Search results for: child-led learning
3410 The Practices and Challenges of Secondary School Cluster Supervisors in Implementing School Improvement Program in Saesie Tsaeda Emba Woreda, Eastern Zone of Tigray Region
Authors: Haftom Teshale Gebre
Abstract:
According to the ministry of education’s school improvement program blueprint document (2007), the timely and basic aim of the program is to improve students’ academic achievement through creating conducive teaching and learning environments and with the active involvement of parents in the teaching and learning process. The general objective of the research is to examine the practices of cluster school supervisors in implementing school improvement programs and the major factors affecting the study area. The study used both primary and secondary sources, and the sample size was 93. Twelve people are chosen from each of the two clusters (Edaga Hamus and Adi-kelebes). And cluster ferewyni are Tekli suwaat, Edaga robue, and Kiros Alemayo. In the analysis stage, several interrelated pieces of information were summarized and arranged to make the analysis easily manageable by using statistics and data (STATA). Study findings revealed that the major four domains impacted by school improvement programs through their mean, standard deviation, and variance were 2.688172, 1.052724, and 1.108228, respectively. And also, the researcher can conclude that the major factors of the school improvement program and mostly cluster supervisors were inadequate attention given to supervision service and no experience in the practice of supervision in the study area.Keywords: cluster, eastern Tigray, Saesie Tsaeda Emba, SPI
Procedia PDF Downloads 323409 Finite-Sum Optimization: Adaptivity to Smoothness and Loopless Variance Reduction
Authors: Bastien Batardière, Joon Kwon
Abstract:
For finite-sum optimization, variance-reduced gradient methods (VR) compute at each iteration the gradient of a single function (or of a mini-batch), and yet achieve faster convergence than SGD thanks to a carefully crafted lower-variance stochastic gradient estimator that reuses past gradients. Another important line of research of the past decade in continuous optimization is the adaptive algorithms such as AdaGrad, that dynamically adjust the (possibly coordinate-wise) learning rate to past gradients and thereby adapt to the geometry of the objective function. Variants such as RMSprop and Adam demonstrate outstanding practical performance that have contributed to the success of deep learning. In this work, we present AdaLVR, which combines the AdaGrad algorithm with loopless variance-reduced gradient estimators such as SAGA or L-SVRG that benefits from a straightforward construction and a streamlined analysis. We assess that AdaLVR inherits both good convergence properties from VR methods and the adaptive nature of AdaGrad: in the case of L-smooth convex functions we establish a gradient complexity of O(n + (L + √ nL)/ε) without prior knowledge of L. Numerical experiments demonstrate the superiority of AdaLVR over state-of-the-art methods. Moreover, we empirically show that the RMSprop and Adam algorithm combined with variance-reduced gradients estimators achieve even faster convergence.Keywords: convex optimization, variance reduction, adaptive algorithms, loopless
Procedia PDF Downloads 713408 An Electrocardiography Deep Learning Model to Detect Atrial Fibrillation on Clinical Application
Authors: Jui-Chien Hsieh
Abstract:
Background:12-lead electrocardiography(ECG) is one of frequently-used tools to detect atrial fibrillation (AF), which might degenerate into life-threaten stroke, in clinical Practice. Based on this study, the AF detection by the clinically-used 12-lead ECG device has only 0.73~0.77 positive predictive value (ppv). Objective: It is on great demand to develop a new algorithm to improve the precision of AF detection using 12-lead ECG. Due to the progress on artificial intelligence (AI), we develop an ECG deep model that has the ability to recognize AF patterns and reduce false-positive errors. Methods: In this study, (1) 570-sample 12-lead ECG reports whose computer interpretation by the ECG device was AF were collected as the training dataset. The ECG reports were interpreted by 2 senior cardiologists, and confirmed that the precision of AF detection by the ECG device is 0.73.; (2) 88 12-lead ECG reports whose computer interpretation generated by the ECG device was AF were used as test dataset. Cardiologist confirmed that 68 cases of 88 reports were AF, and others were not AF. The precision of AF detection by ECG device is about 0.77; (3) A parallel 4-layer 1 dimensional convolutional neural network (CNN) was developed to identify AF based on limb-lead ECGs and chest-lead ECGs. Results: The results indicated that this model has better performance on AF detection than traditional computer interpretation of the ECG device in 88 test samples with 0.94 ppv, 0.98 sensitivity, 0.80 specificity. Conclusions: As compared to the clinical ECG device, this AI ECG model promotes the precision of AF detection from 0.77 to 0.94, and can generate impacts on clinical applications.Keywords: 12-lead ECG, atrial fibrillation, deep learning, convolutional neural network
Procedia PDF Downloads 1143407 Automatic Identification and Classification of Contaminated Biodegradable Plastics using Machine Learning Algorithms and Hyperspectral Imaging Technology
Authors: Nutcha Taneepanichskul, Helen C. Hailes, Mark Miodownik
Abstract:
Plastic waste has emerged as a critical global environmental challenge, primarily driven by the prevalent use of conventional plastics derived from petrochemical refining and manufacturing processes in modern packaging. While these plastics serve vital functions, their persistence in the environment post-disposal poses significant threats to ecosystems. Addressing this issue necessitates approaches, one of which involves the development of biodegradable plastics designed to degrade under controlled conditions, such as industrial composting facilities. It is imperative to note that compostable plastics are engineered for degradation within specific environments and are not suited for uncontrolled settings, including natural landscapes and aquatic ecosystems. The full benefits of compostable packaging are realized when subjected to industrial composting, preventing environmental contamination and waste stream pollution. Therefore, effective sorting technologies are essential to enhance composting rates for these materials and diminish the risk of contaminating recycling streams. In this study, it leverage hyperspectral imaging technology (HSI) coupled with advanced machine learning algorithms to accurately identify various types of plastics, encompassing conventional variants like Polyethylene terephthalate (PET), Polypropylene (PP), Low density polyethylene (LDPE), High density polyethylene (HDPE) and biodegradable alternatives such as Polybutylene adipate terephthalate (PBAT), Polylactic acid (PLA), and Polyhydroxyalkanoates (PHA). The dataset is partitioned into three subsets: a training dataset comprising uncontaminated conventional and biodegradable plastics, a validation dataset encompassing contaminated plastics of both types, and a testing dataset featuring real-world packaging items in both pristine and contaminated states. Five distinct machine learning algorithms, namely Partial Least Squares Discriminant Analysis (PLS-DA), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Logistic Regression, and Decision Tree Algorithm, were developed and evaluated for their classification performance. Remarkably, the Logistic Regression and CNN model exhibited the most promising outcomes, achieving a perfect accuracy rate of 100% for the training and validation datasets. Notably, the testing dataset yielded an accuracy exceeding 80%. The successful implementation of this sorting technology within recycling and composting facilities holds the potential to significantly elevate recycling and composting rates. As a result, the envisioned circular economy for plastics can be established, thereby offering a viable solution to mitigate plastic pollution.Keywords: biodegradable plastics, sorting technology, hyperspectral imaging technology, machine learning algorithms
Procedia PDF Downloads 793406 The Preceptorship Experience and Clinical Competence of Final Year Nursing Students
Authors: Susan Ka Yee Chow
Abstract:
