Search results for: grammatical accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3880

Search results for: grammatical accuracy

100 Estimating Poverty Levels from Satellite Imagery: A Comparison of Human Readers and an Artificial Intelligence Model

Authors: Ola Hall, Ibrahim Wahab, Thorsteinn Rognvaldsson, Mattias Ohlsson

Abstract:

The subfield of poverty and welfare estimation that applies machine learning tools and methods on satellite imagery is a nascent but rapidly growing one. This is in part driven by the sustainable development goal, whose overarching principle is that no region is left behind. Among other things, this requires that welfare levels can be accurately and rapidly estimated at different spatial scales and resolutions. Conventional tools of household surveys and interviews do not suffice in this regard. While they are useful for gaining a longitudinal understanding of the welfare levels of populations, they do not offer adequate spatial coverage for the accuracy that is needed, nor are their implementation sufficiently swift to gain an accurate insight into people and places. It is this void that satellite imagery fills. Previously, this was near-impossible to implement due to the sheer volume of data that needed processing. Recent advances in machine learning, especially the deep learning subtype, such as deep neural networks, have made this a rapidly growing area of scholarship. Despite their unprecedented levels of performance, such models lack transparency and explainability and thus have seen limited downstream applications as humans generally are apprehensive of techniques that are not inherently interpretable and trustworthy. While several studies have demonstrated the superhuman performance of AI models, none has directly compared the performance of such models and human readers in the domain of poverty studies. In the present study, we directly compare the performance of human readers and a DL model using different resolutions of satellite imagery to estimate the welfare levels of demographic and health survey clusters in Tanzania, using the wealth quintile ratings from the same survey as the ground truth data. The cluster-level imagery covers all 608 cluster locations, of which 428 were classified as rural. The imagery for the human readers was sourced from the Google Maps Platform at an ultra-high resolution of 0.6m per pixel at zoom level 18, while that of the machine learning model was sourced from the comparatively lower resolution Sentinel-2 10m per pixel data for the same cluster locations. Rank correlation coefficients of between 0.31 and 0.32 achieved by the human readers were much lower when compared to those attained by the machine learning model – 0.69-0.79. This superhuman performance by the model is even more significant given that it was trained on the relatively lower 10-meter resolution satellite data while the human readers estimated welfare levels from the higher 0.6m spatial resolution data from which key markers of poverty and slums – roofing and road quality – are discernible. It is important to note, however, that the human readers did not receive any training before ratings, and had this been done, their performance might have improved. The stellar performance of the model also comes with the inevitable shortfall relating to limited transparency and explainability. The findings have significant implications for attaining the objective of the current frontier of deep learning models in this domain of scholarship – eXplainable Artificial Intelligence through a collaborative rather than a comparative framework.

Keywords: poverty prediction, satellite imagery, human readers, machine learning, Tanzania

Procedia PDF Downloads 102
99 Spin Rate Decaying Law of Projectile with Hemispherical Head in Exterior Trajectory

Authors: Quan Wen, Tianxiao Chang, Shaolu Shi, Yushi Wang, Guangyu Wang

Abstract:

As a kind of working environment of the fuze, the spin rate decaying law of projectile in exterior trajectory is of great value in the design of the rotation count fixed distance fuze. In addition, it is significant in the field of devices for simulation tests of fuze exterior ballistic environment, flight stability, and dispersion accuracy of gun projectile and opening and scattering design of submunition and illuminating cartridges. Besides, the self-destroying mechanism of the fuze in small-caliber projectile often works by utilizing the attenuation of centrifugal force. In the theory of projectile aerodynamics and fuze design, there are many formulas describing the change law of projectile angular velocity in external ballistic such as Roggla formula, exponential function formula, and power function formula. However, these formulas are mostly semi-empirical due to the poor test conditions and insufficient test data at that time. These formulas are difficult to meet the design requirements of modern fuze because they are not accurate enough and have a narrow range of applications now. In order to provide more accurate ballistic environment parameters for the design of a hemispherical head projectile fuze, the projectile’s spin rate decaying law in exterior trajectory under the effect of air resistance was studied. In the analysis, the projectile shape was simplified as hemisphere head, cylindrical part, rotating band part, and anti-truncated conical tail. The main assumptions are as follows: a) The shape and mass are symmetrical about the longitudinal axis, b) There is a smooth transition between the ball hea, c) The air flow on the outer surface is set as a flat plate flow with the same area as the expanded outer surface of the projectile, and the boundary layer is turbulent, d) The polar damping moment attributed to the wrench hole and rifling mark on the projectile is not considered, e) The groove of the rifle on the rotating band is uniform, smooth and regular. The impacts of the four parts on aerodynamic moment of the projectile rotation were obtained by aerodynamic theory. The surface friction stress of the projectile, the polar damping moment formed by the head of the projectile, the surface friction moment formed by the cylindrical part, the rotating band, and the anti-truncated conical tail were obtained by mathematical derivation. After that, the mathematical model of angular spin rate attenuation was established. In the whole trajectory with the maximum range angle (38°), the absolute error of the polar damping torque coefficient obtained by simulation and the coefficient calculated by the mathematical model established in this paper is not more than 7%. Therefore, the credibility of the mathematical model was verified. The mathematical model can be described as a first-order nonlinear differential equation, which has no analytical solution. The solution can be only gained as a numerical solution by connecting the model with projectile mass motion equations in exterior ballistics.

Keywords: ammunition engineering, fuze technology, spin rate, numerical simulation

Procedia PDF Downloads 143
98 Dietary Exposure Assessment of Potentially Toxic Trace Elements in Fruits and Vegetables Grown in Akhtala, Armenia

Authors: Davit Pipoyan, Meline Beglaryan, Nicolò Merendino

Abstract:

Mining industry is one of the priority sectors of Armenian economy. Along with the solution of some socio-economic development, it brings about numerous environmental problems, especially toxic element pollution, which largely influences the safety of agricultural products. In addition, accumulation of toxic elements in agricultural products, mainly in edible parts of plants represents a direct pathway for their penetration into the human food chain. In Armenia, the share of plant origin food in overall diet is significantly high, so estimation of dietary intakes of toxic trace elements via consumption of selected fruits and vegetables are of great importance for observing the underlying health risks. Therefore, the present study was aimed to assess dietary exposure of potentially toxic trace elements through the intake of locally grown fruits and vegetables in Akhtala community (Armenia), where not only mining industry is developed, but also cultivation of fruits and vegetables. Moreover, this investigation represents one of the very first attempts to estimate human dietary exposure of potentially toxic trace elements in the study area. Samples of some commonly grown fruits and vegetables (fig, cornel, raspberry, grape, apple, plum, maize, bean, potato, cucumber, onion, greens) were randomly collected from several home gardens located near mining areas in Akhtala community. The concentration of Cu, Mo, Ni, Cr, Pb, Zn, Hg, As and Cd in samples were determined by using an atomic absorption spectrophotometer (AAS). Precision and accuracy of analyses were guaranteed by repeated analysis of samples against NIST Standard Reference Materials. For a diet study, individual-based approach was used, so the consumption of selected fruits and vegetables was investigated through food frequency questionnaire (FFQ). Combining concentration data with contamination data, the estimated daily intakes (EDI) and cumulative daily intakes were assessed and compared with health-based guidance values (HBGVs). According to the determined concentrations of the studied trace elements in fruits and vegetables, it can be stressed that some trace elements (Cu, Ni, Pb, Zn) among the majority of samples exceeded maximum allowable limits set by international organizations. Meanwhile, others (Cr, Hg, As, Cd, Mo) either did not exceed these limits or still do not have established allowable limits. The obtained results indicated that only for Cu the EDI values exceeded dietary reference intake (0.01 mg/kg/Bw/day) for some investigated fruits and vegetables in decreasing order of potato > grape > bean > raspberry > fig > greens. In contrast to this, for combined consumption of selected fruits and vegetables estimated cumulative daily intakes exceeded reference doses in the following sequence: Zn > Cu > Ni > Mo > Pb. It may be concluded that habitual and combined consumption of the above mentioned fruits and vegetables can pose a health risk to the local population. Hence, further detailed studies are needed for the overall assessment of potential health implications taking into consideration adverse health effects posed by more than one toxic trace element.

Keywords: daily intake, dietary exposure, fruits, trace elements, vegetables

Procedia PDF Downloads 299
97 A Short Dermatoscopy Training Increases Diagnostic Performance in Medical Students

Authors: Magdalena Chrabąszcz, Teresa Wolniewicz, Cezary Maciejewski, Joanna Czuwara

Abstract:

BACKGROUND: Dermoscopy is a clinical tool known to improve the early detection of melanoma and other malignancies of the skin. Over the past few years melanoma has grown into a disease of socio-economic importance due to the increasing incidence and persistently high mortality rates. Early diagnosis remains the best method to reduce melanoma and non-melanoma skin cancer– related mortality and morbidity. Dermoscopy is a noninvasive technique that consists of viewing pigmented skin lesions through a hand-held lens. This simple procedure increases melanoma diagnostic accuracy by up to 35%. Dermoscopy is currently the standard for clinical differential diagnosis of cutaneous melanoma and for qualifying lesion for the excision biopsy. Like any clinical tool, training is required for effective use. The introduction of small and handy dermoscopes contributed significantly to the switch of dermatoscopy toward a first-level useful tool. Non-dermatologist physicians are well positioned for opportunistic melanoma detection; however, education in the skin cancer examination is limited during medical school and traditionally lecture-based. AIM: The aim of this randomized study was to determine whether the adjunct of dermoscopy to the standard fourth year medical curriculum improves the ability of medical students to distinguish between benign and malignant lesions and assess acceptability and satisfaction with the intervention. METHODS: We performed a prospective study in 2 cohorts of fourth-year medical students at Medical University of Warsaw. Groups having dermatology course, were randomly assigned to:  cohort A: with limited access to dermatoscopy from their teacher only – 1 dermatoscope for 15 people  Cohort B: with a full access to use dermatoscopy during their clinical classes:1 dermatoscope for 4 people available constantly plus 15-minute dermoscopy tutorial. Students in both study arms got an image-based test of 10 lesions to assess ability to differentiate benign from malignant lesions and postintervention survey collecting minimal background information, attitudes about the skin cancer examination and course satisfaction. RESULTS: The cohort B had higher scores than the cohort A in recognition of nonmelanocytic (P < 0.05) and melanocytic (P <0.05) lesions. Medical students who have a possibility to use dermatoscope by themselves have also a higher satisfaction rates after the dermatology course than the group with limited access to this diagnostic tool. Moreover according to our results they were more motivated to learn dermatoscopy and use it in their future everyday clinical practice. LIMITATIONS: There were limited participants. Further study of the application on clinical practice is still needed. CONCLUSION: Although the use of dermatoscope in dermatology as a specialty is widely accepted, sufficiently validated clinical tools for the examination of potentially malignant skin lesions are lacking in general practice. Introducing medical students to dermoscopy in their fourth year curricula of medical school may improve their ability to differentiate benign from malignant lesions. It can can also encourage students to use dermatoscopy in their future practice which can significantly improve early recognition of malignant lesions and thus decrease melanoma mortality.

