of the original image for image pixel values change purpose. The Arnold transform used to changes the locations of image pixels as image scrambling process. Experiments have demonstrated that proposed algorithm can fully encrypt 2D Gary level image and completely reconstructed without any distortion. Also shown that the analyzed algorithm have extremely large security against some attacks like salt & pepper and JPEG compression. Its proof that the Gray level image can be protected with a higher security level. The presented method has easy hardware implementation and suitable for multimedia protection in real time applications such as wireless networks and mobile phone services.Keywords: SSPCE method, image compression-salt- peppers attacks, bitplanes decomposition, Arnold transform, lossless image encryption
Procedia PDF Downloads 4389975 Estimating Evapotranspiration Irrigated Maize in Brazil Using a Hybrid Modelling Approach and Satellite Image Inputs
Authors: Ivo Zution Goncalves, Christopher M. U. Neale, Hiran Medeiros, Everardo Mantovani, Natalia Souza
Abstract:
Multispectral and thermal infrared imagery from satellite sensors coupled with climate and soil datasets were used to estimate evapotranspiration and biomass in center pivots planted to maize in Brazil during the 2016 season. The hybrid remote sensing based model named Spatial EvapoTranspiration Modelling Interface (SETMI) was applied using multispectral and thermal infrared imagery from the Landsat Thematic Mapper instrument. Field data collected by the IRRIGER center pivot management company included daily weather information such as maximum and minimum temperature, precipitation, relative humidity for estimating reference evapotranspiration. In addition, soil water content data were obtained every 0.20 m in the soil profile down to 0.60 m depth throughout the season. Early season soil samples were used to obtain water-holding capacity, wilting point, saturated hydraulic conductivity, initial volumetric soil water content, layer thickness, and saturated volumetric water content. Crop canopy development parameters and irrigation application depths were also inputs of the model. The modeling approach is based on the reflectance-based crop coefficient approach contained within the SETMI hybrid ET model using relationships developed in Nebraska. The model was applied to several fields located in Minas Gerais State in Brazil with approximate latitude: -16.630434 and longitude: -47.192876. The model provides estimates of real crop evapotranspiration (ET), crop irrigation requirements and all soil water balance outputs, including biomass estimation using multi-temporal satellite image inputs. An interpolation scheme based on the growing degree-day concept was used to model the periods between satellite inputs, filling the gaps between image dates and obtaining daily data. Actual and accumulated ET, accumulated cold temperature and water stress and crop water requirements estimated by the model were compared with data measured at the experimental fields. Results indicate that the SETMI modeling approach using data assimilation, showed reliable daily ET and crop water requirements for maize, interpolated between remote sensing observations, confirming the applicability of the SETMI model using new relationships developed in Nebraska for estimating mainly ET and water requirements in Brazil under tropical conditions.Keywords: basal crop coefficient, irrigation, remote sensing, SETMI
Procedia PDF Downloads 1409974 Application of Causal Inference and Discovery in Curriculum Evaluation and Continuous Improvement
Authors: Lunliang Zhong, Bin Duan
Abstract:
The undergraduate graduation project is a vital part of the higher education curriculum, crucial for engineering accreditation. Current evaluations often summarize data without identifying underlying issues. This study applies the Peter-Clark algorithm to analyze causal relationships within the graduation project data of an Electronics and Information Engineering program, creating a causal model. Structural equation modeling confirmed the model's validity. The analysis reveals key teaching stages affecting project success, uncovering problems in the process. Introducing causal discovery and inference into project evaluation helps identify issues and propose targeted improvement measures. The effectiveness of these measures is validated by comparing the learning outcomes of two student cohorts, stratified by confounding factors, leading to improved teaching quality.Keywords: causal discovery, causal inference, continuous improvement, Peter-Clark algorithm, structural equation modeling
