Search results for: absolutely continuous function
3348 Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings
Authors: Hyunchul Ahn, William X. S. Wong
Abstract:
Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector machine (MSVM) has been widely applied due to its good predictability. However, heuristics, for example, parameters of a kernel function, appropriate feature and instance subset, has become the main reason for the critics on MSVM, as they have dictate the MSVM architectural variables. This study presents a hybrid MSVM model that is intended to optimize all the parameter such as feature selection, instance selection, and kernel parameter. Our model adopts genetic algorithm (GA) to simultaneously optimize multiple heterogeneous design factors of MSVM.Keywords: corporate credit rating prediction, Feature selection, genetic algorithms, instance selection, multiclass support vector machines
Procedia PDF Downloads 2953347 Impact of Quality Assurance Mechanisms on the Work Efficiency of Staff in the Educational Space of Georgia
Authors: B. Gechbaia, K. Goletiani, G. Gabedava, N. Mikeltadze
Abstract:
At this stage, Georgia is a country which is actively involved in the European integration process, for which the primary priority is effective integration in the European education system. The modern Georgian higher education system is the process of establishing a new sociocultural reality, whose main priorities are determined by the Quality System as a continuous cycle of planning, implementation, checking and acting. Obviously, in this situation, the issue of management of education institutions comes out in the foreground, since the proper planning and implementation of personnel management processes is one of the main determinants of the company's performance. At the same time, one of the most important factors is the psychological comfort of the personnel, ensuring their protection and efficiency of stress management policy. The purpose of this research is to determine how intensely the relationship is between the psychological comfort of the personnel and the efficiency of the quality system in the institution as the quality assurance mechanisms of educational institutions affect the stability of personnel, prevention and management of the stressful situation. The research was carried out within the framework of the Internal Grant Project «The Role of Organizational Culture in the Process of Settlement of Management of Stress and Conflict, Georgian Reality and European Experience » of the Batumi Navigation Teaching University, based on the analysis of the survey results of target groups. The small-scale research conducted by us has revealed that the introduction of quality assurance system and its active implementation increased the quality of management of Georgian educational institutions, increased the level of universal engagement in internal and external processes and as a result, it has improved the quality of education as well as social and psychological comfort indicators of the society.Keywords: quality assurance, effective management, stability of personnel, psychological comfort, stress management
Procedia PDF Downloads 1573346 The Stability Study of Large-Scale Grid-Tied Photovoltaic System Containing Different Types of Inverter
Authors: Chen Zheng, Lin Zhou, Bao Xie, Xiao Du, Nianbin Shao
Abstract:
Power generated by large-scale photovoltaic plants (LSPVPs) is usually transmitted to the grid through several transformers and long distance overhead lines. Impedance of transformers and transmission lines results in complex interactions between the plant and the grid and among different inverters. In accordance with the topological structure of LSPV in reality, an equivalent model containing different inverters was built and then interactions between the plant and the grid and among different inverters were studied. Based on the vector composition principle of voltage at the point of common coupling (PCC), the mathematic function of PCC voltage in regard to the total power and grid impedance was deduced, from which the uttermost total power to guarantee the system stable is obtained. Taking the influence of different inverters numbers and the length of transmission lines to the system stability into account, the stability criterion of LSPV containing different inverters was derived. The result of simulation validated the theory analysis in the paper.Keywords: LSPVPs, stability analysis, grid impedance, different types of inverter, PCC voltage
Procedia PDF Downloads 3103345 Processing and Characterization of Cereal Bar Containing Cassava Flour
Authors: E. L. Queiroz, S. M. A. Souza, R. T. S. Santos
Abstract:
The cereal bars have emerged as a healthy alternative in the food sector, by presenting a remarkable functional appeal, being a product of high nutritional value. Cereals have an important function in feeding because they have features that particularize them as their variety, smooth flavour and aroma and easy digestion and absorption in the body. Brazil is the largest producer of cassava in the world, and the flour produced from this raw material is a source of nutrients for much of the low-income population, however it is little explored industrially. The northeast region of Brazil has great potential for honey production, which is a source of vitamins, proteins, minerals and organic acids but it is much used as a medicine. Aiming to combine the production of healthy food with the sustainable utilization and enhancement of family farming products, was created a cereal bar using regional raw materials of desirable nutritional characteristics: honey, umbu pulp and cassava flour. The cereal bar was characterized by physicochemical analyzes quantifying the content of lipids, proteins, moisture and ashes, microbiological and sensory evaluation showed that the cereal bar is a safe, and nutritious food with good sensory properties.Keywords: cassava flour, cereal bar, honey, insoluble fibre
Procedia PDF Downloads 4723344 Surface and Bulk Magnetization Behavior of Isolated Ferromagnetic NiFe Nanowires
Authors: Musaab Salman Sultan
Abstract:
The surface and bulk magnetization behavior of template released isolated ferromagnetic Ni60Fe40 nanowires of relatively thick diameters (~200 nm), deposited from a dilute suspension onto pre-patterned insulating chips have been investigated experimentally, using a highly sensitive Magneto-Optical Ker Effect (MOKE) magnetometry and Magneto-Resistance (MR) measurements, respectively. The MR data were consistent with the theoretical predictions of the anisotropic magneto-resistance (AMR) effect. The MR measurements, in all the angles of investigations, showed large features and a series of nonmonotonic "continuous small features" in the resistance profiles. The extracted switching fields from these features and from MOKE loops were compared with each other and with the switching fields reported in the literature that adopted the same analytical techniques on the similar compositions and dimensions of nanowires. A large difference between MOKE and MR measurments was noticed. The disparate between MOKE and MR results is attributed to the variance in the micro-magnetic structure of the surface and the bulk of such ferromagnetic nanowires. This result was ascertained using micro-magnetic simulations on an individual: cylindrical and rectangular cross sections NiFe nanowires, with the same diameter/thickness of the experimental wires, using the Object Oriented Micro-magnetic Framework (OOMMF) package where the simulated loops showed different switching events, indicating that such wires have different magnetic states in the reversal process and the micro-magnetic spin structures during switching behavior was complicated. These results further supported the difference between surface and bulk magnetization behavior in these nanowires. This work suggests that a combination of MOKE and MR measurements is required to fully understand the magnetization behavior of such relatively thick isolated cylindrical ferromagnetic nanowires.Keywords: MOKE magnetometry, MR measurements, OOMMF package, micromagnetic simulations, ferromagnetic nanowires, surface magnetic properties
Procedia PDF Downloads 2533343 Deep Learning for SAR Images Restoration
Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo Ferraioli
Abstract:
In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring. SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.Keywords: SAR image, polarimetric SAR image, convolutional neural network, deep learnig, deep neural network
Procedia PDF Downloads 723342 Application of Pyridine-based Water-soluble Corrosion Inhibitor in Offshore Sweet Oil Pipeline
Authors: M. S. Yalfani, J. Kohzadi, P. Ghadimi, S. Sobhani, M. Ghadimi
Abstract:
