Search results for: computer aided sport training
2759 Estimation of Residual Stresses in Thick Walled Cylinder by Radial Basis Artificial Neural
Authors: Mohammad Heidari
Abstract:
In this paper a method for high strength steel is proposed of residual stresses in autofrettaged tubes by combination of artificial neural networks is presented. Many different thick walled cylinders that were subjected to different conditions were studied. At first, the residual stress is calculated by analytical solution. Then by changing of the parameters that influenced in residual stresses such as percentage of autofrettage, internal pressure, wall ratio of cylinder, material property of cylinder, bauschinger and hardening effect factor, a neural network is created. These parameters are the input of network. The output of network is residual stress. Numerical data, employed for training the network and capabilities of the model in predicting the residual stress has been verified. The output obtained from neural network model is compared with numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial basis function of neural network has the average error of 2.75% in predicting residual stress of thick wall cylinder. Further analysis of residual stress of thick wall cylinder under different input conditions has been investigated and comparison results of modeling with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach.Keywords: thick walled cylinder, residual stress, radial basis, artificial neural network
Procedia PDF Downloads 4162758 Translation Choices of Logical Meaning from Chinese into English: A Systemic Functional Linguistics Perspective
Authors: Xueying Li
Abstract:
Different from English, it is common to observe Chinese clauses logically related in an implicit way without any conjunctions. This typological difference has posed a great challenge for Chinese-English translators, as 1) translators may interpret logical meaning in different ways when there are no conjunctions in Chinese Source Text (ST); 2) translators may have questions whether to make Chinese implicit logical meaning explicit or to remain implicit in Target Text (TT), and whether other dimensions of logical meaning (e.g., type of logical meaning) should be shifted or not. Against this background, this study examines a comprehensive arrange of Chinese-English translation choices of logical meaning to deal with this challenge in a systematic way. It compiles several ST-TT passages from a set of translation textbooks in a corpus, namely Ying Yu Bi Yi Shi Wu (Er Ji)) [Translation Practice between Chinese and English: Intermediate Level] and its supportive training book, analyzes how logical meaning in ST are translated in TT in texts across different text types with Systemic Functional Linguistics (SFL) as the theoretical framework, and finally draws a system network of translation choices of logical meaning from Chinese into English. Since translators may probably think about semantic meaning rather than lexico-grammatical resources in translation, this study goes away from traditional lexico-grammatical choices, but rather describing translation choices from the semantic level. The findings in this study can provide some help and support for translation practitioners so that they can understand that besides explicitation, there are a variety of possible linguistic choices available for making informed decisions when translating Chinese logical meaning into English.Keywords: Chinese-English translation, logical meaning, systemic functional linguistics, translation choices
Procedia PDF Downloads 1802757 Hand Gesture Interpretation Using Sensing Glove Integrated with Machine Learning Algorithms
Authors: Aqsa Ali, Aleem Mushtaq, Attaullah Memon, Monna
Abstract:
In this paper, we present a low cost design for a smart glove that can perform sign language recognition to assist the speech impaired people. Specifically, we have designed and developed an Assistive Hand Gesture Interpreter that recognizes hand movements relevant to the American Sign Language (ASL) and translates them into text for display on a Thin-Film-Transistor Liquid Crystal Display (TFT LCD) screen as well as synthetic speech. Linear Bayes Classifiers and Multilayer Neural Networks have been used to classify 11 feature vectors obtained from the sensors on the glove into one of the 27 ASL alphabets and a predefined gesture for space. Three types of features are used; bending using six bend sensors, orientation in three dimensions using accelerometers and contacts at vital points using contact sensors. To gauge the performance of the presented design, the training database was prepared using five volunteers. The accuracy of the current version on the prepared dataset was found to be up to 99.3% for target user. The solution combines electronics, e-textile technology, sensor technology, embedded system and machine learning techniques to build a low cost wearable glove that is scrupulous, elegant and portable.Keywords: American sign language, assistive hand gesture interpreter, human-machine interface, machine learning, sensing glove
Procedia PDF Downloads 3022756 Impact of Islamic Hr Practices on Job Satisfaction: An Empirical Study of Banking Sector in Pakistan
Authors: Naheed Malik, Waheed Akhtar
Abstract:
