Search results for: transformational learning
3580 Task-Based Teaching for Developing Communication Skills in Second Language Learners
Authors: Geeta Goyal
Abstract:
Teaching-learning of English as a second language is a challenge for the learner as well as the teacher. Whereas a student may find it hard and get demotivated while communicating in a language other than mother tongue, a teacher, too, finds it difficult to integrate necessary teaching material in lesson plans to maximize the outcome. Studies reveal that task-based teaching can be useful in diverse contexts in a second language classroom as it helps in creating opportunities for language exposure as per learners' interest and capability levels, which boosts their confidence and learning efficiency. The present study has analysed the impact of various activities carried out in a heterogenous group of second language learners at tertiary level in a semi-urban area in Haryana state of India. Language tasks were specifically planned with a focus on engaging groups of twenty-five students for a period of three weeks. These included language games such as spell-well, cross-naught besides other communicative and interactive tasks like mock-interviews, role plays, sharing experiences, storytelling, simulations, scene-enact, video-clipping, etc. Tools in form of handouts and cue cards were also used as per requirement. This experiment was conducted for ten groups of students taking bachelor’s courses in different streams of humanities, commerce, and sciences. Participants were continuously supervised, monitored, and guided by the respective teacher. Feedback was collected from the students through classroom observations, interviews, and questionnaires. Students' responses revealed that they felt comfortable and got plenty of opportunities to communicate freely without being afraid of making mistakes. It was observed that even slow/timid/shy learners got involved by getting an experience of English language usage in friendly environment. Moreover, it helped the teacher in establishing a trusting relationship with students and encouraged them to do the same with their classmates. The analysis of the data revealed that majority of students demonstrated improvement in their interest and enthusiasm in the class. The study revealed that task-based teaching was an effective method to improve the teaching-learning process under the given conditions.Keywords: communication skills, English, second language, task-based teaching
Procedia PDF Downloads 923579 Artificial Intelligence for Traffic Signal Control and Data Collection
Authors: Reggie Chandra
Abstract:
Trafficaccidents and traffic signal optimization are correlated. However, 70-90% of the traffic signals across the USA are not synchronized. The reason behind that is insufficient resources to create and implement timing plans. In this work, we will discuss the use of a breakthrough Artificial Intelligence (AI) technology to optimize traffic flow and collect 24/7/365 accurate traffic data using a vehicle detection system. We will discuss what are recent advances in Artificial Intelligence technology, how does AI work in vehicles, pedestrians, and bike data collection, creating timing plans, and what is the best workflow for that. Apart from that, this paper will showcase how Artificial Intelligence makes signal timing affordable. We will introduce a technology that uses Convolutional Neural Networks (CNN) and deep learning algorithms to detect, collect data, develop timing plans and deploy them in the field. Convolutional Neural Networks are a class of deep learning networks inspired by the biological processes in the visual cortex. A neural net is modeled after the human brain. It consists of millions of densely connected processing nodes. It is a form of machine learning where the neural net learns to recognize vehicles through training - which is called Deep Learning. The well-trained algorithm overcomes most of the issues faced by other detection methods and provides nearly 100% traffic data accuracy. Through this continuous learning-based method, we can constantly update traffic patterns, generate an unlimited number of timing plans and thus improve vehicle flow. Convolutional Neural Networks not only outperform other detection algorithms but also, in cases such as classifying objects into fine-grained categories, outperform humans. Safety is of primary importance to traffic professionals, but they don't have the studies or data to support their decisions. Currently, one-third of transportation agencies do not collect pedestrian and bike data. We will discuss how the use of Artificial Intelligence for data collection can help reduce pedestrian fatalities and enhance the safety of all vulnerable road users. Moreover, it provides traffic engineers with tools that allow them to unleash their potential, instead of dealing with constant complaints, a snapshot of limited handpicked data, dealing with multiple systems requiring additional work for adaptation. The methodologies used and proposed in the research contain a camera model identification method based on deep Convolutional Neural Networks. The proposed application was evaluated on our data sets acquired through a variety of daily real-world road conditions and compared with the performance of the commonly used methods requiring data collection by counting, evaluating, and adapting it, and running it through well-established algorithms, and then deploying it to the field. This work explores themes such as how technologies powered by Artificial Intelligence can benefit your community and how to translate the complex and often overwhelming benefits into a language accessible to elected officials, community leaders, and the public. Exploring such topics empowers citizens with insider knowledge about the potential of better traffic technology to save lives and improve communities. The synergies that Artificial Intelligence brings to traffic signal control and data collection are unsurpassed.Keywords: artificial intelligence, convolutional neural networks, data collection, signal control, traffic signal
Procedia PDF Downloads 1753578 How Teachers Comprehend and Support Children's Needs to Be Scientists
Authors: Anita Yus
Abstract:
Several Elementary Schools (SD) ‘favored’ by parents, especially those live in big cities in Indonesia, implicitly demand each child enrolled in the first grade of SD to be able to read, write and calculate. This condition urges the parents to push the teachers in PAUD (Kindergarten) to train their children to read, write, and calculate so they have a set of knowledge. According to Piaget, each child is capable of acquiring knowledge when he is given the opportunity to interact with his environment (things, people, and atmosphere). Teachers can make the interaction occur. There are several learning approaches suitable for the characteristics and needs of child’s growth. This paper talks about a research result conducted to investigate how twelve teachers of early childhood program comprehend the constructivist theory of Piaget, and how they inquire, how the children acquire and construct a number of knowledge through occurred interactions. This is a qualitative research with an observation method followed up by a focus group discussion (FGD). The research result shows that there is a reciprocal interaction between the behaviors of teachers and children affected by the size of the classroom and learning source, teaching experiences, education background, teachers’ attitude and motivation, as well as the way the teachers interpret and support the children’s needs. The teachers involved in this research came up with varied perspective on how knowledge acquired by children at first and how they construct it. This research brings a new perspective in understanding children as scientists.Keywords: constructivist approach, young children as a scientist, teacher practice, teacher education
Procedia PDF Downloads 2523577 IoT Based Soil Moisture Monitoring System for Indoor Plants
Authors: Gul Rahim Rahimi
Abstract:
The IoT-based soil moisture monitoring system for indoor plants is designed to address the challenges of maintaining optimal moisture levels in soil for plant growth and health. The system utilizes sensor technology to collect real-time data on soil moisture levels, which is then processed and analyzed using machine learning algorithms. This allows for accurate and timely monitoring of soil moisture levels, ensuring plants receive the appropriate amount of water to thrive. The main objectives of the system are twofold: to keep plants fresh and healthy by preventing water deficiency and to provide users with comprehensive insights into the water content of the soil on a daily and hourly basis. By monitoring soil moisture levels, users can identify patterns and trends in water consumption, allowing for more informed decision-making regarding watering schedules and plant care. The scope of the system extends to the agriculture industry, where it can be utilized to minimize the efforts required by farmers to monitor soil moisture levels manually. By automating the process of soil moisture monitoring, farmers can optimize water usage, improve crop yields, and reduce the risk of plant diseases associated with over or under-watering. Key technologies employed in the system include the Capacitive Soil Moisture Sensor V1.2 for accurate soil moisture measurement, the Node MCU ESP8266-12E Board for data transmission and communication, and the Arduino framework for programming and development. Additionally, machine learning algorithms are utilized to analyze the collected data and provide actionable insights. Cloud storage is utilized to store and manage the data collected from multiple sensors, allowing for easy access and retrieval of information. Overall, the IoT-based soil moisture monitoring system offers a scalable and efficient solution for indoor plant care, with potential applications in agriculture and beyond. By harnessing the power of IoT and machine learning, the system empowers users to make informed decisions about plant watering, leading to healthier and more vibrant indoor environments.Keywords: IoT-based, soil moisture monitoring, indoor plants, water management
Procedia PDF Downloads 563576 Examining Cross-Cultural Inclusive Practices for Students with Intellectual & Developmental Disabilities (IDD)
Authors: Adriana Rivera Vega, Micheal McCaurhty, Christina Cipriano
Abstract:
The world is becoming increasingly more diverse- ethnically, racially, and socially. Additionally, racial/ethnic minority students with intellectual and developmental disabilities (IDD) tend to be disproportionately represented in more restrictive special education classrooms than in general education classrooms. Inclusive practices play a significant role in the lives of individuals with IDD). A student's cultural identity also plays a salient role in teaching, learning, and student outcomes. It is, however, unclear whether and how the cultural identities of students with IDD are reflected in terminology, definitions, and practices related to inclusive education. As a part of a larger scoping review investigating inclusive practices for youth with IDD, this secondary study examines one facet of inclusion: cultural identity. Previous research suggests that students with IDD benefit from interventions based on their cultural background. A review of the limited peer-reviewed and grey literature on this subject revealed that the terminology, definitions, and practices around inclusive education tend to overlook students’ cultural identity in the teaching and learning processes for this population. Implications for future research are presented and recommendations for inclusive-based theoretical frameworks and inclusive practices using a cultural identity perspective are discussed.Keywords: education, Psychology, policy, Multicultural Psychology
Procedia PDF Downloads 153575 To Design a Full Stack Online Educational Website Using HTML, CSS and Java Script
Authors: Yash Goyal, Manish Korde, Juned Siddiqui
Abstract:
Today online education has gained more popularity so that people can easily complete their curriculum on their own time. Virtual learning has been widely used by many educators, especially in higher education institutions due to its benefits to students and faculty. A good knowledge of teaching theory and instructional design systems is required to experience meaningful learning. However, most educational websites are not designed to adapt to all screen sizes. Making the website accessible on all screen sizes is our main objective, so we have created a website that is readily accessible across all screen sizes and accepts all types of payment methods. And we see generally educational websites interface is simple and unexciting. So, we have made a user interface attractive and user friendly. It is not enough for a website to be user-friendly, but also to be familiar to admins and to reduce the workload of the admin as well. We visited so many popular websites under development that they all had issues like responsiveness, simple interface, security measures, payment methods, etc. To overcome this limitation, we have created a website which has taken care of security issues that is why we have created only one admin id and it can be control from that only. And if the user has successfully done the payment, then the admin can send him a username and password through mail individually so there will no fraud in the payment of the course.Keywords: responsive, accessible, attractive, interface, objective, security.
Procedia PDF Downloads 1083574 The Use of Continuous Improvement Methods to Empower the Osh MS With Leading Key Performance Indicators
Authors: Maha Rashid Al-Azib, Almuzn Qasem Alqathradi, Amal Munir Alshahrani, Bilqis Mohammed Assiri, Ali Almuflih
Abstract:
The Occupational Safety and Health Management System in one of the largest Saudi companies has been experiencing in the last 10 years extensive direct and indirect expenses due to lack of proactive leading indicators and safety leadership effective procedures. And since there are no studies that are associated with this department of safety in the company, this research has been conducted. In this study we used a mixed method approach containing a literature review and experts input, then a qualitative questionnaire provided by Institute for Work and Health related to determining the company’s occupational safety and health management system level out from three levels (Compliance - Improvement - Continuous Learning) and the output regarding the company’s level was in Continuous Learning. After that Deming cycle was employed to create a set of proactive leading indicators and analyzed using the SMART method to make sure of its effectiveness and suitability to the company. The objective of this research is to provide a set of proactive indicators to contribute in making an efficient occupational safety and health management system that has less accidents which results in less expenses. Therefore, we provided the company with a prototype of an APP, designed and empowered with our final results to contribute in supporting decisions making processes.Keywords: proactive leading indicators, OSH MS, safety leadership, accidents reduction
Procedia PDF Downloads 833573 Classification of Foliar Nitrogen in Common Bean (Phaseolus Vulgaris L.) Using Deep Learning Models and Images
Authors: Marcos Silva Tavares, Jamile Raquel Regazzo, Edson José de Souza Sardinha, Murilo Mesquita Baesso
Abstract:
Common beans are a widely cultivated and consumed legume globally, serving as a staple food for humans, especially in developing countries, due to their nutritional characteristics. Nitrogen (N) is the most limiting nutrient for productivity, and foliar analysis is crucial to ensure balanced nitrogen fertilization. Excessive N applications can cause, either isolated or cumulatively, soil and water contamination, plant toxicity, and increase their susceptibility to diseases and pests. However, the quantification of N using conventional methods is time-consuming and costly, demanding new technologies to optimize the adequate supply of N to plants. Thus, it becomes necessary to establish constant monitoring of the foliar content of this macronutrient in plants, mainly at the V4 stage, aiming at precision management of nitrogen fertilization. In this work, the objective was to evaluate the performance of a deep learning model, Resnet-50, in the classification of foliar nitrogen in common beans using RGB images. The BRS Estilo cultivar was sown in a greenhouse in a completely randomized design with four nitrogen doses (T1 = 0 kg N ha-1, T2 = 25 kg N ha-1, T3 = 75 kg N ha-1, and T4 = 100 kg N ha-1) and 12 replications. Pots with 5L capacity were used with a substrate composed of 43% soil (Neossolo Quartzarênico), 28.5% crushed sugarcane bagasse, and 28.5% cured bovine manure. The water supply of the plants was done with 5mm of water per day. The application of urea (45% N) and the acquisition of images occurred 14 and 32 days after sowing, respectively. A code developed in Matlab© R2022b was used to cut the original images into smaller blocks, originating an image bank composed of 4 folders representing the four classes and labeled as T1, T2, T3, and T4, each containing 500 images of 224x224 pixels obtained from plants cultivated under different N doses. The Matlab© R2022b software was used for the implementation and performance analysis of the model. The evaluation of the efficiency was done by a set of metrics, including accuracy (AC), F1-score (F1), specificity (SP), area under the curve (AUC), and precision (P). The ResNet-50 showed high performance in the classification of foliar N levels in common beans, with AC values of 85.6%. The F1 for classes T1, T2, T3, and T4 was 76, 72, 74, and 77%, respectively. This study revealed that the use of RGB images combined with deep learning can be a promising alternative to slow laboratory analyses, capable of optimizing the estimation of foliar N. This can allow rapid intervention by the producer to achieve higher productivity and less fertilizer waste. Future approaches are encouraged to develop mobile devices capable of handling images using deep learning for the classification of the nutritional status of plants in situ.Keywords: convolutional neural network, residual network 50, nutritional status, artificial intelligence