Procedia PDF Downloads 189973 Margin-Based Feed-Forward Neural Network Classifiers
Authors: Xiaohan Bookman, Xiaoyan Zhu
Abstract:
Margin-Based Principle has been proposed for a long time, it has been proved that this principle could reduce the structural risk and improve the performance in both theoretical and practical aspects. Meanwhile, feed-forward neural network is a traditional classifier, which is very hot at present with a deeper architecture. However, the training algorithm of feed-forward neural network is developed and generated from Widrow-Hoff Principle that means to minimize the squared error. In this paper, we propose a new training algorithm for feed-forward neural networks based on Margin-Based Principle, which could effectively promote the accuracy and generalization ability of neural network classifiers with less labeled samples and flexible network. We have conducted experiments on four UCI open data sets and achieved good results as expected. In conclusion, our model could handle more sparse labeled and more high-dimension data set in a high accuracy while modification from old ANN method to our method is easy and almost free of work.Keywords: Max-Margin Principle, Feed-Forward Neural Network, classifier, structural risk
Procedia PDF Downloads 3429972 Sensor and Actuator Fault Detection in Connected Vehicles under a Packet Dropping Network
Authors: Z. Abdollahi Biron, P. Pisu
Abstract:
Connected vehicles are one of the promising technologies for future Intelligent Transportation Systems (ITS). A connected vehicle system is essentially a set of vehicles communicating through a network to exchange their information with each other and the infrastructure. Although this interconnection of the vehicles can be potentially beneficial in creating an efficient, sustainable, and green transportation system, a set of safety and reliability challenges come out with this technology. The first challenge arises from the information loss due to unreliable communication network which affects the control/management system of the individual vehicles and the overall system. Such scenario may lead to degraded or even unsafe operation which could be potentially catastrophic. Secondly, faulty sensors and actuators can affect the individual vehicle’s safe operation and in turn will create a potentially unsafe node in the vehicular network. Further, sending that faulty sensor information to other vehicles and failure in actuators may significantly affect the safe operation of the overall vehicular network. Therefore, it is of utmost importance to take these issues into consideration while designing the control/management algorithms of the individual vehicles as a part of connected vehicle system. In this paper, we consider a connected vehicle system under Co-operative Adaptive Cruise Control (CACC) and propose a fault diagnosis scheme that deals with these aforementioned challenges. Specifically, the conventional CACC algorithm is modified by adding a Kalman filter-based estimation algorithm to suppress the effect of lost information under unreliable network. Further, a sliding mode observer-based algorithm is used to improve the sensor reliability under faults. The effectiveness of the overall diagnostic scheme is verified via simulation studies.Keywords: fault diagnostics, communication network, connected vehicles, packet drop out, platoon
Procedia PDF Downloads 2399971 Aquatic Environmental Effects of Black Shale in Eastern Kentucky through the Measurement of Chemical and Physical Properties
Authors: Mitchell T. Grothaus, Cory Grigsby, Timothy S. Hare
Abstract:
This study aims to determine if there is a relationship between elevated cancer risks in eastern Kentucky and the environmental effects of black shale. Previous research shows that black shale formations, such as those in eastern Kentucky contain high levels of toxic elements including arsenic and radon compared to average rocks and sediment. Similarly, the population of eastern Kentucky has higher rates of many health conditions, including lung cancer and cardiovascular disease, than surrounding regions. These poor health outcomes are typically explained in relation to social, economic, behavioral, and healthcare factors. The rates of many conditions, however, have not decreased as these factors improve with regional development. Black shale is known to affect environmental conditions such as by increasing radiation levels and heavy metal toxicity. We are mapping the effects of black shale through monitoring radiation, microbes, and chemical standards of water sources. In this presentation, we report on our measuring pH, dissolved oxygen, total dissolved solids, conductivity, temperature, and discharge and comparison with water quality standards from the Kentucky Department for Environmental Protection. The conditions of water sources combined with an environmental survey of the surrounding areas provide a greater understanding of why the people in eastern Kentucky face the current health issues.Keywords: black shale, eastern Kentucky, environmental impact, water quality