An introduction to the Islamic move towards the managing human resource is a preliminary attempt to provide managers with a useful way of managing and accepting employees. This knowledge would be helpful to even non-Muslim managers. Muslim managers are required not to know only the Islamic HR but also it is expected from them to apply the Islamic approach in managing the employees. Human resource is considered the most substantial asset of organizations. Studies have recommended that successful human resource management (HRM) leads to positive attitudes and behaviors at the workplace. On the contrary, unproductive use of human resources results in negative penalty in the form of lower job satisfaction, lower commitment, or even high employee turnover and even poor workforce quality.The study examined the Impact of Islamic HR practices on job satisfaction. Islamic HR variables encompass the aspects of performance appraisal, training and development, selection and recruitment. Data was obtained via self –administered questionnaires distributed among the employees of Banks in Pakistan which are practicing Islamic Banking. The sampling method employed was purposive sampling.Based on 240 responses obtained ,the study revealed that Islamic HRM deliberates the 40per cent of the variances in Job satisfaction .All variables excluding recruitment were found to be substantially pertinent to the dependent variable. The study also meditated the implications for future studies.Keywords: islamic HRM, job satisfaction, islamic and conventional banks, Pakistan
Procedia PDF Downloads 2972755 Information Needs of Cassava Processors on Small-Scale Cassava Processing in Oyo State, Nigeria
Authors: Rafiat Bolanle Fasasi-Hammed
Abstract:
Cassava is an important food crop in rural households of Nigeria. It has a high potential for product diversification, because it can be processed into various products forms for human consumption and can be made into chips for farm animals, and also starch and starch derivatives. However, cassava roots are highly perishable and contain potentially toxic cyanogenic glycosides which necessitate its processing. Therefore, this study was carried out to assess information needs of cassava processors on food safety practices in Oyo State, Nigeria. Simple random sampling technique was used in the selection of 110 respondents for this study. Descriptive statistics and chi-square were used to analyze the data collected. Results of this study showed that the mean age of the respondents was 39.4 years, majority (78.7%) of the respondents was married, 51.9% had secondary education; 45.8% of the respondents have spent more than 12 years in cassava processing. The mean income realized was ₦26,347.50/month from cassava processing. Information on cassava processing got to the respondents through friends, family and relations (73.6%) and fellow cassava processors (58.6%). Serious constraints identified were ineffective extension agents (93.9%), food safety regulatory agencies (88.1%) and inadequate processing and storage facilities (67.8%). Chi-square results showed that significant relationship existed between socio-economic characteristics of the respondents (χ2 = 29.80, df = 2,), knowledge level (χ2 = 9.26, df = 4), constraints (χ2 = 13.11, df = 2) and information needs at p < 0.05 level of significance. The study recommends that there should be regular training on improved cassava processing methods for the cassava processors in the study area.Keywords: information, needs, cassava, Oyo State, processing
Procedia PDF Downloads 3022754 Alive Cemeteries with Augmented Reality and Semantic Web Technologies
Authors: Tamás Matuszka, Attila Kiss
Abstract:
Due the proliferation of smartphones in everyday use, several different outdoor navigation systems have become available. Since these smartphones are able to connect to the Internet, the users can obtain location-based information during the navigation as well. The users could interactively get to know the specifics of a particular area (for instance, ancient cultural area, Statue Park, cemetery) with the help of thus obtained information. In this paper, we present an Augmented Reality system which uses Semantic Web technologies and is based on the interaction between the user and the smartphone. The system allows navigating through a specific area and provides information and details about the sight an interactive manner.Keywords: augmented reality, semantic web, human computer interaction, mobile application
Procedia PDF Downloads 3402753 Parallel Asynchronous Multi-Splitting Methods for Differential Algebraic Systems
Authors: Malika Elkyal
Abstract:
We consider an iterative parallel multi-splitting method for differential algebraic equations. The main feature of the proposed idea is to use the asynchronous form. We prove that the multi-splitting technique can effectively accelerate the convergent performance of the iterative process. The main characteristic of an asynchronous mode is that the local algorithm does not have to wait at predetermined messages to become available. We allow some processors to communicate more frequently than others, and we allow the communication delays to be substantial and unpredictable. Accordingly, we note that synchronous algorithms in the computer science sense are particular cases of our formulation of asynchronous one.Keywords: parallel methods, asynchronous mode, multisplitting, differential algebraic equations
Procedia PDF Downloads 5602752 A Community-Engaged Approach to Examining Health Outcomes Potentially Related to Exposure to Environmental Contaminants in Yuma, Arizona
Authors: Julie A. Baldwin, Robert T. Trotter, Mark Remiker, C. Loren Buck, Amanda Aguirre, Trudie Milner, Emma Torres, Frank A. von Hippel
Abstract:
Introduction: In the past, there have been concerns about contaminants in the water sources in Yuma, Arizona, including the Colorado River. Prolonged exposure to contaminants, such as perchlorate and heavy metals, can lead to deleterious health effects in humans. This project examined the association between the concentration of environmental contaminants and patient health outcomes in Yuma residents, using a community-engaged approach to data collection. Methods: A community-engaged design allowed community partners and researchers to establish joint research goals, recruit participants, collect data, and formulate strategies for dissemination of findings. Key informant interviews were conducted to evaluate adherence to models of community-based research. Results: The training needs, roles, and expectations of community partners varied based on available resources, prior research experience, and perceived research challenges and ways to address them. Conclusions: Leveraging community-engaged approaches for studies of environmental contamination in marginalized communities can expedite recruitment efforts and stimulate action that can lead to improved community health.Keywords: community engaged research, environmental contaminants, underserved populations, health equity
