Search results for: solution validation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6930

Search results for: solution validation

3150 Banking and Accounting Analysis Researches Effect on Environment and Income

Authors: Gerges Samaan Henin Abdalla

Abstract:

New methods of providing banking services to the customer have been introduced, such as online banking. Banks have begun to consider electronic banking (e-banking) as a way to replace some traditional branch functions by using the Internet as a new distribution channel. Some consumers have at least one account at multiple banks and access these accounts through online banking. To check their current net worth, clients need to log into each of their accounts, get detailed information, and work toward consolidation. Not only is it time consuming, but it is also a repeatable activity with a certain frequency. To solve this problem, the concept of account aggregation was added as a solution. Account consolidation in e-banking as a form of electronic banking appears to build a stronger relationship with customers. An account linking service is generally referred to as a service that allows customers to manage their bank accounts held at different institutions via a common online banking platform that places a high priority on security and data protection. The article provides an overview of the account aggregation approach in e-banking as a new service in the area of e-banking.

Keywords: compatibility, complexity, mobile banking, observation, risk banking technology, Internet banks, modernization of banks, banks, account aggregation, security, enterprise development

Procedia PDF Downloads 57
3149 A Green Hydrogen Route for Electromobility in Brazil and Its Impact in Climate Change

Authors: Milena França Marques

Abstract:

Due to the climate crisis, several countries such as Brazil began to look for energy alternatives, finding green hydrogen as a possible solution. In addition to not emitting polluting gasses, it also has a large energy capacity, being an excellent alternative for the transport sector, the third sector that emits the most Greenhouse Gases (GHG) in Brazil. Therefore, this work aims to suggest a route for using green hydrogen, through the analysis of plans implemented in other countries, the Brazilian situation, and its difficulties in the development of hydrogen and electromobility, aiming to understand how its value chain works, as well as how to make the Brazilian fleet more efficient and decarbonize. As a result, 68 structuring measures were suggested for the first 5 axes of the National Hydrogen Program (PNH2) using the Three-Year Plan as a basis. Categorizations of measures were also made, definitions of those responsible for their development and implementation, as well as deadlines for them to be met. It is concluded that the study has the potential to promote national energy-environmental mobility transition planning realistically, capable of developing hydrogen and electromobility in Brazil, in addition to contributing to achieving the goals established by its Nationally Determined Contribution (NDC).

Keywords: climate change, electromobility, hydrogen, roadmap

Procedia PDF Downloads 58
3148 Research on the Aero-Heating Prediction Based on Hybrid Meshes and Hybrid Schemes

Authors: Qiming Zhang, Youda Ye, Qinxue Jiang

Abstract:

Accurate prediction of external flowfield and aero-heating at the wall of hypersonic vehicle is very crucial for the design of aircrafts. Unstructured/hybrid meshes have more powerful advantages than structured meshes in terms of pre-processing, parallel computing and mesh adaptation, so it is imperative to develop high-resolution numerical methods for the calculation of aerothermal environment on unstructured/hybrid meshes. The inviscid flux scheme is one of the most important factors affecting the accuracy of unstructured/ hybrid mesh heat flux calculation. Here, a new hybrid flux scheme is developed and the approach of interface type selection is proposed: i.e. 1) using the exact Riemann scheme solution to calculate the flux on the faces parallel to the wall; 2) employing Sterger-Warming (S-W) scheme to improve the stability of the numerical scheme in other interfaces. The results of the heat flux fit the one observed experimentally and have little dependence on grids, which show great application prospect in unstructured/ hybrid mesh.

Keywords: aero-heating prediction, computational fluid dynamics, hybrid meshes, hybrid schemes

Procedia PDF Downloads 249
3147 Corrosion Evaluation of Zinc Coating Prepared by Two Types of Electric Currents

Authors: M. Sajjadnejad, H. Karimi Abadeh

Abstract:

In this research, zinc coatings were fabricated by electroplating process in a sulfate solution under direct and pulse current conditions. In direct and pulse current conditions, effect of maximum current was investigated on the coating properties. Also a comparison was made between the obtained coatings under direct and pulse current. Morphology of the coatings was investigated by scanning electron microscopy (SEM). Corrosion behavior of the coatings was investigated by potentiodynamic polarization test. In pulse current conditions, the effect of pulse frequency and duty cycle was also studied. The effect of these conditions and parameters were also investigated on morphology and corrosion behavior. All of DC plated coatings are showing a distinct passivation area in -1 to -0.4 V range. Pulsed current coatings possessed a higher corrosion resistance. The results showed that current density is the most important factor regarding the fabrication process. Furthermore, a rise in duty cycle deteriorated corrosion resistance of coatings. Pulsed plated coatings performed almost 10 times better than DC plated coatings.

Keywords: corrosion, duty cycle, pulsed current, zinc

Procedia PDF Downloads 122
3146 Achievement of Livable and Healthy City through the Design of Green and Blue Infrastructure: A Case Study on City of Isfahan, Iran

Authors: Reihaneh Rafiemanzelat

Abstract:

due to towards the rapid urbanization, cities throughout the world faced to rapid growth through gray infrastructure. Therefore designing cities based on green and blue infrastructure can offer the best solution to support healthy urban environment. This conformation with a wide range of ecosystem service has a positive impact on the regulation of air temperature, noise reduction, air quality, and also create a pleasant environment for humans activities. Research mainly focuses on the concept and principles of green and blue infrastructure in the city of Esfahan at the center of Iran in order to create a livable and healthy environment. Design principles for green and blue infrastructure are classified into two different but interconnect evaluations. Healthy green infrastructure assessing based on; volume, shape, location, dispersion, and maintenance. For blue infrastructure there are three aspects of water and ecosystem which are; the contribution of water on medical health, the contribution of water on mental health, and creating possibilities to exercise.