The use of oil and water-soluble corrosion inhibitors has been established in Iranian oil and gas production systems for a long time. Imidazoline and its derivatives are being extensively used which are known as conventional corrosion inhibitors. This type of product has shown significant performance and low side effects, so that could monopolize the market of inhibitors in this region. However, the price growth of imidazolines, as well as the development of new lower-cost components with similar or even higher performance than imidazoline, have influenced the exclusive market of imidazoline-based products. During the latest years, pyridine and its derivatives have challenged imidazoline due to their remarkable anticorrosive properties and lower prices as well. Recently, we presented a formulated water-soluble inhibitor based on pyridine - an alkyl pyridine quaternary salt (APQS) - which could successfully pass all lab tests and eventually succeeded in being applied in an offshore sweet oil pipeline. The product was able to achieve high corrosion protection (> 90 %) with the LPR technique at low dosages of 15-25 ppm under severe corrosion conditions. Moreover, the lab test results showed that the APQS molecule is able to form a strong and persistent bond with the metal surface. The product was later nominated to be evaluated through a field trial in an offshore sweet oil pipeline where PH2S < 0.05 psi and CO2 is 6.4 mol%. The three-month trial - extended to six months- resulted in remarkable internal protection obtained by continuous injection of 10 ppm inhibitor, which was as low as 1 mpy measured by both weight loss corrosion coupons and online ER probes. In addition, no side effects, such as tight emulsion and stable foaming, were observed. The residual of the corrosion inhibitor was measured at the end of the pipeline to ensure the full coverage of the inhibitor throughout the pipeline. Eventually, these promising results were able to convince the end user to consider pyridine-based inhibitors as a reliable alternative to imidazoline.Keywords: corrosion inhibitor, pyridine, sweet oil, pipeline, offshore
Procedia PDF Downloads 163341 Software Engineering Inspired Cost Estimation for Process Modelling
Authors: Felix Baumann, Aleksandar Milutinovic, Dieter Roller
Abstract:
Up to this point business process management projects in general and business process modelling projects in particular could not rely on a practical and scientifically validated method to estimate cost and effort. Especially the model development phase is not covered by a cost estimation method or model. Further phases of business process modelling starting with implementation are covered by initial solutions which are discussed in the literature. This article proposes a method of filling this gap by deriving a cost estimation method from available methods in similar domains namely software development or software engineering. Software development is regarded as closely similar to process modelling as we show. After the proposition of this method different ideas for further analysis and validation of the method are proposed. We derive this method from COCOMO II and Function Point which are established methods of effort estimation in the domain of software development. For this we lay out similarities of the software development rocess and the process of process modelling which is a phase of the Business Process Management life-cycle.Keywords: COCOMO II, busines process modeling, cost estimation method, BPM COCOMO
Procedia PDF Downloads 4423340 Numerical Investigation into Capture Efficiency of Fibrous Filters
Authors: Jayotpaul Chaudhuri, Lutz Goedeke, Torsten Hallenga, Peter Ehrhard
Abstract:
Purification of gases from aerosols or airborne particles via filters is widely applied in the industry and in our daily lives. This separation especially in the micron and submicron size range is a necessary step to protect the environment and human health. Fibrous filters are often employed due to their low cost and high efficiency. For designing any filter the two most important performance parameters are capture efficiency and pressure drop. Since the capture efficiency is directly proportional to the pressure drop which leads to higher operating costs, a detailed investigation of the separation mechanism is required to optimize the filter designing, i.e., to have a high capture efficiency with a lower pressure drop. Therefore a two-dimensional flow simulation around a single fiber using Ansys CFX and Matlab is used to get insight into the separation process. Instead of simulating a solid fiber, the present Ansys CFX model uses a fictitious domain approach for the fiber by implementing a momentum loss model. This approach has been chosen to avoid creating a new mesh for different fiber sizes, thereby saving time and effort for re-meshing. In a first step, only the flow of the continuous fluid around the fiber is simulated in Ansys CFX and the flow field data is extracted and imported into Matlab and the particle trajectory is calculated in a Matlab routine. This calculation is a Lagrangian, one way coupled approach for particles with all relevant forces acting on it. The key parameters for the simulation in both Ansys CFX and Matlab are the porosity ε, the diameter ratio of particle and fiber D, the fluid Reynolds number Re, the Reynolds particle number Rep, the Stokes number St, the Froude number Fr and the density ratio of fluid and particle ρf/ρp. The simulation results were then compared to the single fiber theory from the literature.Keywords: BBO-equation, capture efficiency, CFX, Matlab, fibrous filter, particle trajectory