Procedia PDF Downloads 1649970 Analyses of Extent of Effects of Siting Boreholes Nearby Open Landfill Dumpsite at Obosi Anambra Southeast of Nigeria
Authors: George Obinna Akuaka
Abstract:
Solid waste disposal techniques in Nigeria pose an environmental threat to the environment and to nearby resident. The presence of microbial physical and chemical concentration in boreholes samples nearby dumpsite implies that groundwater is normally contaminated by leachate infiltration from an open landfill dumpsite. In this study, the physicochemical and microbial analyses of water samples from hand dug well in the site and boreholes were carried out around the active landfill and from different distances (50 m to 200 m). leachate samples collected were used to ascertain the effect or extent of contamination on the groundwater quality. A total of 5 leachate samples and 5 samples of groundwater were collected, and all samples were analyzed for various physical and chemical parameters according to the standard methods. These include pH, Electrical conductivity, Total dissolved solid, BOD, OD, Temperature, major cations such as Mg²+ Ca²+, Fe²+ Cu²+, major anions NO³-, Cl-,SO⁴- PO⁴-, Zn, Ar, Cd, Cr, Hg, Pb, Ni are the heavy metals and metalloids. The mean values of the physical and chemical parameters obtained from both sites were compared with the established of the World Health Organization (WHO). The leachate samples were found to be higher in the concentration of the results obtained than that of the boreholes water, and the recorded mean values of heavy metals were above approved standard minimum limits. The results indicated that mercury and copper were not found in all the borehole water samples. Microbial analyses showed that total heterotrophic bacteria mean count ranged from 10.6 X10⁷ cfu/ml to 2.04x10⁷cfu/ml and 9.5 X 10⁷ cfu/ml to 18.9 X 10⁷ cfu/ml in leachate and borehole samples respectively. It also revealed that almost at the bacteria isolated in the leachate were also found in the water samples. This results indicated that heavy pollution in all the samples with most physicochemical parameters and microbes showed traceable pollution, which occurred as a result of leachate infiltration into the ground water.Keywords: physicochemical, landfill dumpsite, microbial, leachate, groundwater
Procedia PDF Downloads 2049969 Widely Diversified Macroeconomies in the Super-Long Run Casts a Doubt on Path-Independent Equilibrium Growth Model
Authors: Ichiro Takahashi
Abstract:
One of the major assumptions of mainstream macroeconomics is the path independence of capital stock. This paper challenges this assumption by employing an agent-based approach. The simulation results showed the existence of multiple "quasi-steady state" equilibria of the capital stock, which may cast serious doubt on the validity of the assumption. The finding would give a better understanding of many phenomena that involve hysteresis, including the causes of poverty. The "market-clearing view" has been widely shared among major schools of macroeconomics. They understand that the capital stock, the labor force, and technology, determine the "full-employment" equilibrium growth path and demand/supply shocks can move the economy away from the path only temporarily: the dichotomy between the short-run business cycles and the long-run equilibrium path. The view then implicitly assumes the long-run capital stock to be independent of how the economy has evolved. In contrast, "Old Keynesians" have recognized fluctuations in output as arising largely from fluctuations in real aggregate demand. It will then be an interesting question to ask if an agent-based macroeconomic model, which is known to have path dependence, can generate multiple full-employment equilibrium trajectories of the capital stock in the super-long run. If the answer is yes, the equilibrium level of capital stock, an important supply-side factor, would no longer be independent of the business cycle phenomenon. This paper attempts to answer the above question by using the agent-based macroeconomic model developed by Takahashi and Okada (2010). The model would serve this