Procedia PDF Downloads 1392751 Microbial Quality of Traditional Qatari Foods Sold by Women Street Vendors in Doha, Qatar
Authors: Tahra El-Obeid, Reham Mousa, Amal Alzahiri
Abstract:
During the past few years the traditional market of Qatar has become an attraction to many customers who eat from the numerous women street vendors selling Qatari traditional dishes. To gain an understanding on the safety of these street vended foods, we designed the study to test microbiological quality of 14 different Qatari foods sold in Souk Wagif, the main traditional market in Qatar. This study was conducted to mainly identify presence or absence of microbial pathogens. A total of 56 samples were purchased from 10 different street vendors and the samples were collected randomly on different days. The samples were tested for microbial contaminants at Central Food Laboratories, Doha, Qatar. The qualitative study was conducted using Real Time-PCR to screen for; Salmonella spp., Listeria monocytogenes, Escherichia coli and E. coli 0157:H7. Out of the 56 samples, only two samples “Biryani” and “Khabess” contained E. coli. However, both samples tested negative for E. coli O157:H7. The microbial contamination of the Qatari traditional street vended foods was 3%. This result may be attributed to the food safety training requirement set by the regulatory authorities before issuing any license to food handlers in Qatar as well as the food inspection conducted by the food health inspectors on a regular basis.Keywords: microbiological quality, street vended food, traditional dishes, Qatar
Procedia PDF Downloads 3132750 The Didactic Transposition in Brazilian High School Physics Textbooks: A Comparative Study of Didactic Materials
Authors: Leandro Marcos Alves Vaz
Abstract:
In this article, we analyze the different approaches to the topic Magnetism of Matter in physics textbooks of Brazilian schools. For this, we compared the approach to the concepts of the magnetic characteristics of materials (diamagnetism, paramagnetism, ferromagnetism and antiferromagnetism) in different sources of information and in different levels of education, from Higher Education to High School. In this sense, we used as reference the theory of the Didactic Transposition of Yves Chevallard, a French educational theorist, who conceived in his theory three types of knowledge – Scholarly Knowledge, Knowledge to be taught and Taught Knowledge – related to teaching practice. As a research methodology, from the reading of the works used in teacher training and those destined to basic education students, we compared the treatment of a higher education physics book, a scientific article published in a Brazilian journal of the educational area, and four high school textbooks, in order to establish in which there is a greater or lesser degree of approximation with the knowledge produced by the scholars – scholarly knowledge – or even with the knowledge to be taught (to that found in books intended for teaching). Thus, we evaluated the level of proximity of the subjects conveyed in high school and higher education, as well as the relevance that some textbook authors give to the theme.Keywords: Brazilian physics books, didactic transposition, magnetism of matter, teaching of physics
Procedia PDF Downloads 3002749 The Impact of Transformational Leadership and Interpersonal Interaction on Mentoring Function
Authors: Ching-Yuan Huang, Rhay-Hung Weng, Yi-Ting Chen
Abstract:
Mentoring functions will improve new nurses' job performance, provide support with new nurses, and then reduce the turnover rate of them. This study explored the impact of transformational leadership and interpersonal interaction on mentoring functions. We employed a questionnaire survey to collect data and selected a sample of new nurses from three hospitals in Taiwan. A total of 306 valid surveys were obtained. Multiple regression model analysis was conducted to test the study hypothesis. Inspirational motivation, idealized influence, and individualized consideration had a positive influence on overall mentoring function, but intellectual stimulation had a positive influence on career development function only. Perceived similarity and interaction frequency also had positive influences on mentoring functions. When the shift overlap rate exceeded 80%, mentoring function experienced a negative result. The transformational leadership of mentors actually would improve the mentoring functions among new staff nurses. Perceived similarity and interaction frequency between mentees and mentors also had a positive influence on mentoring functions. Managers should enhance the transformational leadership of mentors by designing leadership training and motivation programs. Furthermore, nursing managers should promote the interaction between new staff nurses and their mentors, but the shift overlap rate should not exceed 80%.Keywords: interpersonal interaction, mentoring function, mentor, new nurse, transformational leadership
Procedia PDF Downloads 3322748 Enhanced Image Representation for Deep Belief Network Classification of Hyperspectral Images
Authors: Khitem Amiri, Mohamed Farah
Abstract:
Image classification is a challenging task and is gaining lots of interest since it helps us to understand the content of images. Recently Deep Learning (DL) based methods gave very interesting results on several benchmarks. For Hyperspectral images (HSI), the application of DL techniques is still challenging due to the scarcity of labeled data and to the curse of dimensionality. Among other approaches, Deep Belief Network (DBN) based approaches gave a fair classification accuracy. In this paper, we address the problem of the curse of dimensionality by reducing the number of bands and replacing the HSI channels by the channels representing radiometric indices. Therefore, instead of using all the HSI bands, we compute the radiometric indices such as NDVI (Normalized Difference Vegetation Index), NDWI (Normalized Difference Water Index), etc, and we use the combination of these indices as input for the Deep Belief Network (DBN) based classification model. Thus, we keep almost all the pertinent spectral information while reducing considerably the size of the image. In order to test our image representation, we applied our method on several HSI datasets including the Indian pines dataset, Jasper Ridge data and it gave comparable results to the state of the art methods while reducing considerably the time of training and testing.Keywords: hyperspectral images, deep belief network, radiometric indices, image classification
Procedia PDF Downloads 2802747 Quality Determinants of Client Satisfaction: A Case Study of ACE-Australian Consulting Engineers, Sydney, Australia
Authors: Elham S. Hasham, Anthony S. Hasham
Abstract:
The construction industry is one of Australia’s fastest growing industries and its success is a result of a firm’s client satisfaction with focus on product determinants such as price and quality. Ensuring quality at every phase is a must and building rapport with the client will go a long way. To capitalise on the growing demand for Engineering Consulting Firms (ECFs), we should “redefine the bottom line by allowing client satisfaction, high-quality standards, and profits to be the top priorities”. Consequently, the emphasis should be on improving employee skills through various training provisions. Clients seek consistency and thus expect that all services should be similar in respect to quality and the ability of the service to meet their needs. This calls for empowerment and comfortable work conditions to motivate employees and give them incentive to deliver quality and excellent output. The methodology utilized is triangulation-a combination of both quantitative and qualitative research. The case study-Australian Consulting Engineers (ACE) was established in 1995 and has operations throughout Australia, the Philippines, Europe, U.A.E., K.S.A., and Lebanon. ACE is affiliated with key agencies and support organizations in the engineering industry with International Organization for Standardization (ISO) certifications in Safety and Quality Management. The objective of this study is significant as it sheds light on employee motivation and client satisfaction as imperative determinants of the success of an organization.Keywords: leadership, motivation, organizational behavior, satisfaction
Procedia PDF Downloads 652746 Tensor Deep Stacking Neural Networks and Bilinear Mapping Based Speech Emotion Classification Using Facial Electromyography
Authors: P. S. Jagadeesh Kumar, Yang Yung, Wenli Hu
Abstract:
Speech emotion classification is a dominant research field in finding a sturdy and profligate classifier appropriate for different real-life applications. This effort accentuates on classifying different emotions from speech signal quarried from the features related to pitch, formants, energy contours, jitter, shimmer, spectral, perceptual and temporal features. Tensor deep stacking neural networks were supported to examine the factors that influence the classification success rate. Facial electromyography signals were composed of several forms of focuses in a controlled atmosphere by means of audio-visual stimuli. Proficient facial electromyography signals were pre-processed using moving average filter, and a set of arithmetical features were excavated. Extracted features were mapped into consistent emotions using bilinear mapping. With facial electromyography signals, a database comprising diverse emotions will be exposed with a suitable fine-tuning of features and training data. A success rate of 92% can be attained deprived of increasing the system connivance and the computation time for sorting diverse emotional states.Keywords: speech emotion classification, tensor deep stacking neural networks, facial electromyography, bilinear mapping, audio-visual stimuli
Procedia PDF Downloads 2542745 The Development of Crisis Distance Education at Kuwait University During the COVID-19 Pandemic
Authors: Waleed Alanzi
Abstract:
The purpose of this qualitative study was to add to the existing literature and provide a more detailed understanding of the individual experiences and perceptions of 15 Deans at the University of Kuwait regarding their first year of planning, developing, and implementing crisis distance education (CDE) in response to the COVID-19 epidemic. An interpretative phenomenological approach was applied, using the thematic analysis of interview transcripts to describe the challenging journeys taken by each of the Deans from the first-person point of view. There was objective evidence, manifested by four primary themes (“Obstacles to the implementation of CDE”; “Planning for CDE”; “Training for CDE,” and “Future Directions”) to conclude that the faculty members, technical staff, administrative staff, and students generally helped each other to overcome the obstacles associated with planning and implementing CDE. The idea that CDE may turn homes into schools and parents into teachers was supported. The planning and implementation of CDE were inevitably associated with a certain amount of confusion, as well as disruptions in the daily routines of staff and students, as well as significant changes in their responsibilities. There were contradictory ideas about the future directions of distance education after the pandemic. Previous qualitative research on the implementation of CDE at higher education institutions in the Arab world has focused mainly on the experiences and perceptions of students; however, little is known about the experiences and perceptions of the students at the University of Kuwait during the COVID19 pandemic, providing a rationale and direction for future research.Keywords: distance learning, qualitative research, COVID-19 epidemic, Kuwait university