Procedia PDF Downloads 273572 An Educational Electronic Health Record with a Configurable User Interface
Authors: Floriane Shala, Evangeline Wagner, Yichun Zhao
Abstract:
Background: Proper educational training and support are proven to be major components of EHR (Electronic Health Record) implementation and use. However, the majority of health providers are not sufficiently trained in EHR use, leading to adverse events, errors, and decreased quality of care. In response to this, students studying Health Information Science, Public Health, Nursing, and Medicine should all gain a thorough understanding of EHR use at different levels for different purposes. The design of a usable and safe EHR system that accommodates the needs and workflows of different users, user groups, and disciplines is required for EHR learning to be efficient and effective. Objectives: This project builds several artifacts which seek to address both the educational and usability aspects of an educational EHR. The artifacts proposed are models for and examples of such an EHR with a configurable UI to be learned by students who need a background in EHR use during their degrees. Methods: Review literature and gather professional opinions from domain experts on usability, the use of workflow patterns, UI configurability and design, and the educational aspect of EHR use. Conduct interviews in a semi-casual virtual setting with open discussion in order to gain a deeper understanding of the principal aspects of EHR use in educational settings. Select a specific task and user group to illustrate how the proposed solution will function based on the current research. Develop three artifacts based on the available research, professional opinions, and prior knowledge of the topic. The artifacts capture the user task and user’s interactions with the EHR for learning. The first generic model provides a general understanding of the EHR system process. The second model is a specific example of performing the task of MRI ordering with a configurable UI. The third artifact includes UI mock-ups showcasing the models in a practical and visual way. Significance: Due to the lack of educational EHRs, medical professionals do not receive sufficient EHR training. Implementing an educational EHR with a usable and configurable interface to suit the needs of different user groups and disciplines will help facilitate EHR learning and training and ultimately improve the quality of patient care.Keywords: education, EHR, usability, configurable
Procedia PDF Downloads 1603571 Transferable Knowledge: Expressing Lessons Learnt from Failure to Outsiders
Authors: Stijn Horck
Abstract:
Background: The value of lessons learned from failure increases when these insights can be put to use by those who did not experience the failure. While learning from others has mostly been researched between individuals or teams within the same environment, transferring knowledge from the person who experienced the failure to an outsider comes with extra challenges. As sense-making of failure is an individual process leading to different learning experiences, the potential of lessons learned from failure is highly variable depending on who is transferring the lessons learned. Using an integrated framework of linguistic aspects related to attributional egotism, this study aims to offer a complete explanation of the challenges in transferring lessons learned from failures that are experienced by others. Method: A case study of a failed foundation established to address the information needs for GPs in times of COVID-19 has been used. An overview of failure causes and lessons learned were made through a preliminary analysis of data collected in two phases with metaphoric examples of failure types. This was followed up by individual narrative interviews with the board members who have all experienced the same events to analyse the individual variance of lessons learned through discourse analysis. This research design uses the researcher-as-instrument approach since the recipient of these lessons learned is the author himself. Results: Thirteen causes were given why the foundation has failed, and nine lessons were formulated. Based on the individually emphasized events, the explanation of the failure events mentioned by all or three respondents consisted of more linguistic aspects related to attributional egotism than failure events mentioned by only one or two. Moreover, the learning events mentioned by all or three respondents involved lessons learned that are based on changed insight, while the lessons expressed by only one or two are more based on direct value. Retrospectively, the lessons expressed as a group in the first data collection phase seem to have captured some but not all of the direct value lessons. Conclusion: Individual variance in expressing lessons learned to outsiders can be reduced using metaphoric or analogical explanations from a third party. In line with the attributional egotism theory, individuals separated from a group that has experienced the same failure are more likely to refer to failure causes of which the chances to be contradicted are the smallest. Lastly, this study contributes to the academic literature by demonstrating that the use of linguistic analysis is suitable for investigating the knowledge transfer from lessons learned after failure.Keywords: failure, discourse analysis, knowledge transfer, attributional egotism
Procedia PDF Downloads 1193570 Customer Preference in the Textile Market: Fabric-Based Analysis
Authors: Francisca Margarita Ocran
Abstract:
Underwear, and more particularly bras and panties, are defined as intimate clothing. Strictly speaking, they enhance the place of women in the public or private satchel. Therefore, women's lingerie is a complex garment with a high involvement profile, motivating consumers to buy it not only by its functional utility but also by the multisensory experience it provides them. Customer behavior models are generally based on customer data mining, and each model is designed to answer questions at a specific time. Predicting the customer experience is uncertain and difficult. Thus, knowledge of consumers' tastes in lingerie deserves to be treated as an experiential product, where the dimensions of the experience motivating consumers to buy a lingerie product and to remain faithful to it must be analyzed in detail by the manufacturers and retailers to engage and retain consumers, which is why this research aims to identify the variables that push consumers to choose their lingerie product, based on an in-depth analysis of the types of fabrics used to make lingerie. The data used in this study comes from online purchases. Machine learning approach with the use of Python programming language and Pycaret gives us a precision of 86.34%, 85.98%, and 84.55% for the three algorithms to use concerning the preference of a buyer in front of a range of lingerie. Gradient Boosting, random forest, and K Neighbors were used in this study; they are very promising and rich in the classification of preference in the textile industry.Keywords: consumer behavior, data mining, lingerie, machine learning, preference
Procedia PDF Downloads 953569 Identification and Analysis of Supports Required for Teachers Moving to Remote Teaching and Learning during Disasters and Pandemics
Authors: Susan Catapano, Meredith Jones, Carol McNulty
Abstract:
Analysis of one state’s collaborative effort to support teachers, in both public and private schools, as they moved from face-to-face teaching to remote teaching during the Covid pandemic to identify lessons learned and materials put into place to support teachers and families. Surveys were created, distributed, and analyzed throughout the three months of remote teaching, documents and lesson plans were developed, and training materials were created. All data collected and materials developed were analyzed to identify supports teachers used and needed for successful remote teaching. Researchers found most teachers easily moved to online teaching; however, many families did not have access to technology, so teachers needed to develop non-technology-based access and support for remote teaching. Teachers also reported the need to prepare to teach remotely as part of their teaching training, so they were prepared in the future. Finally, data indicated teachers were able to establish stronger relationships with families than usual as a result of remote teaching. The lessons learned and support developed are part of the state’s ongoing policy for online teaching in the event of disasters and pandemics in the future.Keywords: remote learning, teacher education, pandemic, families