Keywords: dermatoscopy, early detection of melanoma, medical education, skin cancer

Procedia PDF Downloads 112
96 Application of Infrared Thermal Imaging, Eye Tracking and Behavioral Analysis for Deception Detection

Authors: Petra Hypšová, Martin Seitl

Abstract:

One of the challenges of forensic psychology is to detect deception during a face-to-face interview. In addition to the classical approaches of monitoring the utterance and its components, detection is also sought by observing behavioral and physiological changes that occur as a result of the increased emotional and cognitive load caused by the production of distorted information. Typical are changes in facial temperature, eye movements and their fixation, pupil dilation, emotional micro-expression, heart rate and its variability. Expanding technological capabilities have opened the space to detect these psychophysiological changes and behavioral manifestations through non-contact technologies that do not interfere with face-to-face interaction. Non-contact deception detection methodology is still in development, and there is a lack of studies that combine multiple non-contact technologies to investigate their accuracy, as well as studies that show how different types of lies produced by different interviewers affect physiological and behavioral changes. The main objective of this study is to apply a specific non-contact technology for deception detection. The next objective is to investigate scenarios in which non-contact deception detection is possible. A series of psychophysiological experiments using infrared thermal imaging, eye tracking and behavioral analysis with FaceReader 9.0 software was used to achieve our goals. In the laboratory experiment, 16 adults (12 women, 4 men) between 18 and 35 years of age (SD = 4.42) were instructed to produce alternating prepared and spontaneous truths and lies. The baseline of each proband was also measured, and its results were compared to the experimental conditions. Because the personality of the examiner (particularly gender and facial appearance) to whom the subject is lying can influence physiological and behavioral changes, the experiment included four different interviewers. The interviewer was represented by a photograph of a face that met the required parameters in terms of gender and facial appearance (i.e., interviewer likability/antipathy) to follow standardized procedures. The subject provided all information to the simulated interviewer. During follow-up analyzes, facial temperature (main ROIs: forehead, cheeks, the tip of the nose, chin, and corners of the eyes), heart rate, emotional expression, intensity and fixation of eye movements and pupil dilation were observed. The results showed that the variables studied varied with respect to the production of prepared truths and lies versus the production of spontaneous truths and lies, as well as the variability of the simulated interviewer. The results also supported the assumption of variability in physiological and behavioural values during the subject's resting state, the so-called baseline, and the production of prepared and spontaneous truths and lies. A series of psychophysiological experiments provided evidence of variability in the areas of interest in the production of truths and lies to different interviewers. The combination of technologies used also led to a comprehensive assessment of the physiological and behavioral changes associated with false and true statements. The study presented here opens the space for further research in the field of lie detection with non-contact technologies.

Keywords: emotional expression decoding, eye-tracking, functional infrared thermal imaging, non-contact deception detection, psychophysiological experiment

Procedia PDF Downloads 98
95 Surviral: An Agent-Based Simulation Framework for Sars-Cov-2 Outcome Prediction

Authors: Sabrina Neururer, Marco Schweitzer, Werner Hackl, Bernhard Tilg, Patrick Raudaschl, Andreas Huber, Bernhard Pfeifer

Abstract:

History and the current outbreak of Covid-19 have shown the deadly potential of infectious diseases. However, infectious diseases also have a serious impact on areas other than health and healthcare, such as the economy or social life. These areas are strongly codependent. Therefore, disease control measures, such as social distancing, quarantines, curfews, or lockdowns, have to be adopted in a very considerate manner. Infectious disease modeling can support policy and decision-makers with adequate information regarding the dynamics of the pandemic and therefore assist in planning and enforcing appropriate measures that will prevent the healthcare system from collapsing. In this work, an agent-based simulation package named “survival” for simulating infectious diseases is presented. A special focus is put on SARS-Cov-2. The presented simulation package was used in Austria to model the SARS-Cov-2 outbreak from the beginning of 2020. Agent-based modeling is a relatively recent modeling approach. Since our world is getting more and more complex, the complexity of the underlying systems is also increasing. The development of tools and frameworks and increasing computational power advance the application of agent-based models. For parametrizing the presented model, different data sources, such as known infections, wastewater virus load, blood donor antibodies, circulating virus variants and the used capacity for hospitalization, as well as the availability of medical materials like ventilators, were integrated with a database system and used. The simulation result of the model was used for predicting the dynamics and the possible outcomes and was used by the health authorities to decide on the measures to be taken in order to control the pandemic situation. The survival package was implemented in the programming language Java and the analytics were performed with R Studio. During the first run in March 2020, the simulation showed that without measures other than individual personal behavior and appropriate medication, the death toll would have been about 27 million people worldwide within the first year. The model predicted the hospitalization rates (standard and intensive care) for Tyrol and South Tyrol with an accuracy of about 1.5% average error. They were calculated to provide 10-days forecasts. The state government and the hospitals were provided with the 10-days models to support their decision-making. This ensured that standard care was maintained for as long as possible without restrictions. Furthermore, various measures were estimated and thereafter enforced. Among other things, communities were quarantined based on the calculations while, in accordance with the calculations, the curfews for the entire population were reduced. With this framework, which is used in the national crisis team of the Austrian province of Tyrol, a very accurate model could be created on the federal state level as well as on the district and municipal level, which was able to provide decision-makers with a solid information basis. This framework can be transferred to various infectious diseases and thus can be used as a basis for future monitoring.

Keywords: modelling, simulation, agent-based, SARS-Cov-2, COVID-19

Procedia PDF Downloads 173
94 A Novel PWM/PFM Controller for PSR Fly-Back Converter Using a New Peak Sensing Technique

Authors: Sanguk Nam, Van Ha Nguyen, Hanjung Song

Abstract:

For low-power applications such as adapters for portable devices and USB chargers, the primary side regulation (PSR) fly-back converter is widely used in lieu of the conventional fly-back converter using opto-coupler because of its simpler structure and lower cost. In the literature, there has been studies focusing on the design of PSR circuit; however, the conventional sensing method in PSR circuit using RC delay has a lower accuracy as compared to the conventional fly-back converter using opto-coupler. In this paper, we propose a novel PWM/PFM controller using new sensing technique for the PSR fly-back converter which can control an accurate output voltage. The conventional PSR circuit can sense the output voltage information from the auxiliary winding to regulate the duty cycle of the clock that control the output voltage. In the sensing signal waveform, there has two transient points at time the voltage equals to Vout+VD and Vout, respectively. In other to sense the output voltage, the PSR circuit must detect the time at which the current of the diode at the output equals to zero. In the conventional PSR flyback-converter, the sensing signal at this time has a non-sharp-negative slope that might cause a difficulty in detecting the output voltage information since a delay of sensing signal or switching clock may exist which brings out an unstable operation of PSR fly-back converter. In this paper instead of detecting output voltage at a non-sharp-negative slope, a sharp-positive slope is used to sense the proper information of the output voltage. The proposed PRS circuit consists of a saw-tooth generator, a summing circuit, a sample and hold circuit and a peak detector. Besides, there is also the start-up circuit which protects the chip from high surge current when the converter is turned on. Additionally, to reduce the standby power loss, a second mode which operates in a low frequency is designed beside the main mode at high frequency. In general, the operation of the proposed PSR circuit can be summarized as following: At the time the output information is sensed from the auxiliary winding, a saw-tooth signal from the saw-tooth generator is generated. Then, both of these signals are summed using a summing circuit. After this process, the slope of the peak of the sensing signal at the time diode current is zero becomes positive and sharp that make the peak easy to detect. The output of the summing circuit then is fed into a peak detector and the sample and hold circuit; hence, the output voltage can be properly sensed. By this way, we can sense more accurate output voltage information and extend margin even circuit is delayed or even there is the existence of noise by using only a simple circuit structure as compared with conventional circuits while the performance can be sufficiently enhanced. Circuit verification was carried out using 0.35μm 700V Magnachip process. The simulation result of sensing signal shows a maximum error of 5mV under various load and line conditions which means the operation of the converter is stable. As compared to the conventional circuit, we achieved very small error only used analog circuits compare with conventional circuits. In this paper, a PWM/PFM controller using a simple and effective sensing method for PSR fly-back converter has been presented in this paper. The circuit structure is simple as compared with the conventional designs. The gained results from simulation confirmed the idea of the design

Keywords: primary side regulation, PSR, sensing technique, peak detector, PWM/PFM control, fly-back converter

Procedia PDF Downloads 337
93 Performance of CALPUFF Dispersion Model for Investigation the Dispersion of the Pollutants Emitted from an Industrial Complex, Daura Refinery, to an Urban Area in Baghdad

Authors: Ramiz M. Shubbar, Dong In Lee, Hatem A. Gzar, Arthur S. Rood

Abstract:

Air pollution is one of the biggest environmental problems in Baghdad, Iraq. The Daura refinery located nearest the center of Baghdad, represents the largest industrial area, which transmits enormous amounts of pollutants, therefore study the gaseous pollutants and particulate matter are very important to the environment and the health of the workers in refinery and the people whom leaving in areas around the refinery. Actually, some studies investigated the studied area before, but it depended on the basic Gaussian equation in a simple computer programs, however, that kind of work at that time is very useful and important, but during the last two decades new largest production units were added to the Daura refinery such as, PU_3 (Power unit_3 (Boiler 11&12)), CDU_1 (Crude Distillation unit_70000 barrel_1), and CDU_2 (Crude Distillation unit_70000 barrel_2). Therefore, it is necessary to use new advanced model to study air pollution at the region for the new current years, and calculation the monthly emission rate of pollutants through actual amounts of fuel which consumed in production unit, this may be lead to accurate concentration values of pollutants and the behavior of dispersion or transport in study area. In this study to the best of author’s knowledge CALPUFF model was used and examined for first time in Iraq. CALPUFF is an advanced non-steady-state meteorological and air quality modeling system, was applied to investigate the pollutants concentration of SO2, NO2, CO, and PM1-10μm, at areas adjacent to Daura refinery which located in the center of Baghdad in Iraq. The CALPUFF modeling system includes three main components: CALMET is a diagnostic 3-dimensional meteorological model, CALPUFF (an air quality dispersion model), CALPOST is a post processing package, and an extensive set of preprocessing programs produced to interface the model to standard routinely available meteorological and geophysical datasets. The targets of this work are modeling and simulation the four pollutants (SO2, NO2, CO, and PM1-10μm) which emitted from Daura refinery within one year. Emission rates of these pollutants were calculated for twelve units includes thirty plants, and 35 stacks by using monthly average of the fuel amount consumption at this production units. Assess the performance of CALPUFF model in this study and detect if it is appropriate and get out predictions of good accuracy compared with available pollutants observation. CALPUFF model was investigated at three stability classes (stable, neutral, and unstable) to indicate the dispersion of the pollutants within deferent meteorological conditions. The simulation of the CALPUFF model showed the deferent kind of dispersion of these pollutants in this region depends on the stability conditions and the environment of the study area, monthly, and annual averages of pollutants were applied to view the dispersion of pollutants in the contour maps. High values of pollutants were noticed in this area, therefore this study recommends to more investigate and analyze of the pollutants, reducing the emission rate of pollutants by using modern techniques and natural gas, increasing the stack height of units, and increasing the exit gas velocity from stacks.