Procedia PDF Downloads 1052744 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications
Authors: Atish Bagchi, Siva Chandrasekaran
Abstract:
Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning
Procedia PDF Downloads 1502743 Application of Modulo-2 Arithmetic in Securing Communicated Messages throughout the Globe
Authors: Ejd Garba, Okike Benjamin
Abstract:
Today, the word encryption has become very popular even among non-computer professionals. There is no doubt that some works have been carried out in this area, but more works need to be done. Presently, most of the works on encryption is concentrated on the sender of the message without paying any attention to the message recipient. However, it is a good practice if any message sent to someone is received by the particular person whom the message is sent to. This work seeks to ensure that at the receiving end of the message, there is a security to ensure that the recipient computes a key that would enable the encrypted message to be accessed. This key would be in form of password. This would make it possible for a given message to be sent to several people at the same time. When this happens, it is only those people who computes the key correctly that would be given the opportunity to access even the encrypted message, which can in turn be decrypted using the appropriate key.Keywords: arithmetic, cyber space, modulo-2, information security
Procedia PDF Downloads 3202742 Development of Deep Neural Network-Based Strain Values Prediction Models for Full-Scale Reinforced Concrete Frames Using Highly Flexible Sensing Sheets
Authors: Hui Zhang, Sherif Beskhyroun
Abstract:
Structural Health monitoring systems (SHM) are commonly used to identify and assess structural damage. In terms of damage detection, SHM needs to periodically collect data from sensors placed in the structure as damage-sensitive features. This includes abnormal changes caused by the strain field and abnormal symptoms of the structure, such as damage and deterioration. Currently, deploying sensors on a large scale in a building structure is a challenge. In this study, a highly stretchable strain sensors are used in this study to collect data sets of strain generated on the surface of full-size reinforced concrete (RC) frames under extreme cyclic load application. This sensing sheet can be switched freely between the test bending strain and the axial strain to achieve two different configurations. On this basis, the deep neural network prediction model of the frame beam and frame column is established. The training results show that the method can accurately predict the strain value and has good generalization ability. The two deep neural network prediction models will also be deployed in the SHM system in the future as part of the intelligent strain sensor system.Keywords: strain sensing sheets, deep neural networks, strain measurement, SHM system, RC frames
Procedia PDF Downloads 992741 Management in Health Education Process among Spa Resorts in Poland
Authors: J. Wozniak-Holecka, T. Holecki, P. Romaniuk
Abstract:
Spa facilities are being perceived as the ways of healing treatment in Poland and are guaranteed within the public financing. The universal health insurance (National Health Fund, NFZ), and the disability prevention programme held by Social Insurance Institution (ZUS) are the main sources of financing spa facilities. The dominant public payer of spa services is the NFZ. The Social Insurance Institution covers the cost of health treatment realized in spa facilities as medical rehabilitation, in the field of disability prevention. Health services delivered in the spa resorts are characterized by complexity, and the combination of various methods, typical for health prevention, education, balneotherapy, and physiotherapy. Healing with natural methods, believed to enhance the therapeutic effect, is also involved in health spa treatment. Regardless of the type of facility, each form of spa treatment includes health promotion, health education, prevention at all levels, including rehabilitation. The aim of the study was to determine the optimal organization of health education process. Its efficiency strongly depends on the type of service provider and the funding institution (NFZ vs ZUS). It results from the use of different measures of the effectiveness, the quality and the evaluation of the process being assessed by funding institutions. The methods of the study include a comparative and descriptive quantitative and qualitative analysis. In the empirical part, a questionnaire had been developed. It was then distributed among spa personnel, responsible directly for the health promotion, and among patients who are beneficiaries of health services in spa centers. The quantitative part of the study was based on interviews carried with the use of the online survey (CAWI: Computer-Assisted Web Interview), telephone survey (CATI: Computer-Assisted Telephone Interview) and a conventional questionnaire (PAPI: Paper over Pencil Interview). As a result of the conducted research, it was found that the effectiveness of health education activities in spa resort facilities in Poland is higher when the services are organized using structured tools for managerial control. This applies to formalized procedures implemented by one of the dominant payers covering costs of services (ZUS) and involves the application of health education as one of the mandatory elements of treatment, subjected to the process of control during the course of spa therapy and evaluation after it is completed.Keywords: effectiveness, health education, public health system, spa treatment