Procedia PDF Downloads 1693568 Liquefaction Potential Prediction of Chi-Chi Earthquake Based on Standard Penetration Test Data Using Gradient Boosting Classifier
Authors: Pravallika Chithuloori, Jin-Man Kim
Abstract:
Soil liquefaction, triggered by increased porewater pressure, poses a significant threat to infrastructure stability in seismically active regions, and its forecasting remains challenging due to intricate nonlinear interactions. This study uses a dataset of 540 samples that includes seismic parameters and standard penetration test (SPT) results to evaluate liquefaction prediction. SPT N60 values, soil fine content (FC), ground water table (GWT), effective stress of overburden (ESO), peak ground acceleration (PGA), and earthquake magnitude (Mw) are key inputs. A gradient boost classifier (GBC) machine learning (ML) model was utilized to classify liquefaction events. The model’s performance was evaluated using metrics such as accuracy, precision, recall, F1-score, confusion matrix analysis, sensitivity analysis, feature importance ranking, and Shapley Additive Explanations (SHAP). According to these evaluations, the most significant variables in predicting liquefaction were PGA, SPT-N60, and GWT. The robustness of the GBC model was further validated through precision-recall curves and k-fold cross-validation, and it achieved an impressive 99.38% prediction accuracy. These results highlight the potential of the GBC technique to advance the reliability of liquefaction forecasting.Keywords: liquefaction, standard penetration test, gradient boost, machine learning, SHAP
Procedia PDF Downloads 53567 Learning-Teaching Experience about the Design of Care Applications for Nursing Professionals
Authors: A. Gonzalez Aguna, J. M. Santamaria Garcia, J. L. Gomez Gonzalez, R. Barchino Plata, M. Fernandez Batalla, S. Herrero Jaen
Abstract:
Background: Computer Science is a field that transcends other disciplines of knowledge because it allows to support all kinds of physical and mental tasks. Health centres have a greater number and complexity of technological devices and the population consume and demand services derived from technology. Also, nursing education plans have included competencies related to and, even, courses about new technologies are offered to health professionals. However, nurses still limit their performance to the use and evaluation of products previously built. Objective: Develop a teaching-learning methodology for acquiring skills on designing applications for care. Methodology: Blended learning teaching with a group of graduate nurses through official training within a Master's Degree. The study sample was selected by intentional sampling without exclusion criteria. The study covers from 2015 to 2017. The teaching sessions included a four-hour face-to-face class and between one and three tutorials. The assessment was carried out by written test consisting of the preparation of an IEEE 830 Standard Specification document where the subject chosen by the student had to be a problem in the area of care. Results: The sample is made up of 30 students: 10 men and 20 women. Nine students had a degree in nursing, 20 diploma in nursing and one had a degree in Computer Engineering. Two students had a degree in nursing specialty through residence and two in equivalent recognition by exceptional way. Except for the engineer, no subject had previously received training in this regard. All the sample enrolled in the course received the classroom teaching session, had access to the teaching material through a virtual area and maintained at least one tutoring. The maximum of tutorials were three with an hour in total. Among the material available for consultation was an example of a document drawn up based on the IEEE Standard with an issue not related to care. The test to measure competence was completed by the whole group and evaluated by a multidisciplinary teaching team of two computer engineers and two nurses. Engineers evaluated the correctness of the characteristics of the document and the degree of comprehension in the elaboration of the problem and solution elaborated nurses assessed the relevance of the chosen problem statement, the foundation, originality and correctness of the proposed solution and the validity of the application for clinical practice in care. The results were of an average grade of 8.1 over 10 points, a range between 6 and 10. The selected topic barely coincided among the students. Examples of care areas selected are care plans, family and community health, delivery care, administration and even robotics for care. Conclusion: The applied methodology of learning-teaching for the design of technologies demonstrates the success in the training of nursing professionals. The role of expert is essential to create applications that satisfy the needs of end users. Nursing has the possibility, the competence and the duty to participate in the process of construction of technological tools that are going to impact in care of people, family and community.Keywords: care, learning, nursing, technology
Procedia PDF Downloads 1383566 Modeling Optimal Lipophilicity and Drug Performance in Ligand-Receptor Interactions: A Machine Learning Approach to Drug Discovery
Authors: Jay Ananth
Abstract:
The drug discovery process currently requires numerous years of clinical testing as well as money just for a single drug to earn FDA approval. For drugs that even make it this far in the process, there is a very slim chance of receiving FDA approval, resulting in detrimental hurdles to drug accessibility. To minimize these inefficiencies, numerous studies have implemented computational methods, although few computational investigations have focused on a crucial feature of drugs: lipophilicity. Lipophilicity is a physical attribute of a compound that measures its solubility in lipids and is a determinant of drug efficacy. This project leverages Artificial Intelligence to predict the impact of a drug’s lipophilicity on its performance by accounting for factors such as binding affinity and toxicity. The model predicted lipophilicity and binding affinity in the validation set with very high R² scores of 0.921 and 0.788, respectively, while also being applicable to a variety of target receptors. The results expressed a strong positive correlation between lipophilicity and both binding affinity and toxicity. The model helps in both drug development and discovery, providing every pharmaceutical company with recommended lipophilicity levels for drug candidates as well as a rapid assessment of early-stage drugs prior to any testing, eliminating significant amounts of time and resources currently restricting drug accessibility.Keywords: drug discovery, lipophilicity, ligand-receptor interactions, machine learning, drug development
Procedia PDF Downloads 1143565 A Qualitative Examination of the Impact of COVID-19 on the Wellbeing of Undergraduate Students in Ontario
Authors: Soumya Mishra, Elena Neiterman
Abstract:
Aligned with the growing interest in the impact of the pandemic on academic experiences of university students, this study aimed to examine the challenges Canadian undergraduate students experienced during the university closures due to COVID-19. Using qualitative methodological approach, the study utilized semi-structured interviews conducted with 20 undergraduate students enrolled in an Ontario university to explore their thoughts and experience regarding online learning during the peak of the COVID-19 pandemic, from January 2021 to March 2021. The interviews yielded four major themes with the following associated subthemes: Personal Challenges Associated with Adapting to the Pandemic (Change in the Type of Stress Experienced, Unique Impact on Certain Groups of Students, Decreased Motivation, Crucial Role of Resilience), Social Challenges Associated with Adapting to the Pandemic (Increased Loneliness, Challenges Faced while Communicating, Perception of Group work, Role of Living Conditions), Challenges associated with Accessing University Resources (Crucial Role of Professors, Perception of Virtual Events, Importance of Physical Spaces). Overall, the analysis showed that the COVID-19 pandemic fostered resilience and psychological flexibility amongst all students. However, the mental health and social wellbeing of students deteriorated during the COVID-19 pandemic and they reported experiencing chronic stress, anxiety and loneliness. International students, first year and final year students experienced a unique set of challenges. It was hard for participants in our study to make strong new connections with their classmates and maintain existing friendships with their peers. The importance of professors in facilitating learning was amplified in the online environment due to the lack of in-person interaction with other students. Despite these challenges, most participants reported that they received high grades during online learning. The findings from this study could be helpful for organizations and individuals working towards fostering the wellbeing of undergraduate students. They can also help in making post-secondary institutions more resilient to future emergencies by creating contingency plans regarding online instructions and risk management techniques.Keywords: Canadian, COVID-19, university students, wellbeing