Procedia PDF Downloads 2083339 Study of Parameters Influencing Dwell Times for Trains
Authors: Guillaume Craveur
Abstract:
The work presented here shows a study on several parameters identified as influencing dwell times for trains. Three kinds of rolling stocks are studied for this project and the parameters presented are the number of passengers, the allocation of passengers, their priorities, the platform station height, the door width and the train design. In order to make this study, a lot of records have been done in several stations in Paris (France). Then, in order to study these parameters, numerical simulations are completed. The goal is to quantify the impact of each parameter on the dwelling times. For example, this study highlights the impact of platform height and the presence of steps between the platform and the train. Three types of station platforms are concerned by this study : ‘optimum’ station platform which is 920 mm high, standard station platform which is 550 mm high, and high station platform which is 1150 mm high and different kinds of steps exist in order to fill these gaps. To conclude, this study shows the impact of these parameters on dwell times and their impact in function of the size of population.Keywords: dwell times, numerical tools, rolling stock, platforms
Procedia PDF Downloads 3353338 Removal of Rhodamine B from Aqueous Solution Using Natural Clay by Fixed Bed Column Method
Abstract:
The discharge of dye in industrial effluents is of great concern because their presence and accumulation have a toxic or carcinogenic effect on living species. The removal of such compounds at such low levels is a difficult problem. The adsorption process is an effective and attractive proposition for the treatment of dye contaminated wastewater. Activated carbon adsorption in fixed beds is a very common technology in the treatment of water and especially in processes of decolouration. However, it is expensive and the powdered one is difficult to be separated from aquatic system when it becomes exhausted or the effluent reaches the maximum allowable discharge level. The regeneration of exhausted activated carbon by chemical and thermal procedure is also expensive and results in loss of the sorbent. The focus of this research was to evaluate the adsorption potential of the raw clay in removing rhodamine B from aqueous solutions using a laboratory fixed-bed column. The continuous sorption process was conducted in this study in order to simulate industrial conditions. The effect of process parameters, such as inlet flow rate, adsorbent bed height, and initial adsorbate concentration on the shape of breakthrough curves was investigated. A glass column with an internal diameter of 1.5 cm and height of 30 cm was used as a fixed-bed column. The pH of feed solution was set at 8.5. Experiments were carried out at different bed heights (5 - 20 cm), influent flow rates (1.6- 8 mL/min) and influent rhodamine B concentrations (20 - 80 mg/L). The obtained results showed that the adsorption capacity increases with the bed depth and the initial concentration and it decreases at higher flow rate. The column regeneration was possible for four adsorption–desorption cycles. The clay column study states the value of the excellent adsorption capacity for the removal of rhodamine B from aqueous solution. Uptake of rhodamine B through a fixed-bed column was dependent on the bed depth, influent rhodamine B concentration, and flow rate.Keywords: adsorption, breakthrough curve, clay, fixed bed column, rhodamine b, regeneration
Procedia PDF Downloads 2773337 Physiological Response of Water-Restricted Xhosa Goats Supplemented with Vitamin C
Authors: O.F. Akinmoladun, F.N. Fon, C.T. Mpendulo, O. Okoh
Abstract:
The sustainability of livestock production is under threat as a result of water scarcity, fluctuating precipitation, and high environmental temperature. These combined stressors have impacted negatively on general animal production and welfare, necessitating a very reliable and cost-effective management practices, especially in arid and water-limited regions of the world. Instead of the above, this study was designed to investigate the growth performance and physiological response of water-restricted Xhosa ear-lobe goats fed diets supplemented with single or multiple vitamin C (VC) during summer. The total forty-eight goats used for the experiment were balanced for body weight and randomly assigned to the seven treatment groups (seven goats/treatment): GI (W100%); GII (W70%); GIII (W50%); GIV (W70%+3g/day VC); GV ((W50% +3g/day VC); GVI (W70%+3g/d VC+extra 5g on every eight-day); GVII (W50%+3g/d VC+extra 5g on every eight-day). The design was a complete randomized design and VC was administered per os. At the end of the 75-day feeding trial, GIII (W50%) animals were the most affected (P<0.05) and the effect was more pronounced in their body condition scores (BCs). Weight loss and depression in feed intake due to water restriction (P<0.05) were attenuated by VC treated groups (GIV-GVII). Changes in body thermal gradient (BTG) and rectal temperature (RcT) were similar (P>0.05) across the various experimental groups. The attenuation effect of VC was significant in responses to respiratory rate (RR) and cortisol. Supplementation of VC (either single or multiple) did not significantly (P>0.05) improve water restriction effect on body condition scores (BCs) and FAMACHA©. The current study found out that Xhosa ear lobe goats can adapt to the prevailing bioclimatic changes and limited water intake. However, supplementation of vitamin C can be beneficial at modulating these stressful stimuli. Continuous consistencies in the outcome of vitamin C on water-stressed animals can help validate recommendations especially to farmers in the arid and water-limited regions across the globe.Keywords: vitamin C, Xhosa ear-lobe, thermotolerance, water stress
Procedia PDF Downloads 1323336 Security of Database Using Chaotic Systems
Authors: Eman W. Boghdady, A. R. Shehata, M. A. Azem
Abstract:
Database (DB) security demands permitting authorized users and prohibiting non-authorized users and intruders actions on the DB and the objects inside it. Organizations that are running successfully demand the confidentiality of their DBs. They do not allow the unauthorized access to their data/information. They also demand the assurance that their data is protected against any malicious or accidental modification. DB protection and confidentiality are the security concerns. There are four types of controls to obtain the DB protection, those include: access control, information flow control, inference control, and cryptographic. The cryptographic control is considered as the backbone for DB security, it secures the DB by encryption during storage and communications. Current cryptographic techniques are classified into two types: traditional classical cryptography using standard algorithms (DES, AES, IDEA, etc.) and chaos cryptography using continuous (Chau, Rossler, Lorenz, etc.) or discreet (Logistics, Henon, etc.) algorithms. The important characteristics of chaos are its extreme sensitivity to initial conditions of the system. In this paper, DB-security systems based on chaotic algorithms are described. The Pseudo Random Numbers Generators (PRNGs) from the different chaotic algorithms are implemented using Matlab and their statistical properties are evaluated using NIST and other statistical test-suits. Then, these algorithms are used to secure conventional DB (plaintext), where the statistical properties of the ciphertext are also tested. To increase the complexity of the PRNGs and to let pass all the NIST statistical tests, we propose two hybrid PRNGs: one based on two chaotic Logistic maps and another based on two chaotic Henon maps, where each chaotic algorithm is running side-by-side and starting from random independent initial conditions and parameters (encryption keys). The resulted hybrid PRNGs passed the NIST statistical test suit.Keywords: algorithms and data structure, DB security, encryption, chaotic algorithms, Matlab, NIST
Procedia PDF Downloads 2653335 Effects of Two Cross Focused Intense Laser Beams On THz Generation in Rippled Plasma
Authors: Sandeep Kumar, Naveen Gupta
Abstract:
Terahertz (THz) generation has been investigated by beating two cosh-Gaussian laser beams of the same amplitude but different wavenumbers and frequencies through rippled collisionless plasma. The ponderomotive force is operative which is induced due to the intensity gradient of the laser beam over the cross-section area of the wavefront. The electrons evacuate towards a low-intensity regime, which modifies the dielectric function of the medium and results in cross focusing of cosh-Gaussian laser beams. The evolution of spot size of laser beams has been studied by solving nonlinear Schrodinger wave equation (NLSE) with variational technique. The laser beams impart oscillations to electrons which are enhanced with ripple density. The nonlinear oscillatory motion of electrons gives rise to a nonlinear current density driving THz radiation. It has been observed that the periodicity of the ripple density helps to enhance the THz radiation.Keywords: rippled collisionless plasma, cosh-gaussian laser beam, ponderomotive force, variational technique, nonlinear current density
