Search results for: interfacial energy and tension
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9073

Search results for: interfacial energy and tension

5293 Modeling and Analysis the Effects of Temperature and Pressure on the Gas-Crossover in Polymer Electrolyte Membrane Electrolyzer

Authors: Abdul Hadi Bin Abdol Rahim, Alhassan Salami Tijani

Abstract:

Hydrogen produced by means of polymer electrolyte membrane electrolyzer (PEME) is one of the most promising methods due to clean and renewable energy source. In the process, some energy loss due to mass transfer through a PEM is caused by diffusion, electro-osmotic drag, and the pressure difference between the cathode channel and anode channel. In PEME water molecules and ionic particles transferred between the electrodes from anode to cathode, Extensive mixing of the hydrogen and oxygen at anode channel due to gases cross-over must be avoided. In recent times the consciousness of safety issue in high pressure PEME where the oxygen mix with hydrogen at anode channel could create, explosive conditions have generated a lot of concern. In this paper, the steady state and simulation analysis of gases crossover in PEME on the temperature and pressure effect are presented. The simulations have been analysis in MATLAB based on the well-known Fick’s Law of molecular diffusion. The simulation results indicated that as temperature increases, there is a significant decrease in operating voltage.

Keywords: diffusion, gases crosover, steady state, Fick’s law

Procedia PDF Downloads 330
5292 Performance of Derna Steam Power Plant at Varying Super-Heater Operating Conditions Based on Exergy

Authors: Idris Elfeituri

Abstract:

In the current study, energy and exergy analysis of a 65 MW steam power plant was carried out. This study investigated the effect of variations of overall conductance of the super heater on the performance of an existing steam power plant located in Derna, Libya. The performance of the power plant was estimated by a mathematical modelling which considers the off-design operating conditions of each component. A fully interactive computer program based on the mass, energy and exergy balance equations has been developed. The maximum exergy destruction has been found in the steam generation unit. A 50% reduction in the design value of overall conductance of the super heater has been achieved, which accordingly decreases the amount of the net electrical power that would be generated by at least 13 MW, as well as the overall plant exergy efficiency by at least 6.4%, and at the same time that would cause an increase of the total exergy destruction by at least 14 MW. The achieved results showed that the super heater design and operating conditions play an important role on the thermodynamics performance and the fuel utilization of the power plant. Moreover, these considerations are very useful in the process of the decision that should be taken at the occasions of deciding whether to replace or renovate the super heater of the power plant.

Keywords: Exergy, Super-heater, Fouling; Steam power plant; Off-design., Fouling;, Super-heater, Steam power plant

Procedia PDF Downloads 333
5291 Biogas Production from Zebra Manure and Winery Waste Co-Digestion

Authors: Wicleffe Musingarimi

Abstract:

Currently, the rising energy demand as a result of an increase in the world’s population and the sustainable use of abundant natural resources are key issues facing many developed and developing countries including South Africa. Most of the energy to meet this growing demand comes from fossil fuel. Use of fossil fuels has led to environmental problems such air pollution, climate change, and acid rain. In addition, fossil fuels are facing continual depletion, which has led to the rise in oil prices, leading to the global economies melt down. Hence development of alternative clean and renewable energy source is a global priority. Renewable biomass from forest products, agricultural crops, and residues, as well as animal and municipal waste are promising alternatives. South Africa is one of the leading wine producers in the world; leading to a lot of winery waste (ww) being produced which can be used in anaerobic digestion (AD) to produce biogas. Biogas was produced from batch anaerobic digestion of zebra manure (zm) and batch anaerobic co-digestion of winery waste (ww) and zebra manure through water displacement. The batch digester with slurry of winery waste and zebra manure in the weight ratio of 1:2 was operated in a 1L container at 37°C for 30days. Co-digestion of winery waste and zebra manure produced higher amount of biogas as compared to zebra manure alone and winery waste alone. No biogas was produced by batch anaerobic digestion of winery waste alone. Chemical analysis of C/N ratio and total solids (TS) of zebra manure was 21.89 and 25.2 respectively. These values of C/N ratio and TS were quite high compared to values of other studied manures. Zebra manure also revealed unusually high concentration of Fe reaching 3600pm compared to other studies of manure. PCR with communal DNA of the digestate gave a positive hit for the presence of archaea species using standard archea primers; suggesting the presence of methanogens. Methanogens are key microbes in the production of biogas. Therefore, this study demonstrated the potential of zebra manure as an inoculum in the production of biogas.

Keywords: anaerobic digestion, biogas, co-digestion, methanogens

Procedia PDF Downloads 228
5290 Finch-Skea Stellar Structures in F(R, ϕ, X) Theory of Gravity Using Bardeen Geometry

Authors: Aqsa Asharaf

Abstract:

The current study aims to examine the physical characteristics of charge compact spheres employing anisotropic fluid under f(R, ϕ, X) modified gravity approach, exploring how this theoretical context influences their attributes and behavior. To accomplish our goal, we adopt the Spherically Symmetric (SS) space-time and, additionally, employ a specific Adler-based mode for the metric potential (gtt), which yields a broader class of solutions, Then, by making use of the Karmarkar condition, we successfully derive the other metric potential. A primary component of our current analysis is utilizing the Bardeen geometry as extrinsic space-time to determine the constant parameters of intrinsic space-time. Further, to validate the existence of Bardeen stellar spheres, we debate the behavior of physical properties and parameters such as components of pressure, energy density, anisotropy, parameters of EoS, stability and dynamical equilibrium, energy bounds, mass function, adiabatic index, compactness factor, and surface redshift. Conclusively, all the obtained results show that the system under consideration is physically stable, free from singularity, and viable models.

Keywords: cosmology, GR, Bardeen BH, modified gravities

Procedia PDF Downloads 31
5289 Vibration of Nanobeam Subjected to Constant Magnetic Field and Ramp-Type Thermal Loading under Non-Fourier Heat Conduction Law of Lord-Shulman

Authors: Hamdy M. Youssef

Abstract:

In this work, the usual Euler–Bernoulli nanobeam has been modeled in the context of Lord-Shulman thermoelastic theorem, which contains non-Fourier heat conduction law. The nanobeam has been subjected to a constant magnetic field and ramp-type thermal loading. The Laplace transform definition has been applied to the governing equations, and the solutions have been obtained by using a direct approach. The inversions of the Laplace transform have been calculated numerically by using Tzou approximation method. The solutions have been applied to a nanobeam made of silicon nitride. The distributions of the temperature increment, lateral deflection, strain, stress, and strain-energy density have been represented in figures with different values of the magnetic field intensity and ramp-time heat parameter. The value of the magnetic field intensity and ramp-time heat parameter have significant effects on all the studied functions, and they could be used as tuners to control the energy which has been generated through the nanobeam.