Procedia PDF Downloads 1043564 Journeys of Healing for Military Veterans: A Pilot Study
Authors: Heather Warfield, Brad Genereux
Abstract:
Military personnel encounter a number of challenges when separating from military service to include career uncertainty, relational/family dynamics, trauma as a result of military experiences, reconceptualization of identity, and existential issues related to purpose, meaning making and framing of the military experience(s). Embedded within military culture are well-defined rites of passage and a significant sense of belonging. Consequently, transition out of the military can result in the loss of such rites of passage and belongingness. However, a pilgrimage journey can provide the time and space to engage in a new rite of passage, to construct a new pilgrim identity, and a to develop deep social relationships that lead to a sense of belongingness to a particular pilgrim community as well as to the global community of pilgrims across numerous types of pilgrimage journeys. The aims of the current paper are to demonstrate the rationale for why pilgrimage journeys are particularly significant for military veterans, provide an overview of an innovative program that facilitates the Camino de Santiago pilgrimage for military veterans, and discusses the lessons learned from the initial pilot project of a recently established program. Veterans on the Camino (VOC) is an emerging nongovernmental organization in the USA. Founded by a military veteran, after leaving his military career, the primary objective of the organization is to facilitate healing for veterans via the Camino de Santiago pilgrimage journey. As part of the program, participants complete a semi-structured interview at three time points – pre, during, and post journey. The interview items are based on ongoing research by the principal investigator and address such constructs as meaning-making, wellbeing, therapeutic benefits and transformation. In addition, program participants complete The Sources of Meaning and Meaning in Life Questionnaire (SoMe). The pilot program occurred in the spring of 2017. Five participants were selected after an extensive application process and review by a three-person selection board. The selection criteria included demonstrated compatibility with the program objectives (i.e., prior military experience, availability for a 40 day journey, and awareness of the need for a transformational intervention). The participants were connected as a group through a private Facebook site and interacted with one another for several months prior to the pilgrimage. Additionally, the participants were interviewed prior to beginning the pilgrimage, at one point during the pilgrimage and immediately following the conclusion of the pilgrimage journey. The interviews yielded themes related to loss, meaning construction, renewed hope in humanity, and a commitment to future goals. The lessons learned from this pilot project included a confirmation of the need for such a program, a need for greater focus on logistical details, and the recognition that the pilgrimage experience needs to continue in some manner once the veterans return home.Keywords: pilgrimage, healing, military veterans, Camino de Santiago
Procedia PDF Downloads 2913563 Didactical and Semiotic Affordance of GeoGebra in a Productive Mathematical Discourse
Authors: Isaac Benning
Abstract:
Using technology to expand the learning space is critical for a productive mathematical discourse. This is a case study of two teachers who developed and enacted GeoGebra-based mathematics lessons following their engagement in a two-year professional development. The didactical and semiotic affordance of GeoGebra in widening the learning space for a productive mathematical discourse was explored. The approach of thematic analysis was used for lesson artefact, lesson observation, and interview data. The results indicated that constructing tools in GeoGebra provided a didactical milieu where students used them to explore mathematical concepts with little or no support from their teacher. The prompt feedback from the GeoGebra motivated students to practice mathematical concepts repeatedly in which they privately rethink their solutions before comparing their answers with that of their colleagues. The constructing tools enhanced self-discovery, team spirit, and dialogue among students. With regards to the semiotic construct, the tools widened the physical and psychological atmosphere of the classroom by providing animations that served as virtual concrete to enhance the recording, manipulation, testing of a mathematical idea, construction, and interpretation of geometric objects. These findings advance the discussion of widening the classroom for a productive mathematical discourse within the context of the mathematics curriculum of Ghana and similar Sub-Saharan African countries.Keywords: GeoGebra, theory of didactical situation, semiotic mediation, mathematics laboratory, mathematical discussion
Procedia PDF Downloads 1353562 Evaluating Models Through Feature Selection Methods Using Data Driven Approach
Authors: Shital Patil, Surendra Bhosale
Abstract:
Cardiac diseases are the leading causes of mortality and morbidity in the world, from recent few decades accounting for a large number of deaths have emerged as the most life-threatening disorder globally. Machine learning and Artificial intelligence have been playing key role in predicting the heart diseases. A relevant set of feature can be very helpful in predicting the disease accurately. In this study, we proposed a comparative analysis of 4 different features selection methods and evaluated their performance with both raw (Unbalanced dataset) and sampled (Balanced) dataset. The publicly available Z-Alizadeh Sani dataset have been used for this study. Four feature selection methods: Data Analysis, minimum Redundancy maximum Relevance (mRMR), Recursive Feature Elimination (RFE), Chi-squared are used in this study. These methods are tested with 8 different classification models to get the best accuracy possible. Using balanced and unbalanced dataset, the study shows promising results in terms of various performance metrics in accurately predicting heart disease. Experimental results obtained by the proposed method with the raw data obtains maximum AUC of 100%, maximum F1 score of 94%, maximum Recall of 98%, maximum Precision of 93%. While with the balanced dataset obtained results are, maximum AUC of 100%, F1-score 95%, maximum Recall of 95%, maximum Precision of 97%.Keywords: cardio vascular diseases, machine learning, feature selection, SMOTE
Procedia PDF Downloads 1233561 Mealtime Talk as a Context of Learning: A Multiple Case Study of Australian Chinese Parents' Interaction with Their Preschool Aged Children at Dinner Table
Authors: Jiangbo Hu, Frances Hoyte, Haiquan Huang
Abstract:
Research identifies that mealtime talk can be a significant learning context that provides children with rich experiences to foster their language and cognitive development. Middle-classed parents create an extended learning discourse for their children through sophisticated vocabulary, narrative and explanation genres at dinner table. However, mealtime opportunities vary with some parents having little interaction with their children and some parents focusing on directive of children’s behaviors. This study investigated five Chinese families’ parent-child interaction during mealtime that was rarely reported in the literature. The five families differ in terms of their living styles. Three families are from professional background where both mothers the fathers work in Australian companies and both of them present at dinner time. The other two families own business. The mothers are housemakers and the fathers are always absent at dinner time due to their busy business life. Employing case study method, the five Chinese families’ parent-child interactions at dinner table were recorded using a video camera. More than 3000 clauses were analyzed with the framework of 'systems of clause complexing' from systemic functional linguistic theory. The finding shows that mothers played a critical role in the interaction with their children by initiating most conversations. The three mothers from professional background tended to use more language in extending and expanding pattern that is