Keywords: healthy cities, livability, urban landscape, green and blue infrastructure

Procedia PDF Downloads 305
3145 The Effect of Smart-Nano Materials in Thermal Retrofit of Healthcare Envelope Layout in Desert Climate: A Case Study on Semnan

Authors: Foroozan Sadri, Mohammadmehdi Moulaii, Farkhondeh Vahdati

Abstract:

Smart materials can create a great revolution in our built environment, as living systems do. In this research, the optimal structure of healthcare building envelopes is analyzed in terms of thickness according to the utility of the smart-nano materials as nontoxic substances in the region. The research method in this paper is based on library studies and simulation. Grasshopper program is employed to simulate thermal characteristics to achieve the optimum U-value in Semnan desert climate, according to Iranian national standards. The potential of healthcare envelope layouts in thermal properties development (primarily U-value) of these buildings is discussed due to the high thermal loads of healthcare buildings and also toxicity effects of conventional materials. As a result, envelope thicknesses are calculated, and the performance of the nano-PCM and gypsum wallboards are compared. A solution with comparable performance using smart-nano materials instead of conventional materials would determine a decrease in wall thickness.

Keywords: energy saving, exterior envelope, smart-nano materials, thermal performance, U-value

Procedia PDF Downloads 170
3144 When Sexual Desire Fades: Women Talk about Changes in Desire within Long Term Heterosexual Relationships

Authors: Avigail Moor

Abstract:

A decline in women’s sexual desire over the course of long-term relationships, relative to men’s, has been frequently noted. Yet, while there is ample evidence that this change in women is quite common, it is still generally pathologized. Moreover, little is known regarding its true meaning for women and the effect it has on their wellbeing. In light of that, our primary goal was to investigate women's subjective experiences of this reality. Do they connect it to dysfunction in self or marriage, or rather they don't equate love and sex, which for them simply become less connected with time, even as the relationship remains entirely fulfilling? A second goal was to explore how such gender-based differences in sexual desire impact women, and indirectly the couple and partner, in terms of wellbeing and satisfaction from the relationship. In-depth semi-structured interviews were conducted with 15 women in committed long-term relations, aged 25 and over. The findings indicate that for women, there is no contradiction between a loving relation and a decline in spontaneous sexual desire. At the same time, while not rooted in a problem, it does create some. Tension, frustration, conflict, and pressure are some of the negative sequelae that carry adverse effects for women’s wellbeing, the solution to which requires, in their opinion, honest dialogue, mutual respect, and reasonable compromise.

Keywords: gender, sexuality, sexual desire, well being

Procedia PDF Downloads 137
3143 A General Variable Neighborhood Search Algorithm to Minimize Makespan of the Distributed Permutation Flowshop Scheduling Problem

Authors: G. M. Komaki, S. Mobin, E. Teymourian, S. Sheikh

Abstract:

This paper addresses minimizing the makespan of the distributed permutation flow shop scheduling problem. In this problem, there are several parallel identical factories or flowshops each with series of similar machines. Each job should be allocated to one of the factories and all of the operations of the jobs should be performed in the allocated factory. This problem has recently gained attention and due to NP-Hard nature of the problem, metaheuristic algorithms have been proposed to tackle it. Majority of the proposed algorithms require large computational time which is the main drawback. In this study, a general variable neighborhood search algorithm (GVNS) is proposed where several time-saving schemes have been incorporated into it. Also, the GVNS uses the sophisticated method to change the shaking procedure or perturbation depending on the progress of the incumbent solution to prevent stagnation of the search. The performance of the proposed algorithm is compared to the state-of-the-art algorithms based on standard benchmark instances.

Keywords: distributed permutation flow shop, scheduling, makespan, general variable neighborhood search algorithm

Procedia PDF Downloads 354
3142 Model Order Reduction of Continuous LTI Large Descriptor System Using LRCF-ADI and Square Root Balanced Truncation

Authors: Mohammad Sahadet Hossain, Shamsil Arifeen, Mehrab Hossian Likhon

Abstract:

In this paper, we analyze a linear time invariant (LTI) descriptor system of large dimension. Since these systems are difficult to simulate, compute and store, we attempt to reduce this large system using Low Rank Cholesky Factorized Alternating Directions Implicit (LRCF-ADI) iteration followed by Square Root Balanced Truncation. LRCF-ADI solves the dual Lyapunov equations of the large system and gives low-rank Cholesky factors of the gramians as the solution. Using these cholesky factors, we compute the Hankel singular values via singular value decomposition. Later, implementing square root balanced truncation, the reduced system is obtained. The bode plots of original and lower order systems are used to show that the magnitude and phase responses are same for both the systems.

Keywords: low-rank cholesky factor alternating directions implicit iteration, LTI Descriptor system, Lyapunov equations, Square-root balanced truncation

Procedia PDF Downloads 418
3141 Hydrodynamic Analysis on the Body of a Solar Autonomous Underwater Vehicle by Numerical Method

Authors: Mohammad Moonesun, Ehsan Asadi Asrami, Julia Bodnarchuk

Abstract:

In the case of Solar Autonomous Underwater Vehicle, which uses photovoltaic panels to provide its required power, due to limitation of energy, accurate estimation of resistance and energy has major sensitivity. In this work, hydrodynamic calculations by numerical method for a solar autonomous underwater vehicle equipped by two 50 W photovoltaic panels has been studied. To evaluate the required power and energy, hull hydrodynamic resistance in several velocities should be taken into account. To do this assessment, the ANSYS FLUENT 18 applied as Computational Fluid Dynamics (CFD) tool that solves Reynolds Average Navier Stokes (RANS) equations around AUV hull, and K-ω SST is used as turbulence model. To validate of solution method and modeling approach, the model of Myring submarine that it’s experimental data was available, is simulated. There is good agreement between numerical and experimental results. Also, these results showed that the K-ω SST Turbulence model is an ideal method to simulate the AUV motion in low velocities.