Keywords: nanobeam, vibration, constant magnetic field, ramp-type thermal loading, non-Fourier heat conduction law

Procedia PDF Downloads 138
5288 Effect of Surfactant Level of Microemulsions and Nanoemulsions on Cell Viability

Authors: Sonal Gupta, Rakhi Bansal, Javed Ali, Reema Gabrani, Shweta Dang

Abstract:

Nanoemulsions (NEs) and microemulsions (MEs) have been an attractive tool for encapsulation of both hydrophilic and lipophillic actives. Both these systems are composed of oil phase, surfactant, co-surfactant and aqueous phase. Depending upon the application and intended use, both oil-in-water and water-in-oil emulsions can be designed. NEs are fabricated using high energy methods employing less percentage of surfactant as compared to MEs which are self assembled drug delivery systems. Owing to the nanometric size of the droplets these systems have been widely used to enhance solubility and bioavailability of natural as well as synthetic molecules. The aim of the present study is to assess the effect of % age of surfactants on cell viability of Vero cells (African Green Monkeys’ Kidney epithelial cells) via MTT assay. Green tea catechin (Polyphenon 60) loaded ME employing low energy vortexing and NE employing high energy ultrasonication were prepared using same excipients (labrasol as oil, cremophor EL as surfactant and glycerol as co-surfactant) however, the % age of oil and surfactant needed to prepare the ME was higher as compared to NE. These formulations along with their excipients (oilME=13.3%, SmixME=26.67%; oilNE=10%, SmixNE=13.52%) were added to Vero cells for 24 hrs. The tetrazolium dye, 3-(4,5-dimethylthia/ol-2-yl)-2,5-diphi-iiyltclrazolium bromide (MTT), is reduced by live cells and this reaction is used as the end point to evaluate the cytoxicity level of a test formulation. Results of MTT assay indicated that oil at different percentages exhibited almost equal cell viability (oilME ≅ oilNE) while surfactant mixture had a significant difference in the cell viability values (SmixME < SmixNE). Polyphenon 60 loaded ME and its PlaceboME showed higher toxicity as compared to Polyphenon 60 loaded NE and its PlaceboNE that can be attributed to the higher concentration of surfactants present in MEs. Another probable reason for high % cell viability of Polyphenon 60 loaded NE might be due to the effective release of Polyphenon 60 from NE formulation that helps in the sustenance of Vero cells.

Keywords: cell viability, microemulsion, MTT, nanoemulsion, surfactants, ultrasonication

Procedia PDF Downloads 436
5287 Simulation of Wet Scrubbers for Flue Gas Desulfurization

Authors: Anders Schou Simonsen, Kim Sorensen, Thomas Condra

Abstract:

Wet scrubbers are used for flue gas desulfurization by injecting water directly into the flue gas stream from a set of sprayers. The water droplets will flow freely inside the scrubber, and flow down along the scrubber walls as a thin wall film while reacting with the gas phase to remove SO₂. This complex multiphase phenomenon can be divided into three main contributions: the continuous gas phase, the liquid droplet phase, and the liquid wall film phase. This study proposes a complete model, where all three main contributions are taken into account and resolved using OpenFOAM for the continuous gas phase, and MATLAB for the liquid droplet and wall film phases. The 3D continuous gas phase is composed of five species: CO₂, H₂O, O₂, SO₂, and N₂, which are resolved along with momentum, energy, and turbulence. Source terms are present for four species, energy and momentum, which are affecting the steady-state solution. The liquid droplet phase experiences breakup, collisions, dynamics, internal chemistry, evaporation and condensation, species mass transfer, energy transfer and wall film interactions. Numerous sub-models have been implemented and coupled to realise the above-mentioned phenomena. The liquid wall film experiences impingement, acceleration, atomization, separation, internal chemistry, evaporation and condensation, species mass transfer, and energy transfer, which have all been resolved using numerous sub-models as well. The continuous gas phase has been coupled with the liquid phases using source terms by an approach, where the two software packages are couples using a link-structure. The complete CFD model has been verified using 16 experimental tests from an existing scrubber installation, where a gradient-based pattern search optimization algorithm has been used to tune numerous model parameters to match the experimental results. The CFD model needed to be fast for evaluation in order to apply this optimization routine, where approximately 1000 simulations were needed. The results show that the complex multiphase phenomena governing wet scrubbers can be resolved in a single model. The optimization routine was able to tune the model to accurately predict the performance of an existing installation. Furthermore, the study shows that a coupling between OpenFOAM and MATLAB is realizable, where the data and source term exchange increases the computational requirements by approximately 5%. This allows for exploiting the benefits of both software programs.

Keywords: desulfurization, discrete phase, scrubber, wall film

Procedia PDF Downloads 265
5286 Behavior of Castellated Beam Column Due to Cyclic Loads

Authors: Junus Mara, Herman Parung, Jhony Tanijaya, Rudy Djamaluddin

Abstract:

The purpose of this study is to determine the behavior of beam-column sub-assemblages castella due to cyclic loading. Knowing these behaviors can if be analyzed the effectiveness of the concrete filler to reduce the damage and improve capacity of beam castella. Test beam consists of beam castella fabricated from normal beam (CB), castella beams with concrete filler between the flange (CCB) and normal beam (NB) as a comparison. Results showed castella beam (CB) has the advantage to increase the flexural capacity and energy absorption respectively 100.5% and 74.3%. Besides advantages, castella beam has the disadvantage that lowering partial ductility and full ductility respectively 12.6% and 18.1%, decrease resistance ratio 29.5% and accelerate the degradation rate of stiffness ratio 31.4%. By the concrete filler between the beam flange to improve the ability of castella beam, then the beam castella have the ability to increase the flexural capacity of 184.78 %, 217.1% increase energy absorption, increase ductility partial and full ductility respectively 27.9 % and 26 %, increases resistance ratio 52.5% and slow the rate of degradation of the stiffness ratio 55.1 %.