Keywords: CALPUFF, daura refinery, Iraq, pollutants

Procedia PDF Downloads 196
92 Optimization of Metal Pile Foundations for Solar Power Stations Using Cone Penetration Test Data

Authors: Adrian Priceputu, Elena Mihaela Stan

Abstract:

Our research addresses a critical challenge in renewable energy: improving efficiency and reducing the costs associated with the installation of ground-mounted photovoltaic (PV) panels. The most commonly used foundation solution is metal piles - with various sections adapted to soil conditions and the structural model of the panels. However, direct foundation systems are also sometimes used, especially in brownfield sites. Although metal micropiles are generally the first design option, understanding and predicting their bearing capacity, particularly under varied soil conditions, remains an open research topic. CPT Method and Current Challenges: Metal piles are favored for PV panel foundations due to their adaptability, but existing design methods rely heavily on costly and time-consuming in situ tests. The Cone Penetration Test (CPT) offers a more efficient alternative by providing valuable data on soil strength, stratification, and other key characteristics with reduced resources. During the test, a cone-shaped probe is pushed into the ground at a constant rate. Sensors within the probe measure the resistance of the soil to penetration, divided into cone penetration resistance and shaft friction resistance. Despite some existing CPT-based design approaches for metal piles, these methods are often cumbersome and difficult to apply. They vary significantly due to soil type and foundation method, and traditional approaches like the LCPC method involve complex calculations and extensive empirical data. The method was developed by testing 197 piles on a wide range of ground conditions, but the tested piles were very different from the ones used for PV pile foundations, making the method less accurate and practical for steel micropiles. Project Objectives and Methodology: Our research aims to develop a calculation method for metal micropile foundations using CPT data, simplifying the complex relationships involved. The goal is to estimate the pullout bearing capacity of piles without additional laboratory tests, streamlining the design process. To achieve this, a case study was selected which will serve for the development of an 80ha solar power station. Four testing locations were chosen spread throughout the site. At each location, two types of steel profiles (H160 and C100) were embedded into the ground at various depths (1.5m and 2.0m). The piles were tested for pullout capacity under natural and inundated soil conditions. CPT tests conducted nearby served as calibration points. The results served for the development of a preliminary equation for estimating pullout capacity. Future Work: The next phase involves validating and refining the proposed equation on additional sites by comparing CPT-based forecasts with in situ pullout tests. This validation will enhance the accuracy and reliability of the method, potentially transforming the foundation design process for PV panels.

Keywords: cone penetration test, foundation optimization, solar power stations, steel pile foundations

Procedia PDF Downloads 53
91 Single Pass Design of Genetic Circuits Using Absolute Binding Free Energy Measurements and Dimensionless Analysis

Authors: Iman Farasat, Howard M. Salis

Abstract:

Engineered genetic circuits reprogram cellular behavior to act as living computers with applications in detecting cancer, creating self-controlling artificial tissues, and dynamically regulating metabolic pathways. Phenemenological models are often used to simulate and design genetic circuit behavior towards a desired behavior. While such models assume that each circuit component’s function is modular and independent, even small changes in a circuit (e.g. a new promoter, a change in transcription factor expression level, or even a new media) can have significant effects on the circuit’s function. Here, we use statistical thermodynamics to account for the several factors that control transcriptional regulation in bacteria, and experimentally demonstrate the model’s accuracy across 825 measurements in several genetic contexts and hosts. We then employ our first principles model to design, experimentally construct, and characterize a family of signal amplifying genetic circuits (genetic OpAmps) that expand the dynamic range of cell sensors. To develop these models, we needed a new approach to measuring the in vivo binding free energies of transcription factors (TFs), a key ingredient of statistical thermodynamic models of gene regulation. We developed a new high-throughput assay to measure RNA polymerase and TF binding free energies, requiring the construction and characterization of only a few constructs and data analysis (Figure 1A). We experimentally verified the assay on 6 TetR-homolog repressors and a CRISPR/dCas9 guide RNA. We found that our binding free energy measurements quantitatively explains why changing TF expression levels alters circuit function. Altogether, by combining these measurements with our biophysical model of translation (the RBS Calculator) as well as other measurements (Figure 1B), our model can account for changes in TF binding sites, TF expression levels, circuit copy number, host genome size, and host growth rate (Figure 1C). Model predictions correctly accounted for how these 8 factors control a promoter’s transcription rate (Figure 1D). Using the model, we developed a design framework for engineering multi-promoter genetic circuits that greatly reduces the number of degrees of freedom (8 factors per promoter) to a single dimensionless unit. We propose the Ptashne (Pt) number to encapsulate the 8 co-dependent factors that control transcriptional regulation into a single number. Therefore, a single number controls a promoter’s output rather than these 8 co-dependent factors, and designing a genetic circuit with N promoters requires specification of only N Pt numbers. We demonstrate how to design genetic circuits in Pt number space by constructing and characterizing 15 2-repressor OpAmp circuits that act as signal amplifiers when within an optimal Pt region. We experimentally show that OpAmp circuits using different TFs and TF expression levels will only amplify the dynamic range of input signals when their corresponding Pt numbers are within the optimal region. Thus, the use of the Pt number greatly simplifies the genetic circuit design, particularly important as circuits employ more TFs to perform increasingly complex functions.

Keywords: transcription factor, synthetic biology, genetic circuit, biophysical model, binding energy measurement

Procedia PDF Downloads 472
90 Additional Opportunities of Forensic Medical Identification of Dead Bodies of Unkown Persons

Authors: Saule Mussabekova

Abstract:

A number of chemical elements widely presented in the nature is seldom met in people and vice versa. This is a peculiarity of accumulation of elements in the body, and their selective use regardless of widely changed parameters of external environment. Microelemental identification of human hair and particularly dead body is a new step in the development of modern forensic medicine which needs reliable criteria while identifying the person. In the condition of technology-related pressing of large industrial cities for many years and specific for each region multiple-factor toxic effect from many industrial enterprises it’s important to assess actuality and the role of researches of human hair while assessing degree of deposition with specific pollution. Hair is highly sensitive biological indicator and allows to assess ecological situation, to perform regionalism of large territories of geological and chemical methods. Besides, monitoring of concentrations of chemical elements in the regions of Kazakhstan gives opportunity to use these data while performing forensic medical identification of dead bodies of unknown persons. Methods based on identification of chemical composition of hair with further computer processing allowed to compare received data with average values for the sex, age, and to reveal causally significant deviations. It gives an opportunity preliminary to suppose the region of residence of the person, having concentrated actions of policy for search of people who are unaccounted for. It also allows to perform purposeful legal actions for its further identification having created more optimal and strictly individual scheme of personal identity. Hair is the most suitable material for forensic researches as it has such advances as long term storage properties with no time limitations and specific equipment. Besides, quantitative analysis of micro elements is well correlated with level of pollution of the environment, reflects professional diseases and with pinpoint accuracy helps not only to diagnose region of temporary residence of the person but to establish regions of his migration as well. Peculiarities of elemental composition of human hair have been established regardless of age and sex of persons residing on definite territories of Kazakhstan. Data regarding average content of 29 chemical elements in hair of population in different regions of Kazakhstan have been systemized. Coefficients of concentration of studies elements in hair relative to average values around the region have been calculated for each region. Groups of regions with specific spectrum of elements have been emphasized; these elements are accumulated in hair in quantities exceeding average indexes. Our results have showed significant differences in concentrations of chemical elements for studies groups and showed that population of Kazakhstan is exposed to different toxic substances. It depends on emissions to atmosphere from industrial enterprises dominating in each separate region. Performed researches have showed that obtained elemental composition of human hair residing in different regions of Kazakhstan reflects technogenic spectrum of elements.