purpose well because it has neither population growth nor technology progress. The objective of the paper is twofold: (1) to explore the causes of long-term business cycle, and (2) to examine the super-long behaviors of the capital stock of full-employment economies. (1) The simulated behaviors of the key macroeconomic variables such as output, employment, real wages showed widely diversified macro-economies. They were often remarkably stable but exhibited both short-term and long-term fluctuations. The long-term fluctuations occur through the following two adjustments: the quantity and relative cost adjustments of capital stock. The first one is obvious and assumed by many business cycle theorists. The reduced aggregate demand lowers prices, which raises real wages, thereby decreasing the relative cost of capital stock with respect to labor. (2) The long-term business cycles/fluctuations were synthesized with the hysteresis of real wages, interest rates, and investments. In particular, a sequence of the simulation runs with a super-long simulation period generated a wide range of perfectly stable paths, many of which achieved full employment: all the macroeconomic trajectories, including capital stock, output, and employment, were perfectly horizontal over 100,000 periods. Moreover, the full-employment level of capital stock was influenced by the history of unemployment, which was itself path-dependent. Thus, an experience of severe unemployment in the past kept the real wage low, which discouraged a relatively costly investment in capital stock. Meanwhile, a history of good performance sometimes brought about a low capital stock due to a high-interest rate that was consistent with a strong investment.Keywords: agent-based macroeconomic model, business cycle, hysteresis, stability
Procedia PDF Downloads 2109968 Predicting Daily Patient Hospital Visits Using Machine Learning
Authors: Shreya Goyal
Abstract:
The study aims to build user-friendly software to understand patient arrival patterns and compute the number of potential patients who will visit a particular health facility for a given period by using a machine learning algorithm. The underlying machine learning algorithm used in this study is the Support Vector Machine (SVM). Accurate prediction of patient arrival allows hospitals to operate more effectively, providing timely and efficient care while optimizing resources and improving patient experience. It allows for better allocation of staff, equipment, and other resources. If there's a projected surge in patients, additional staff or resources can be allocated to handle the influx, preventing bottlenecks or delays in care. Understanding patient arrival patterns can also help streamline processes to minimize waiting times for patients and ensure timely access to care for patients in need. Another big advantage of using this software is adhering to strict data protection regulations such as the Health Insurance Portability and Accountability Act (HIPAA) in the United States as the hospital will not have to share the data with any third party or upload it to the cloud because the software can read data locally from the machine. The data needs to be arranged in. a particular format and the software will be able to read the data and provide meaningful output. Using software that operates locally can facilitate compliance with these regulations by minimizing data exposure. Keeping patient data within the hospital's local systems reduces the risk of unauthorized access or breaches associated with transmitting data over networks or storing it in external servers. This can help maintain the confidentiality and integrity of sensitive patient information. Historical patient data is used in this study. The input variables used to train the model include patient age, time of day, day of the week, seasonal variations, and local events. The algorithm uses a Supervised learning method to optimize the objective function and find the global minima. The algorithm stores the values of the local minima after each iteration and at the end compares all the local minima to find the global minima. The strength of this study is the transfer function used to calculate the number of patients. The model has an output accuracy of >95%. The method proposed in this study could be used for better management planning of personnel and medical resources.Keywords: machine learning, SVM, HIPAA, data
Procedia PDF Downloads 659967 Selected Technological Factors Influencing the Modulus of Elasticity of Concrete
Authors: Klara Krizova, Rudolf Hela
Abstract:
The topic of the article focuses on the evaluation of selected technological factors and their influence on resulting elasticity modulus of concrete. A series of various factors enter into the manufacturing process which, more or less, influences the elasticity modulus. This paper presents the results of concrete in which the influence of water coefficient and the size of maximum fraction of the aggregate on the static elasticity modulus were monitored. Part of selected results of the long-term programme was discussed in which a wide scope of various variants of proposals for the composition of concretes was evaluated.Keywords: mix design, water-cement ratio, aggregate, modulus of elasticity
Procedia PDF Downloads 3959966 Assessment of Chromium Concentration and Human Health Risk in the Steelpoort River Sub-Catchment of the Olifants River Basin, South Africa
Authors: Abraham Addo-Bediako
Abstract:
Many freshwater ecosystems are facing immense pressure from anthropogenic activities, such as agricultural, industrial and mining. Trace metal pollution in freshwater ecosystems has become an issue of public health concern due to its toxicity and persistence in the environment. Trace elements pose a serious risk not only to the environment and aquatic biota but also humans. Chromium is one of such trace elements and its pollution in surface waters and groundwaters represents a serious environmental problem. In South Africa, agriculture, mining, industrial and domestic wastes are the main contributors to chromium discharge in rivers. The common forms of chromium are chromium (III) and chromium (VI). The latter is the most toxic because it can cause damage to human health. The aim of the study was to assess the contamination of chromium in the water and sediments of two rivers in the Steelpoort River sub-catchment of the Olifants River Basin, South Africa and human health risk. The concentration of Cr was analyzed using inductively coupled plasma–optical emission spectrometry (ICP-OES). The concentration of the metal was found to exceed the threshold limit, mainly in areas of high human activities. The hazard quotient through ingestion exposure did not exceed the threshold limit of 1 for adults and children and cancer risk for adults and children computed did not exceed the threshold limit of 10-4. Thus, there is no potential health risk from chromium through ingestion of drinking water for now. However, with increasing human activities, especially mining, the concentration could increase and become harmful to humans who depend on rivers for drinking water. It is recommended that proper management strategies should be taken to minimize the impact of chromium on the rivers and water from the rivers should properly be treated before domestic use.Keywords: land use, health risk, metal pollution, water quality
Procedia PDF Downloads 879965 Verification of Sr-90 Determination in Water and Spruce Needles Samples Using IAEA-TEL-2016-04 ALMERA Proficiency Test Samples
Authors: S. Visetpotjanakit, N. Nakkaew
Abstract:
Determination of 90Sr in environmental samples has been widely developed with several radioanlytical methods and radiation measurement techniques since 90Sr is one of the most hazardous radionuclides produced from nuclear reactors. Liquid extraction technique using di-(2-ethylhexyl) phosphoric acid (HDEHP) to separate and purify 90Y and Cherenkov counting using liquid scintillation counter to determine 90Y in secular equilibrium to 90Sr was developed and performed at our institute, the Office of Atoms for Peace. The approach is inexpensive, non-laborious, and fast to analyse 90Sr in environmental samples. To validate our analytical performance for the accurate and precise criteria, determination of 90Sr using the IAEA-TEL-2016-04 ALMERA proficiency test samples were performed for statistical evaluation. The experiment used two spiked tap water samples and one naturally contaminated spruce needles sample from Austria collected shortly after the Chernobyl accident. Results showed that all three analyses were successfully passed in terms of both accuracy and precision criteria, obtaining “Accepted” statuses. The two water samples obtained the measured results of 15.54 Bq/kg and 19.76 Bq/kg, which had relative bias 5.68% and -3.63% for the Maximum Acceptable Relative Bias (MARB) 15% and 20%, respectively. And the spruce needles sample obtained the measured results of 21.04 Bq/kg, which had relative bias 23.78% for the MARB 30%. These results confirm our analytical performance of 90Sr determination in water and spruce needles samples using the same developed method.Keywords: ALMERA proficiency test, Cerenkov counting, determination of 90Sr, environmental samples