Effective clinical preceptorship is affecting students’ competence and fostering their growth in applying theoretical knowledge and skills in clinical settings. Any difference between the expected and actual learning experience will reduce nursing students’ interest in clinical practices and having a negative consequence with their clinical performance. This cross-sectional study is an attempt to compare the differences between preferred and actual preceptorship experience of final year nursing students, and to examine the relationship between the actual preceptorship experience and perceived clinical competence of the students in a tertiary institution. Participants of the study were final year bachelor nursing students of a self-financing tertiary institution in Hong Kong. The instruments used to measure the effectiveness of clinical preceptorship was developed by the participating institution. The scale consisted of five items in a 5-point likert scale. The questions including goals development, critical thinking, learning objectives, asking questions and providing feedback to students. The “Clinical Competence Questionnaire” by Liou & Cheng (2014) was used to examine students’ perceived clinical competences. The scale consisted of 47 items categorized into four domains, namely nursing professional behaviours; skill competence: general performance; skill competence: core nursing skills and skill competence: advanced nursing skills. There were 193 questionnaires returned with a response rate of 89%. The paired t-test was used to compare the differences between preferred and actual preceptorship experiences of students. The results showed significant differences (p<0.001) for the five questions. The mean for the preferred scores is higher than the actual scores resulting statistically significance. The maximum mean difference was accepted goal and the highest mean different was giving feedback. The Pearson Correlation Coefficient was used to examine the relationship. The results showed moderate correlations between nursing professional behaviours with asking questions and providing feedback. Providing useful feedback to students is having moderate correlations with all domains of the Clinical Competence Questionnaire (r=0.269 – 0.345). It is concluded that nursing students do not have a positive perception of the clinical preceptorship. Their perceptions are significantly different from their expected preceptorship. If students were given more opportunities to ask questions in a pedagogical atmosphere, their perceived clinical competence and learning outcomes could be improved as a result.Keywords: clinical preceptor, clinical competence, clinical practicum, nursing students
Procedia PDF Downloads 1273405 Deep Learning-Based Automated Structure Deterioration Detection for Building Structures: A Technological Advancement for Ensuring Structural Integrity
Authors: Kavita Bodke
Abstract:
Structural health monitoring (SHM) is experiencing growth, necessitating the development of distinct methodologies to address its expanding scope effectively. In this study, we developed automatic structure damage identification, which incorporates three unique types of a building’s structural integrity. The first pertains to the presence of fractures within the structure, the second relates to the issue of dampness within the structure, and the third involves corrosion inside the structure. This study employs image classification techniques to discern between intact and impaired structures within structural data. The aim of this research is to find automatic damage detection with the probability of each damage class being present in one image. Based on this probability, we know which class has a higher probability or is more affected than the other classes. Utilizing photographs captured by a mobile camera serves as the input for an image classification system. Image classification was employed in our study to perform multi-class and multi-label classification. The objective was to categorize structural data based on the presence of cracks, moisture, and corrosion. In the context of multi-class image classification, our study employed three distinct methodologies: Random Forest, Multilayer Perceptron, and CNN. For the task of multi-label image classification, the models employed were Rasnet, Xceptionet, and Inception.Keywords: SHM, CNN, deep learning, multi-class classification, multi-label classification
Procedia PDF Downloads 363404 Learner's Difficulties Acquiring English: The Case of Native Speakers of Rio de La Plata Spanish Towards Justifying the Need for Corpora
Authors: Maria Zinnia Bardas Hoffmann
Abstract:
Contrastive Analysis (CA) is the systematic comparison between two languages. It stems from the notion that errors are caused by interference of the L1 system in the acquisition process of an L2. CA represents a useful tool to understand the nature of learning and acquisition. Also, this particular method promises a path to un-derstand the nature of underlying cognitive processes, even when other factors such as intrinsic motivation and teaching strategies were found to best explain student’s problems in acquisition. CA study is justified not only from the need to get a deeper understanding of the nature of SLA, but as an invaluable source to provide clues, at a cognitive level, for those general processes involved in rule formation and abstract thought. It is relevant for cross disciplinary studies and the fields of Computational Thought, Natural Language processing, Applied Linguistics, Cognitive Linguistics and Math Theory. That being said, this paper intends to address here as well its own set of constraints and limitations. Finally, this paper: (a) aims at identifying some of the difficulties students may find in their learning process due to the nature of their specific variety of L1, Rio de la Plata Spanish (RPS), (b) represents an attempt to discuss the necessity for specific models to approach CA.Keywords: second language acquisition, applied linguistics, contrastive analysis, applied contrastive analysis English language department, meta-linguistic rules, cross-linguistics studies, computational thought, natural language processing
Procedia PDF Downloads 1503403 The Perceptions of High School English Home Language Learners on Fostering 21st Century Skills Through the Use of Technology in the Classroom
Authors: Lisa Naudine Parrock, Geoffrey Lautenbach
Abstract:
The changes brought to society by the technological development in the Fourth Industrial Revolution are also reaching the sphere of education and the education system needs to respond. Students need skills such as communication, collaboration, creativity and critical thinking in order to be successful in the 21st Century, which could be developed through the meaningful use of technology. This study is theorized by the 21st Century Framework for Learning and examines the student perceptions of grade 10 and 11 English Home language learners on how the technology used in their English classroom contributes to the development of 21st Century skills. The researcher adopted a constructivist paradigm and presented findings based on a general qualitative method. The study found that students perceived the use of technology in the classroom positively contributed to their development of communication, collaboration, creativity and critical thinking. Students also perceived technology as contributing to their access to information, a positive classroom atmosphere, heightened engagement in learning and developing skills necessary for their future. In addition, this study highlighted certain pedagogical strategies and digital tools that support the development of 21st Century skills. The findings suggest that the meaningful integration of technology fosters the development of 21st Century skills in grade 10 and 11 learners.Keywords: educational technology, 21st century skills, fourth industrial revolution, affordances of technology
Procedia PDF Downloads 1343402 Climate Safe House: A Community Housing Project Tackling Catastrophic Sea Level Rise in Coastal Communities
Authors: Chris Fersterer, Col Fay, Tobias Danielmeier, Kat Achterberg, Scott Willis
Abstract:
New Zealand, an island nation, has an extensive coastline peppered with small communities of iconic buildings known as Bachs. Post WWII, these modest buildings were constructed by their owners as retreats and generally were small, low cost, often using recycled material and often they fell below current acceptable building standards. In the latter part of the 20th century, real estate prices in many of these communities remained low and these areas became permanent residences for people attracted to this affordable lifestyle choice. The Blueskin Resilient Communities Trust (BRCT) is an organisation that recognises the vulnerability of communities in low lying settlements as now being prone to increased flood threat brought about by climate change and sea level rise. Some of the inhabitants of Blueskin Bay, Otago, NZ have already found their properties to be un-insurable because of increased frequency of flood events and property values have slumped accordingly. Territorial authorities also acknowledge this increased risk and have created additional compliance measures for new buildings that are less than 2 m above tidal peaks. Community resilience becomes an additional concern where inhabitants are attracted to a lifestyle associated with a specific location and its people when this lifestyle is unable to be met in a suburban or city context. Traditional models of social housing fail to provide the sense of community connectedness and identity enjoyed by the current residents of Blueskin Bay. BRCT have partnered with the Otago Polytechnic Design School to design a new form of community housing that can react to this environmental change. It is a longitudinal project incorporating participatory approaches as a means of