Keywords: analysis of elemental composition of hair, forensic medical research of hair, identification of unknown dead bodies, microelements

Procedia PDF Downloads 141
89 An Aptasensor Based on Magnetic Relaxation Switch and Controlled Magnetic Separation for the Sensitive Detection of Pseudomonas aeruginosa

Authors: Fei Jia, Xingjian Bai, Xiaowei Zhang, Wenjie Yan, Ruitong Dai, Xingmin Li, Jozef Kokini

Abstract:

Pseudomonas aeruginosa is a Gram-negative, aerobic, opportunistic human pathogen that is present in the soil, water, and food. This microbe has been recognized as a representative food-borne spoilage bacterium that can lead to many types of infections. Considering the casualties and property loss caused by P. aeruginosa, the development of a rapid and reliable technique for the detection of P. aeruginosa is crucial. The whole-cell aptasensor, an emerging biosensor using aptamer as a capture probe to bind to the whole cell, for food-borne pathogens detection has attracted much attention due to its convenience and high sensitivity. Here, a low-field magnetic resonance imaging (LF-MRI) aptasensor for the rapid detection of P. aeruginosa was developed. The basic detection principle of the magnetic relaxation switch (MRSw) nanosensor lies on the ‘T₂-shortening’ effect of magnetic nanoparticles in NMR measurements. Briefly speaking, the transverse relaxation time (T₂) of neighboring water protons get shortened when magnetic nanoparticles are clustered due to the cross-linking upon the recognition and binding of biological targets, or simply when the concentration of the magnetic nanoparticles increased. Such shortening is related to both the state change (aggregation or dissociation) and the concentration change of magnetic nanoparticles and can be detected using NMR relaxometry or MRI scanners. In this work, two different sizes of magnetic nanoparticles, which are 10 nm (MN₁₀) and 400 nm (MN₄₀₀) in diameter, were first immobilized with anti- P. aeruginosa aptamer through 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS) chemistry separately, to capture and enrich the P. aeruginosa cells. When incubating with the target, a ‘sandwich’ (MN₁₀-bacteria-MN₄₀₀) complex are formed driven by the bonding of MN400 with P. aeruginosa through aptamer recognition, as well as the conjugate aggregation of MN₁₀ on the surface of P. aeruginosa. Due to the different magnetic performance of the MN₁₀ and MN₄₀₀ in the magnetic field caused by their different saturation magnetization, the MN₁₀-bacteria-MN₄₀₀ complex, as well as the unreacted MN₄₀₀ in the solution, can be quickly removed by magnetic separation, and as a result, only unreacted MN₁₀ remain in the solution. The remaining MN₁₀, which are superparamagnetic and stable in low field magnetic field, work as a signal readout for T₂ measurement. Under the optimum condition, the LF-MRI platform provides both image analysis and quantitative detection of P. aeruginosa, with the detection limit as low as 100 cfu/mL. The feasibility and specificity of the aptasensor are demonstrated in detecting real food samples and validated by using plate counting methods. Only two steps and less than 2 hours needed for the detection procedure, this robust aptasensor can detect P. aeruginosa with a wide linear range from 3.1 ×10² cfu/mL to 3.1 ×10⁷ cfu/mL, which is superior to conventional plate counting method and other molecular biology testing assay. Moreover, the aptasensor has a potential to detect other bacteria or toxins by changing suitable aptamers. Considering the excellent accuracy, feasibility, and practicality, the whole-cell aptasensor provides a promising platform for a quick, direct and accurate determination of food-borne pathogens at cell-level.

Keywords: magnetic resonance imaging, meat spoilage, P. aeruginosa, transverse relaxation time

Procedia PDF Downloads 151
88 Imaging Spectrum of Central Nervous System Tuberculosis on Magnetic Resonance Imaging: Correlation with Clinical and Microbiological Results

Authors: Vasundhara Arora, Anupam Jhobta, Suresh Thakur, Sanjiv Sharma

Abstract:

Aims and Objectives: Intracranial tuberculosis (TB) is one of the most devastating manifestations of TB and a challenging public health issue of considerable importance and magnitude world over. This study elaborates on the imaging spectrum of neurotuberculosis on magnetic resonance imaging (MRI) in 29 clinically suspected cases from a tertiary care hospital. Materials and Methods: The prospective hospital based evaluation of MR imaging features of neuro-tuberculosis in 29 clinically suspected cases was carried out in Department of Radio-diagnosis, Indira Gandhi Medical Hospital from July 2017 to August 2018. MR Images were obtained on a 1.5 T Magnetom Avanto machine and were analyzed to identify any abnormal meningeal enhancement or parenchymal lesions. Microbiological and Biochemical CSF analysis was performed in radio-logically suspected cases and the results were compared with the imaging data. Clinical follow up of the patients started on anti-tuberculous treatment was done to evaluate the response to treatment and clinical outcome. Results: Age range of patients in the study was between 1 year to 73 years. The mean age of presentation was 11.5 years. No significant difference in the distribution of cerebral tuberculosis was noted among the two genders. Imaging findings of neuro-tuberculosis obtained were varied and non specific ranging from lepto-meningeal enhancement, cerebritis to space occupying lesions such as tuberculomas and tubercular abscesses. Complications presenting as hydrocephalus (n= 7) and infarcts (n=9) was noted in few of these patients. 29 patients showed radiological suspicion of CNS tuberculosis with meningitis alone observed in 11 cases, tuberculomas alone were observed in 4 cases, meningitis with parenchymal tuberculomas in 11 cases. Tubercular abscess and cerebritis were observed in one case each. Tuberculous arachnoiditis was noted in one patient. Gene expert positivity was obtained in 11 out of 29 radiologically suspected patients; none of the patients showed culture positivity. Meningeal form of the disease alone showed higher positivity rate of gene Xpert (n=5) followed by combination of meningeal and parenchymal forms of disease (n=4). The parenchymal manifestation of disease alone showed least positivity rates (n= 3) with gene xpert testing. All 29 patients were started on anti tubercular treatment based on radiological suspicion of the disease with clinical improvement observed in 27 treated patients. Conclusions: In our study, higher incidence of neuro- tuberculosis was noted in paediatric population with predominance of the meningeal form of the disease. Gene Xpert positivity obtained was low due to paucibacillary nature of cerebrospinal fluid (CSF) with even lower positivity of CSF samples in parenchymal form of the manifestation. MRI showed high accuracy in detecting CNS lesions in neuro-tuberculosis. Hence, it can be concluded that MRI plays a crucial role in the diagnosis because of its inherent sensitivity and specificity and is an indispensible imaging modality. It caters to the need of early diagnosis owing to poor sensitivity of microbiological tests more so in the parenchymal manifestation of the disease.

Keywords: neurotuberculosis, tubercular abscess, tuberculoma, tuberculous meningitis

Procedia PDF Downloads 169
87 Characterization of Agroforestry Systems in Burkina Faso Using an Earth Observation Data Cube

Authors: Dan Kanmegne

Abstract:

Africa will become the most populated continent by the end of the century, with around 4 billion inhabitants. Food security and climate changes will become continental issues since agricultural practices depend on climate but also contribute to global emissions and land degradation. Agroforestry has been identified as a cost-efficient and reliable strategy to address these two issues. It is defined as the integrated management of trees and crops/animals in the same land unit. Agroforestry provides benefits in terms of goods (fruits, medicine, wood, etc.) and services (windbreaks, fertility, etc.), and is acknowledged to have a great potential for carbon sequestration; therefore it can be integrated into reduction mechanisms of carbon emissions. Particularly in sub-Saharan Africa, the constraint stands in the lack of information about both areas under agroforestry and the characterization (composition, structure, and management) of each agroforestry system at the country level. This study describes and quantifies “what is where?”, earliest to the quantification of carbon stock in different systems. Remote sensing (RS) is the most efficient approach to map such a dynamic technology as agroforestry since it gives relatively adequate and consistent information over a large area at nearly no cost. RS data fulfill the good practice guidelines of the Intergovernmental Panel On Climate Change (IPCC) that is to be used in carbon estimation. Satellite data are getting more and more accessible, and the archives are growing exponentially. To retrieve useful information to support decision-making out of this large amount of data, satellite data needs to be organized so to ensure fast processing, quick accessibility, and ease of use. A new solution is a data cube, which can be understood as a multi-dimensional stack (space, time, data type) of spatially aligned pixels and used for efficient access and analysis. A data cube for Burkina Faso has been set up from the cooperation project between the international service provider WASCAL and Germany, which provides an accessible exploitation architecture of multi-temporal satellite data. The aim of this study is to map and characterize agroforestry systems using the Burkina Faso earth observation data cube. The approach in its initial stage is based on an unsupervised image classification of a normalized difference vegetation index (NDVI) time series from 2010 to 2018, to stratify the country based on the vegetation. Fifteen strata were identified, and four samples per location were randomly assigned to define the sampling units. For safety reasons, the northern part will not be part of the fieldwork. A total of 52 locations will be visited by the end of the dry season in February-March 2020. The field campaigns will consist of identifying and describing different agroforestry systems and qualitative interviews. A multi-temporal supervised image classification will be done with a random forest algorithm, and the field data will be used for both training the algorithm and accuracy assessment. The expected outputs are (i) map(s) of agroforestry dynamics, (ii) characteristics of different systems (main species, management, area, etc.); (iii) assessment report of Burkina Faso data cube.

Keywords: agroforestry systems, Burkina Faso, earth observation data cube, multi-temporal image classification

Procedia PDF Downloads 144
86 Artificial Intelligence for Traffic Signal Control and Data Collection

Authors: Reggie Chandra

Abstract:

Trafficaccidents and traffic signal optimization are correlated. However, 70-90% of the traffic signals across the USA are not synchronized. The reason behind that is insufficient resources to create and implement timing plans. In this work, we will discuss the use of a breakthrough Artificial Intelligence (AI) technology to optimize traffic flow and collect 24/7/365 accurate traffic data using a vehicle detection system. We will discuss what are recent advances in Artificial Intelligence technology, how does AI work in vehicles, pedestrians, and bike data collection, creating timing plans, and what is the best workflow for that. Apart from that, this paper will showcase how Artificial Intelligence makes signal timing affordable. We will introduce a technology that uses Convolutional Neural Networks (CNN) and deep learning algorithms to detect, collect data, develop timing plans and deploy them in the field. Convolutional Neural Networks are a class of deep learning networks inspired by the biological processes in the visual cortex. A neural net is modeled after the human brain. It consists of millions of densely connected processing nodes. It is a form of machine learning where the neural net learns to recognize vehicles through training - which is called Deep Learning. The well-trained algorithm overcomes most of the issues faced by other detection methods and provides nearly 100% traffic data accuracy. Through this continuous learning-based method, we can constantly update traffic patterns, generate an unlimited number of timing plans and thus improve vehicle flow. Convolutional Neural Networks not only outperform other detection algorithms but also, in cases such as classifying objects into fine-grained categories, outperform humans. Safety is of primary importance to traffic professionals, but they don't have the studies or data to support their decisions. Currently, one-third of transportation agencies do not collect pedestrian and bike data. We will discuss how the use of Artificial Intelligence for data collection can help reduce pedestrian fatalities and enhance the safety of all vulnerable road users. Moreover, it provides traffic engineers with tools that allow them to unleash their potential, instead of dealing with constant complaints, a snapshot of limited handpicked data, dealing with multiple systems requiring additional work for adaptation. The methodologies used and proposed in the research contain a camera model identification method based on deep Convolutional Neural Networks. The proposed application was evaluated on our data sets acquired through a variety of daily real-world road conditions and compared with the performance of the commonly used methods requiring data collection by counting, evaluating, and adapting it, and running it through well-established algorithms, and then deploying it to the field. This work explores themes such as how technologies powered by Artificial Intelligence can benefit your community and how to translate the complex and often overwhelming benefits into a language accessible to elected officials, community leaders, and the public. Exploring such topics empowers citizens with insider knowledge about the potential of better traffic technology to save lives and improve communities. The synergies that Artificial Intelligence brings to traffic signal control and data collection are unsurpassed.