beneficial for children’s language development and high level of thinking (e.g., logical thinking). The two house making mothers’ language focused more on the directive of their children’s social manners and dietary behaviors. The fathers though seemed to be less active, contributing to the richness of the conversation through their occasional props such as asking open questions or initiating a new topic. In general, the families from professional background were more advantaged in providing learning opportunities for their children at dinner table than the families running business were. The home experiences of Chinese children is an important topic in research due to the rapidly increasing number of Chinese children in Australia and other English speaking countries. Such research assist educators in the education of Chinese children with more awareness of Chinese children experiences at home that could be very unlike the settings in English schools. This study contributes to the research in this area through the analysis of language in parent-child interaction during mealtime, which is very different from previous research that mainly investigated Chinese families through survey and interview. The finding of different manners in language use between the professional families and business families has implication for the understanding of the variation of Chinese children’s home experiences that is influenced not only by parents’ socioeconomic status but their lifestyles.Keywords: Chinese children, Chinese parents, mealtime talk, parent-child interaction
Procedia PDF Downloads 2353560 Children's Literature with Mathematical Dialogue for Teaching Mathematics at Elementary Level: An Exploratory First Phase about Students’ Difficulties and Teachers’ Needs in Third and Fourth Grade
Authors: Goulet Marie-Pier, Voyer Dominic, Simoneau Victoria
Abstract:
In a previous research project (2011-2019) funded by the Quebec Ministry of Education, an educational approach was developed based on the teaching and learning of place value through children's literature. Subsequently, the effect of this approach on the conceptual understanding of the concept among first graders (6-7 years old) was studied. The current project aims to create a series of children's literature to help older elementary school students (8-10 years old) in developing a conceptual understanding of complex mathematical concepts taught at their grade level rather than a more typical procedural understanding. Knowing that there are no educational material or children's books that exist to achieve our goals, four stories, accompanied by mathematical activities, will be created to support students, and their teachers, in the learning and teaching of mathematical concepts that can be challenging within their mathematic curriculum. The stories will also introduce a mathematical dialogue into the characters' discourse with the aim to address various mathematical foundations for which there are often erroneous statements among students and occasionally among teachers. In other words, the stories aim to empower students seeking a real understanding of difficult mathematical concepts, as well as teachers seeking a way to teach these difficult concepts in a way that goes beyond memorizing rules and procedures. In order to choose the concepts that will be part of the stories, it is essential to understand the current landscape regarding the main difficulties experienced by students in third and fourth grade (8-10 years old) and their teacher’s needs. From this perspective, the preliminary phase of the study, as discussed in the presentation, will provide critical insight into the mathematical concepts with which the target grade levels struggle the most. From this data, the research team will select the concepts and develop their stories in the second phase of the study. Two questions are preliminary to the implementation of our approach, namely (1) what mathematical concepts are considered the most “difficult to teach” by teachers in the third and fourth grades? and (2) according to teachers, what are the main difficulties encountered by their students in numeracy? Self-administered online questionnaires using the SimpleSondage software will be sent to all third and fourth-grade teachers in nine school service centers in the Quebec region, representing approximately 300 schools. The data that will be collected in the fall of 2022 will be used to compare the difficulties identified by the teachers with those prevalent in the scientific literature. Considering that this ensures consistency between the proposed approach and the true needs of the educational community, this preliminary phase is essential to the relevance of the rest of the project. It is also an essential first step in achieving the two ultimate goals of the research project, improving the learning of elementary school students in numeracy, and contributing to the professional development of elementary school teachers.Keywords: children’s literature, conceptual understanding, elementary school, learning and teaching, mathematics
Procedia PDF Downloads 933559 From Paper to the Ether: The Innovative and Historical Development of Distance Education from Correspondence to On-Line Learning and Teaching in Queensland Universities over the past Century
Authors: B. Adcock, H. van Rensburg
Abstract:
Education is ever-changing to keep up with innovative technological development and the rapid acceleration of globalisation. This chapter introduces the historical development and transformation of teaching in distance education from correspondence to on-line learning in Queensland universities. It furthermore investigates changes to the delivery models of distance education that have impacted on teaching at tertiary level in Queensland, and reflects on the social changes that have taken place during the past 100 years. This includes an analysis of the following five different periods in time: Foundation period (1911-1919) including World War I; 1920-1939 including the Great Depression; 1940-1970s, including World War II and the post war reconstruction; and the current technological era (1980s to present). In Queensland, the concept of distance education was begun by the University of Queensland (UQ) in 1911, when it began offering extension courses. The introduction of modern technology, in the form of electronic delivery, dramatically changed tertiary distance education due to political initiatives. The inclusion of electronic delivery in education signifies change at many levels, including policy, pedagogy, curriculum and governance. Changes in delivery not only affect the way study materials are delivered, but also the way courses are be taught and adjustments made by academics to their teaching methods.Keywords: distance education, innovative technological development, on line education, tertiary education
Procedia PDF Downloads 5073558 Implementing Equitable Learning Experiences to Increase Environmental Awareness and Science Proficiency in Alabama’s Schools and Communities
Authors: Carly Cummings, Maria Soledad Peresin
Abstract:
Alabama has a long history of racial injustice and unsatisfactory educational performance. In the 1870s Jim Crow laws segregated public schools and disproportionally allocated funding and resources to white institutions across the South. Despite the Supreme Court ruling to integrate schools following Brown vs. the Board of Education in 1954, Alabama’s school system continued to exhibit signs of segregation, compounded by “white flight” and the establishment of exclusive private schools, which still exist today. This discriminatory history has had a lasting impact of the state’s education system, reflected in modern school demographics and achievement data. It is well known that Alabama struggles with education performance, especially in science education. On average, minority groups scored the lowest in science proficiency. In Alabama, minority populations are concentrated in a region known as the Black Belt, which was once home to countless slave plantations and was the epicenter of the Civil Rights Movement. Today the Black Belt is characterized by a high density of woodlands and plays a significant role in Alabama’s leading economic industry-forest products. Given the economic importance of forestry and agriculture to the state, environmental science proficiency is essential to its stability; however, it is neglected in areas where it is needed most. To better understand the inequity of science education within Alabama, our study first investigates how geographic location, demographics and school funding relate to science achievement scores using ArcGIS and Pearson’s correlation coefficient. Additionally, our study explores the implementation of a relevant, problem-based, active learning lesson in schools. Relevant learning engages students by connecting material to their personal experiences. Problem-based active learning involves real-world