getting people ‘on board’, to understand complex systems and co-develop solutions. In the first period, they are seeking industry support and funding to develop a transportable and fully self-contained housing model that exploits current technologies. BRCT also hope that the building will become an educational tool to highlight climate change issues facing us today. This paper uses the Climate Safe House (CSH) as a case study for education in architectural sustainability through experiential learning offered as part of the Otago Polytechnics Bachelor of Design. Students engage with the project with research methodologies, including site surveys, resident interviews, data sourced from government agencies and physical modelling. The process involves collaboration across design disciplines including product and interior design but also includes connections with industry, both within the education institution and stakeholder industries introduced through BRCT. This project offers a rich learning environment where students become engaged through project based learning within a community of practice, including architecture, construction, energy and other related fields. The design outcomes are expressed in a series of public exhibitions and forums where community input is sought in a truly participatory process.Keywords: community resilience, problem based learning, project based learning, case study
Procedia PDF Downloads 2883401 Entrepreneurial Leadership in Malaysian Public University: Competency and Behavior in the Face of Institutional Adversity
Authors: Noorlizawati Abd Rahim, Zainai Mohamed, Zaidatun Tasir, Astuty Amrin, Haliyana Khalid, Nina Diana Nawi
Abstract:
Entrepreneurial leaders have been sought as in-demand talents to lead profit-driven organizations during turbulent and unprecedented times. However, research regarding the pertinence of their roles in the public sector has been limited. This paper examined the characteristics of the challenging experiences encountered by senior leaders in public universities that require them to embrace entrepreneurialism in their leadership. Through a focus group interview with five Malaysian university top senior leaders with experience being Vice-Chancellor, we explored and developed a framework of institutional adversity characteristics and exemplary entrepreneurial leadership competency in the face of adversity. Complexity of diverse stakeholders, multiplicity of academic disciplines, unfamiliarity to lead different and broader roles, leading new directions, and creating change in high velocity and uncertain environment are among the dimensions that characterise institutional adversities. Our findings revealed that learning agility, opportunity recognition capacity, and bridging capability are among the characteristics of entrepreneurial university leaders. The findings reinforced that the presence of specific attributes in institutional adversity and experiences in overcoming those challenges may contribute to the development of entrepreneurial leadership capabilities.Keywords: bridging capability, entrepreneurial leadership, leadership development, learning agility, opportunity recognition, university leaders
Procedia PDF Downloads 1103400 Code-Switching among Local UCSI Stem and N-Stem Undergraduates during Knowledge Sharing
Authors: Adeela Abu Bakar, Minder Kaur, Parthaman Singh
Abstract:
In the Malaysian education system, a formal setting of English language learning takes place in a content-based classroom (CBC). Until recently, there is less study in Malaysia, which researched the effects of code-switching (CS) behaviour towards the students’ knowledge sharing (KS) with their peers. The aim of this study is to investigate the frequency, reasons, and effect that CS, from the English language to Bahasa Melayu, has among local STEM and N-STEM undergraduates towards KS in a content-based classroom. The study implies a mixed-method research design with questionnaire and interviews as the instruments. The data is collected through distribution of questionnaires and interviews with the undergraduates. The quantitative data is analysed using SPSS in simple frequencies and percentages, whereas qualitative data involves organizing the data into themes, followed by analysis. Findings found that N-STEM undergraduates code-switch more as compared to STEM undergraduates. In addition to that, both the STEM and N-STEM undergraduates agree that CS acts as a catalyst towards KS in a content-based classroom. However, they also acknowledge that excess use of CS can be a hindrance towards KS. The findings of the study can benefit STEM and N-STEM undergraduates, education policymakers, language teachers, university educators, and students with significant insights into the role of CS towards KS in a content-based classroom. Some of the recommendations that can be applied for future studies are that the number of participants can be increased, an observation to be included for the data collection.Keywords: switching, content-based classroom, content and language integrated learning, knowledge sharing, STEM and N-STEM undergraduates
Procedia PDF Downloads 1353399 AI-Powered Personalized Teacher Training for Enhancing Language Teaching Competence
Authors: Ororho Maureen Ekpelezie
Abstract:
This study investigates language educators' perceptions and experiences regarding AI-driven personalized teacher training modules in Awka South, Anambra State, Nigeria. Utilizing a stratified random sampling technique, 25 schools across various educational levels were selected to ensure a representative sample. A total of 1000 questionnaires were distributed among language teachers in these schools, focusing on assessing their perceptions and experiences related to AI-driven personalized teacher training. With an impressive response rate of 99.1%, the study garnered valuable insights into language teachers' attitudes towards AI-driven personalized teacher training and its effectiveness in enhancing language teaching competence. The quantitative analysis revealed predominantly positive perceptions towards AI-driven personalized training modules, indicating their efficacy in addressing individual learning needs. However, challenges were identified in the long-term retention and transfer of AI-enhanced skills, underscoring the necessity for further refinement of personalized training approaches. Recommendations stemming from these findings emphasize the need for continued refinement of training methodologies and the development of tailored professional development programs to alleviate educators' concerns. Overall, this research enriches discussions on the integration of AI technology in teacher training and professional development, with the aim of bolstering language teaching competence and effectiveness in educational settings.Keywords: language teacher training, AI-driven personalized learning, professional development, language teaching competence, personalized teacher training
Procedia PDF Downloads 393398 Entrepreneurship and Innovation: The Essence of Sustainable, Smart and Inclusive Economies
Authors: Isabel Martins, Orlando Pereira, Ana Martins
Abstract:
This study aims to highlight that, in changing environments, organisations need to adapt their behaviours to the demands of the new economic reality. The main purpose of this study focuses on the relationship between entrepreneurship, innovation with learning as the mediating factor. It is within this entrepreneurial spirit that literature reveals a concern with the current economic perspective towards knowledge and considers it as both the production factor par excellence and a source of entrepreneurial capacity and innovation. Entrepreneurship is a mind-set focused on identifying opportunities of economic value and translates these into the pursuit of business opportunities through innovation. It connects art and science and is a way of life, as opposed to a simple mode of business creation and profiteering. This perspective underlines the need to develop the global individual for the globalised world, the strategic key to economic and social development. The objective of this study is to explore the notion that relational capital which is established between the entrepreneur and all the other economic role players both inside and outside the organization, is indeed determinant in developing the entrepreneurial capacity. However, this depends on the organizational culture of innovation. In this context, entrepreneurship is an ‘entrepreneurial capital’ inherent in the organization that is not limited to skills needed for work. This study is a critique of extant literature review which will be also be supported by primary data collection gathered to study graduates’ perceptions towards their entrepreneurial capital. Limitations are centered on both the design and of the sample of this study. This study is of added value for both scholars and organisations in the current innovation economy.Keywords: entrepreneurship, innovation, learning, relational capital
Procedia PDF Downloads 2283397 A Valid Professional Development Framework For Supporting Science Teachers In Relation To Inquiry-Based Curriculum Units