Procedia PDF Downloads 2329964 Complex Network Approach to International Trade of Fossil Fuel
Authors: Semanur Soyyigit Kaya, Ercan Eren
Abstract:
Energy has a prominent role for development of nations. Countries which have energy resources also have strategic power in the international trade of energy since it is essential for all stages of production in the economy. Thus, it is important for countries to analyze the weakness and strength of the system. On the other side, it is commonly believed that international trade has complex network properties. Complex network is a tool for the analysis of complex systems with heterogeneous agents and interaction between them. A complex network consists of nodes and the interactions between these nodes. Total properties which emerge as a result of these interactions are distinct from the sum of small parts (more or less) in complex systems. Thus, standard approaches to international trade are superficial to analyze these systems. Network analysis provides a new approach to analyze international trade as a network. In this network countries constitute nodes and trade relations (export or import) constitute edges. It becomes possible to analyze international trade network in terms of high degree indicators which are specific to complex systems such as connectivity, clustering, assortativity/disassortativity, centrality, etc. In this analysis, international trade of crude oil and coal which are types of fossil fuel has been analyzed from 2005 to 2014 via network analysis. First, it has been analyzed in terms of some topological parameters such as density, transitivity, clustering etc. Afterwards, fitness to Pareto distribution has been analyzed. Finally, weighted HITS algorithm has been applied to the data as a centrality measure to determine the real prominence of countries in these trade networks. Weighted HITS algorithm is a strong tool to analyze the network by ranking countries with regards to prominence of their trade partners. We have calculated both an export centrality and an import centrality by applying w-HITS algorithm to data.Keywords: complex network approach, fossil fuel, international trade, network theory
Procedia PDF Downloads 3369963 Paradox of Growing Adaptive Capacities for Sustainability Transformation in Urban Water Management in Bangladesh
Authors: T. Yasmin, M. A. Farrelly, B. C. Rogers
Abstract:
Urban water governance in developing countries faces numerous challenges arising from uncontrolled urban population expansion, water pollution, greater economic push and more recently, climate change impact while undergoing transitioning towards a sustainable system. Sustainability transition requires developing adaptive capacities of the socio-ecological and socio-technical system to be able to deal with complexity. Adaptive capacities deliver strategies to connect individuals, organizations, agencies and institutions at multiple levels for dealing with such complexity. Understanding the level of adaptive capacities for sustainability transformation thus has gained significant research attention within developed countries, much less so in developing countries. Filling this gap, this article develops a conceptual framework for analysing the level of adaptive capacities (if any) within a developing context. This framework then applied to the chronological development of urban water governance strategies in Bangladesh for almost two centuries. The chronological analysis of governance interventions has revealed that crisis (public health, food and natural hazards) became the opportunities and thus opened the windows for experimentation and learning to occur as a deviation from traditional practices. Self-organization and networks thus created the platform for development or disruptions to occur for creating change. Leadership (internal or external) is important for nurturing and upscaling theses development or disruptions towards guiding policy vision and targets as well as championing ground implementation. In the case of Bangladesh, the leadership from the international and national aid organizations and targets have always lead the development whereas more often social capital tools (trust, power relations, cultural norms) act as disruptions. Historically, this has been evident in the development pathways of urban water governance in Bangladesh. Overall this research has shown some level of adaptive capacities is growing for sustainable urban growth in big cities, nevertheless unclear regarding the growth in medium and small cities context.Keywords: adaptive capacity, Bangladesh, sustainability transformation, water governance