Keywords: steel, castella, column beams, cyclic load

Procedia PDF Downloads 459
5285 Establishment of High-Temperature Simultaneous Saccharification and Fermentation Process by Co-Culturing of Thermally Adapted Thermosensitive Saccharomyces Cerevisiae and Bacillus amyloliquefaciens

Authors: Ali Azam Talukder, Jamsheda Ferdous Tuli, Tanzina Islam Reba, Shuvra Kanti Dey, Mamoru Yamada

Abstract:

Recent global warming created by various pollutants prompted us to find new energy sources instead of fossil fuels. Fossil fuels are one of the key factors to emit various toxic gases in this planet. To solve this problem, along with the scarcity of the worldwide energy crisis, scientists are looking for various alternative options to mitigate the necessity of required future fuels. In this context, bioethanol can be one of the most suitable alternative energy sources. Bioethanol is a renewable, environment-friendly and carbon-neutral sustainable energy. In our previous study, we identified several bioethanol-producing microbes from the natural fermented sources of Bangladesh. Among them, the strain 4C encoded Saccharomyces cerevisiae produced maximum bioethanol when the fermentation temperature was 25˚C. In this study, we have established high-temperature simultaneous saccharification and fermentation process (HTSSF) by co-culturing of thermally adapted thermosensitive 4C as a fermenting agent and Bacillus amyloliquefaciens (C7), as a saccharifying agent under various physiological conditions or treatments. Conventional methods were applied for cell culture, media preparation and other experimental purposes. High-temperature adaptation of strain 4C was made from 30-42ᵒC, using either YPD or YPS media. In brief, for thermal adaptation, the temperature was periodically increased by 2ᵒC, 1ᵒC and 0.5ᵒC when medium growth temperatures were 30-36ᵒC, 36-40ᵒC, and 40-42ᵒC, respectively, where applicable. Amylase activity and bioethanol content were measured by DNS (3, 5-dinitrosalicylic acid) and solvent extraction and dichromate oxidation method, respectively. Among the various growth parameters like temperatures (30˚C, 37˚C and 42˚C), pHs (5.0, 6.0 and 7.0), carbon sources (5.0-10.0%) and ethanol stress tolerance (0.0-12.0%) etc. were tested, maximum Amylase activity (4.0 IU/ml/min) was recorded for Bacillus amyloliquefaciens (C7) at 42˚C, pH 6.0 and 10% starch. On the other hand, 4.10% bioethanol content was recorded when the thermally adapted strain 4C was co-cultured with C7 at 37ᵒC, pH 6.0 and 10.0% starch for 72 hours at HTSSF process. On the other hand, thermally non-adapted strains gave only 0.5-2.0% bioethanol content under the same physiological conditions. The thermally adapted strain 4C and strain C7, both can tolerate ethanol stress up to 12%. Altogether, a comparative study revealed that our established HTSSF process may be suitable for pilot scale and subsequently at industrial level bioethanol production.

Keywords: bioethanol, co-culture, fermentation, saccharification

Procedia PDF Downloads 85
5284 Descriptive Analysis of the Relationship between State and Civil Society in Hegel's Political Thought

Authors: Garineh Keshishyan Siraki

Abstract:

Civil society is one of the most important concepts of the twentieth century and even so far. Modern and postmodern thinkers have provided different definitions of civil society. Of course, the concept of civil society has undergone many changes over time. The relationship between government and civil society is one of the relationships that attracted the attention of many contemporary thinkers. Hegel, the thinker we discussed in this article also explores the relationship between these concepts and emphasizing the dialectical method, he has drawn three lines between family, state, and civil society. In Hegel's view, the creation of civil society will lead to a reduction of social conflict and increased social cohesion. The importance of the issue is due to the study of social cohesion and the ways to increase it. The importance of the issue is due to the study of social cohesion and the ways to increase it. This paper, which uses a descriptive-analytic method to examine Hegel's dialectical theory of civil society, after examining the relationship between the family and the state and finding the concept of civil society as the interface and the interconnected circle of these two, investigates tripartite economic, legal, and pluralistic systems. In this article, after examining the concepts of the market, the right and duty, the individual interests and the development of the exchange economy, Hegel's view is to examine the concept of freedom and its relation with civil society. The results of this survey show that, in Hegel's thought, the separation between the political system and the social system is a natural and necessary thing. In Hegel's view, because of those who are in society, they have selfish features; the community is in tension and contradiction. Therefore, the social realms within which conflicts emerge must be identified and controlled by specific mechanisms. It can also be concluded that the government can act to reduce social conflicts by legislating, using force or forming trade unions. The bottom line is that Hegel wants to reconcile between the individual, the state and civil society and it is not possible to rely on ethics.

Keywords: civil society, cohesion system, economic system, family, the legal system, state

Procedia PDF Downloads 199
5283 Hydrogen Storage Optimisation: Development of Advanced Tools for Improved Permeability Modelling in Materials

Authors: Sirine Sayed, Mahrez Ait Mohammed, Mourad Nachtane, Abdelwahed Barkaoui, Khalid Bouziane, Mostapha Tarfaoui

Abstract:

This study addresses a critical challenge in transitioning to a hydrogen-based economy by introducing and validating a one-dimensional (1D) tool for modelling hydrogen permeability through hybrid materials, focusing on tank applications. The model developed integrates rigorous experimental validation, published data, and advanced computational modelling using the PanDiffusion framework, significantly enhancing its validity and applicability. By elucidating complex interactions between material properties, storage system configurations, and operational parameters, the tool demonstrates its capability to optimize design and operational parameters in real-world scenarios, as illustrated through a case study of hydrogen leakage. This comprehensive approach to assessing hydrogen permeability contributes significantly to overcoming key barriers in hydrogen infrastructure development, potentially accelerating the widespread adoption of hydrogen technology across various industrial sectors and marking a crucial step towards a more sustainable energy future.