Authors: Fru Vitalis Akuma, Jenna Koenen
Abstract:
The science education community is increasingly calling for learning experiences that mirror the work of scientists. Although inquiry-based science education is aligned with these calls, the implementation of this strategy is a complex and daunting task for many teachers. Thus, policymakers and researchers have noted the need for continued teacher Professional Development (PD) in the enactment of inquiry-based science education, coupled with effective ways of reaching the goals of teacher PD. This is a complex problem for which educational design research is suitable. The purpose at this stage of our design research is to develop a generic PD framework that is valid as the blueprint of a PD program for supporting science teachers in relation to inquiry-based curriculum units. The seven components of the framework are the goal, learning theory, strategy, phases, support, motivation, and an instructional model. Based on a systematic review of the literature on effective (science) teacher PD, coupled with developer screening, we have generated a design principle per component of the PD framework. For example, as per the associated design principle, the goal of the framework is to provide science teachers with experiences in authentic inquiry, coupled with enhancing their competencies linked to the adoption, customization and design; then the classroom implementation and the revision of inquiry-based curriculum units. The seven design principles have allowed us to synthesize the PD framework, which, coupled with the design principles, are the preliminary outcomes of the current research. We are in the process of evaluating the content and construct validity of the framework, based on nine one-on-one interviews with experts in inquiry-based classroom and teacher learning. To this end, we have developed an interview protocol with the input of eight such experts in South Africa and Germany. Using the protocol, the expert appraisal of the PD framework will involve three experts from Germany, South Africa, and Cameroon, respectively. These countries, where we originate and/or work, provide a variety of inquiry-based science education contexts, making the countries suitable in the evaluation of the generic PD framework. Based on the evaluation, we will revise the framework and its seven design principles to arrive at the final outcomes of the current research. While the final content and construct a valid version of the framework will serve as an example of the needed ways through which effective inquiry-based science teacher PD may be achieved, the final design principles will be useful to researchers when transforming the framework for use in any specific educational context. For example, in our further research, we will transform the framework to one that is practical and effective in supporting inquiry-based practical work in resource-constrained physical sciences classrooms in South Africa. Researchers in other educational contexts may similarly consider the final framework and design principles in their work. Thus, our final outcomes will inform practice and research around the support of teachers to increase the incorporation of learning experiences that mirror the work of scientists in a worldwide manner.Keywords: design principles, educational design research, evaluation, inquiry-based science education, professional development framework
Procedia PDF Downloads 1493396 Examining Language as a Crucial Factor in Determining Academic Performance: A Case of Business Education in Hong Kong
Authors: Chau So Ling
Abstract:
I.INTRODUCTION: Educators have always been interested in exploring factors that contribute to students’ academic success. It is beyond question that language, as a medium of instruction, will affect student learning. This paper tries to investigate whether language is a crucial factor in determining students’ achievement in their studies. II. BACKGROUND AND SIGNIFICANCE OF STUDY: The issue of using English as a medium of instruction in Hong Kong is a special topic because Hong Kong is a post-colonial and international city which a British colony. In such a specific language environment, researchers in the education field have always been interested in investigating students’ language proficiency and its relation to academic achievement and other related educational indicators such as motivation to learn, self-esteem, learning effectiveness, self-efficacy, etc. Along this line of thought, this study specifically focused on business education. III. METHODOLOGY: The methodology in this study involved two sequential stages, namely, a focus group interview and a data analysis. The whole study was directed towards both qualitative and quantitative aspects. The subjects of the study were divided into two groups. For the first group participating in the interview, a total of ten high school students were invited. They studied Business Studies, and their English standard was varied. The theme of the discussion was “Does English affect your learning and examination results of Business Studies?” The students were facilitated to discuss the extent to which English standard affected their learning of Business subjects and requested to rate the correlation between English and performance of Business Studies on a five-point scale. The second stage of the study involved another group of students. They were high school graduates who had taken the public examination for entering universities. A database containing their public examination results for different subjects has been obtained for the purpose of statistical analysis. Hypotheses were tested and evidence was obtained from the focus group interview to triangulate the findings. V. MAJOR FINDINGS AND CONCLUSION: By sharing of personal experience, the discussion of focus group interviews indicated that higher English standards could help the students achieve better learning and examination performance. In order to end the interview, the students were asked to indicate the correlation between English proficiency and performance of Business Studies on a five-point scale. With point one meant least correlated, ninety percent of the students gave point four for the correlation. The preliminary results illustrated that English plays an important role in students’ learning of Business Studies, or at least this was what the students perceived, which set the hypotheses for the study. After conducting the focus group interview, further evidence had to be gathered to support the hypotheses. The data analysis part tried to find out the relationship by correlating the students’ public examination results of Business Studies and levels of English standard. The results indicated a positive correlation between their English standard and Business Studies examination performance. In order to highlight the importance of the English language to the study of Business Studies, the correlation between the public examination results of other non-business subjects was also tested. Statistical results showed that language does play a role in affecting students’ performance in studying Business subjects than the other subjects. The explanation includes the dynamic subject nature, examination format and study requirements, the specialist language used, etc. Unlike Science and Geography, students in their learning process might find it more difficult to relate business concepts or terminologies to their own experience, and there are not many obvious physical or practical activities or visual aids to serve as evidence or experiments. It is well-researched in Hong Kong that English proficiency is a determinant of academic success. Other research studies verified such a notion. For example, research revealed that the more enriched the language experience, the better the cognitive performance in conceptual tasks. The ability to perform this kind of task is particularly important to students taking Business subjects. Another research was carried out in the UK, which was geared towards identifying and analyzing the reasons for underachievement across a cohort of GCSE students taking Business Studies. Results showed that weak language ability was the main barrier to raising students’ performance levels. It seemed that the interview result was successfully triangulated with data findings. Although education failure cannot be restricted to linguistic failure and language is just one of the variables to play in determining academic achievement, it is generally accepted that language does affect students’ academic performance. It is just a matter of extent. This paper provides recommendations for business educators on students’ language training and sheds light on more research possibilities in this area.Keywords: academic performance, language, learning, medium of instruction
Procedia PDF Downloads 1213395 A Study of the Effect of the Flipped Classroom on Mixed Abilities Classes in Compulsory Secondary Education in Italy
Authors: Giacoma Pace
Abstract:
The research seeks to evaluate whether students with impairments can achieve enhanced academic progress by actively engaging in collaborative problem-solving activities with teachers and peers, to overcome the obstacles rooted in socio-economic disparities. Furthermore, the research underscores the significance of fostering students' self-awareness regarding their learning process and encourages teachers to adopt a more interactive teaching approach. The research also posits that reducing conventional face-to-face lessons can motivate students to explore alternative learning methods, such as collaborative teamwork and peer education within the classroom. To address socio-cultural barriers it is imperative to assess their internet access and possession of technological devices, as these factors can contribute to a digital divide. The research features a case study of a Flipped Classroom Learning Unit, administered to six third-year high school classes: Scientific Lyceum, Technical School, and Vocational School, within the city of Turin, Italy. Data are about teachers and the students involved in the case study, some impaired students in each class, level of entry, students’ performance and attitude before using Flipped Classrooms, level of motivation, family’s involvement level, teachers’ attitude towards Flipped Classroom, goal obtained, the pros and cons of such activities, technology availability. The selected schools were contacted; meetings for the English teachers to gather information about their attitude and knowledge of the Flipped Classroom approach. Questionnaires to teachers and IT staff were administered. The information gathered, was used to outline the profile of the subjects involved in the study and was further compared with the second step of the study made up of a study conducted with the classes of the selected schools. The learning unit is the same, structure and content are decided together with the English colleagues of the classes involved. The pacing and content are matched in every lesson and all the classes participate in the same labs, use the same materials, homework, same assessment by summative and formative testing. Each step follows a precise scheme, in order to be as reliable as possible. The outcome of the case study will be statistically organised. The case study is accompanied by a study on the literature concerning EFL approaches and the Flipped Classroom. Document analysis method was employed, i.e. a qualitative research method in which printed and/or electronic documents containing information about the research subject are reviewed and evaluated with a systematic procedure. Articles in the Web of Science Core Collection, Education Resources Information Center (ERIC), Scopus and Science Direct databases were searched in order to determine the documents to be examined (years considered 2000-2022).Keywords: flipped classroom, impaired, inclusivity, peer instruction
Procedia PDF Downloads 533394 Avoidance and Selectivity in the Acquisition of Arabic as a Second/Foreign Language
Authors: Abeer Heider
Abstract:
This paper explores and classifies the different kinds of avoidances that students commonly make in the acquisition of Arabic as a second/foreign language, and suggests specific strategies to help students lessen their avoidance trends in hopes of streamlining the learning process. Students most commonly use avoidance strategies in grammar, and word choice. These different types of strategies have different implications and naturally require different approaches. Thus the question remains as to the most effective way to help students improve their Arabic, and how teachers can efficiently utilize these techniques. It is hoped that this research will contribute to understand the role of avoidance in the field of the second language acquisition in general, and as a type of input. Yet some researchers also note that similarity between L1 and L2 may be problematic as well since the learner may doubt that such similarity indeed exists and consequently avoid the identical constructions or elements (Jordens, 1977; Kellermann, 1977, 1978, 1986). In an effort to resolve this issue, a case study is being conducted. The present case study attempts to provide a broader analysis of what is acquired than is usually the case, analyzing the learners ‘accomplishments in terms of three –part framework of the components of communicative competence suggested by Michele Canale: grammatical competence, sociolinguistic competence and discourse competence. The subjects of this study are 15 students’ 22th year who came to study Arabic at Qatar University of Cairo. The 15 students are in the advanced level. They were complete intermediate level in Arabic when they arrive in Qatar for the first time. The study used discourse analytic method to examine how the first language affects students’ production and output in the second language, and how and when students use avoidance methods in their learning. The study will be conducted through Fall 2015 through analyzing audio recordings that are recorded throughout the entire semester. The recordings will be around 30 clips. The students are using supplementary listening and speaking materials. The group will be tested at the end of the term to assess any measurable difference between the techniques. Questionnaires will be administered to teachers and students before and after the semester to assess any change in attitude toward avoidance and selectivity methods. Responses to these questionnaires are analyzed and discussed to assess the relative merits of the aforementioned strategies to avoidance and selectivity to further support on. Implications and recommendations for teacher training are proposed.Keywords: the second language acquisition, learning languages, selectivity, avoidance
Procedia PDF Downloads 2773393 The Estimation Method of Inter-Story Drift for Buildings Based on Evolutionary Learning
Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park
Abstract:
The seismic responses-based structural health monitoring system has been performed to reduce seismic damage. The inter-story drift ratio which is the major index of the seismic capacity assessment is employed for estimating the seismic damage of buildings. Meanwhile, seismic response analysis to estimate the structural responses of building demands significantly high computational cost due to increasing number of high-rise and large buildings. To estimate the inter-story drift ratio of buildings from the earthquake efficiently, this paper suggests the estimation method of inter-story drift for buildings using an artificial neural network (ANN). In the method, the radial basis function neural network (RBFNN) is integrated with optimization algorithm to optimize the variable through evolutionary learning that refers to evolutionary radial basis function neural network (ERBFNN). The estimation method estimates the inter-story drift without seismic response analysis when the new earthquakes are subjected to buildings. The effectiveness of the estimation method is verified through a simulation using multi-degree of freedom system.Keywords: structural health monitoring, inter-story drift ratio, artificial neural network, radial basis function neural network, genetic algorithm
Procedia PDF Downloads 3273392 Impact of Electric Vehicles on Energy Consumption and Environment
Authors: Amela Ajanovic, Reinhard Haas
Abstract:
Electric vehicles (EVs) are considered as an important means to cope with current environmental problems in transport. However, their high capital costs and limited driving ranges state major barriers to a broader market penetration. The core objective of this paper is to investigate the future market prospects of various types of EVs from an economic and ecological point of view. Our method of approach is based on the calculation of total cost of ownership of EVs in comparison to conventional cars and a life-cycle approach to assess the environmental benignity. The most crucial parameters in this context are km driven per year, depreciation time of the car and interest rate. The analysis of future prospects it is based on technological learning regarding investment costs of batteries. The major results are the major disadvantages of battery electric vehicles (BEVs) are the high capital costs, mainly due to the battery, and a low driving range in comparison to conventional vehicles. These problems could be reduced with plug-in hybrids (PHEV) and range extenders (REXs). However, these technologies have lower CO₂ emissions in the whole energy supply chain than conventional vehicles, but unlike BEV they are not zero-emission vehicles at the point of use. The number of km driven has a higher impact on total mobility costs than the learning rate. Hence, the use of EVs as taxis and in car-sharing leads to the best economic performance. The most popular EVs are currently full hybrid EVs. They have only slightly higher costs and similar operating ranges as conventional vehicles. But since they are dependent on fossil fuels, they can only be seen as energy efficiency measure. However, they can serve as a bridging technology, as long as BEVs and fuel cell vehicle do not gain high popularity, and together with PHEVs and REX contribute to faster technological learning and reduction in battery costs. Regarding the promotion of EVs, the best results could be reached with a combination of monetary and non-monetary incentives, as in Norway for example. The major conclusion is that to harvest the full environmental benefits of EVs a very important aspect is the introduction of CO₂-based fuel taxes. This should ensure that the electricity for EVs is generated from renewable energy sources; otherwise, total CO₂ emissions are likely higher than those of conventional cars.Keywords: costs, mobility, policy, sustainability,