Procedia PDF Downloads 3939962 A Study of Anoxic - Oxic Microbiological Technology for Treatment of Heavy Oily Refinery Wastewater
Authors: Di Wang, Li Fang, Shengyu Fang, Jianhua Li, Honghong Dong, Zhongzhi Zhang
Abstract:
Heavy oily refinery wastewater with the characteristics of high concentration of toxic organic pollutant, poor biodegradability and complicated dissolved recalcitrant compounds is intractable to be degraded. In order to reduce the concentrations of COD and total nitrogen pollutants which are the major pollutants in heavy oily refinery wastewater, the Anoxic - Oxic microbiological technology relies mainly on anaerobic microbial reactor which works with methanogenic archaea mainly that can convert organic pollutants to methane gas, and supplemented by aerobic treatment. The results of continuous operation for 2 months with a hydraulic retention time (HRT) of 60h showed that, the COD concentration from influent water of anaerobic reactor and effluent water from aerobic reactor were 547.8mg/L and 93.85mg/L, respectively. The total removal rate of COD was up to 84.9%. Compared with the 46.71mg/L of total nitrogen pollutants in influent water of anaerobic reactor, the concentration of effluent water of aerobic reactor decreased to 14.11mg/L. In addition, the average removal rate of total nitrogen pollutants reached as high as 69.8%. Based on the data displayed, Anoxic - Oxic microbial technology shows a great potential to dispose heavy oil sewage in energy saving and high-efficiency of biodegradation.Keywords: anoxic - oxic microbiological technology, COD, heavy oily refinery wastewater, total nitrogen pollutant
Procedia PDF Downloads 4949961 A Wireless Feedback Control System as a Base of Bio-Inspired Structure System to Mitigate Vibration in Structures
Authors: Gwanghee Heo, Geonhyeok Bang, Chunggil Kim, Chinok Lee
Abstract:
This paper attempts to develop a wireless feedback control system as a primary step eventually toward a bio-inspired structure system where inanimate structure behaves like a life form autonomously. It is a standalone wireless control system which is supposed to measure externally caused structural responses, analyze structural state from acquired data, and take its own action on the basis of the analysis with an embedded logic. For an experimental examination of its effectiveness, we applied it on a model of two-span bridge and performed a wireless control test. Experimental tests have been conducted for comparison on both the wireless and the wired system under the conditions of Un-control, Passive-off, Passive-on, and Lyapunov control algorithm. By proving the congruence of the test result of the wireless feedback control system with the wired control system, its control performance was proven to be effective. Besides, it was found to be economical in energy consumption and also autonomous by means of a command algorithm embedded into it, which proves its basic capacity as a bio-inspired system.Keywords: structural vibration control, wireless system, MR damper, feedback control, embedded system
Procedia PDF Downloads 2119960 Development of Column-Filters of Sulfur Limonene Polysulfide to Mercury Removal from Contaminated Effluents
Authors: Galo D. Soria, Jenny S. Casame, Eddy F. Pazmino
Abstract:
In Ecuador, mining operations have significantly impacted water sources. Artisanal mining extensively relies in mercury amalgamation. Mercury is a neurotoxic substance even at low concentrations. The objective of this investigation is to exploit Hg-removal capacity of sulfur-limonene polysulfide (SLP), which is a low-cost polymer, in order to prepare granular media (sand) coated with SLP to be used in laboratory scale column-filtration systems. Preliminary results achieved 85% removal of Hg⁺⁺ from synthetic effluents using 20-cm length and 5-cm diameter columns at 119m/day average pore water velocity. During elution of the column, the SLP-coated sand indicated that Hg⁺⁺ is permanently fixed to the collector surface, in contrast, uncoated sand showed reversible retention in Hg⁺⁺ in the solid phase. Injection of 50 pore volumes decreased Hg⁺⁺ removal to 46%. Ongoing work has been focused in optimizing the synthesis of SLP and the polymer content in the porous media coating process to improve Hg⁺⁺ removal and extend the lifetime of the column-filter.Keywords: column-filter, mercury, mining, polysulfide, water treatment
Procedia PDF Downloads 1499959 The Effects of Acid Rain, Smog Cars on Antioxidant Systems, Associated Enzyme and H⁺-ATPase Activity in Rice Cultivars (Oriza sativa L.)