Keywords: hydrogen storage, composite tank, permeability modelling, PanDiffusion, energy carrier, transportation technology

Procedia PDF Downloads 18
5282 Sustainable Membranes Based on 2D Materials for H₂ Separation and Purification

Authors: Juan A. G. Carrio, Prasad Talluri, Sergio G. Echeverrigaray, Antonio H. Castro Neto

Abstract:

Hydrogen as a fuel and environmentally pleasant energy carrier is part of this transition towards low-carbon systems. The extensive deployment of hydrogen production, purification and transport infrastructures still represents significant challenges. Independent of the production process, the hydrogen generally is mixed with light hydrocarbons and other undesirable gases that need to be removed to obtain H₂ with the required purity for end applications. In this context, membranes are one of the simplest, most attractive, sustainable, and performant technologies enabling hydrogen separation and purification. They demonstrate high separation efficiencies and low energy consumption levels in operation, which is a significant leap compared to current energy-intensive options technologies. The unique characteristics of 2D laminates have given rise to a diversity of research on their potential applications in separation systems. Specifically, it is already known in the scientific literature that graphene oxide-based membranes present the highest reported selectivity of H₂ over other gases. This work explores the potential of a new type of 2D materials-based membranes in separating H₂ from CO₂ and CH₄. We have developed nanostructured composites based on 2D materials that have been applied in the fabrication of membranes to maximise H₂ selectivity and permeability, for different gas mixtures, by adjusting the membranes' characteristics. Our proprietary technology does not depend on specific porous substrates, which allows its integration in diverse separation modules with different geometries and configurations, looking to address the technical performance required for industrial applications and economic viability. The tuning and precise control of the processing parameters allowed us to control the thicknesses of the membranes below 100 nanometres to provide high permeabilities. Our results for the selectivity of new nanostructured 2D materials-based membranes are in the range of the performance reported in the available literature around 2D materials (such as graphene oxide) applied to hydrogen purification, which validates their use as one of the most promising next-generation hydrogen separation and purification solutions.

Keywords: membranes, 2D materials, hydrogen purification, nanocomposites

Procedia PDF Downloads 134
5281 Analysis of the Potential of Biomass Residues for Energy Production and Applications in New Materials

Authors: Sibele A. F. Leite, Bernno S. Leite, José Vicente H. D´Angelo, Ana Teresa P. Dell’Isola, Julio CéSar Souza

Abstract:

The generation of bioenergy is one of the oldest and simplest biomass applications and is one of the safest options for minimizing emissions of greenhouse gasses and replace the use of fossil fuels. In addition, the increasing development of technologies for energy biomass conversion parallel to the advancement of research in biotechnology and engineering has enabled new opportunities for exploitation of biomass. Agricultural residues offer great potential for energy use, and Brazil is in a prominent position in the production and export of agricultural products such as banana and rice. Despite the economic importance of the growth prospects of these activities and the increasing of the agricultural waste, they are rarely explored for energy and production of new materials. Brazil products almost 10.5 million tons/year of rice husk and 26.8 million tons/year of banana stem. Thereby, the aim of this study was to analysis the potential of biomass residues for energy production and applications in new materials. Rice husk (specify the type) and banana stem (specify the type) were characterized by physicochemical analyses using the following parameters: organic carbon, nitrogen (NTK), proximate analyses, FT-IR spectroscopy, thermogravimetric analyses (TG), calorific values and silica content. Rice husk and banana stem presented attractive superior calorific (from 11.5 to 13.7MJ/kg), and they may be compared to vegetal coal (21.25 MJ/kg). These results are due to the high organic matter content. According to the proximate analysis, biomass has high carbon content (fixed and volatile) and low moisture and ash content. In addition, data obtained by Walkley–Black method point out that most of the carbon present in the rice husk (50.5 wt%) and in banana stalk (35.5 wt%) should be understood as organic carbon (readily oxidizable). Organic matter was also detected by Kjeldahl method which gives the values of nitrogen (especially on the organic form) for both residues: 3.8 and 4.7 g/kg of rice husk and banana stem respectively. TG and DSC analyses support the previous results, as they can provide information about the thermal stability of the samples allowing a correlation between thermal behavior and chemical composition. According to the thermogravimetric curves, there were two main stages of mass-losses. The first and smaller one occurred below 100 °C, which was suitable for water losses and the second event occurred between 200 and 500 °C which indicates decomposition of the organic matter. At this broad peak, the main loss was between 250-350 °C, and it is because of sugar decomposition (components readily oxidizable). Above 350 °C, mass loss of the biomass may be associated with lignin decomposition. Spectroscopic characterization just provided qualitative information about the organic matter, but spectra have shown absorption bands around 1030 cm-1 which may be identified as species containing silicon. This result is expected for the rice husk and deserves further investigation to the stalk of banana, as it can bring a different perspective for this biomass residue.

Keywords: rice husk, banana stem, bioenergy, renewable feedstock

Procedia PDF Downloads 279
5280 Health Ramifications of Workplace Bullying: Gender, Race and Sexual Orientation as Risk Factors

Authors: Kathleen Canul

Abstract:

Bullying is on the rise according to several recent studies. Workplace bullying has garnered less attention than other forms yet incidence rates range from 35-45%. The consequences of being bullied at work are broad, ranging from physiological to psychological to occupational. As the bullying progresses, employees begin to exhibit physical and psychological symptoms. Blood pressure rises, along with other cardiac related concerns. For men, covert coping with job unfairness was associated with a four-fold risk of heart attack and death. Gastrointestinal distress, headaches, muscle tension, sleep disorders and exhaustion are also common. Workplace bullying appears to contribute to the risk of subsequent psychotropic medication, as well. Emotionally, anxiety and depression increase along with lowered self-esteem and problems concentrating on the duties of the job. In an attempt to cope, individuals may succumb to unhealthy practices involving food, alcohol and other drugs. Patterns of bullying vary by gender, race, and ethnicity, as well as sexual orientation, with women, ethnic minorities and LGBTQ employees reporting higher rates of bullying in the workplace. Not only is this an issue of inequity on the job, but also a problem of health disparities as there are few mental health professionals confident and competent in dealing with workplace bullying issues, and the lack of culturally competent clinicians exacerbates this inequality in receiving adequate care. Alone, the topic of workplace bullying is not unique; however, the diverse experiences of underrepresented groups who disproportionately are affected on the job and suffer untreated, health related concerns represent a significant and emerging problem requiring attention. Conference participants who have experienced, witnessed or help those bullied on the job would benefit most from this review of the literature on the consequences of bullying experienced by diverse and underrepresented groups in the workplace.