problem-solving through hands-on experiences. Given Alabama’s significant woodland coverage, educational materials on forest products were developed with consideration of its relevance to students, especially those located in the Black Belt. Furthermore, to incorporate problem solving and active learning, the lesson centered around students using forest products to solve environmental challenges, such as water pollution- an increasing challenge within the state due to climate change. Pre and post assessment surveys were provided to teachers to measure the effectiveness of the lesson. In addition to pedagogical practices, community and mentorship programs are known to positively impact educational achievements. To this end, our work examines the results of surveys measuring educational professionals’ attitudes toward a local mentorship group within the Black Belt and its potential to address environmental and science literacy. Additionally, our study presents survey results from participants who attended an educational community event, gauging its effectiveness in increasing environmental and science proficiency. Our results demonstrate positive improvements in environmental awareness and science literacy with relevant pedagogy, mentorship, and community involvement. Implementing these practices can help provide equitable and inclusive learning environments and can better equip students with the skills and knowledge needed to bridge this historic educational gap within Alabama.Keywords: equitable education, environmental science, environmental education, science education, racial injustice, sustainability, rural education
Procedia PDF Downloads 713557 De-Learning Language at Preschool: A Case of Nepal
Authors: Meenakshi Dahal
Abstract:
Generally, children start verbal communication by the age of eighteen months. Though they have difficulties in constructing complete sentences, they try to make their thought s understandable to the audience. By the age of 36 months, when they enroll in preschool, their Language and communication skills are enhanced. Children need plenty of classroom experiences that will help them to develop their oral language skills. Oral language is the primary means through which each individual child is enabled to structure, evaluate, describe and to express his/her experiences. In the context of multi lingual and multi-cultural country like Nepal, the languages used in preschool and the communities vary. In such a case, the language of instruction in the preschool is different from the language used by the children to communicate at home. Using qualitative research method the socio-cultural aspect of the language learning has been analyzed. This has been done by analyzing and exploring preschool activities as well as the language of instruction and communication in the preschools in rural Nepal. It is found that the language of instruction is different from the language of communications primarily used by the children. Teachers seldom use local language resulting in difficulties for the children to understand. Instead of recognizing their linguistic, social and cultural capitals teachers conform to using the Nepali language which the children are not familiar with. Children have to adapt to new language structures and patterns of usage resulting them to be slow in oral language and communication in the preschool. The paper concludes that teachers have to recognize the linguistic capitals of the children and schools need to be responsible to facilitate this process for all children, whatever their language background.Keywords: children, language, preschool, socio-culture
Procedia PDF Downloads 3973556 Effect of Simulation on Anxiety and Knowledge among Novice Nursing Students
Authors: Suja Karkada, Jayanthi Radhakrishnan, Jansi Natarajan, Gerald, Amandu Matua, Sujatha Shanmugasundaram
Abstract:
Simulation-based learning is an educational strategy designed to simulate actual clinical situations in a safe environment. Globally, simulation is recognized by several landmark studies as an effective teaching-learning method. A systematic review of the literature on simulation revealed simulation as a useful strategy in creating a learning environment which contributes to knowledge, skills, safety, and confidence. However, to the best of the author's knowledge, there are no studies on assessing the anxiety of the students undergoing simulation. Hence the researchers undertook a study with the aim to evaluate the effectiveness of simulation on anxiety and knowledge among novice nursing students. This quasi-experimental study had a total sample of 69 students (35- Intervention group with simulation and 34- Control group with case scenario) consisting of all the students enrolled in the Fundamentals of Nursing Laboratory course during Spring 2016 and Fall 2016 semesters at a college of nursing in Oman. Ethical clearance was obtained from the Institutional Review Board (IRB) of the college of nursing. Informed consent was obtained from every participant. Study received the Dean’s fund for research. The data were collected regarding the demographic information, knowledge and anxiety levels before and after the use of simulation and case scenario for the procedure nasogastric tube feeding in intervention and control group respectively. The intervention was performed by four faculties who were the core team members of the course. Results were analyzed in SPSS using descriptive and inferential statistics. Majority of the students’ in intervention (82.9%) and control (89.9%) groups were equal to or below the age of 20 years, were females (71%), 76.8% of them were from rural areas and 65.2% had a GPA of more than 2.5. The selection of the samples to either the experimental or the control group was from a homogenous population (p > 0.05). There was a significant reduction of anxiety among the students of control group (t (67) = 2.418, p = 0.018) comparing to the experimental group, indicating that simulation creates anxiety among Novice nursing students. However, there was no significant difference in the mean scores of knowledge. In conclusion, the study was useful in that it will help the investigators better understand the implications of using simulation in teaching skills to novice students. Since previous studies with students indicate better knowledge acquisition; this study revealed that simulation can increase anxiety among novice students possibly it is the first time they are introduced to this method of teaching.Keywords: anxiety, knowledge, novice students, simulation
Procedia PDF Downloads 1603555 Collocation Errors in English as Second Language (ESL) Essay Writing
Authors: Fatima Muhammad Shitu
Abstract:
In language learning, Second language learners like their native speaker counter parts, commit errors in their attempt to achieve competence in the target language. The realm of Collocation has to do with meaning relation between lexical items. In all human language, there is a kind of ‘natural order’ in which words are arranged or relate to one another in sentences so much so that when a word occurs in a given context, the related or naturally co -occurring word will automatically come to the mind. It becomes an error, therefore, if students inappropriately pair or arrange such ‘naturally’ co – occurring lexical items in a text. It has been observed that most of the second language learners in this research group commit collocational errors. A study of this kind is very significant as it gives insight into the kinds of errors committed by learners. This will help the language teacher to be able to identify the sources and causes of such errors as well as correct them thereby guiding, helping and leading the learners towards achieving some level of competence in the language. The aim of the study is to understand the nature of these errors as stumbling blocks to effective essay writing. The objective of the study is to identify the errors, analyse their structural compositions so as to determine whether there are similarities between students in this regard and to find out whether there are patterns to these kinds of errors which will enable the researcher to understand their sources and causes. As a descriptive research, the researcher samples some nine hundred essays collected from three hundred undergraduate learners of English as a second language in the Federal College of Education, Kano, North- West Nigeria, i.e. three essays per each student. The essays which were given on three different lecture times were of similar thematic preoccupations (i.e. same topics) and length (i.e. same number of words). The essays were written during the lecture hour at three different lecture occasions. The errors were identified in a systematic manner whereby errors so identified were recorded only once even if they occur severally in students’ essays. The data was collated using percentages in which the identified number of occurrences were converted accordingly in percentages. The findings from the study indicates that there are similarities as well as regular and repeated errors which provided a pattern. Based on the pattern identified, the conclusion is that students’ collocational errors are attributable to poor teaching and learning which resulted in wrong generalisation of rules.Keywords: collocations, errors, second language learning, ESL students