Keywords: artificial intelligence, convolutional neural networks, data collection, signal control, traffic signal

Procedia PDF Downloads 168
85 Flexible Ethylene-Propylene Copolymer Nanofibers Decorated with Ag Nanoparticles as Effective 3D Surface-Enhanced Raman Scattering Substrates

Authors: Yi Li, Rui Lu, Lianjun Wang

Abstract:

With the rapid development of chemical industry, the consumption of volatile organic compounds (VOCs) has increased extensively. In the process of VOCs production and application, plenty of them have been transferred to environment. As a result, it has led to pollution problems not only in soil and ground water but also to human beings. Thus, it is important to develop a sensitive and cost-effective analytical method for trace VOCs detection in environment. Surface-enhanced Raman Spectroscopy (SERS), as one of the most sensitive optical analytical technique with rapid response, pinpoint accuracy and noninvasive detection, has been widely used for ultratrace analysis. Based on the plasmon resonance on the nanoscale metallic surface, SERS technology can even detect single molecule due to abundant nanogaps (i.e. 'hot spots') on the nanosubstrate. In this work, a self-supported flexible silver nitrate (AgNO3)/ethylene-propylene copolymer (EPM) hybrid nanofibers was fabricated by electrospinning. After an in-situ chemical reduction using ice-cold sodium borohydride as reduction agent, numerous silver nanoparticles were formed on the nanofiber surface. By adjusting the reduction time and AgNO3 content, the morphology and dimension of silver nanoparticles could be controlled. According to the principles of solid-phase extraction, the hydrophobic substance is more likely to partition into the hydrophobic EPM membrane in an aqueous environment while water and other polar components are excluded from the analytes. By the enrichment of EPM fibers, the number of hydrophobic molecules located on the 'hot spots' generated from criss-crossed nanofibers is greatly increased, which further enhances SERS signal intensity. The as-prepared Ag/EPM hybrid nanofibers were first employed to detect common SERS probe molecule (p-aminothiophenol) with the detection limit down to 10-12 M, which demonstrated an excellent SERS performance. To further study the application of the fabricated substrate for monitoring hydrophobic substance in water, several typical VOCs, such as benzene, toluene and p-xylene, were selected as model compounds. The results showed that the characteristic peaks of these target analytes in the mixed aqueous solution could be distinguished even at a concentration of 10-6 M after multi-peaks gaussian fitting process, including C-H bending (850 cm-1), C-C ring stretching (1581 cm-1, 1600 cm-1) of benzene, C-H bending (844 cm-1 ,1151 cm-1), C-C ring stretching (1001 cm-1), CH3 bending vibration (1377 cm-1) of toluene, C-H bending (829 cm-1), C-C stretching (1614 cm-1) of p-xylene. The SERS substrate has remarkable advantages which combine the enrichment capacity from EPM and the Raman enhancement of Ag nanoparticles. Meanwhile, the huge specific surface area resulted from electrospinning is benificial to increase the number of adsoption sites and promotes 'hot spots' formation. In summary, this work provides powerful potential in rapid, on-site and accurate detection of trace VOCs using a portable Raman.

Keywords: electrospinning, ethylene-propylene copolymer, silver nanoparticles, SERS, VOCs

Procedia PDF Downloads 159
84 The Impact of ChatGPT on the Healthcare Domain: Perspectives from Healthcare Majors

Authors: Su Yen Chen

Abstract:

ChatGPT has shown both strengths and limitations in clinical, educational, and research settings, raising important concerns about accuracy, transparency, and ethical use. Despite an improved understanding of user acceptance and satisfaction, there is still a gap in how general AI perceptions translate into practical applications within healthcare. This study focuses on examining the perceptions of ChatGPT's impact among 266 healthcare majors in Taiwan, exploring its implications for their career development, as well as its utility in clinical practice, medical education, and research. By employing a structured survey with precisely defined subscales, this research aims to probe the breadth of ChatGPT's applications within healthcare, assessing both the perceived benefits and the challenges it presents. Additionally, to further enhance the comprehensiveness of our methodology, we have incorporated qualitative data collection methods, which provide complementary insights to the quantitative findings. The findings from the survey reveal that perceptions and usage of ChatGPT among healthcare majors vary significantly, influenced by factors such as its perceived utility, risk, novelty, and trustworthiness. Graduate students and those who perceive ChatGPT as more beneficial and less risky are particularly inclined to use it more frequently. This increased usage is closely linked to significant impacts on personal career development. Furthermore, ChatGPT's perceived usefulness and novelty contribute to its broader impact within the healthcare domain, suggesting that both innovation and practical utility are key drivers of acceptance and perceived effectiveness in professional healthcare settings. Trust emerges as an important factor, especially in clinical settings where the stakes are high. The trust that healthcare professionals place in ChatGPT significantly affects its integration into clinical practice and influences outcomes in medical education and research. The reliability and practical value of ChatGPT are thus critical for its successful adoption in these areas. However, an interesting paradox arises with regard to the ease of use. While making ChatGPT more user-friendly is generally seen as beneficial, it also raises concerns among users who have lower levels of trust and perceive higher risks associated with its use. This complex interplay between ease of use and safety concerns necessitates a careful balance, highlighting the need for robust security measures and clear, transparent communication about how AI systems work and their limitations. The study suggests several strategic approaches to enhance the adoption and integration of AI in healthcare. These include targeted training programs for healthcare professionals to increase familiarity with AI technologies, reduce perceived risks, and build trust. Ensuring transparency and conducting rigorous testing are also vital to foster trust and reliability. Moreover, comprehensive policy frameworks are needed to guide the implementation of AI technologies, ensuring high standards of patient safety, privacy, and ethical use. These measures are crucial for fostering broader acceptance of AI in healthcare, as the study contributes to enriching the discourse on AI's role by detailing how various factors affect its adoption and impact.

Keywords: ChatGPT, healthcare, survey study, IT adoption, behaviour, applcation, concerns

Procedia PDF Downloads 27
83 Rigorous Photogrammetric Push-Broom Sensor Modeling for Lunar and Planetary Image Processing

Authors: Ahmed Elaksher, Islam Omar

Abstract:

Accurate geometric relation algorithms are imperative in Earth and planetary satellite and aerial image processing, particularly for high-resolution images that are used for topographic mapping. Most of these satellites carry push-broom sensors. These sensors are optical scanners equipped with linear arrays of CCDs. These sensors have been deployed on most EOSs. In addition, the LROC is equipped with two push NACs that provide 0.5 meter-scale panchromatic images over a 5 km swath of the Moon. The HiRISE carried by the MRO and the HRSC carried by MEX are examples of push-broom sensor that produces images of the surface of Mars. Sensor models developed in photogrammetry relate image space coordinates in two or more images with the 3D coordinates of ground features. Rigorous sensor models use the actual interior orientation parameters and exterior orientation parameters of the camera, unlike approximate models. In this research, we generate a generic push-broom sensor model to process imageries acquired through linear array cameras and investigate its performance, advantages, and disadvantages in generating topographic models for the Earth, Mars, and the Moon. We also compare and contrast the utilization, effectiveness, and applicability of available photogrammetric techniques and softcopies with the developed model. We start by defining an image reference coordinate system to unify image coordinates from all three arrays. The transformation from an image coordinate system to a reference coordinate system involves a translation and three rotations. For any image point within the linear array, its image reference coordinates, the coordinates of the exposure center of the array in the ground coordinate system at the imaging epoch (t), and the corresponding ground point coordinates are related through the collinearity condition that states that all these three points must be on the same line. The rotation angles for each CCD array at the epoch t are defined and included in the transformation model. The exterior orientation parameters of an image line, i.e., coordinates of exposure station and rotation angles, are computed by a polynomial interpolation function in time (t). The parameter (t) is the time at a certain epoch from a certain orbit position. Depending on the types of observations, coordinates, and parameters may be treated as knowns or unknowns differently in various situations. The unknown coefficients are determined in a bundle adjustment. The orientation process starts by extracting the sensor position and, orientation and raw images from the PDS. The parameters of each image line are then estimated and imported into the push-broom sensor model. We also define tie points between image pairs to aid the bundle adjustment model, determine the refined camera parameters, and generate highly accurate topographic maps. The model was tested on different satellite images such as IKONOS, QuickBird, and WorldView-2, HiRISE. It was found that the accuracy of our model is comparable to those of commercial and open-source software, the computational efficiency of the developed model is high, the model could be used in different environments with various sensors, and the implementation process is much more cost-and effort-consuming.

Keywords: photogrammetry, push-broom sensors, IKONOS, HiRISE, collinearity condition

Procedia PDF Downloads 63
82 Enhanced Multi-Scale Feature Extraction Using a DCNN by Proposing Dynamic Soft Margin SoftMax for Face Emotion Detection

Authors: Armin Nabaei, M. Omair Ahmad, M. N. S. Swamy

Abstract:

Many facial expression and emotion recognition methods in the traditional approaches of using LDA, PCA, and EBGM have been proposed. In recent years deep learning models have provided a unique platform addressing by automatically extracting the features for the detection of facial expression and emotions. However, deep networks require large training datasets to extract automatic features effectively. In this work, we propose an efficient emotion detection algorithm using face images when only small datasets are available for training. We design a deep network whose feature extraction capability is enhanced by utilizing several parallel modules between the input and output of the network, each focusing on the extraction of different types of coarse features with fined grained details to break the symmetry of produced information. In fact, we leverage long range dependencies, which is one of the main drawback of CNNs. We develop this work by introducing a Dynamic Soft-Margin SoftMax.The conventional SoftMax suffers from reaching to gold labels very soon, which take the model to over-fitting. Because it’s not able to determine adequately discriminant feature vectors for some variant class labels. We reduced the risk of over-fitting by using a dynamic shape of input tensor instead of static in SoftMax layer with specifying a desired Soft- Margin. In fact, it acts as a controller to how hard the model should work to push dissimilar embedding vectors apart. For the proposed Categorical Loss, by the objective of compacting the same class labels and separating different class labels in the normalized log domain.We select penalty for those predictions with high divergence from ground-truth labels.So, we shorten correct feature vectors and enlarge false prediction tensors, it means we assign more weights for those classes with conjunction to each other (namely, “hard labels to learn”). By doing this work, we constrain the model to generate more discriminate feature vectors for variant class labels. Finally, for the proposed optimizer, our focus is on solving weak convergence of Adam optimizer for a non-convex problem. Our noteworthy optimizer is working by an alternative updating gradient procedure with an exponential weighted moving average function for faster convergence and exploiting a weight decay method to help drastically reducing the learning rate near optima to reach the dominant local minimum. We demonstrate the superiority of our proposed work by surpassing the first rank of three widely used Facial Expression Recognition datasets with 93.30% on FER-2013, and 16% improvement compare to the first rank after 10 years, reaching to 90.73% on RAF-DB, and 100% k-fold average accuracy for CK+ dataset, and shown to provide a top performance to that provided by other networks, which require much larger training datasets.