Keywords: underwater vehicle, hydrodynamic resistance, numerical modelling, CFD, RANS

Procedia PDF Downloads 205
3140 Humanitarian Aid and National Sovereignty: The Case of Kosovo

Authors: Nick Papanikolaou

Abstract:

In modern world politics, International relations are very complex not only in their construction but also in their interpretation the ex-Yugoslavian(western Balkans) countries, due to the establishment of independent states, have also risen pending geopolitical and territorial issues such as the Kosovo dispute widely known as an active frozen conflict. Science of anthropology and its subfield of anthropology of conflict can suggest a sustainable plan of communities coexistence and abolishment of fondamentalism. The 1244 Security Council Resolution provides a framework of implementation of a transitional international joint international armed presence for ensuring control and stability in the territory. The changing international relations landscape and the rise of the integration of the Western Balkans in the European Union have brought the question of Kosovo and all the till now internationally controlled system of governance to a dead end. A new solution that will ensure a sustainable future needs to be applied in order to solve this case in a way that rights of both albanians and Serbians will be equally respected and both populations will coexist peacefully. What this presentation aims for is to present a plan for the peaceful coexistence and sovreignty of habitants of Kosovo in a whole new way of governance.

Keywords: sovereignty, Kosovo, Western Balkans, anthropology of conflict

Procedia PDF Downloads 70
3139 Adsorption of Cerium as One of the Rare Earth Elements Using Multiwall Carbon Nanotubes from Aqueous Solution: Modeling, Equilibrium and Kinetics

Authors: Saeb Ahmadi, Mohsen Vafaie Sefti, Mohammad Mahdi Shadman, Ebrahim Tangestani

Abstract:

Carbon nanotube has shown great potential for the removal of various inorganic and organic components due to properties such as large surface area and high adsorption capacity. Central composite design is widely used method for determining optimal conditions. Also due to the economic reasons and wide application, the rare earth elements are important components. The analyses of cerium (Ce(III)) adsorption as one of the Rare Earth Elements (REEs) adsorption on Multiwall Carbon Nanotubes (MWCNTs) have been studied. The optimization process was performed using Response Surface Methodology (RSM). The optimum amount conditions were pH of 4.5, initial Ce (III) concentration of 90 mg/l and MWCNTs dosage of 80 mg. Under this condition, the optimum adsorption percentage of Ce (III) was obtained about 96%. Next, at the obtained optimum conditions the kinetic and isotherm studied and result showed the pseudo-second order and Langmuir isotherm are more fitted with experimental data than other models.

Keywords: cerium, rare earth element, MWCNTs, adsorption, optimization

Procedia PDF Downloads 167
3138 Wastewater Treatment Using Ternary Hybrid Advanced Oxidation Processes Through Heterogeneous Fenton

Authors: komal verma, V. S. Moholkar

Abstract:

In this current study, the challenge of effectively treating and mineralizing industrial wastewater prior to its discharge into natural water bodies, such as rivers and lakes, is being addressed. Particularly, the focus is on the wastewater produced by chemical process industries, including refineries, petrochemicals, fertilizer, pharmaceuticals, pesticides, and dyestuff industries. These wastewaters often contain stubborn organic pollutants that conventional techniques, such as microbial processes cannot efficiently degrade. To tackle this issue, a ternary hybrid technique comprising of adsorption, heterogeneous Fenton process, and sonication has been employed. The study aims to evaluate the effectiveness of this approach for treating and mineralizing wastewater from a fertilizer industry located in Northeast India. The study comprises several key components, starting with the synthesis of the Fe3O4@AC nanocomposite using the co-precipitation method. The nanocomposite is then subjected to comprehensive characterization through various standard techniques, including FTIR, FE-SEM, EDX, TEM, BET surface area analysis, XRD, and magnetic property determination using VSM. Next, the process parameters of wastewater treatment are statistically optimized, focusing on achieving a high level of COD (Chemical Oxygen Demand) removal as the response variable. The Fe3O4@AC nanocomposite's adsorption characteristics and kinetics are also assessed in detail. The remarkable outcome of this study is the successful application of the ternary hybrid technique, combining adsorption, Fenton process, and sonication. This approach proves highly effective, leading to nearly complete mineralization (or TOC removal) of the fertilizer industry wastewater. The results highlight the potential of the Fe3O4@AC nanocomposite and the ternary hybrid technique as a promising solution for tackling challenging wastewater pollutants from various chemical process industries. This paper reports investigations in the mineralization of industrial wastewater (COD = 3246 mg/L, TOC = 2500 mg/L) using a ternary (ultrasound + Fenton + adsorption) hybrid advanced oxidation process. Fe3O4 decorated activated charcoal (Fe3O4@AC) nanocomposites (surface area = 538.88 m2/g; adsorption capacity = 294.31 mg/g) were synthesized using co-precipitation. The wastewater treatment process was optimized using central composite statistical design. At optimum conditions, viz. pH = 4.2, H2O2 loading = 0.71 M, adsorbent dose = 0.34 g/L, reduction in COD and TOC of wastewater were 94.75% and 89%, respectively. This result results from synergistic interactions among the adsorption of pollutants onto activated charcoal and surface Fenton reactions induced due to the leaching of Fe2+/Fe3+ ions from the Fe3O4 nanoparticles. Micro-convection generated due to sonication assisted faster mass transport (adsorption/desorption) of pollutants between Fe3O4@AC nanocomposite and the solution. The net result of this synergism was high interactions and reactions among and radicals and pollutants that resulted in the effective mineralization of wastewater. The Fe3O4@AC showed excellent recovery (> 90 wt%) and reusability (> 90% COD removal) in 5 successive cycles of treatment. LC-MS analysis revealed effective (> 50%) degradation of more than 25 significant contaminants (in the form of herbicides and pesticides) after the treatment with ternary hybrid AOP. Similarly, the toxicity analysis test using the seed germination technique revealed ~ 60% reduction in the toxicity of the wastewater after treatment.