Keywords: bullying, ethnic minorities, health disparities, workplace conflict

Procedia PDF Downloads 280
5279 Modelling Ibuprofen with Human Albumin

Authors: U. L. Fulco, E. L. Albuquerque, José X. Lima Neto, L. R. Da Silva

Abstract:

The binding of the nonsteroidal anti-inflammatory drug ibuprofen (IBU) to human serum albumin (HSA) is investigated using density functional theory (DFT) calculations within a fragmentation strategy. Crystallographic data for the IBU–HSA supramolecular complex shows that the ligand is confined to a large cavity at the subdomain IIIA and at the interface between the subdomains IIA and IIB, whose binding sites are FA3/FA4 and FA6, respectively. The interaction energy between the IBU molecule and each amino acid residue of these HSA binding pockets was calculated using the Molecular Fractionation with Conjugate Caps (MFCC) approach employing a dispersion corrected exchange–correlation functional. Our investigation shows that the total interaction energy of IBU bound to HSA at binding sites of the fatty acids FA3/FA4 (FA6) converges only for a pocket radius of at least 8.5 °A, mainly due to the action of residues Arg410, Lys414 and Ser489 (Lys351, Ser480 and Leu481) and residues in nonhydrophobic domains, namely Ile388, Phe395, Phe403, Leu407, Leu430, Val433, and Leu453 (Phe206, Ala210, Ala213, and Leu327), which is unusual. Our simulations are valuable for a better understanding of the binding mechanism of IBU to albumin and can lead to the rational design and the development of novel IBU-derived drugs with improved potency.

Keywords: ibuprofen, human serum albumin, density functional theory, binding energies

Procedia PDF Downloads 347
5278 Investigation of Geothermal Gradient of the Niger Delta from Recent Studies

Authors: Adedapo Jepson Olumide, Kurowska Ewa, K. Schoeneich, Ikpokonte A. Enoch

Abstract:

In this paper, subsurface temperature measured from continuous temperature logs were used to determine the geothermal gradient of NigerDelta sedimentary basin. The measured temperatures were corrected to the true subsurface temperatures by applying the American Association of Petroleum Resources (AAPG) correction factor, borehole temperature correction factor with La Max’s correction factor and Zeta Utilities borehole correction factor. Geothermal gradient in this basin ranges from 1.20C to 7.560C/100m. Six geothermal anomalies centres were observed at depth in the southern parts of the Abakaliki anticlinorium around Onitsha, Ihiala, Umuaha area and named A1 to A6 while two more centre appeared at depth of 3500m and 4000m named A7 and A8 respectively. Anomaly A1 describes the southern end of the Abakaliki anticlinorium and extends southwards, anomaly A2 to A5 were found associated with a NW-SE structural alignment of the Calabar hinge line with structures describing the edge of the Niger Delta basin with the basement block of the Oban massif. Anomaly A6 locates in the south-eastern part of the basin offshore while A7 and A8 are located in the south western part of the basin offshore. At the average exploratory depth of 3500m, the geothermal gradient values for these anomalies A1, A2, A3, A4, A5, A6, A7, and A8 are 6.50C/100m, 1.750C/100m, 7.50C/100m, 1.250C/100m, 6.50C/100m, 5.50C/100m, 60C/100m, and 2.250C/100m respectively. Anomaly A8 area may yield higher thermal value at greater depth than 3500m. These results show that anomalies areas of A1, A3, A5, A6 and A7 are potentially prospective and explorable for geothermal energy using abandoned oil wells in the study area. Anomalies A1, A3.A5, A6 occur at areas where drilled boreholes were not exploitable for oil and gas but for the remaining areas where wells are so exploitable there appears no geothermal anomaly. Geothermal energy is environmentally friendly, clean and reversible.

Keywords: temperature logs, geothermal gradient anomalies, alternative energy, Niger delta basin

Procedia PDF Downloads 279
5277 Mechanical Behaviours of Ti/GFRP/Ti Laminates with Different Surface Treatments of Titanium Sheets

Authors: Amit Kumar Haldar, Mark Simms, Ian McDevitt, Anthony Comer

Abstract:

Interface properties of fiber metal laminates (FML) affects the integrity and deformation failure modes. In this paper, the mechanical behaviours of Ti/GFRP/Ti laminates were experimentally investigated through low-velocity impact tests. Two different surface treatments of Titanium (Ti-6Al-4V) alloy sheets were prepared to obtain the composite interface properties based on annealing and sandblast surface treatment processes. The deformation failure modes, impact load sustaining ability and energy absorption capacity of FMLs were analysed. The impact load and modulus were shown to be dependent on the surface treatments of Titanium (Ti-6Al-4V) alloy sheets. It was demonstrated that the impact load performance was enhanced when titanium surfaces were annealed and sandblasted. It has also been shown that the values of the strength and energy absorption were slightly higher when the tests conducted at relatively higher loading rate, as a result of the rate-sensitive effects on the damage resistance of the FML.

Keywords: fiber metal laminates, metal composite interface, indentation, low velocity impact

Procedia PDF Downloads 197
5276 Feasibility of Battery Electric Vehicles in Saudi Arabia: Cost and Sensitivity Analysis

Authors: Tawfiq Albishri, Abdulmajeed Alqahtani

Abstract:

Battery electric vehicles (BEVs) are increasingly seen as a sustainable alternative to internal combustion engine (ICE) vehicles, primarily due to their environmental and economic benefits. Saudi Arabia's interest in investing in renewable energy and reducing greenhouse gas emissions presents significant potential for the widespread adoption of BEVs in the country. However, several factors have hindered the adoption of BEVs in Saudi Arabia, with high ownership costs being the most prominent barrier. This cost discrepancy is primarily due to the lack of localized production of BEVs and their components, leading to increased import costs, as well as the high initial cost of BEVs compared to ICE vehicles. This paper aims to evaluate the feasibility of BEVs compared to ICE vehicles in Saudi Arabia by conducting a cost of ownership analysis. Furthermore, a sensitivity analysis will be conducted to determine the most significant contributor to the ownership costs of BEVs that, if changed, could expedite their adoption in Saudi Arabia.