Keywords: computer vision, facial expression recognition, machine learning, algorithms, depp learning, neural networks

Procedia PDF Downloads 74
81 The Implantable MEMS Blood Pressure Sensor Model With Wireless Powering And Data Transmission

Authors: Vitaliy Petrov, Natalia Shusharina, Vitaliy Kasymov, Maksim Patrushev, Evgeny Bogdanov

Abstract:

The leading worldwide death reasons are ischemic heart disease and other cardiovascular illnesses. Generally, the common symptom is high blood pressure. Long-time blood pressure control is very important for the prophylaxis, correct diagnosis and timely therapy. Non-invasive methods which are based on Korotkoff sounds are impossible to apply often and for a long time. Implantable devices can combine longtime monitoring with high accuracy of measurements. The main purpose of this work is to create a real-time monitoring system for decreasing the death rate from cardiovascular diseases. These days implantable electronic devices began to play an important role in medicine. Usually implantable devices consist of a transmitter, powering which could be wireless with a special made battery and measurement circuit. Common problems in making implantable devices are short lifetime of the battery, big size and biocompatibility. In these work, blood pressure measure will be the focus because it’s one of the main symptoms of cardiovascular diseases. Our device will consist of three parts: the implantable pressure sensor, external transmitter and automated workstation in a hospital. The Implantable part of pressure sensors could be based on piezoresistive or capacitive technologies. Both sensors have some advantages and some limitations. The Developed circuit is based on a small capacitive sensor which is made of the technology of microelectromechanical systems (MEMS). The Capacitive sensor can provide high sensitivity, low power consumption and minimum hysteresis compared to the piezoresistive sensor. For this device, it was selected the oscillator-based circuit where frequency depends from the capacitance of sensor hence from capacitance one can calculate pressure. The external device (transmitter) used for wireless charging and signal transmission. Some implant devices for these applications are passive, the external device sends radio wave signal on internal LC circuit device. The external device gets reflected the signal from the implant and from a change of frequency is possible to calculate changing of capacitance and then blood pressure. However, this method has some disadvantages, such as the patient position dependence and static using. Developed implantable device doesn’t have these disadvantages and sends blood pressure data to the external part in real-time. The external device continuously sends information about blood pressure to hospital cloud service for analysis by a physician. Doctor’s automated workstation at the hospital also acts as a dashboard, which displays actual medical data of patients (which require attention) and stores it in cloud service. Usually, critical heart conditions occur few hours before heart attack but the device is able to send an alarm signal to the hospital for an early action of medical service. The system was tested with wireless charging and data transmission. These results can be used for ASIC design for MEMS pressure sensor.

Keywords: MEMS sensor, RF power, wireless data, oscillator-based circuit

Procedia PDF Downloads 587
80 Approximate-Based Estimation of Single Event Upset Effect on Statistic Random-Access Memory-Based Field-Programmable Gate Arrays

Authors: Mahsa Mousavi, Hamid Reza Pourshaghaghi, Mohammad Tahghighi, Henk Corporaal

Abstract:

Recently, Statistic Random-Access Memory-based (SRAM-based) Field-Programmable Gate Arrays (FPGAs) are widely used in aeronautics and space systems where high dependability is demanded and considered as a mandatory requirement. Since design’s circuit is stored in configuration memory in SRAM-based FPGAs; they are very sensitive to Single Event Upsets (SEUs). In addition, the adverse effects of SEUs on the electronics used in space are much higher than in the Earth. Thus, developing fault tolerant techniques play crucial roles for the use of SRAM-based FPGAs in space. However, fault tolerance techniques introduce additional penalties in system parameters, e.g., area, power, performance and design time. In this paper, an accurate estimation of configuration memory vulnerability to SEUs is proposed for approximate-tolerant applications. This vulnerability estimation is highly required for compromising between the overhead introduced by fault tolerance techniques and system robustness. In this paper, we study applications in which the exact final output value is not necessarily always a concern meaning that some of the SEU-induced changes in output values are negligible. We therefore define and propose Approximate-based Configuration Memory Vulnerability Factor (ACMVF) estimation to avoid overestimating configuration memory vulnerability to SEUs. In this paper, we assess the vulnerability of configuration memory by injecting SEUs in configuration memory bits and comparing the output values of a given circuit in presence of SEUs with expected correct output. In spite of conventional vulnerability factor calculation methods, which accounts any deviations from the expected value as failures, in our proposed method a threshold margin is considered depending on user-case applications. Given the proposed threshold margin in our model, a failure occurs only when the difference between the erroneous output value and the expected output value is more than this margin. The ACMVF is subsequently calculated by acquiring the ratio of failures with respect to the total number of SEU injections. In our paper, a test-bench for emulating SEUs and calculating ACMVF is implemented on Zynq-7000 FPGA platform. This system makes use of the Single Event Mitigation (SEM) IP core to inject SEUs into configuration memory bits of the target design implemented in Zynq-7000 FPGA. Experimental results for 32-bit adder show that, when 1% to 10% deviation from correct output is considered, the counted failures number is reduced 41% to 59% compared with the failures number counted by conventional vulnerability factor calculation. It means that estimation accuracy of the configuration memory vulnerability to SEUs is improved up to 58% in the case that 10% deviation is acceptable in output results. Note that less than 10% deviation in addition result is reasonably tolerable for many applications in approximate computing domain such as Convolutional Neural Network (CNN).

Keywords: fault tolerance, FPGA, single event upset, approximate computing

Procedia PDF Downloads 198
79 Examining Influence of The Ultrasonic Power and Frequency on Microbubbles Dynamics Using Real-Time Visualization of Synchrotron X-Ray Imaging: Application to Membrane Fouling Control

Authors: Masoume Ehsani, Ning Zhu, Huu Doan, Ali Lohi, Amira Abdelrasoul

Abstract:

Membrane fouling poses severe challenges in membrane-based wastewater treatment applications. Ultrasound (US) has been considered an effective fouling remediation technique in filtration processes. Bubble cavitation in the liquid medium results from the alternating rarefaction and compression cycles during the US irradiation at sufficiently high acoustic pressure. Cavitation microbubbles generated under US irradiation can cause eddy current and turbulent flow within the medium by either oscillating or discharging energy to the system through microbubble explosion. Turbulent flow regime and shear forces created close to the membrane surface cause disturbing the cake layer and dislodging the foulants, which in turn improve the cleaning efficiency and filtration performance. Therefore, the number, size, velocity, and oscillation pattern of the microbubbles created in the liquid medium play a crucial role in foulant detachment and permeate flux recovery. The goal of the current study is to gain in depth understanding of the influence of the US power intensity and frequency on the microbubble dynamics and its characteristics generated under US irradiation. In comparison with other imaging techniques, the synchrotron in-line Phase Contrast Imaging technique at the Canadian Light Source (CLS) allows in-situ observation and real-time visualization of microbubble dynamics. At CLS biomedical imaging and therapy (BMIT) polychromatic beamline, the effective parameters were optimized to enhance the contrast gas/liquid interface for the accuracy of the qualitative and quantitative analysis of bubble cavitation within the system. With the high flux of photons and the high-speed camera, a typical high projection speed was achieved; and each projection of microbubbles in water was captured in 0.5 ms. ImageJ software was used for post-processing the raw images for the detailed quantitative analyses of microbubbles. The imaging has been performed under the US power intensity levels of 50 W, 60 W, and 100 W, in addition to the US frequency levels of 20 kHz, 28 kHz, and 40 kHz. For the duration of 2 seconds of imaging, the effect of the US power and frequency on the average number, size, and fraction of the area occupied by bubbles were analyzed. Microbubbles’ dynamics in terms of their velocity in water was also investigated. For the US power increase of 50 W to 100 W, the average bubble number and the average bubble diameter were increased from 746 to 880 and from 36.7 µm to 48.4 µm, respectively. In terms of the influence of US frequency, a fewer number of bubbles were created at 20 kHz (average of 176 bubbles rather than 808 bubbles at 40 kHz), while the average bubble size was significantly larger than that of 40 kHz (almost seven times). The majority of bubbles were captured close to the membrane surface in the filtration unit. According to the study observations, membrane cleaning efficiency is expected to be improved at higher US power and lower US frequency due to the higher energy release to the system by increasing the number of bubbles or growing their size during oscillation (optimum condition is expected to be at 20 kHz and 100 W).