Procedia PDF Downloads 2253391 Institutional Effectiveness in Fostering Student Retention and Success in First Year
Authors: Naziema B. Jappie
Abstract:
The objective of this study is to examine the relationship between college readiness characteristics and learning outcome assessment scores. About this, it is important to examine the first-year retention and success rate. In order to undertake this study, it will be necessary to look at proficiency levels on general and domain-specific knowledge and skills reflected on national benchmark test scores (NBT), in-college interventions and course-taking patterns. Preliminary results based on data from more than 1000 students suggest that there is a positive association between NBT scores and students’ 1st-year college GPA and their retention status. For example, 63% of students with a proficient level of math skills in the NBT had the highest level of GPA at the end of 1st-year of college in comparison to 56% of those who started with a primary or intermediate level, respectively. The retention rates among those with proficiency levels were also higher than those with basic or intermediate levels (98% vs. 93% and 88%, respectively). By the end of 3rd year in college, students with intermediate or proficient entering NBT math skills had 7% and 8% of dropout rate, compared to 14% for those started at primary level; a greater percentage of students qualified by the end of 3rd-year qualified among proficient students than that among intermediate or basic level students (50% vs. 44% and 27% respectively). The findings of this study added knowledge to the field in South Africa and are expected to help stakeholders and policymakers to better understand college learning and challenges for students with disadvantaged backgrounds and provide empirical evidence in support of related practices and policies.Keywords: assessment, data analysis, performance, proficiency, policy, student success
Procedia PDF Downloads 1323390 Nursing Students' Experience of Using Electronic Health Record System in Clinical Placements
Authors: Nurten Tasdemir, Busra Baloglu, Zeynep Cingoz, Can Demirel, Zeki Gezer, Barıs Efe
Abstract:
Student nurses are increasingly exposed to technology in the workplace after graduation with the growing numbers of electric health records (EHRs), handheld computers, barcode scanner medication dispensing systems, and automatic capture of patient data such as vital signs. Internationally, electronic health records (EHRs) systems are being implemented and evaluated. Students will inevitably encounter EHRs in the clinical learning environment and their professional practice. Nursing students must develop competency in the use of EHR. Aim: The study aimed to examine nursing students’ experiences of learning to use electronic health records (EHR) in clinical placements. Method: This study adopted a descriptive approach. The study population consisted of second and third-year nursing students at the Zonguldak School of Health in the West Black Sea Region of Turkey; the study was conducted during the 2015–2016 academic year. The sample consisted of 315 (74.1% of 425 students) nursing students who volunteered to participate. The students, who were involved in clinical practice, were invited to participate in the study Data were collected by a questionnaire designed by the researchers based on the relevant literature. Data were analyzed descriptively using the Statistical Package for Social Sciences (SPSS) for Windows version 16.0. The data are presented as means, standard deviations, and percentages. Approval for the study was obtained from the Ethical Committee of the University (Reg. Number: 29/03/2016/112) and the director of Nursing Department. Findings: A total of 315 students enrolled in this study, for a response rate of 74.1%. The mean age of the sample was 22.24 ± 1.37 (min: 19, max: 32) years, and most participants (79.7%) were female. Most of the nursing students (82.3%) stated that they use information technologies in clinical practice. Nearly half of the students (42.5%) reported that they have not accessed to EHR system. In addition, 61.6% of the students reported that insufficient computers available in clinical placement. Of the students, 84.7% reported that they prefer to have patient information from EHR system, and 63.8% of them found more effective to preparation for the clinical reporting. Conclusion: This survey indicated that nursing students experience to learn about EHR systems in clinical placements. For more effective learning environment nursing education should prepare nursing students for EHR systems in their educational life.Keywords: electronic health record, clinical placement, nursing student, nursing education
Procedia PDF Downloads 2913389 How Technology Can Help Teachers in Reflective Practice
Authors: Ambika Perisamy, Asyriawati binte Mohd Hamzah
Abstract:
The focus of this presentation is to discuss teacher professional development (TPD) through the use of technology. TPD is necessary to prepare teachers for future challenges they will face throughout their careers and to develop new skills and good teaching practices. We will also be discussing current issues in embracing technology in the field of early childhood education and the impact on the professional development of teachers. Participants will also learn to apply teaching and learning practices through the use of technology. One major objective of this presentation is to coherently fuse practical, technology and theoretical content. The process begins by concretizing a set of preconceived ideas which need to be joined with theoretical justifications found in the literature. Technology can make observations fairer and more reliable, easier to implement, and more preferable to teachers and principals. Technology will also help principals to improve classroom observations of teachers and ultimately improve teachers’ continuous professional development. Video technology allows the early childhood teachers to record and keep the recorded video for reflection at any time. This will also provide opportunities for her to share with her principals for professional dialogues and continuous professional development plans. A total of 10 early childhood teachers and 4 principals were involved in these efforts which identified and analyze the gaps in the quality of classroom observations and its co relation to developing teachers as reflective practitioners. The methodology used involves active exploration with video technology recordings, conversations, interviews and authentic teacher child interactions which forms the key thrust in improving teaching and learning practice. A qualitative analysis of photographs, videos, transcripts which illustrates teacher’s reflections and classroom observation checklists before and after the use of video technology were adopted. Arguably, although PD support can be magnanimously strong, if teachers could not connect or create meaning out of the opportunities made available to them, they may remain passive or uninvolved. Therefore, teachers must see the value of applying new ideas such as technology and approaches to practice while creating personal meaning out of professional development. These video recordings are transferable, can be shared and edited through social media, emails and common storage between teachers and principals. To conclude the importance of reflective practice among early childhood teachers and addressing the concerns raised before and after the use of video technology, teachers and principals shared the feasibility, practical and relevance use of video technology.Keywords: early childhood education, reflective, improve teaching and learning, technology
Procedia PDF Downloads 5023388 Predicting Wealth Status of Households Using Ensemble Machine Learning Algorithms
Authors: Habtamu Ayenew Asegie
Abstract:
Wealth, as opposed to income or consumption, implies a more stable and permanent status. Due to natural and human-made difficulties, households' economies will be diminished, and their well-being will fall into trouble. Hence, governments and humanitarian agencies offer considerable resources for poverty and malnutrition reduction efforts. One key factor in the effectiveness of such efforts is the accuracy with which low-income or poor populations can be identified. As a result, this study aims to predict a household’s wealth status using ensemble Machine learning (ML) algorithms. In this study, design science research methodology (DSRM) is employed, and four ML algorithms, Random Forest (RF), Adaptive Boosting (AdaBoost), Light Gradient Boosted Machine (LightGBM), and Extreme Gradient Boosting (XGBoost), have been used to train models. The Ethiopian Demographic and Health Survey (EDHS) dataset is accessed for this purpose from the Central Statistical Agency (CSA)'s database. Various data pre-processing techniques were employed, and the model training has been conducted using the scikit learn Python library functions. Model evaluation is executed using various metrics like Accuracy, Precision, Recall, F1-score, area under curve-the receiver operating characteristics (AUC-ROC), and subjective evaluations of domain experts. An optimal subset of hyper-parameters for the algorithms was selected through the grid search function for the best prediction. The RF model has performed better than the rest of the algorithms by achieving an accuracy of 96.06% and is better suited as a solution model for our purpose. Following RF, LightGBM, XGBoost, and AdaBoost algorithms have an accuracy of 91.53%, 88.44%, and 58.55%, respectively. The findings suggest that some of the features like ‘Age of household head’, ‘Total children ever born’ in a family, ‘Main roof material’ of their house, ‘Region’ they lived in, whether a household uses ‘Electricity’ or not, and ‘Type of toilet facility’ of a household are determinant factors to be a focal point for economic policymakers. The determinant risk factors, extracted rules, and designed artifact achieved 82.28% of the domain expert’s evaluation. Overall, the study shows ML techniques are effective in predicting the wealth status of households.Keywords: ensemble machine learning, households wealth status, predictive model, wealth status prediction
Procedia PDF Downloads 393387 Technology and the Need for Integration in Public Education
Authors: Eric Morettin
Abstract:
Cybersecurity and digital literacy are pressing issues among Canadian citizens, yet formal education does not provide today’s students with the necessary knowledge and skills needed to adapt to these challenging issues within the physical and digital labor-market. Canada’s current education systems do not highlight the importance of these respective fields, aside from using technology for learning management systems and alternative methods of assignment completion. Educators are not properly trained to integrate technology into the compulsory courses within public education, to better prepare their learners in these topics and Canada’s digital economy. ICTC addresses these gaps in education and training through cross-Canadian educational programming in digital literacy and competency, cybersecurity and coding which is bridged with Canada’s provincially regulated K-12 curriculum guidelines. After analyzing Canada’s provincial education, it is apparent that there are gaps in learning related to technology, as well as inconsistent educational outcomes that do not adequately represent the current Canadian and global economies. Presently only New Brunswick, Nova Scotia, Ontario, and British Columbia offer curriculum guidelines for cybersecurity, computer programming, and digital literacy. The remaining provinces do not address these skills in their curriculum guidelines. Moreover, certain courses across some provinces not being updated since the 1990’s. The three territories respectfully take curriculum strands from other provinces and use them as their foundation in education. Yukon uses all British Columbia curriculum. Northwest Territories and Nunavut respectfully use a hybrid of Alberta and Saskatchewan curriculum as their foundation of learning. Education that is provincially regulated does not allow for consistency across the country’s educational outcomes and what Canada’s students will achieve – especially when curriculum outcomes have not been updated to reflect present day society. Through this, ICTC has aligned Canada’s provincially regulated curriculum and created opportunities for focused education in the realm of technology to better serve Canada’s present learners and teachers; while addressing inequalities and applicability within curriculum strands and outcomes across the country. As a result, lessons, units, and formal assessment strategies, have been created to benefit students and teachers in this interdisciplinary, cross-curricular, practice - as well as meeting their compulsory education requirements and developing skills and literacy in cyber education. Teachers can access these lessons and units through ICTC’s website, as well as receive professional development regarding the assessment and implementation of these offerings from ICTC’s education coordinators, whose combines experience exceeds 50 years of teaching in public, private, international, and Indigenous schools. We encourage you to take this opportunity that will benefit students and educators, and will bridge the learning and curriculum gaps in Canadian education to better reflect the ever-changing public, social, and career landscape that all citizens are a part of. Students are the future, and we at ICTC strive to ensure their futures are bright and prosperous.Keywords: cybersecurity, education, curriculum, teachers
Procedia PDF Downloads 823386 Exploring Inclusive Culture and Practice: The Perspectives of Macao Teachers in Informing Inclusive Teacher Education Programmes in Higher Education
Authors: Elisa Monteiro, Kiiko Ikegami
Abstract:
The inclusion of children with diverse learning needs and/or disabilities in regular classrooms has been identified as crucial to the provision of educational equity and quality for all students. In this, teachers play an essential role, as they have a strong impact on student attainment. Whilst the adoption of inclusive practice is increasing, with potential benefits for the teaching profession, there is also a rise in the level of its challenges in Macao as many more students with learning disabilities are now being included in general education classes. Consequently, there has been a significant focus on teacher professional development to ensure that teachers are adequately prepared to teach in inclusive classrooms that give access to diverse students. Major changes in teacher education will need to take place to include more inclusive education content and to equip teachers with the necessary skills in the area of inclusive practice. This paper draws on data from in-depth interviews with 20 teachers to examine teachers’ views of support, challenges, and barriers to inclusive practices at the school and classroom levels. Thematic analysis was utilised to determine major themes within the data. Several themes emerged and serve to illustrate the identified barriers and the potential value of effective teacher education. Suggestions for increased professional development opportunities for inclusive education specific to higher education institutions are presented and the implications for practice and teacher education are discussed.Keywords: inclusion, inclusive practice, teacher education, higher education
Procedia PDF Downloads 843385 Artificial Neural Network to Predict the Optimum Performance of Air Conditioners under Environmental Conditions in Saudi Arabia
Authors: Amr Sadek, Abdelrahaman Al-Qahtany, Turkey Salem Al-Qahtany
Abstract:
In this study, a backpropagation artificial neural network (ANN) model has been used to predict the cooling and heating capacities of air conditioners (AC) under different conditions. Sufficiently large measurement results were obtained from the national energy-efficiency laboratories in Saudi Arabia and were used for the learning process of the ANN model. The parameters affecting the performance of the AC, including temperature, humidity level, specific heat enthalpy indoors and outdoors, and the air volume flow rate of indoor units, have been considered. These parameters were used as inputs for the ANN model, while the cooling and heating capacity values were set as the targets. A backpropagation ANN model with two hidden layers and one output layer could successfully correlate the input parameters with the targets. The characteristics of the ANN model including the input-processing, transfer, neurons-distance, topology, and training functions have been discussed. The performance of the ANN model was monitored over the training epochs and assessed using the mean squared error function. The model was then used to predict the performance of the AC under conditions that were not included in the measurement results. The optimum performance of the AC was also predicted under the different environmental conditions in Saudi Arabia. The uncertainty of the ANN model predictions has been evaluated taking into account the randomness of the data and lack of learning.Keywords: artificial neural network, uncertainty of model predictions, efficiency of air conditioners, cooling and heating capacities
Procedia PDF Downloads 743384 Machine Learning Approaches Based on Recency, Frequency, Monetary (RFM) and K-Means for Predicting Electrical Failures and Voltage Reliability in Smart Cities
Authors: Panaya Sudta, Wanchalerm Patanacharoenwong, Prachya Bumrungkun
Abstract:
As With the evolution of smart grids, ensuring the reliability and efficiency of electrical systems in smart cities has become crucial. This paper proposes a distinct approach that combines advanced machine learning techniques to accurately predict electrical failures and address voltage reliability issues. This approach aims to improve the accuracy and efficiency of reliability evaluations in smart cities. The aim of this research is to develop a comprehensive predictive model that accurately predicts electrical failures and voltage reliability in smart cities. This model integrates RFM analysis, K-means clustering, and LSTM networks to achieve this objective. The research utilizes RFM analysis, traditionally used in customer value assessment, to categorize and analyze electrical components based on their failure recency, frequency, and monetary impact. K-means clustering is employed to segment electrical components into distinct groups with similar characteristics and failure patterns. LSTM networks are used to capture the temporal dependencies and patterns in customer data. This integration of RFM, K-means, and LSTM results in a robust predictive tool for electrical failures and voltage reliability. The proposed model has been tested and validated on diverse electrical utility datasets. The results show a significant improvement in prediction accuracy and reliability compared to traditional methods, achieving an accuracy of 92.78% and an F1-score of 0.83. This research contributes to the proactive maintenance and optimization of electrical infrastructures in smart cities. It also enhances overall energy management and sustainability. The integration of advanced machine learning techniques in the predictive model demonstrates the potential for transforming the landscape of electrical system management within smart cities. The research utilizes diverse electrical utility datasets to develop and validate the predictive model. RFM analysis, K-means clustering, and LSTM networks are applied to these datasets to analyze and predict electrical failures and voltage reliability. The research addresses the question of how accurately electrical failures and voltage reliability can be predicted in smart cities. It also investigates the effectiveness of integrating RFM analysis, K-means clustering, and LSTM networks in achieving this goal. The proposed approach presents a distinct, efficient, and effective solution for predicting and mitigating electrical failures and voltage issues in smart cities. It significantly improves prediction accuracy and reliability compared to traditional methods. This advancement contributes to the proactive maintenance and optimization of electrical infrastructures, overall energy management, and sustainability in smart cities.Keywords: electrical state prediction, smart grids, data-driven method, long short-term memory, RFM, k-means, machine learning
Procedia PDF Downloads 563383 Teachers as Agents of Change in Diverse Classrooms: An Overview of the Literature
Authors: Anna Sanczyk
Abstract:
Diverse students may experience different forms of discrimination. Some of the oppression students experience in schools are racism, sexism, classism, or homophobia that may affect their achievement, and teachers need to make sure they create inclusive, equitable classroom environments. The broader literature on social change in education shows that teachers who challenge oppression and want to promote equitable and transformative education face institutional, social, and political constraints. This paper discusses research on teachers’ work to create socially just and culturally inclusive classrooms and schools. The practical contribution of this literature review is that it provides a comprehensive compilation of the studies presenting teachers’ roles and efforts in affecting social change. The examination of the research on social change in education points to the urgency of teachers addressing the needs of marginalized students and resisting systemic oppression in schools. The implications of this literature review relate to the concerns that schools should provide greater advocacy for marginalized students in diverse learning contexts, and teacher education programs should prepare teachers to be active advocates for diverse students. The literature review has the potential to inform educators to enhance educational equity and improve the learning environment. This literature review illustrates teachers as agents of change in diverse classrooms and contributes to understanding various ways of taking action towards fostering more equitable and transformative education in today’s schools.Keywords: agents of change, diversity, opression, social change
Procedia PDF Downloads 1403382 Deep Feature Augmentation with Generative Adversarial Networks for Class Imbalance Learning in Medical Images
Authors: Rongbo Shen, Jianhua Yao, Kezhou Yan, Kuan Tian, Cheng Jiang, Ke Zhou
Abstract:
This study proposes a generative adversarial networks (GAN) framework to perform synthetic sampling in feature space, i.e., feature augmentation, to address the class imbalance problem in medical image analysis. A feature extraction network is first trained to convert images into feature space. Then the GAN framework incorporates adversarial learning to train a feature generator for the minority class through playing a minimax game with a discriminator. The feature generator then generates features for minority class from arbitrary latent distributions to balance the data between the majority class and the minority class. Additionally, a data cleaning technique, i.e., Tomek link, is employed to clean up undesirable conflicting features introduced from the feature augmentation and thus establish well-defined class clusters for the training. The experiment section evaluates the proposed method on two medical image analysis tasks, i.e., mass classification on mammogram and cancer metastasis classification on histopathological images. Experimental results suggest that the proposed method obtains superior or comparable performance over the state-of-the-art counterparts. Compared to all counterparts, our proposed method improves more than 1.5 percentage of accuracy.Keywords: class imbalance, synthetic sampling, feature augmentation, generative adversarial networks, data cleaning
Procedia PDF Downloads 1273381 Geovisualisation for Defense Based on a Deep Learning Monocular Depth Reconstruction Approach
Authors: Daniel R. dos Santos, Mateus S. Maldonado, Estevão J. R. Batista
Abstract:
The military commanders increasingly dependent on spatial awareness, as knowing where enemy are, understanding how war battle scenarios change over time, and visualizing these trends in ways that offer insights for decision-making. Thanks to advancements in geospatial technologies and artificial intelligence algorithms, the commanders are now able to modernize military operations on a universal scale. Thus, geovisualisation has become an essential asset in the defense sector. It has become indispensable for better decisionmaking in dynamic/temporal scenarios, operation planning and management for the war field, situational awareness, effective planning, monitoring, and others. For example, a 3D visualization of war field data contributes to intelligence analysis, evaluation of postmission outcomes, and creation of predictive models to enhance decision-making and strategic planning capabilities. However, old-school visualization methods are slow, expensive, and unscalable. Despite modern technologies in generating 3D point clouds, such as LIDAR and stereo sensors, monocular depth values based on deep learning can offer a faster and more detailed view of the environment, transforming single images into visual information for valuable insights. We propose a dedicated monocular depth reconstruction approach via deep learning techniques for 3D geovisualisation of satellite images. It introduces scalability in terrain reconstruction and data visualization. First, a dataset with more than 7,000 satellite images and associated digital elevation model (DEM) is created. It is based on high resolution optical and radar imageries collected from Planet and Copernicus, on which we fuse highresolution topographic data obtained using technologies such as LiDAR and the associated geographic coordinates. Second, we developed an imagery-DEM fusion strategy that combine feature maps from two encoder-decoder networks. One network is trained with radar and optical bands, while the other is trained with DEM features to compute dense 3D depth. Finally, we constructed a benchmark with sparse depth annotations to facilitate future research. To demonstrate the proposed method's versatility, we evaluated its performance on no annotated satellite images and implemented an enclosed environment useful for Geovisualisation applications. The algorithms were developed in Python 3.0, employing open-source computing libraries, i.e., Open3D, TensorFlow, and Pythorch3D. The proposed method provides fast and accurate decision-making with GIS for localization of troops, position of the enemy, terrain and climate conditions. This analysis enhances situational consciousness, enabling commanders to fine-tune the strategies and distribute the resources proficiently.Keywords: depth, deep learning, geovisualisation, satellite images
Procedia PDF Downloads 10