Keywords: battery electric vehicles, internal combustion engine, renewable energy, greenhouse gas emissions, total cost of ownership

Procedia PDF Downloads 85
5275 Split-Flow Method to Reduce Duty Required in Amine Gas Sweetening Units

Authors: Abdallah Sofiane Berrouk, Dara Satyadileep

Abstract:

This paper investigates the feasibility of retrofitting a middle-east based commercial amine sweetening unit with a split-flow scheme which involves withdrawing a portion of partially stripped semi-lean solvent from the stripping column and re-injecting it in the absorption column to reduce the overall energy consumption of the unit. This method is comprehensively explored by performing parametric analysis of the split fraction of the semi-lean solvent using a kinetics based process simulator ProMax V 3.2. Re-boiler duty, condenser duty, solvent cooling and pumping loads are analysed as functions of a split fraction of the semi-lean solvent from the stripper. It is shown that the proposed method significantly reduces the overall energy consumption of the unit resulting in an annual savings of 325,000 USD. The thorough economic analysis is performed using Aspen Economic Evaluation V 8.4 to reveal that the retrofit scheme pays back the capital cost in less than eight years and is highly recommended for any commercial plant having suitable provisions for solvent inlet/withdrawal on the columns.

Keywords: split flow, Amine, gas processing, optimization

Procedia PDF Downloads 331
5274 The Effect of Magnesium Supplement on the Athletic Performance of Field Athletes

Authors: M. Varmaziar

Abstract:

Magnesium (Mg) is an essential mineral that plays a crucial role in the human body. Certain types of foods, including nuts, grains, fruits, vegetables, and whole grains, are rich sources of magnesium. Mg serves as an essential cofactor for numerous enzymatic reactions, including energy metabolism, cellular growth, glycolysis, and protein synthesis. The Mg-ATP complex serves as an energy source and is vital for many physiological functions, including nerve conduction, muscle contraction, and blood pressure regulation. Despite the vital role of magnesium in energy metabolism, maintaining adequate magnesium intake is often overlooked among the general population and athletes. The aim of this study was to investigate the effect of magnesium supplementation on the physical activities of field athletes. Field athletes were divided into two groups: those who consumed magnesium supplements and those who received a placebo. These two groups received either 500 mg of magnesium oxide or a placebo daily for 8 weeks. At the beginning and end of the study, athletes completed ISI questionnaires and physical activity assessments. Nutritional analyses were performed using N4 software, and statistical analyses were conducted using SPSS19 software. The results of this study revealed a significant difference between the two study groups. Athletes who received magnesium supplements experienced less fatigue related to field athletic activities and muscle soreness. In contrast, athletes who received the placebo reported more significant fatigue and muscle soreness. A concerning finding in these results is that the performance of athletic activities may be at risk with low magnesium levels. Therefore, magnesium is essential for maintaining health and plays a crucial role in athletic performance. Consuming a variety of magnesium-rich foods ensures that individuals receive an adequate amount of this essential nutrient in their diet. The consumption of these foods improves performance parameters in athletic exercises.

Keywords: athletic performance, effect, field athletes, magnesium supplement

Procedia PDF Downloads 81
5273 The Portland Cement Limestone: Silica Fume System as an Alternative Cementitious Material

Authors: C. S. Paglia, E. Ginercordero, A. Jornet

Abstract:

Environmental pollution, along with the depletion of natural resources, is among the most serious global challenges in our times. The construction industry is one of the sectors where a relevant reduction of the environmental impact can be achieved. Thus, the cement production will play a key role in sustainability, by reducing the CO₂ emissions and energy consumption and by increasing the durability of the structures. A large number of investigations have been carried out on blended cements, but it exists a lack of information on the Portland cement limestone - silica fume system. Mortar blends are optimized in the mix proportions for the different ingredients, in particular for the dosage of the silica fume. Portland cement and the new binder-based systems are compared with respect to the fresh mortar properties, the mechanical and the durability behaviour of the hardened specimens at 28 and 90 days. The use of this new binder combination exhibits an interesting hydration development with time and maintain the conventional characteristics of Portland cementitious material. On the other hand, it will be necessary to reproduce the Portland Limestone Cement-silica fume system within the concrete. A reduction of the CO₂ production, energy consumption, and a reasonable service life of the concrete structures, including a maintenance free period, will all contribute to a better environment.

Keywords: binder, cement, limestone, silica fume

Procedia PDF Downloads 119
5272 Enhancement of Long Term Peak Demand Forecast in Peninsular Malaysia Using Hourly Load Profile

Authors: Nazaitul Idya Hamzah, Muhammad Syafiq Mazli, Maszatul Akmar Mustafa

Abstract:

The peak demand forecast is crucial to identify the future generation plant up needed in the long-term capacity planning analysis for Peninsular Malaysia as well as for the transmission and distribution network planning activities. Currently, peak demand forecast (in Mega Watt) is derived from the generation forecast by using load factor assumption. However, a forecast using this method has underperformed due to the structural changes in the economy, emerging trends and weather uncertainty. The dynamic changes of these drivers will result in many possible outcomes of peak demand for Peninsular Malaysia. This paper will look into the independent model of peak demand forecasting. The model begins with the selection of driver variables to capture long-term growth. This selection and construction of variables, which include econometric, emerging trend and energy variables, will have an impact on the peak forecast. The actual framework begins with the development of system energy and load shape forecast by using the system’s hourly data. The shape forecast represents the system shape assuming all embedded technology and use patterns to continue in the future. This is necessary to identify the movements in the peak hour or changes in the system load factor. The next step would be developing the peak forecast, which involves an iterative process to explore model structures and variables. The final step is combining the system energy, shape, and peak forecasts into the hourly system forecast then modifying it with the forecast adjustments. Forecast adjustments are among other sales forecasts for electric vehicles, solar and other adjustments. The framework will result in an hourly forecast that captures growth, peak usage and new technologies. The advantage of this approach as compared to the current methodology is that the peaks capture new technology impacts that change the load shape.