Procedia PDF Downloads 1422740 Understanding Innovation by Analyzing the Pillars of the Global Competitiveness Index
Authors: Ujjwala Bhand, Mridula Goel
Abstract:
Global Competitiveness Index (GCI) prepared by World Economic Forum has become a benchmark in studying the competitiveness of countries and for understanding the factors that enable competitiveness. Innovation is a key pillar in competitiveness and has the unique property of enabling exponential economic growth. This paper attempts to analyze how the pillars comprising the Global Competitiveness Index affect innovation and whether GDP growth can directly affect innovation outcomes for a country. The key objective of the study is to identify areas on which governments of developing countries can focus policies and programs to improve their country’s innovativeness. We have compiled a panel data set for top innovating countries and large emerging economies called BRICS from 2007-08 to 2014-15 in order to find the significant factors that affect innovation. The results of the regression analysis suggest that government should make policies to improve labor market efficiency, establish sophisticated business networks, provide basic health and primary education to its people and strengthen the quality of higher education and training services in the economy. The achievements of smaller economies on innovation suggest that concerted efforts by governments can counter any size related disadvantage, and in fact can provide greater flexibility and speed in encouraging innovation.Keywords: innovation, global competitiveness index, BRICS, economic growth
Procedia PDF Downloads 2682739 Review on Effective Texture Classification Techniques
Authors: Sujata S. Kulkarni
Abstract:
Effective and efficient texture feature extraction and classification is an important problem in image understanding and recognition. This paper gives a review on effective texture classification method. The objective of the problem of texture representation is to reduce the amount of raw data presented by the image, while preserving the information needed for the task. Texture analysis is important in many applications of computer image analysis for classification include industrial and biomedical surface inspection, for example for defects and disease, ground classification of satellite or aerial imagery and content-based access to image databases.Keywords: compressed sensing, feature extraction, image classification, texture analysis
Procedia PDF Downloads 4352738 Virtual Practical Work as Formation of Physics Concept for Student
Authors: Sepdiana W. Rahmawati, Santi A. P. Anggraini
Abstract:
The world of education has made progress with the various new technologies with help of computer. No exception physics education, especially virtual physics practical work. By doing practical work, memory of physics concept will be more advantageous for student and they will understand the essence of actual physics, not only spiked formula. With help of computers, created a variety of applications that can be used by students to perform virtual practical work and students will start thinking systematically to be able find its own concepts and understand the application of physics.Keywords: essence of physics, formation concept, physics concept, virtual practical work
Procedia PDF Downloads 4062737 Preparing Education Enter the ASEAN Community: The Case Study of Suan Sunandha Rajabhat University
Authors: Sakapas Saengchai, Vilasinee Jintalikhitdee, Mathinee Khongsatid, Nattapol Pourprasert
Abstract:
This paper studied the preparing education enter the ASEAN Community by the year 2015 the Ministry of Education has policy on ASEAN Charter, including the dissemination of information to create a good attitude about ASEAN, development of students' skills appropriately, development of educational standards to prepare for the liberalization of education in the region and Youth Development as a vital resource in advancing the ASEAN community. Preparing for the liberalization of education Commission on Higher Education (CHE) has prepared Thailand strategic to become ASEAN and support the free trade in higher education service; increasing graduate capability to reach international standards; strengthening higher educational institutions; and enhancing roles of educational institutions in the ASEAN community is main factor in set up long-term education frame 15 years, volume no. 2. As well as promoting Thailand as a center for education in the neighbor countries. As well as development data centers of higher education institutions in the region make the most of the short term plan is to supplement the curriculum in the ASEAN community. Moreover, provides a teaching of English and other languages used in the region, creating partnerships with the ASEAN countries to exchange academics staff and students, research, training, development of joint programs, and system tools in higher education.Keywords: ASEAN community, education, institution, dissemination of information
Procedia PDF Downloads 4722736 Analysis and Optimized Design of a Packaged Liquid Chiller
Authors: Saeed Farivar, Mohsen Kahrom
Abstract:
The purpose of this work is to develop a physical simulation model for the purpose of studying the effect of various design parameters on the performance of packaged-liquid chillers. This paper presents a steady-state model for predicting the performance of package-Liquid chiller over a wide range of operation condition. The model inputs are inlet conditions; geometry and output of model include system performance variable such as power consumption, coefficient of performance (COP) and states of refrigerant through the refrigeration cycle. A computer model that simulates the steady-state cyclic performance of a vapor compression chiller is developed for the purpose of performing detailed physical design analysis of actual industrial chillers. The model can be used for optimizing design and for detailed energy efficiency analysis of packaged liquid chillers. The simulation model takes into account presence of all chiller components such as compressor, shell-and-tube condenser and evaporator heat exchangers, thermostatic expansion valve and connection pipes and tubing’s by thermo-hydraulic modeling of heat transfer, fluids flow and thermodynamics processes in each one of the mentioned components. To verify the validity of the developed model, a 7.5 USRT packaged-liquid chiller is used and a laboratory test stand for bringing the chiller to its standard steady-state performance condition is build. Experimental results obtained from testing the chiller in various load and temperature conditions is shown to be in good agreement with those obtained from simulating the performance of the chiller using the computer prediction model. An entropy-minimization-based optimization analysis is performed based on the developed analytical performance model of the chiller. The variation of design parameters in construction of shell-and-tube condenser and evaporator heat exchangers are studied using the developed performance and optimization analysis and simulation model and a best-match condition between the physical design and construction of chiller heat exchangers and its compressor is found to exist. It is expected that manufacturers of chillers and research organizations interested in developing energy-efficient design and analysis of compression chillers can take advantage of the presented study and its results.Keywords: optimization, packaged liquid chiller, performance, simulation
Procedia PDF Downloads 2782735 Random Forest Classification for Population Segmentation
Authors: Regina Chua
Abstract:
To reduce the costs of re-fielding a large survey, a Random Forest classifier was applied to measure the accuracy of classifying individuals into their assigned segments with the fewest possible questions. Given a long survey, one needed to determine the most predictive ten or fewer questions that would accurately assign new individuals to custom segments. Furthermore, the solution needed to be quick in its classification and usable in non-Python environments. In this paper, a supervised Random Forest classifier was modeled on a dataset with 7,000 individuals, 60 questions, and 254 features. The Random Forest consisted of an iterative collection of individual decision trees that result in a predicted segment with robust precision and recall scores compared to a single tree. A random 70-30 stratified sampling for training the algorithm was used, and accuracy trade-offs at different depths for each segment were identified. Ultimately, the Random Forest classifier performed at 87% accuracy at a depth of 10 with 20 instead of 254 features and 10 instead of 60 questions. With an acceptable accuracy in prioritizing feature selection, new tools were developed for non-Python environments: a worksheet with a formulaic version of the algorithm and an embedded function to predict the segment of an individual in real-time. Random Forest was determined to be an optimal classification model by its feature selection, performance, processing speed, and flexible application in other environments.Keywords: machine learning, supervised learning, data science, random forest, classification, prediction, predictive modeling
Procedia PDF Downloads 942734 Myanmar Character Recognition Using Eight Direction Chain Code Frequency Features
Authors: Kyi Pyar Zaw, Zin Mar Kyu
Abstract:
Character recognition is the process of converting a text image file into editable and searchable text file. Feature Extraction is the heart of any character recognition system. The character recognition rate may be low or high depending on the extracted features. In the proposed paper, 25 features for one character are used in character recognition. Basically, there are three steps of character recognition such as character segmentation, feature extraction and classification. In segmentation step, horizontal cropping method is used for line segmentation and vertical cropping method is used for character segmentation. In the Feature extraction step, features are extracted in two ways. The first way is that the 8 features are extracted from the entire input character using eight direction chain code frequency extraction. The second way is that the input character is divided into 16 blocks. For each block, although 8 feature values are obtained through eight-direction chain code frequency extraction method, we define the sum of these 8 feature values as a feature for one block. Therefore, 16 features are extracted from that 16 blocks in the second way. We use the number of holes feature to cluster the similar characters. We can recognize the almost Myanmar common characters with various font sizes by using these features. All these 25 features are used in both training part and testing part. In the classification step, the characters are classified by matching the all features of input character with already trained features of characters.Keywords: chain code frequency, character recognition, feature extraction, features matching, segmentation
Procedia PDF Downloads 3202733 Access to Justice for Persons with Intellectual Disabilities in Indonesia: Case and Problem in Indonesian Criminal Justice System
Authors: Fines Fatimah, SH. MH.