Keywords: chemical oxygen demand (cod), fe3o4@ac nanocomposite, kinetics, lc-ms, rsm, toxicity

Procedia PDF Downloads 72
3137 Effect of Retained Austenite Stability in Corrosion Mechanism of Dual Phase High Carbon Steel

Authors: W. Handoko, F. Pahlevani, V. Sahajwalla

Abstract:

Dual-phase high carbon steels (DHCS) are commonly known for their improved strength, hardness, and abrasive resistance properties due to co-presence of retained austenite and martensite at the same time. Retained austenite is a meta-stable phase at room temperature, and stability of this phase governs the response of DHCS at different conditions. This research paper studies the effect of RA stability on corrosion behaviour of high carbon steels after they have been immersed into 1.0 M NaCl solution for various times. For this purpose, two different steels with different RA stabilities have been investigated. The surface morphology of the samples before and after corrosion attack was observed by secondary electron microscopy (SEM) and atomic force microscopy (AFM), along with the weight loss and Vickers hardness analysis. Microstructural investigations proved the preferential attack to retained austenite phase during corrosion. Hence, increase in the stability of retained austenite in dual-phase steels led to decreasing the weight loss rate.

Keywords: high carbon steel, austenite stability, atomic force microscopy, corrosion

Procedia PDF Downloads 210
3136 An Experimental Study on the Coupled Heat Source and Heat Sink Effects on Solid Rockets

Authors: Vinayak Malhotra, Samanyu Raina, Ajinkya Vajurkar

Abstract:

Enhancing the rocket efficiency by controlling the external factors in solid rockets motors has been an active area of research for most of the terrestrial and extra-terrestrial system operations. Appreciable work has been done, but the complexity of the problem has prevented thorough understanding due to heterogenous heat and mass transfer. On record, severe issues have surfaced amounting to irreplaceable loss of mankind, instruments, facilities, and huge amount of money being invested every year. The coupled effect of an external heat source and external heat sink is an aspect yet to be articulated in combustion. Better understanding of this coupled phenomenon will induce higher safety standards, efficient missions, reduced hazard risks, with better designing, validation, and testing. The experiment will help in understanding the coupled effect of an external heat sink and heat source on the burning process, contributing in better combustion and fire safety, which are very important for efficient and safer rocket flights and space missions. Safety is the most prevalent issue in rockets, which assisted by poor combustion efficiency, emphasizes research efforts to evolve superior rockets. This signifies real, engineering, scientific, practical, systems and applications. One potential application is Solid Rocket Motors (S.R.M). The study may help in: (i) Understanding the effect on efficiency of core engines due to the primary boosters if considered as source, (ii) Choosing suitable heat sink materials for space missions so as to vary the efficiency of the solid rocket depending on the mission, (iii) Giving an idea about how the preheating of the successive stage due to previous stage acting as a source may affect the mission. The present work governs the temperature (resultant) and thus the heat transfer which is expected to be non-linear because of heterogeneous heat and mass transfer. The study will deepen the understanding of controlled inter-energy conversions and the coupled effect of external source/sink(s) surrounding the burning fuel eventually leading to better combustion thus, better propulsion. The work is motivated by the need to have enhanced fire safety and better rocket efficiency. The specific objective of the work is to understand the coupled effect of external heat source and sink on propellant burning and to investigate the role of key controlling parameters. Results as of now indicate that there exists a singularity in the coupled effect. The dominance of the external heat sink and heat source decides the relative rocket flight in Solid Rocket Motors (S.R.M).

Keywords: coupled effect, heat transfer, sink, solid rocket motors, source

Procedia PDF Downloads 223
3135 Adsorption of Cd2+ from Aqueous Solutions Using Chitosan Obtained from a Mixture of Littorina littorea and Achatinoidea Shells

Authors: E. D. Paul, O. F. Paul, J. E. Toryila, A. J. Salifu, C. E. Gimba

Abstract:

Adsorption of Cd2+ ions from aqueous solution by Chitosan, a natural polymer, obtained from a mixture of the exoskeletons of Littorina littorea (Periwinkle) and Achatinoidea (Snail) was studied at varying adsorbent dose, contact time, metal ion concentrations, temperature and pH using batch adsorption method. The equilibrium adsorption isotherms were determined between 298 K and 345 K. The adsorption data were adjusted to Langmuir, Freundlich and the pseudo second order kinetic models. It was found that the Langmuir isotherm model most fitted the experimental data, with a maximum monolayer adsorption of 35.1 mgkg⁻¹ at 308 K. The entropy and enthalpy of adsorption were -0.1121 kJmol⁻¹K⁻¹ and -11.43 kJmol⁻¹ respectively. The Freundlich adsorption model, gave Kf and n values consistent with good adsorption. The pseudo-second order reaction model gave a straight line plot with rate constant of 1.291x 10⁻³ kgmg⁻¹ min⁻¹. The qe value was 21.98 mgkg⁻¹, indicating that the adsorption of Cadmium ion by the chitosan composite followed the pseudo-second order kinetic model.

Keywords: adsorption, chitosan, littorina littorea, achatinoidea, natural polymer

Procedia PDF Downloads 403
3134 Protocol for Dynamic Load Distributed Low Latency Web-Based Augmented Reality and Virtual Reality

Authors: Rohit T. P., Sahil Athrij, Sasi Gopalan

Abstract:

Currently, the content entertainment industry is dominated by mobile devices. As the trends slowly shift towards Augmented/Virtual Reality applications the computational demands on these devices are increasing exponentially and we are already reaching the limits of hardware optimizations. This paper proposes a software solution to this problem. By leveraging the capabilities of cloud computing we can offload the work from mobile devices to dedicated rendering servers that are way more powerful. But this introduces the problem of latency. This paper introduces a protocol that can achieve high-performance low latency Augmented/Virtual Reality experience. There are two parts to the protocol, 1) In-flight compression The main cause of latency in the system is the time required to transmit the camera frame from client to server. The round trip time is directly proportional to the amount of data transmitted. This can therefore be reduced by compressing the frames before sending. Using some standard compression algorithms like JPEG can result in minor size reduction only. Since the images to be compressed are consecutive camera frames there won't be a lot of changes between two consecutive images. So inter-frame compression is preferred. Inter-frame compression can be implemented efficiently using WebGL but the implementation of WebGL limits the precision of floating point numbers to 16bit in most devices. This can introduce noise to the image due to rounding errors, which will add up eventually. This can be solved using an improved interframe compression algorithm. The algorithm detects changes between frames and reuses unchanged pixels from the previous frame. This eliminates the need for floating point subtraction thereby cutting down on noise. The change detection is also improved drastically by taking the weighted average difference of pixels instead of the absolute difference. The kernel weights for this comparison can be fine-tuned to match the type of image to be compressed. 2) Dynamic Load distribution Conventional cloud computing architectures work by offloading as much work as possible to the servers, but this approach can cause a hit on bandwidth and server costs. The most optimal solution is obtained when the device utilizes 100% of its resources and the rest is done by the server. The protocol balances the load between the server and the client by doing a fraction of the computing on the device depending on the power of the device and network conditions. The protocol will be responsible for dynamically partitioning the tasks. Special flags will be used to communicate the workload fraction between the client and the server and will be updated in a constant interval of time ( or frames ). The whole of the protocol is designed so that it can be client agnostic. Flags are available to the client for resetting the frame, indicating latency, switching mode, etc. The server can react to client-side changes on the fly and adapt accordingly by switching to different pipelines. The server is designed to effectively spread the load and thereby scale horizontally. This is achieved by isolating client connections into different processes.

Keywords: 2D kernelling, augmented reality, cloud computing, dynamic load distribution, immersive experience, mobile computing, motion tracking, protocols, real-time systems, web-based augmented reality application

Procedia PDF Downloads 74
3133 Addressing Security and Privacy Issues in a Smart Environment by Using Block-Chain as a Preemptive Technique

Authors: Shahbaz Pervez, Aljawharah Almuhana, Zahida Parveen, Samina Naz, Hira Tariq, Seyed Hosseini, Muhammad Awais Azam

Abstract:

With the latest development in the field of cutting-edge technologies, there is a rapid increase in the use of technology-oriented gadgets. In a recent scenario of the tech era, there is increasing demand to fulfill our day-to-day routine tasks with the help of technological gadgets. We are living in an era of technology where trends have been changing, and a race to introduce a new technology gadget has already begun. Smart cities are getting more popular with every passing day; city councils and governments are under enormous pressure to provide the latest services for their citizens and equip them with all the latest facilities. Thus, ultimately, they are going more into smart cities infrastructure building, providing services to their inhabitants with a single click from their smart devices. This trend is very exciting, but on the other hand, if some incident of security breach happens due to any weaker link, the results would be catastrophic. This paper addresses potential security and privacy breaches with a possible solution by using Blockchain technology in IoT enabled environment.

Keywords: blockchain, cybersecurity, DDOS, intrusion detection, IoT, RFID, smart devices security, smart services

Procedia PDF Downloads 119
3132 Pre-Implementation of Total Body Irradiation Using Volumetric Modulated Arc Therapy: Full Body Anthropomorphic Phantom Development

Authors: Susana Gonçalves, Joana Lencart, Anabela Gregório Dias

Abstract:

Introduction: In combination with chemotherapy, Total Body Irradiation (TBI) is most used as part of the conditioning regimen prior to allogeneic hematopoietic stem cell transplantation. Conventional TBI techniques have a long application time but non-conformality of beam-application with the inability to individually spare organs at risk. Our institution’s intention is to start using Volumetric Modulated Arc Therapy (VMAT) techniques to increase homogeneity of delivered radiation. As a first approach, a dosimetric plan was performed on a computed tomography (CT) scan of a Rando Alderson antropomorfic phantom (head and torso), using a set of six arcs distributed along the phantom. However, a full body anthropomorphic phantom is essential to carry out technique validation and implementation. Our aim is to define the physical and chemical characteristics and the ideal manufacturing procedure of upper and lower limbs to our anthropomorphic phantom, for later validate TBI using VMAT. Materials and Methods: To study the better fit between our phantom and limbs, a CT scan of Rando Alderson anthropomorphic phantom was acquired. CT was performed on GE Healthcare equipment (model Optima CT580 W), with slice thickness of 2.5 mm. This CT was also used to access the electronic density of soft tissue and bone through Hounsfield units (HU) analysis. Results: CT images were analyzed and measures were made for the ideal upper and lower limbs. Upper limbs should be build under the following measures: 43cm length and 7cm diameter (next to the shoulder section). Lower limbs should be build under the following measures: 79cm length and 16.5cm diameter (next to the thigh section). As expected, soft tissue and bone have very different electronic density. This is important to choose and analyze different materials to better represent soft tissue and bone characteristics. The approximate HU values of the soft tissue and for bone shall be 35HU and 250HU, respectively. Conclusion: At the moment, several compounds are being developed based on different types of resins and additives in order to be able to control and mimic the various constituent densities of the tissues. Concurrently, several manufacturing techniques are being explored to make it possible to produce the upper and lower limbs in a simple and non-expensive way, in order to finally carry out a systematic and appropriate study of the total body irradiation. This preliminary study was a good starting point to demonstrate the feasibility of TBI with VMAT.