Keywords: hourly load profile, load forecasting, long term peak demand forecasting, peak demand

Procedia PDF Downloads 172
5271 Analysis of Vocal Pathologies Through Subglottic Pressure Measurement

Authors: Perla Elizabeth Jimarez Rocha, Carolina Daniela Tejeda Franco, Arturo Minor Martínez, Annel Gomez Coello

Abstract:

One of the biggest problems in developing new therapies for the management and treatment of voice disorders is the difficulty of objectively evaluating the results of each treatment. A system was proposed that captures and records voice signals, in addition to analyzing the vocal quality (fundamental frequency, zero crossings, energy, and amplitude spectrum), as well as the subglottic pressure (cm H2O) during the sustained phonation of the vowel / a /; a recording system is implemented, as well as an interactive system that records information on subglottic pressure. In Mexico City, a control group of 31 patients with phoniatric pathology is proposed; non-invasive tests were performed for these most common vocal pathologies (Nodules, Polyps, Irritative Laryngitis, Ventricular Dysphonia, Laryngeal Cancer, Dysphonia, and Dysphagia). The most common pathology was irritative laryngitis (32%), followed by vocal fold paralysis (unilateral and bilateral,19.4 %). We take into consideration men and women in the pathological groups due to the physiological difference. They were separated in gender by the difference in the morphology of the respiratory tract.

Keywords: amplitude spectrum, energy, fundamental frequency, subglottic pressure, zero crossings

Procedia PDF Downloads 120
5270 Identifying Large-Scale Photovoltaic and Concentrated Solar Power Hot Spots: Multi-Criteria Decision-Making Framework

Authors: Ayat-Allah Bouramdane

Abstract:

Solar Photovoltaic (PV) and Concentrated Solar Power (CSP) do not burn fossil fuels and, therefore, could meet the world's needs for low-carbon power generation as they do not release greenhouse gases into the atmosphere as they generate electricity. The power output of the solar PV module and CSP collector is proportional to the temperature and the amount of solar radiation received by their surface. Hence, the determination of the most convenient locations of PV and CSP systems is crucial to maximizing their output power. This study aims to provide a hands-on and plausible approach to the multi-criteria evaluation of site suitability of PV and CSP plants using a combination of Geographic Referenced Information (GRI) and Analytic Hierarchy Process (AHP). Applying the GRI-based AHP approach is meant to specify the criteria and sub-criteria, to identify the unsuitable areas, the low-, moderate-, high- and very high suitable areas for each layer of GRI, to perform the pairwise comparison matrix at each level of the hierarchy structure based on experts' knowledge, and calculate the weights using AHP to create the final map of solar PV and CSP plants suitability in Morocco with a particular focus on the Dakhla city. The results recognize that solar irradiation is the main decision factor for the integration of these technologies on energy policy goals of Morocco but explicitly account for other factors that cannot only limit the potential of certain locations but can even exclude the Dakhla city classified as unsuitable area. We discuss the sensitivity of the PV and CSP site suitability to different aspects, such as the methodology, the climate conditions, and the technology used in each source, and provide the final recommendations to the Moroccan energy strategy by analyzing if actual Morocco's PV and CSP installations are located within areas deemed suitable and by discussing several cases to provide mutual benefits across the Food-Energy-Water nexus. The adapted methodology and conducted suitability map could be used by researchers or engineers to provide helpful information for decision-makers in terms of sites selection, design, and planning of future solar plants, especially in areas suffering from energy shortages, such as the Dakhla city, which is now one of Africa's most promising investment hubs and it is especially attractive to investors looking to root their operations in Africa and import to European markets.

Keywords: analytic hierarchy process, concentrated solar power, dakhla, geographic referenced information, Morocco, multi-criteria decision-making, photovoltaic, site suitability

Procedia PDF Downloads 178
5269 Enhancing of Biogas Production from Slaughterhouse and Dairy Farm Waste with Pasteurization

Authors: Mahmoud Hassan Onsa, Saadelnour Abdueljabbar Adam

Abstract:

Wastes from slaughterhouses in most towns in Sudan are often poorly managed and sometimes discharged into adjoining streams due to poor implementation of standards, thus causing environmental and public health hazards and also there is a large amount of manure from dairy farms. This paper presents solution of organic waste from cow dairy farms and slaughterhouse the anaerobic digestion and biogas production. The paper presents the findings of experimental investigation of biogas production with and without pasteurization using cow manure, blood and rumen content were mixed at two proportions, 72.3% manure, 21.7%, rumen content and 6% blood for bio digester1with 62% dry matter at the beginning and without pasteurization and 72.3% manure, 21.7%, rumen content and 6% blood for bio-digester2 with 10% dry matter and pasteurization. The paper analyses the quantitative and qualitative composition of biogas: gas content, the concentration of methane. The highest biogas output 2.9 mL/g dry matter/day (from bio-digester2) together with a high quality biogas of 87.4% methane content which is useful for combustion and energy production and healthy bio-fertilizer but biodigester1 gave 1.68 mL/g dry matter/day with methane content 85% which is useful for combustion, energy production and can be considered as new technology of dryer bio-digesters.

Keywords: anaerobic digestion, bio-digester, blood, cow manure, rumen content

Procedia PDF Downloads 728
5268 Satellite Derived Evapotranspiration and Turbulent Heat Fluxes Using Surface Energy Balance System (SEBS)

Authors: Muhammad Tayyab Afzal, Muhammad Arslan, Mirza Muhammad Waqar

Abstract:

One of the key components of the water cycle is evapotranspiration (ET), which represents water consumption by vegetated and non-vegetated surfaces. Conventional techniques for measurements of ET are point based and representative of the local scale only. Satellite remote sensing data with large area coverage and high temporal frequency provide representative measurements of several relevant biophysical parameters required for estimation of ET at regional scales. The objective is of this research is to exploit satellite data in order to estimate evapotranspiration. This study uses Surface Energy Balance System (SEBS) model to calculate daily actual evapotranspiration (ETa) in Larkana District, Sindh Pakistan using Landsat TM data for clouds-free days. As there is no flux tower in the study area for direct measurement of latent heat flux or evapotranspiration and sensible heat flux, therefore, the model estimated values of ET were compared with reference evapotranspiration (ETo) computed by FAO-56 Penman Monteith Method using meteorological data. For a country like Pakistan, agriculture by irrigation in the river basins is the largest user of fresh water. For the better assessment and management of irrigation water requirement, the estimation of consumptive use of water for agriculture is very important because it is the main consumer of water. ET is yet an essential issue of water imbalance due to major loss of irrigation water and precipitation on cropland. As large amount of irrigated water is lost through ET, therefore its accurate estimation can be helpful for efficient management of irrigation water. Results of this study can be used to analyse surface conditions, i.e. temperature, energy budgets and relevant characteristics. Through this information we can monitor vegetation health and suitable agricultural conditions and can take controlling steps to increase agriculture production.