Abstract:
Indonesia is one of the countries that has ratified the UNCRPD (United Nations Convention on the Rights of Persons with Disabilities). The ratification of this convention brings consequences on the adjustment of national legislation with the UNCRPD convention, where this ratification at the same time is a measure in the eyes of the international community that a state party could be consistent with the issues and problems of disability. Persons with disabilities often have little access to justice when they are forced to deal with the criminal justice system. Pursuit of justice through litigation are often not in their favor, therefore without any awareness of law enforcement/awareness of disability will further complicate access to justice for persons with disabilities. Under Article 13 of the UNCRPD, it appeared that the convention requires ratifying states to guarantee equal opportunity and treatment in justice for persons with disabilities. The States should also ensure that any judicial rules must be adapted to the circumstances of persons with disabilities so that people with disabilities can fully participate in all stages of the trial court and, for example, as a witness. Finally, the state must provide training to understand these persons with disabilities (for those who work in the judiciary institution such as police or prison officials). Further, this paper aims to describe problem faced by persons with intellectual disabilities to access justice in Indonesian Criminal Justice System. This paper tries to find and propose the alternative solutions to promote the quality of law enforcement in Indonesia, especially for persons with intellectual disabilities.Keywords: access to justice, Indonesian criminal justice system, intellectual disability, ratifying states
Procedia PDF Downloads 5162732 Micro Waqf Banks as an Alternative Financing Micro Business in Indonesia
Authors: Achmad Muchaddam Fahham, Sony Hendra Permana
Abstract:
For rural communities and micro-entrepreneurs, access to formal financial institutions is very difficult. So, borrowing to moneylenders is the most possible way to fulfill their needs. But actually it does not solve their problems, precisely their problems are increasing because they have to pay at very high-interest rates. For this reason, microfinance institution is very important as a solution for rural communities and micro-entrepreneurs who need loans to fulfill their needs. This paper aims to describe the role of micro waqf banks in Indonesia as an alternative funding for rural communities and micro-entrepreneurs. This research is descriptive using a qualitative approach. The interview technique was also carried out with key informants who understood sharia microfinance institutions. The results of the study revealed that the micro waqf bank is Islamic microfinance institutions which targeted the micro business sector by channeling small financing with a maximum financing of Rp1 million. The funding of this micro waqf bank comes from donors who donate funds through the Amil Zakat institution. The margins imposed on borrowers are as high as 3 percent per year, with payment schemes in installments every week, so it is made easier for borrower. In addition, financing is followed by training and mentoring so that borrower is able to utilize the loan for productive business activities. In the end, it is hoped that this micro waqf bank can become an incubator for micro businesses in Indonesia.Keywords: micro business, micro waqf banks, micro-entrepreneurs, Amil Zakat institution
Procedia PDF Downloads 1622731 A Holistic Approach of Cross-Cultural Management with Insight from Neuroscience
Authors: Mai Nguyen-Phuong-Mai
Abstract:
This paper incorporates insight from various models, studies and disciplines to construct a framework called the Inverted Pyramid Model. It is argued that such a framework has several advantages: (1) it reduces the shortcomings of the problem-focused approach that dominates the mainstream theories of cross-cultural management. With contributing insight from neuroscience, it suggests that training in business cross-cultural awareness should start with potential synergy emerged from differences instead of the traditional approach that focuses on the liability of foreigners and negative consequences of cultural distance. (2) The framework supports a dynamic and holistic way of analyzing cultural diversity by analyzing four major cultural units (global, national, organizational and group culture). (3) The framework emphasizes the role of individuals –an aspect of culture that is often ignored or regarded as a non-issue in the traditional approach. It is based on the notion that people don’t do business with a country, but work (in)directly with a unique person. And it is at this individual level that culture is made, personally, dynamically, and contextually. Insight from neuroscience provides significant evidence that a person can develop a multicultural mind, confirm and contradict, follow and reshape a culture, even when (s)he was previously an outsider to this culture. With this insight, the paper proposes a revision of the old adage (Think global – Act local) and change it into Think global – Plan local – Act individual.Keywords: static–dynamic paradigm, cultural diversity, multicultural mind, neuroscience
Procedia PDF Downloads 1292730 Participation of Juvenile with Driven of Tobacco Control in Education Institute: Case Study of Suan Sunandha Rajabhat University
Authors: Sakapas Saengchai
Abstract:
This paper studied the participation of juvenile with driven of tobacco control in education institute: case study of Suan Sunandha Rajabhat University is qualitative research has objective to study participation of juvenile with driven of tobacco control in University, as guidance of development participation of juvenile with driven of tobacco control in education institute the university is also free-cigarette university. There are qualitative researches on collection data of participation observation, in-depth interview of group conversation and agent of student in each faculty and college and exchange opinion of student. Result of study found that participation in tobacco control has 3 parts; 1) Participation in campaign of tobacco control, 2) Academic training and activity of free-cigarette of university and 3) As model of juvenile in tobacco control. For guidelines on youth involvement in driven tobacco control is universities should promote tobacco control activities. Reduce smoking campaign continues include a specific area for smokers has living room as sign clearly, staying in the faculty / college and developing network of model students who are non-smoking. This is a key role in the coordination of university students driving to the free cigarette university. Including the strengthening of community in the area and outside the area as good social and quality of country.Keywords: participation, juvenile, tobacco control, institute
Procedia PDF Downloads 273