Keywords: bubble dynamics, cavitational bubbles, membrane fouling, ultrasonic cleaning

Procedia PDF Downloads 148
78 Scenario-Based Learning Using Virtual Optometrist Applications

Authors: J. S. M. Yang, G. E. T. Chua

Abstract:

Diploma in Optometry (OPT) course is a three-year program offered by Ngee Ann Polytechnic (NP) to train students to provide primary eye care. Students are equipped with foundational conceptual knowledge and practical skills in the first three semesters before clinical modules in fourth to six semesters. In the clinical modules, students typically have difficulties in integrating the acquired knowledge and skills from the past semesters to perform general eye examinations on public patients at NP Optometry Centre (NPOC). To help the students overcome the challenge, a web-based game Virtual Optometrist (VO) was developed to help students apply their skills and knowledge through scenario-based learning. It consisted of two interfaces, Optical Practice Counter (OPC) and Optometric Consultation Room (OCR), to provide two simulated settings for authentic learning experiences. In OPC, students would recommend and provide appropriate frame and lens selection based on virtual patient’s case history. In OCR, students would diagnose and manage virtual patients with common ocular conditions. Simulated scenarios provided real-world clinical situations that required contextual application of integrated knowledge from relevant modules. The stages in OPC and OCR are of increasing complexity to align to expected students’ clinical competency as they progress to more senior semesters. This prevented gameplay fatigue as VO was used over the semesters to achieve different learning outcomes. Numerous feedback opportunities were provided to students based on their decisions to allow individualized learning to take place. The game-based learning element in VO was achieved through the scoreboard and leader board to enhance students' motivation to perform. Scores were based on the speed and accuracy of students’ responses to the questions posed in the simulated scenarios, preparing the students to perform accurately and effectively under time pressure in a realistic optometric environment. Learning analytics was generated in VO’s backend office based on students’ responses, offering real-time data on distinctive and observable learners’ behavior to monitor students’ engagement and learning progress. The backend office allowed versatility to add, edit, and delete scenarios for different intended learning outcomes. Likert Scale was used to measure students’ learning experience with VO for OPT Year 2 and 3 students. The survey results highlighted the learning benefits of implementing VO in the different modules, such as enhancing recall and reinforcement of clinical knowledge for contextual application to develop higher-order thinking skills, increasing efficiency in clinical decision-making, facilitating learning through immediate feedback and second attempts, providing exposure to common and significant ocular conditions, and training effective communication skills. The results showed that VO has been useful in reinforcing optometry students’ learning and supporting the development of higher-order thinking, increasing efficiency in clinical decision-making, and allowing students to learn from their mistakes with immediate feedback and second attempts. VO also exposed the students to diverse ocular conditions through simulated real-world clinical scenarios, which may otherwise not be encountered in NPOC, and promoted effective communication skills.

Keywords: authentic learning, game-based learning, scenario-based learning, simulated clinical scenarios

Procedia PDF Downloads 117
77 Design, Fabrication and Analysis of Molded and Direct 3D-Printed Soft Pneumatic Actuators

Authors: N. Naz, A. D. Domenico, M. N. Huda

Abstract:

Soft Robotics is a rapidly growing multidisciplinary field where robots are fabricated using highly deformable materials motivated by bioinspired designs. The high dexterity and adaptability to the external environments during contact make soft robots ideal for applications such as gripping delicate objects, locomotion, and biomedical devices. The actuation system of soft robots mainly includes fluidic, tendon-driven, and smart material actuation. Among them, Soft Pneumatic Actuator, also known as SPA, remains the most popular choice due to its flexibility, safety, easy implementation, and cost-effectiveness. However, at present, most of the fabrication of SPA is still based on traditional molding and casting techniques where the mold is 3d printed into which silicone rubber is cast and consolidated. This conventional method is time-consuming and involves intensive manual labour with the limitation of repeatability and accuracy in design. Recent advancements in direct 3d printing of different soft materials can significantly reduce the repetitive manual task with an ability to fabricate complex geometries and multicomponent designs in a single manufacturing step. The aim of this research work is to design and analyse the Soft Pneumatic Actuator (SPA) utilizing both conventional casting and modern direct 3d printing technologies. The mold of the SPA for traditional casting is 3d printed using fused deposition modeling (FDM) with the polylactic acid (PLA) thermoplastic wire. Hyperelastic soft materials such as Ecoflex-0030/0050 are cast into the mold and consolidated using a lab oven. The bending behaviour is observed experimentally with different pressures of air compressor to ensure uniform bending without any failure. For direct 3D-printing of SPA fused deposition modeling (FDM) with thermoplastic polyurethane (TPU) and stereolithography (SLA) with an elastic resin are used. The actuator is modeled using the finite element method (FEM) to analyse the nonlinear bending behaviour, stress concentration and strain distribution of different hyperelastic materials after pressurization. FEM analysis is carried out using Ansys Workbench software with a Yeon-2nd order hyperelastic material model. FEM includes long-shape deformation, contact between surfaces, and gravity influences. For mesh generation, quadratic tetrahedron, hybrid, and constant pressure mesh are used. SPA is connected to a baseplate that is in connection with the air compressor. A fixed boundary is applied on the baseplate, and static pressure is applied orthogonally to all surfaces of the internal chambers and channels with a closed continuum model. The simulated results from FEM are compared with the experimental results. The experiments are performed in a laboratory set-up where the developed SPA is connected to a compressed air source with a pressure gauge. A comparison study based on performance analysis is done between FDM and SLA printed SPA with the molded counterparts. Furthermore, the molded and 3d printed SPA has been used to develop a three-finger soft pneumatic gripper and has been tested for handling delicate objects.

Keywords: finite element method, fused deposition modeling, hyperelastic, soft pneumatic actuator

Procedia PDF Downloads 89
76 A Vision-Based Early Warning System to Prevent Elephant-Train Collisions

Authors: Shanaka Gunasekara, Maleen Jayasuriya, Nalin Harischandra, Lilantha Samaranayake, Gamini Dissanayake

Abstract:

One serious facet of the worsening Human-Elephant conflict (HEC) in nations such as Sri Lanka involves elephant-train collisions. Endangered Asian elephants are maimed or killed during such accidents, which also often result in orphaned or disabled elephants, contributing to the phenomenon of lone elephants. These lone elephants are found to be more likely to attack villages and showcase aggressive behaviour, which further exacerbates the overall HEC. Furthermore, Railway Services incur significant financial losses and disruptions to services annually due to such accidents. Most elephant-train collisions occur due to a lack of adequate reaction time. This is due to the significant stopping distance requirements of trains, as the full braking force needs to be avoided to minimise the risk of derailment. Thus, poor driver visibility at sharp turns, nighttime operation, and poor weather conditions are often contributing factors to this problem. Initial investigations also indicate that most collisions occur in localised “hotspots” where elephant pathways/corridors intersect with railway tracks that border grazing land and watering holes. Taking these factors into consideration, this work proposes the leveraging of recent developments in Convolutional Neural Network (CNN) technology to detect elephants using an RGB/infrared capable camera around known hotspots along the railway track. The CNN was trained using a curated dataset of elephants collected on field visits to elephant sanctuaries and wildlife parks in Sri Lanka. With this vision-based detection system at its core, a prototype unit of an early warning system was designed and tested. This weatherised and waterproofed unit consists of a Reolink security camera which provides a wide field of view and range, an Nvidia Jetson Xavier computing unit, a rechargeable battery, and a solar panel for self-sufficient functioning. The prototype unit was designed to be a low-cost, low-power and small footprint device that can be mounted on infrastructures such as poles or trees. If an elephant is detected, an early warning message is communicated to the train driver using the GSM network. A mobile app for this purpose was also designed to ensure that the warning is clearly communicated. A centralized control station manages and communicates all information through the train station network to ensure coordination among important stakeholders. Initial results indicate that detection accuracy is sufficient under varying lighting situations, provided comprehensive training datasets that represent a wide range of challenging conditions are available. The overall hardware prototype was shown to be robust and reliable. We envision a network of such units may help contribute to reducing the problem of elephant-train collisions and has the potential to act as an important surveillance mechanism in dealing with the broader issue of human-elephant conflicts.

Keywords: computer vision, deep learning, human-elephant conflict, wildlife early warning technology

Procedia PDF Downloads 224
75 A Hardware-in-the-loop Simulation for the Development of Advanced Control System Design for a Spinal Joint Wear Simulator

Authors: Kaushikk Iyer, Richard M Hall, David Keeling

Abstract:

Hardware-in-the-loop (HIL) simulation is an advanced technique for developing and testing complex real-time control systems. This paper presents the benefits of HIL simulation and how it can be implemented and used effectively to develop, test, and validate advanced control algorithms used in a spinal joint Wear simulator for the Tribological testing of spinal disc prostheses. spinal wear simulator is technologically the most advanced machine currently employed For the in-vitro testing of newly developed spinal Discimplants. However, the existing control techniques, such as a simple position control Does not allow the simulator to test non-sinusoidal waveforms. Thus, there is a need for better and advanced control methods that can be developed and tested Rigorouslybut safely before deploying it into the real simulator. A benchtop HILsetupis was created for experimentation, controller verification, and validation purposes, allowing different control strategies to be tested rapidly in a safe environment. The HIL simulation aspect in this setup attempts to replicate similar spinal motion and loading conditions. The spinal joint wear simulator containsa four-Barlinkpowered by electromechanical actuators. LabVIEW software is used to design a kinematic model of the spinal wear Simulator to Validatehow each link contributes towards the final motion of the implant under test. As a result, the implant articulates with an angular motion specified in the international standards, ISO-18192-1, that define fixed, simplified, and sinusoid motion and load profiles for wear testing of cervical disc implants. Using a PID controller, a velocity-based position control algorithm was developed to interface with the benchtop setup that performs HIL simulation. In addition to PID, a fuzzy logic controller (FLC) was also developed that acts as a supervisory controller. FLC provides intelligence to the PID controller by By automatically tuning the controller for profiles that vary in amplitude, shape, and frequency. This combination of the fuzzy-PID controller is novel to the wear testing application for spinal simulators and demonstrated superior performance against PIDwhen tested for a spectrum of frequency. Kaushikk Iyer is a Ph.D. Student at the University of Leeds and an employee at Key Engineering Solutions, Leeds, United Kingdom, (e-mail: [email protected], phone: +44 740 541 5502). Richard M Hall is with the University of Leeds, the United Kingdom as a professor in the Mechanical Engineering Department (e-mail: [email protected]). David Keeling is the managing director of Key Engineering Solutions, Leeds, United Kingdom (e-mail: [email protected]). Results obtained are successfully validated against the load and motion tolerances specified by the ISO18192-1 standard and fall within limits, that is, ±0.5° at the maxima and minima of the motion and ±2 % of the complete cycle for phasing. The simulation results prove the efficacy of the test setup using HIL simulation to verify and validate the accuracy and robustness of the prospective controller before its deployment into the spinal wear simulator. This method of testing controllers enables a wide range of possibilities to test advanced control algorithms that can potentially test even profiles of patients performing various dailyliving activities.