Keywords: TBI, VMAT, anthropomorphic phantom, tissue equivalent materials

Procedia PDF Downloads 80
3131 Language Factor in the Formation of National and Cultural Identity of Kazakhstan

Authors: Andabayeva Dina, Avakova Raushangul, Kortabayeva Gulzhamal, Rakhymbay Bauyrzhan

Abstract:

This article attempts to give an overview of the language situation and language planning in Kazakhstan. Statistical data is given and excursion to history of languages in Kazakhstan is done. Particular emphasis is placed on the national- cultural component of the Kazakh people, namely the impact of the specificity of the Kazakh language on ethnic identity. Language is one of the basic aspects of national identity. Recently, in the Republic of Kazakhstan purposeful work on language development has been conducted. Optimal solution of language problems is a factor of interethnic relations harmonization, strengthening and consolidation of the peoples and public consent. Development of languages - one of the important directions of the state policy in the Republic of Kazakhstan. The problem of the state language, as part of national (civil) identification play a huge role in the successful integration process of Kazakh society. And quite rightly assume that one of the foundations of a new civic identity is knowing Kazakh language by all citizens of Kazakhstan. The article is an analysis of the language situation in Kazakhstan in close connection with the peculiarities of cultural identity.

Keywords: Kazakhstan, mentality, language policy, ethnolinguistics, language planning, language personality

Procedia PDF Downloads 635
3130 Development of a Multi-Variate Model for Matching Plant Nitrogen Requirements with Supply for Reducing Losses in Dairy Systems

Authors: Iris Vogeler, Rogerio Cichota, Armin Werner

Abstract:

Dairy farms are under pressure to increase productivity while reducing environmental impacts. Effective fertiliser management practices are critical to achieve this. Determination of optimum nitrogen (N) fertilisation rates which maximise pasture growth and minimise N losses is challenging due to variability in plant requirements and likely near-future supply of N by the soil. Remote sensing can be used for mapping N nutrition status of plants and to rapidly assess the spatial variability within a field. An algorithm is, however, lacking which relates the N status of the plants to the expected yield response to additions of N. The aim of this simulation study was to develop a multi-variate model for determining N fertilisation rate for a target percentage of the maximum achievable yield based on the pasture N concentration (ii) use of an algorithm for guiding fertilisation rates, and (iii) evaluation of the model regarding pasture yield and N losses, including N leaching, denitrification and volatilisation. A simulation study was carried out using the Agricultural Production Systems Simulator (APSIM). The simulations were done for an irrigated ryegrass pasture in the Canterbury region of New Zealand. A multi-variate model was developed and used to determine monthly required N fertilisation rates based on pasture N content prior to fertilisation and targets of 50, 75, 90 and 100% of the potential monthly yield. These monthly optimised fertilisation rules were evaluated by running APSIM for a ten-year period to provide yield and N loss estimates from both nonurine and urine affected areas. Comparison with typical fertilisation rates of 150 and 400 kg N/ha/year was also done. Assessment of pasture yield and leaching from fertiliser and urine patches indicated a large reduction in N losses when N fertilisation rates were controlled by the multi-variate model. However, the reduction in leaching losses was much smaller when taking into account the effects of urine patches. The proposed approach based on biophysical modelling to develop a multi-variate model for determining optimum N fertilisation rates dependent on pasture N content is very promising. Further analysis, under different environmental conditions and validation is required before the approach can be used to help adjust fertiliser management practices to temporal and spatial N demand based on the nitrogen status of the pasture.

Keywords: APSIM modelling, optimum N fertilization rate, pasture N content, ryegrass pasture, three dimensional surface response function.

Procedia PDF Downloads 130
3129 Magnetohydrodynamics (MHD) Boundary Layer Flow Past A Stretching Plate with Heat Transfer and Viscous Dissipation

Authors: Jiya Mohammed, Tsadu Shuaib, Yusuf Abdulhakeem

Abstract:

The research work focuses on the cases of MHD boundary layer flow past a stretching plate with heat transfer and viscous dissipation. The non-linear of momentum and energy equation are transform into ordinary differential equation by using similarity transformation, the resulting equation are solved using Adomian Decomposition Method (ADM). An attempt has been made to show the potentials and wide range application of the Adomian decomposition method in the comparison with the previous one in solving heat transfer problems. The Pade approximates value (η= 11[11, 11]) is use on the difficulty at infinity. The results are compared by numerical technique method. A vivid conclusion can be drawn from the results that ADM provides highly precise numerical solution for non-linear differential equations. The result where accurate especially for η ≤ 4, a general equating terms of Eckert number (Ec), Prandtl number (Pr) and magnetic parameter ( ) is derived which was used to investigate velocity and temperature profiles in boundary layer.

Keywords: MHD, Adomian decomposition, boundary layer, viscous dissipation

Procedia PDF Downloads 551
3128 Unified Public Transportation System for Mumbai Using Radio Frequency Identification

Authors: Saurabh Parkhedkar, Rajanikant Tenguria

Abstract:

The paper proposes revamping the public transportation system in Mumbai with the use of Radio Frequency Identification (RFID) technology in order to provide better integration and compatibility across various modes of transport. In Mumbai, mass transport system suffers from poor inter-compatible ticketing system, subpar money collection techniques, and lack of planning for optimum utilization of resources. Development of suburbs and growth in population will result in growing demand for mass transportation networks. Hence, the growing demand for the already overburdened public transportation system is only going to worsen the scenario. Thus, a superior system is essential in order to regulate, manage and supervise future transportation needs. The proposed RFID based system integrates Mumbai Suburban Railway, BEST (Brihanmumbai Electric Supply and Transport Undertaking transport wing) Bus, Mumbai Monorail and Mumbai Metro systems into a Unified Public Transportation System (UPTS). The UTPS takes into account various drawbacks of the present day system and offers solution, suitable for the modern age Mumbai.

Keywords: urbanization, transportation, RFID, Mumbai, public transportation, smart city.