Authors: Heidarali Malmir
Abstract:
The effects of acid rain (AR), smog’s cars (SC), and combined AR+SC on the antioxidants enzymes, lipid-soluble antioxidants, and water-soluble antioxidants were studied in the two cultivars of rice. The results showed that simulated AR significantly increased the total glutathione (TGSH), thiobarbituric acid (TBA), and α-tocopherol, accompanied by decreases in dry weight and leaves area in the two cultivars, and this change was more obvious in Shirudi cultivar than in Aus cultivar (p≤0.05). Under SC stress cultivar shirudi had higher H+-ATPase, glutathione peroxidase (GSH-px), and catalase (CAT) activities than cultivar Aus. The results of superoxide dismutase (SOD) activity, TGSH, and α-tocopherol levels affected by AR treatments were very different to those of SOD activity, TGSH, and α-tocopherol levels, as shown in SC treatment. It seems that SOD activity coupled with the water-soluble antioxidants and α-tocopherol levels correlated with the lipid-soluble antioxidants. It is suggested that α-tocopherol increases H+-ATPase activity.Keywords: H+-ATPase, membrane permeability, lipid soluble antioxidants, water soluble antioxidants, associated enzyme
Procedia PDF Downloads 839958 An Active Solar Energy System to Supply Heating Demands of the Teaching Staff Dormitory of Islamic Azad University Ramhormoz Branch
Authors: M. Talebzadegan, S. Bina, I. Riazi
Abstract:
The purpose of this paper is to present an active solar energy system to supply heating demands of the teaching staff dormitory of the Islamic Azad University of Ramhormoz. The design takes into account the solar radiations and climate data of Ramhormoz town and is based on the daily warm water consumption for health demands of 450 residents of the dormitory, which is equal to 27000 lit of 50-C° water, and building heating requirements with an area of 3500 m² well-protected by heatproof materials. First, heating demands of the building were calculated, then a hybrid system made up of solar and fossil energies was developed and finally, the design was economically evaluated. Since there is only roof space for using 110 flat solar water heaters, the calculations were made to hybridize solar water heating system with heat pumping system in which solar energy contributes 67% of the heat generated. According to calculations, the net present value “N.P.V.” of revenue stream exceeds “N.P.V.” of cash paid off in this project over three years, which makes economically quite promising. The return of investment and payback period of the project is 4 years. Also, the internal rate of return (IRR) of the project was 25%, which exceeds bank rate of interest in Iran and emphasizes the desirability of the project.Keywords: Solar energy, Heat Demand, Renewable , Pollution
Procedia PDF Downloads 2529957 The Need of Sustainable Mining: Communities, Government and Legal Mining in Central Andes of Peru
Authors: Melissa R. Quispe-Zuniga, Daniel Callo-Concha, Christian Borgemeister, Klaus Greve
Abstract:
The Peruvian Andes have a high potential for mining, but many of the mining areas overlay with campesino community lands, being these key actors for agriculture and livestock production. Lead by economic incentives, some communities are renting their lands to mining companies for exploration or exploitation. However, a growing number of campesino communities, usually social and economically marginalized, have developed resistance, alluding consequences, such as water pollution, land-use change, insufficient economic compensation, etc. what eventually end up in Socio-Environmental Conflicts (SEC). It is hypothesized that disclosing the information on environmental pollution and enhance the involvement of communities in the decision-making process may contribute to prevent SEC. To assess whether such complains are grounded on the environmental impact of mining activities, we measured the heavy metals concentration in 24 indicative samples from rivers that run across mining exploitations and farming community lands. Samples were taken during the 2016 dry season and analyzed by inductively-coupled-plasma-atomic-emission-spectroscopy. The results were contrasted against the standards of monitoring government institutions (i.e., OEFA). Furthermore, we investigated the water/environmental complains related to mining in the neighboring 14 communities. We explored the relationship between communities and mining companies, via open-ended interviews with community authorities and non-participatory observations of community assemblies. We found that the concentrations of cadmium (0.023 mg/L), arsenic (0.562 mg/L) and copper (0.07 mg/L), surpass the national water quality standards for Andean rivers (0.00025 mg/L of cadmium, 0.15 mg/L of arsenic and 0.01 mg/L of copper). 57% of communities have posed environmental complains, but 21% of the total number of communities were receiving an annual economic benefit from mining projects. However, 87.5% of the communities who had posed complains have high concentration of heavy metals in their water streams. The evidence shows that mining activities tend to relate to the affectation and vulnerability of campesino community water streams, what justify the environmental complains and eventually the occurrence of a SEC.Keywords: mining companies, campesino community, water, socio-environmental conflict
Procedia PDF Downloads 198