Procedia PDF Downloads 3353554 Evaluation of Gesture-Based Password: User Behavioral Features Using Machine Learning Algorithms
Authors: Lakshmidevi Sreeramareddy, Komalpreet Kaur, Nane Pothier
Abstract:
Graphical-based passwords have existed for decades. Their major advantage is that they are easier to remember than an alphanumeric password. However, their disadvantage (especially recognition-based passwords) is the smaller password space, making them more vulnerable to brute force attacks. Graphical passwords are also highly susceptible to the shoulder-surfing effect. The gesture-based password method that we developed is a grid-free, template-free method. In this study, we evaluated the gesture-based passwords for usability and vulnerability. The results of the study are significant. We developed a gesture-based password application for data collection. Two modes of data collection were used: Creation mode and Replication mode. In creation mode (Session 1), users were asked to create six different passwords and reenter each password five times. In replication mode, users saw a password image created by some other user for a fixed duration of time. Three different duration timers, such as 5 seconds (Session 2), 10 seconds (Session 3), and 15 seconds (Session 4), were used to mimic the shoulder-surfing attack. After the timer expired, the password image was removed, and users were asked to replicate the password. There were 74, 57, 50, and 44 users participated in Session 1, Session 2, Session 3, and Session 4 respectfully. In this study, the machine learning algorithms have been applied to determine whether the person is a genuine user or an imposter based on the password entered. Five different machine learning algorithms were deployed to compare the performance in user authentication: namely, Decision Trees, Linear Discriminant Analysis, Naive Bayes Classifier, Support Vector Machines (SVMs) with Gaussian Radial Basis Kernel function, and K-Nearest Neighbor. Gesture-based password features vary from one entry to the next. It is difficult to distinguish between a creator and an intruder for authentication. For each password entered by the user, four features were extracted: password score, password length, password speed, and password size. All four features were normalized before being fed to a classifier. Three different classifiers were trained using data from all four sessions. Classifiers A, B, and C were trained and tested using data from the password creation session and the password replication with a timer of 5 seconds, 10 seconds, and 15 seconds, respectively. The classification accuracies for Classifier A using five ML algorithms are 72.5%, 71.3%, 71.9%, 74.4%, and 72.9%, respectively. The classification accuracies for Classifier B using five ML algorithms are 69.7%, 67.9%, 70.2%, 73.8%, and 71.2%, respectively. The classification accuracies for Classifier C using five ML algorithms are 68.1%, 64.9%, 68.4%, 71.5%, and 69.8%, respectively. SVMs with Gaussian Radial Basis Kernel outperform other ML algorithms for gesture-based password authentication. Results confirm that the shorter the duration of the shoulder-surfing attack, the higher the authentication accuracy. In conclusion, behavioral features extracted from the gesture-based passwords lead to less vulnerable user authentication.Keywords: authentication, gesture-based passwords, machine learning algorithms, shoulder-surfing attacks, usability
Procedia PDF Downloads 1103553 Teaching Gender and Language in the EFL Classroom in the Arab World: Algerian Students’ Awareness of Their Gender Identities from New Perspectives
Authors: Amina Babou
Abstract:
Gender and language is a moot and miscellaneous arena in the sphere of sociolinguistics, which has been proliferated so widely and rapidly in recent years. The dawn of research on gender and foreign language education was against the feminist researchers who allowed space for the bustling concourse of voices and perspectives in the arena of gender and language differences, in the early to the mid-1970. The objective of this scrutiny is to explore to what extent teaching gender and language in the English as a Foreign Language (EFL) classroom plays a pivotal role in learning language information and skills. And the gist of this paper is to investigate how EFL students in Algeria conflate their gender identities with the linguistic practices and scholastic expertise. To grapple with the full range of issues about the EFL students’ awareness about the negotiation of meanings in the classroom, we opt for observing, interviewing, and questioning later to check using ‘how-do-you do’ procedure. The analysis of the EFL classroom discourse, from five Algerian universities, reveals that speaking strategies such as the manners students make an abrupt topic shifts, respond spontaneously to the teacher, ask more questions, interrupt others to seize control of conversations and monopolize the speaking floor through denying what others have said, do not sit very lightly on 80.4% of female students’ shoulders. The data indicate that female students display the assertive style as a strategy of learning to subvert the norms of femininity, especially in the speaking module.Keywords: gender identities, EFL students, classroom discourse, linguistics
Procedia PDF Downloads 4163552 Remote Sensing Approach to Predict the Impacts of Land Use/Land Cover Change on Urban Thermal Comfort Using Machine Learning Algorithms
Authors: Ahmad E. Aldousaria, Abdulla Al Kafy
Abstract:
Urbanization is an incessant process that involves the transformation of land use/land cover (LULC), resulting in a reduction of cool land covers and thermal comfort zones (TCZs). This study explores the directional shrinkage of TCZs in Kuwait using Landsat satellite data from 1991 – 2021 to predict the future LULC and TCZ distribution for 2026 and 2031 using cellular automata (CA) and artificial neural network (ANN) algorithms. Analysis revealed a rapid urban expansion (40 %) in SE, NE, and NW directions and TCZ shrinkage in N – NW and SW directions with 25 % of the very uncomfortable area. The predicted result showed an urban area increase from 44 % in 2021 to 47 % and 52 % in 2026 and 2031, respectively, where uncomfortable zones were found to be concentrated around urban areas and bare lands in N – NE and N – NW directions. This study proposes an effective and sustainable framework to control TCZ shrinkage, including zero soil policies, planned landscape design, manmade water bodies, and rooftop gardens. This study will help urban planners and policymakers to make Kuwait an eco–friendly, functional, and sustainable country.Keywords: land cover change, thermal environment, green cover loss, machine learning, remote sensing
Procedia PDF Downloads 2303551 Research on Resilience-Oriented Disintegration in System-of-System
Authors: Hang Yang, Jiahao Liu, Jichao Li, Kewei Yang, Minghao Li, Bingfeng Ge
Abstract:
The system-of-systems (SoS) are utilized to characterize networks formed by integrating individual complex systems that demonstrate interdependence and interconnectedness. Research on the disintegration issue in SoS is significant in improving network survivability, maintaining network security, and optimizing SoS architecture. Accordingly, this study proposes an integrated framework called resilience-oriented disintegration in SoS (SoSRD), for modeling and solving the issue of SoS disintegration. Firstly, a SoS disintegration index (SoSDI) is presented to evaluate the disintegration effect of SoS. This index provides a practical description of the disintegration process and is the first integration of the network disintegration model and resilience models. Subsequently, we propose a resilience-oriented disintegration method based on reinforcement learning (RDRL) to enhance the efficiency of SoS disintegration. This method is not restricted by the problem scenario as well as considering the coexistence of disintegration (node/link removal) and recovery (node/link addition) during the process of SoS disintegration. Finally, the effectiveness and superiority of the proposed SoSRD are demonstrated through a case study. We demonstrate that our proposed framework outperforms existing indexes and methods in both node and link disintegration scenarios, providing a fresh perspective on network disintegration. The findings provide crucial insights into dismantling harmful SoS and designing a more resilient SoS.Keywords: system-of-systems, disintegration index, resilience, reinforcement learning
Procedia PDF Downloads 23