Procedia PDF Downloads 412
3127 A Homogeneous Catalytic System for Decolorization of a Mixture of Orange G Acid and Naphthol Blue-Black Dye Based on Hydrogen Peroxide and a Recyclable DAWSON Type Heteropolyanion

Authors: Ouahiba Bechiri, Mostefa Abbessi

Abstract:

The color removal from industrial effluents is a major concern in wastewater treatment. The main objective of this work was to study the decolorization of a mixture of Orange G acid (OG) and naphthol blue black dye (NBB) in aqueous solution by hydrogen peroxide using [H1,5Fe1,5P2W12Mo6O61,23H2O] as catalyst. [H1,5Fe1,5P2 W12Mo6O61,23H2O] is a recyclable DAWSON type heteropolyanion. Effects of various experimental parameters of the oxidation reaction of the dye were investigated. The studied parameters were: the initial pH, H2O2 concentration, the catalyst mass and the temperature. The optimum conditions had been determined, and it was found that efficiency of degradation obtained after 15 minutes of reaction was about 100%. The optimal parameters were: initial pH = 3; [H2O2]0 = 0.08 mM; catalyst mass = 0.05g; for a concentration of dyes = 30mg/L.

Keywords: Dawson type heteropolyanion, naphthol blue-black, dye degradation, orange G acid, oxidation, hydrogen peroxide

Procedia PDF Downloads 360
3126 Properties of Ground Granulated Blast Furnace Slag Based Geopolymer Concrete

Authors: Niragi Dave, Ruchika Lalit

Abstract:

Concrete is one of the most widely used materials across the globe mostly second to water and generating high carbon dioxide emission during its whole manufacturing due to the presence of cement as an ingredient. Therefore it is necessary to find an alternative material to the Portland cement. This study focused on the use of Ground Granulated Blast Furnace Slag as geopolymer binder. Geopolymer concrete can be an alternative material which is produced by the chemical reaction of inorganic molecules. On the other hand, waste generating from power plants and other industries like iron and steel industries can be effectively used which has disposal problems. Therefore in this study geopolymer concrete is manufactured by 100% replacement of cement content by ground granulated blast furnace slag and a combination of sodium silicate and sodium hydroxide is used as an alkaline solution. The results have shown that the compressive strengths increased with increasing curing time and type of alkali activators. Naphthalene sulfonate-based superplasticizer performed better than other superplasticizers. All the specimens have been cast at ambient temperature.

Keywords: alkali activators, concrete, geopolymer, ground granulated blast furnace slag

Procedia PDF Downloads 327
3125 The Feasibility of Using Milled Glass Wastes in Concrete to Resist Freezing-Thawing Action

Authors: Raed Abendeh, Mousa Bani Baker, Zaydoun Abu Salem, Hesham Ahmad

Abstract:

The using of waste materials in the construction industry can reduce the dependence on the natural aggregates which are going at the end to deplete. The glass waste is generated in a huge amount which can make one of its disposal in concrete industry effective not only as a green solution but also as an advantage to enhance the performance of mechanical properties and durability of concrete. This article reports the performance of concrete specimens containing different percentages of milled glass waste as a partial replacement of cement (Powder), when they are subject to cycles of freezing and thawing. The tests were conducted on 75-mm cubes and 75 x 75 x 300-mm prisms. Compressive strength based on laboratory testing and non-destructive ultrasonic pulse velocity test were performed during the action of freezing-thawing cycles (F/T). The results revealed that the incorporation of glass waste in concrete mixtures is not only feasible but also showed generally better strength and durability performance than control concrete mixture. It may be said that the recycling of waste glass in concrete mixes is not only a disposal way, but also it can be an exploitation in concrete industry.

Keywords: durability, glass waste, freeze-thaw cycles, non-destructive test

Procedia PDF Downloads 378
3124 Assessment of Rooftop Rainwater Harvesting in Gomti Nagar, Lucknow

Authors: Rajkumar Ghosh

Abstract:

Water scarcity is a pressing issue in urban areas, even in smart cities where efficient resource management is a priority. This scarcity is mainly caused by factors such as lifestyle changes, excessive groundwater extraction, over-usage of water, rapid urbanization, and uncontrolled population growth. In the specific case of Gomti Nagar, Lucknow, Uttar Pradesh, India, the depletion of groundwater resources is particularly severe, leading to a water imbalance and posing a significant challenge for the region's sustainable development. The aim of this study is to address the water shortage in the Gomti Nagar region by focusing on the implementation of artificial groundwater recharge methods. Specifically, the research aims to investigate the effectiveness of rainwater collection through rooftop rainwater harvesting systems (RTRWHs) as a sustainable approach to reduce aquifer depletion and bridge the gap between groundwater recharge and extraction. The research methodology for this study involves the utilization of RTRWHs as the main method for collecting rainwater. This approach is considered effective in managing and conserving water resources in a sustainable manner. The focus is on implementing RTRWHs in residential and commercial buildings to maximize the collection of rainwater and its subsequent utilization for various purposes in the Gomti Nagar region. The study reveals that the installation of RTRWHs in the Gomti Nagar region has a positive impact on addressing the water scarcity issue. Currently, RTRWHs cover only a small percentage (0.04%) of the total rainfall collected in the region. However, when RTRWHs are installed in all buildings, their influence on increasing water availability and reducing aquifer depletion will be significantly greater. The study also highlights the significant water imbalance of 24519 ML/yr in the region, emphasizing the urgent need for sustainable water management practices. This research contributes to the theoretical understanding of sustainable water management systems in smart cities. By highlighting the effectiveness of RTRWHs in reducing aquifer depletion, it emphasizes the importance of implementing such systems in urban areas. The findings of this study can serve as a basis for policymakers, urban planners, and developers to prioritize and incentivize the installation of RTRWHs as a potential solution to the water shortage crisis. The data for this study were collected through various sources such as government reports, surveys, and existing groundwater abstraction patterns. The collected data were then analysed to assess the current water situation, groundwater depletion rate, and the potential impact of implementing RTRWHs. Statistical analysis and modelling techniques were employed to quantify the water imbalance and evaluate the effectiveness of RTRWHs. The findings of this study demonstrate that the implementation of RTRWHs can effectively mitigate the water scarcity crisis in Gomti Nagar. By reducing aquifer depletion and bridging the gap between groundwater recharge and extraction, RTRWHs offer a sustainable solution to the region's water scarcity challenges. The study highlights the need for widespread adoption of RTRWHs in all buildings and emphasizes the importance of integrating such systems into the urban planning and development process. By doing so, smart cities like Gomti Nagar can achieve efficient water management, ensuring a better future with improved water availability for its residents.