Keywords: SEBS, remote sensing, evapotranspiration, ETa

Procedia PDF Downloads 333
5267 Similitude for Thermal Scale-up of a Multiphase Thermolysis Reactor in the Cu-Cl Cycle of a Hydrogen Production

Authors: Mohammed W. Abdulrahman

Abstract:

The thermochemical copper-chlorine (Cu-Cl) cycle is considered as a sustainable and efficient technology for a hydrogen production, when linked with clean-energy systems such as nuclear reactors or solar thermal plants. In the Cu-Cl cycle, water is decomposed thermally into hydrogen and oxygen through a series of intermediate reactions. This paper investigates the thermal scale up analysis of the three phase oxygen production reactor in the Cu-Cl cycle, where the reaction is endothermic and the temperature is about 530 oC. The paper focuses on examining the size and number of oxygen reactors required to provide enough heat input for different rates of hydrogen production. The type of the multiphase reactor used in this paper is the continuous stirred tank reactor (CSTR) that is heated by a half pipe jacket. The thermal resistance of each section in the jacketed reactor system is studied to examine its effect on the heat balance of the reactor. It is found that the dominant contribution to the system thermal resistance is from the reactor wall. In the analysis, the Cu-Cl cycle is assumed to be driven by a nuclear reactor where two types of nuclear reactors are examined as the heat source to the oxygen reactor. These types are the CANDU Super Critical Water Reactor (CANDU-SCWR) and High Temperature Gas Reactor (HTGR). It is concluded that a better heat transfer rate has to be provided for CANDU-SCWR by 3-4 times than HTGR. The effect of the reactor aspect ratio is also examined in this paper and is found that increasing the aspect ratio decreases the number of reactors and the rate of decrease in the number of reactors decreases by increasing the aspect ratio. Finally, a comparison between the results of heat balance and existing results of mass balance is performed and is found that the size of the oxygen reactor is dominated by the heat balance rather than the material balance.

Keywords: sustainable energy, clean energy, Cu-Cl cycle, heat transfer, hydrogen, oxygen

Procedia PDF Downloads 296
5266 A Review on the Development and Challenges of Green Roof Systems in Malaysia

Authors: M. F. Chow, M. F. Abu Bakar

Abstract:

Green roof system is considered a relatively new concept in Malaysia even though it has been implemented widely in the developed countries. Generally, green roofs provide many benefits such as enhancing aesthetical quality of the built environment, reduce urban heat island effect, reduce energy consumption, improve stormwater attenuation, and reduce noise pollution. A better understanding on the implementation of green roof system in Malaysia is crucial, as Malaysia’s climate is different if compared with the climate in temperate countries where most of the green roof studies have been conducted. This study has concentrated on the technical aspect of green roof system which focuses on i) types of plants and method of planting; ii) engineering design for green roof system; iii) its hydrological performance on reducing stormwater runoff; and iv) benefits of green roofs with respect to energy. Literature review has been conducted to identify the development and obstacles associated with green roofs systems in Malaysia. The study had identified the challenges and potentials of green roofs development in Malaysia. This study also provided the recommendations on standard design and strategies on the implementation of green roofs in Malaysia in the near future.

Keywords: engineering design, green roof, sustainable development, tropical countries

Procedia PDF Downloads 432
5265 Impact of Air Flow Structure on Distinct Shape of Differential Pressure Devices

Authors: A. Bertašienė

Abstract:

Energy harvesting from any structure makes a challenge. Different structure of air/wind flows in industrial, environmental and residential applications emerge the real flow investigation in detail. Many of the application fields are hardly achievable to the detailed description due to the lack of up-to-date statistical data analysis. In situ measurements aim crucial investments thus the simulation methods come to implement structural analysis of the flows. Different configurations of testing environment give an overview how important is the simple structure of field in limited area on efficiency of the system operation and the energy output. Several configurations of modeled working sections in air flow test facility was implemented in CFD ANSYS environment to compare experimentally and numerically air flow development stages and forms that make effects on efficiency of devices and processes. Effective form and amount of these flows under different geometry cases define the manner of instruments/devices that measure fluid flow parameters for effective operation of any system and emission flows to define. Different fluid flow regimes were examined to show the impact of fluctuations on the development of the whole volume of the flow in specific environment. The obtained results rise the discussion on how these simulated flow fields are similar to real application ones. Experimental results have some discrepancies from simulation ones due to the models implemented to fluid flow analysis in initial stage, not developed one and due to the difficulties of models to cover transitional regimes. Recommendations are essential for energy harvesting systems in both, indoor and outdoor cases. Further investigations aim to be shifted to experimental analysis of flow under laboratory conditions using state-of-the-art techniques as flow visualization tool and later on to in situ situations that is complicated, cost and time consuming study.

Keywords: fluid flow, initial region, tube coefficient, distinct shape

Procedia PDF Downloads 337
5264 Optimal Scheduling of Load and Operational Strategy of a Load Aggregator to Maximize Profit with PEVs

Authors: Md. Shafiullah, Ali T. Al-Awami

Abstract:

This project proposes optimal scheduling of imported power of a load aggregator with the utilization of EVs to maximize its profit. As with the increase of renewable energy resources, electricity price in competitive market becomes more uncertain and, on the other hand, with the penetration of renewable distributed generators in the distribution network the predicted load of a load aggregator also becomes uncertain in real time. Though there is uncertainties in both load and price, the use of EVs storage capacity can make the operation of load aggregator flexible. LA submits its offer to day-ahead market based on predicted loads and optimized use of its EVs to maximize its profit, as well as in real time operation it uses its energy storage capacity in such a way that it can maximize its profit. In this project, load aggregators profit maximization algorithm is formulated and the optimization problem is solved with the help of CVX. As in real time operation the forecasted loads differ from actual load, the mismatches are settled in real time balancing market. Simulation results compare the profit of a load aggregator with a hypothetical group of 1000 EVs and without EVs.

Keywords: CVX, electricity market, load aggregator, load and price uncertainties, profit maximization, real time balancing operation

Procedia PDF Downloads 417