Keywords: Fuzzy-PID controller, hardware-in-the-loop (HIL), real-time simulation, spinal wear simulator

Procedia PDF Downloads 168
74 On the Bias and Predictability of Asylum Cases

Authors: Panagiota Katsikouli, William Hamilton Byrne, Thomas Gammeltoft-Hansen, Tijs Slaats

Abstract:

An individual who demonstrates a well-founded fear of persecution or faces real risk of being subjected to torture is eligible for asylum. In Danish law, the exact legal thresholds reflect those established by international conventions, notably the 1951 Refugee Convention and the 1950 European Convention for Human Rights. These international treaties, however, remain largely silent when it comes to how states should assess asylum claims. As a result, national authorities are typically left to determine an individual’s legal eligibility on a narrow basis consisting of an oral testimony, which may itself be hampered by several factors, including imprecise language interpretation, insecurity or lacking trust towards the authorities among applicants. The leaky ground, on which authorities must assess their subjective perceptions of asylum applicants' credibility, questions whether, in all cases, adjudicators make the correct decision. Moreover, the subjective element in these assessments raises questions on whether individual asylum cases could be afflicted by implicit biases or stereotyping amongst adjudicators. In fact, recent studies have uncovered significant correlations between decision outcomes and the experience and gender of the assigned judge, as well as correlations between asylum outcomes and entirely external events such as weather and political elections. In this study, we analyze a publicly available dataset containing approximately 8,000 summaries of asylum cases, initially rejected, and re-tried by the Refugee Appeals Board (RAB) in Denmark. First, we look for variations in the recognition rates, with regards to a number of applicants’ features: their country of origin/nationality, their identified gender, their identified religion, their ethnicity, whether torture was mentioned in their case and if so, whether it was supported or not, and the year the applicant entered Denmark. In order to extract those features from the text summaries, as well as the final decision of the RAB, we applied natural language processing and regular expressions, adjusting for the Danish language. We observed interesting variations in recognition rates related to the applicants’ country of origin, ethnicity, year of entry and the support or not of torture claims, whenever those were made in the case. The appearance (or not) of significant variations in the recognition rates, does not necessarily imply (or not) bias in the decision-making progress. None of the considered features, with the exception maybe of the torture claims, should be decisive factors for an asylum seeker’s fate. We therefore investigate whether the decision can be predicted on the basis of these features, and consequently, whether biases are likely to exist in the decisionmaking progress. We employed a number of machine learning classifiers, and found that when using the applicant’s country of origin, religion, ethnicity and year of entry with a random forest classifier, or a decision tree, the prediction accuracy is as high as 82% and 85% respectively. tentially predictive properties with regards to the outcome of an asylum case. Our analysis and findings call for further investigation on the predictability of the outcome, on a larger dataset of 17,000 cases, which is undergoing.

Keywords: asylum adjudications, automated decision-making, machine learning, text mining

Procedia PDF Downloads 92
73 Exploring Empathy Through Patients’ Eyes: A Thematic Narrative Analysis of Patient Narratives in the UK

Authors: Qudsiya Baig

Abstract:

Empathy yields an unparalleled therapeutic value within patient physician interactions. Medical research is inundated with evidence to support that a physician’s ability to empathise with patients leads to a greater willingness to report symptoms, an improvement in diagnostic accuracy and safety, and a better adherence and satisfaction with treatment plans. Furthermore, the Institute of Medicine states that empathy leads to a more patient-centred care, which is one of the six main goals of a 21st century health system. However, there is a paradox between the theoretical significance of empathy and its presence, or lack thereof, in clinical practice. Recent studies have reported that empathy declines amongst students and physicians over time. The three most impactful contributors to this decline are: (1) disagreements over the definitions of empathy making it difficult to implement it into practice (2) poor consideration or regulation of empathy leading to burnout and thus, abandonment altogether, and (3) the lack of diversity in the curriculum and the influence of medical culture, which prioritises science over patient experience, limiting some physicians from using ‘too much’ empathy in the fear of losing clinical objectivity. These issues were investigated by conducting a fully inductive thematic narrative analysis of patient narratives in the UK to evaluate the behaviours and attitudes that patients associate with empathy. The principal enquiries underpinning this study included uncovering the factors that affected experience of empathy within provider-patient interactions and to analyse their effects on patient care. This research contributes uniquely to this discourse by examining the phenomenon of empathy directly from patients’ experiences, which were systematically extracted from a repository of online patient narratives of care titled ‘CareOpinion UK’. Narrative analysis was specifically chosen as the methodology to examine narratives from a phenomenological lens to focus on the particularity and context of each story. By enquiring beyond the superficial who-whatwhere, the study of narratives prescribed meaning to illness by highlighting the everyday reality of patients who face the exigent life circumstances created by suffering, disability, and the threat of life. The following six themes were found to be the most impactful in influencing the experience of empathy: dismissive behaviours, judgmental attitudes, undermining patients’ pain or concerns, holistic care and failures and successes of communication or language. For each theme there were overarching themes relating to either a failure to understand the patient’s perspective or a success in taking a person-centred approach. An in-depth analysis revealed that a lack of empathy was greatly associated with an emotive-cognitive imbalance, which disengaged physicians with their patients’ emotions. This study hereby concludes that competent providers require a combination of knowledge, skills, and more importantly empathic attitudes to help create a context for effective care. The crucial elements of that context involve (a) identifying empathy clues within interactions to engage with patients’ situations, (b) attributing a perspective to the patient through perspective-taking and (c) adapting behaviour and communication according to patient’s individual needs. Empathy underpins that context, as does an appreciation of narrative, and the two are interrelated.

Keywords: empathy, narratives, person-centred, perspective, perspective-taking

Procedia PDF Downloads 137
72 Understanding New Zealand’s 19th Century Timber Churches: Techniques in Extracting and Applying Underlying Procedural Rules

Authors: Samuel McLennan, Tane Moleta, Andre Brown, Marc Aurel Schnabel

Abstract:

The development of Ecclesiastical buildings within New Zealand has produced some unique design characteristics that take influence from both international styles and local building methods. What this research looks at is how procedural modelling can be used to define such common characteristics and understand how they are shared and developed within different examples of a similar architectural style. This will be achieved through the creation of procedural digital reconstructions of the various timber Gothic Churches built during the 19th century in the city of Wellington, New Zealand. ‘Procedural modelling’ is a digital modelling technique that has been growing in popularity, particularly within the game and film industry, as well as other fields such as industrial design and architecture. Such a design method entails the creation of a parametric ‘ruleset’ that can be easily adjusted to produce many variations of geometry, rather than a single geometry as is typically found in traditional CAD software. Key precedents within this area of digital heritage includes work by Haegler, Müller, and Gool, Nicholas Webb and Andre Brown, and most notably Mark Burry. What these precedents all share is how the forms of the reconstructed architecture have been generated using computational rules and an understanding of the architects’ geometric reasoning. This is also true within this research as Gothic architecture makes use of only a select range of forms (such as the pointed arch) that can be accurately replicated using the same standard geometric techniques originally used by the architect. The methodology of this research involves firstly establishing a sample group of similar buildings, documenting the existing samples, researching any lost samples to find evidence such as architectural plans, photos, and written descriptions, and then culminating all the findings into a single 3D procedural asset within the software ‘Houdini’. The end result will be an adjustable digital model that contains all the architectural components of the sample group, such as the various naves, buttresses, and windows. These components can then be selected and arranged to create visualisations of the sample group. Because timber gothic churches in New Zealand share many details between designs, the created collection of architectural components can also be used to approximate similar designs not included in the sample group, such as designs found beyond the Wellington Region. This creates an initial library of architectural components that can be further expanded on to encapsulate as wide of a sample size as desired. Such a methodology greatly improves upon the efficiency and adjustability of digital modelling compared to current practices found in digital heritage reconstruction. It also gives greater accuracy to speculative design, as a lack of evidence for lost structures can be approximated using components from still existing or better-documented examples. This research will also bring attention to the cultural significance these types of buildings have within the local area, addressing the public’s general unawareness of architectural history that is identified in the Wellington based research ‘Moving Images in Digital Heritage’ by Serdar Aydin et al.

Keywords: digital forensics, digital heritage, gothic architecture, Houdini, procedural modelling

Procedia PDF Downloads 131
71 Prompt Photons Production in Compton Scattering of Quark-Gluon and Annihilation of Quark-Antiquark Pair Processes

Authors: Mohsun Rasim Alizada, Azar Inshalla Ahmdov

Abstract:

Prompt photons are perhaps the most versatile tools for studying the dynamics of relativistic collisions of heavy ions. The study of photon radiation is of interest that in most hadron interactions, photons fly out as a background to other studied signals. The study of the birth of prompt photons in nucleon-nucleon collisions was previously carried out in experiments on Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). Due to the large energy of colliding nucleons, in addition to prompt photons, many different elementary particles are born. However, the birth of additional elementary particles makes it difficult to determine the accuracy of the effective section of the birth of prompt photons. From this point of view, the experiments planned on the Nuclotron-based Ion Collider Facility (NICA) complex will have a great advantage, since the energy obtained for colliding heavy ions will reduce the number of additionally born elementary particles. Of particular importance is the study of the processes of birth of prompt photons to determine the gluon leaving hadrons since the photon carries information about a rigid subprocess. At present, paper production of prompt photon in Compton scattering of quark-gluon and annihilation of quark–antiquark processes is investigated. The matrix elements Compton scattering of quark-gluon and annihilation of quark-antiquark pair processes has been written. The Square of matrix elements of processes has been calculated in FeynCalc. The phase volume of subprocesses has been determined. Expression to calculate the differential cross-section of subprocesses has been obtained: Given the resulting expressions for the square of the matrix element in the differential section expression, we see that the differential section depends not only on the energy of colliding protons, but also on the mass of quarks, etc. Differential cross-section of subprocesses is estimated. It is shown that the differential cross-section of subprocesses decreases with the increasing energy of colliding protons. Asymmetry coefficient with polarization of colliding protons is determined. The calculation showed that the squares of the matrix element of the Compton scattering process without and taking into account the polarization of colliding protons are identical. The asymmetry coefficient of this subprocess is zero, which is consistent with the literary data. It is known that in any single polarization processes with a photon, squares of matrix elements without taking into account and taking into account the polarization of the original particle must coincide, that is, the terms in the square of the matrix element with the degree of polarization are equal to zero. The coincidence of the squares of the matrix elements indicates that the parity of the system is preserved. The asymmetry coefficient of annihilation of quark–antiquark pair process linearly decreases from positive unit to negative unit with increasing the production of the polarization degrees of colliding protons. Thus, it was obtained that the differential cross-section of the subprocesses decreases with the increasing energy of colliding protons. The value of the asymmetry coefficient is maximal when the polarization of colliding protons is opposite and minimal when they are directed equally. Taking into account the polarization of only the initial quarks and gluons in Compton scattering does not contribute to the differential section of the subprocess.

Keywords: annihilation of a quark-antiquark pair, coefficient of asymmetry, Compton scattering, effective cross-section

Procedia PDF Downloads 148