Keywords: rooftop rainwater harvesting, rainwater, water management, aquifer

Procedia PDF Downloads 95
3123 Development of a Reduced Multicomponent Jet Fuel Surrogate for Computational Fluid Dynamics Application

Authors: Muhammad Zaman Shakir, Mingfa Yao, Zohaib Iqbal

Abstract:

This study proposed four Jet fuel surrogate (S1, S2 S3, and 4) with careful selection of seven large hydrocarbon fuel components, ranging from C₉-C₁₆ of higher molecular weight and higher boiling point, adapting the standard molecular distribution size of the actual jet fuel. The surrogate was composed of seven components, including n-propyl cyclohexane (C₉H₁₈), n- propylbenzene (C₉H₁₂), n-undecane (C₁₁H₂₄), n- dodecane (C₁₂H₂₆), n-tetradecane (C₁₄H₃₀), n-hexadecane (C₁₆H₃₄) and iso-cetane (iC₁₆H₃₄). The skeletal jet fuel surrogate reaction mechanism was developed by two approaches, firstly based on a decoupling methodology by describing the C₄ -C₁₆ skeletal mechanism for the oxidation of heavy hydrocarbons and a detailed H₂ /CO/C₁ mechanism for prediction of oxidation of small hydrocarbons. The combined skeletal jet fuel surrogate mechanism was compressed into 128 species, and 355 reactions and thereby can be used in computational fluid dynamics (CFD) simulation. The extensive validation was performed for individual single-component including ignition delay time, species concentrations profile and laminar flame speed based on various fundamental experiments under wide operating conditions, and for their blended mixture, among all the surrogate, S1 has been extensively validated against the experimental data in a shock tube, rapid compression machine, jet-stirred reactor, counterflow flame, and premixed laminar flame over wide ranges of temperature (700-1700 K), pressure (8-50 atm), and equivalence ratio (0.5-2.0) to capture the properties target fuel Jet-A, while the rest of three surrogate S2, S3 and S4 has been validated for Shock Tube ignition delay time only to capture the ignition characteristic of target fuel S-8 & GTL, IPK and RP-3 respectively. Based on the newly proposed HyChem model, another four surrogate with similar components and composition, was developed and parallel validations data was used as followed for previously developed surrogate but at high-temperature condition only. After testing the mechanism prediction performance of surrogates developed by the decoupling methodology, the comparison was done with the results of surrogates developed by the HyChem model. It was observed that all of four proposed surrogates in this study showed good agreement with the experimental measurements and the study comes to this conclusion that like the decoupling methodology HyChem model also has a great potential for the development of oxidation mechanism for heavy alkanes because of applicability, simplicity, and compactness.

Keywords: computational fluid dynamics, decoupling methodology Hychem, jet fuel, surrogate, skeletal mechanism

Procedia PDF Downloads 137
3122 An Approach from Fichte as a Response to the Kantian Dualism of Subject and Object: The Unity of the Subject and Object in Both Theoretical and Ethical Possibility

Authors: Mengjie Liu

Abstract:

This essay aims at responding to the Kant arguments on how to fit the self-caused subject into the deterministic object which follows the natural laws. This essay mainly adopts the approach abstracted from Fichte’s “Wissenshaftslehre” (Doctrine of Science) to picture a possible solution to the conciliation of Kantian dualism. The Fichte approach is based on the unity of the theoretical and practical reason, which can be understood as a philosophical abstraction from ordinary experience combining both subject and object. This essay will discuss the general Kantian dualism problem and Fichte’s unity approach in the first part. Then the essay will elaborate on the achievement of this unity of the subject and object through Fichte’s “the I posits itself” process in the second section. The following third section is related to the ethical unity of subject and object based on the Fichte approach. The essay will also discuss the limitation of Fichte’s approach from two perspectives: (1) the theoretical possibility of the existence of the pure I and (2) Schelling’s statement that the Absolute I is a result rather than the originating act. This essay demonstrates a possible approach to unifying the subject and object supported by Fichte’s “Absolute I” and ethical theories and also points out the limitations of Fichte’s theories.

Keywords: Fichte, identity, Kantian dualism, Wissenshaftslehre

Procedia PDF Downloads 91
3121 Investigation of the Morphology and Optical Properties of CuAlO₂ Thin Film

Authors: T. M. Aminu, A. Salisu, B. Abdu, H. U. Alhassan, T. H. Dharma

Abstract:

Thin films of CuAlO2 were deposited on clean glass substrate using the chemical solution deposition (sol-gel) method of deposition with CuCl and AlCl3 taken as the starting materials. CuCl was dissolved in HCl while AlCl₃ in distilled water, pH value of the mixture was controlled by addition of NaOH. The samples were annealed at different temperatures in order to determine the effect of annealing temperatures on the morphological and optical properties of the deposited CuAlO₂ thin film. The surface morphology reveals an improved crystalline as annealing temperature increases. The results of the UV-vis and FT-IR spectrophotometry indicate that the absorbance for all the samples decreases sharply from a common value of about 89% at about 329 nm to a range of values of 56.2%-35.2% and the absorption / extinction coefficients of the films decrease with increase in annealing temperature from 1.58 x 10⁻⁶ to1.08 x 10⁻⁶ at about 1.14eV in the infrared region to about 1.93 x 10⁻⁶ to 1.29 x 10⁻⁶ at about 3.62eV in the visible region, the transmittance, reflectance and band gaps vary directly with annealing temperature, the deposited films were found to be suitable in optoelectronic applications.

Keywords: copper aluminium-oxide (CuAlO2), absorbance, transmittance, reflectance, band gaps

Procedia PDF Downloads 294