Procedia PDF Downloads 2033334 Rotor Dynamic Analysis for a Shaft Train by Using Finite Element Method
Authors: M. Najafi
Abstract:
In the present paper, a large turbo-generator shaft train including a heavy-duty gas turbine engine, a coupling, and a generator is established. The method of analysis is based on finite element simplified model for lateral and torsional vibration calculation. The basic elements of rotor are the shafts and the disks which are represented as circular cross section flexible beams and rigid body elements, respectively. For more accurate results, the gyroscopic effect and bearing dynamics coefficients and function of rotation are taken into account, and for the influence of shear effect, rotor has been modeled in the form of Timoshenko beam. Lateral critical speeds, critical speed map, damped mode shapes, Campbell diagram, zones of instability, amplitudes, phase angles response due to synchronous forces of excitation and amplification factor are calculated. Also, in the present paper, the effect of imbalanced rotor and effects of changing in internal force and temperature are studied.Keywords: rotor dynamic analysis, finite element method, shaft train, Campbell diagram
Procedia PDF Downloads 1373333 Seismic Assessment of Old Existing RC Buildings with Masonry Infill in Madinah as Per ASCE
Authors: Tarek M. Alguhane, Ayman H. Khalil, Nour M. Fayed, Ayman M. Ismail
Abstract:
An existing RC building in Madinah is seismically evaluated with and without infill wall. Four model systems have been considered i. e. model I (no infill), model IIA (strut infill-update from field test), model IIB (strut infill- ASCE/SEI 41) and model IIC (strut infill-Soft storey-ASCE/SEI 41). Three dimensional pushover analyses have been carried out using SAP 2000 software incorporating inelastic material behavior for concrete, steel and infill walls. Infill wall has been modeled as equivalent strut according to suggested equation matching field test measurements and to the ASCE/SEI 41 equation. The effect of building modeling on the performance point as well as capacity and demand spectra due to EQ design spectrum function in Madinah area has been investigated. The response modification factor (R) for the 5 story RC building is evaluated from capacity and demand spectra (ATC-40) for the studied models. The results are summarized and discussed.Keywords: infill wall, pushover analysis, response modification factor, seismic assessment
Procedia PDF Downloads 3943332 Interesting Behavior of Non-Thermal Plasma Photonic Crystals
Authors: A. Mousavi, S. Sadegzadeh
Abstract:
In this research, the effect of non-thermal micro plasma with non-Maxwellian distribution function on the one dimensional plasma photonic crystals containing alternate plasma-dielectric layers, has been studied. By using Kronig Penny model, the dispersion relation of electromagnetic modes for such a periodic structure is obtained. In this study we take two plasma photonic crystals with different dielectric layers: the first one with Silicon monoxide named PPCI, and the second one with Tellurium dioxide named PPCII. The effects of the plasma layer thickness and the material of the dielectric layer on the plasma photonic crystal band gaps have been illustrated in the dispersion relation and the group velocity figures. Results revealed that in such a system, the non-thermal plasma exerts stronger limit on the wave’s propagation. In another word, for the non-thermal plasma photonic crystals (NPPC), there are two distinct regions in the dispersion plot. The upper region consists of alternate band gaps in such a way that both width and length of the bands decrease gradually as the band gaps order increases. Whereas in the lower region where v_ph > 20 c (for PPCI), waves will not be allowed to propagate.Keywords: band gap, dispersion relation, non-thermal plasma, plasma photonic crystal
Procedia PDF Downloads 5403331 Taguchi Robust Design for Optimal Setting of Process Wastes Parameters in an Automotive Parts Manufacturing Company
Authors: Charles Chikwendu Okpala, Christopher Chukwutoo Ihueze
Abstract:
As a technique that reduces variation in a product by lessening the sensitivity of the design to sources of variation, rather than by controlling their sources, Taguchi Robust Design entails the designing of ideal goods, by developing a product that has minimal variance in its characteristics and also meets the desired exact performance. This paper examined the concept of the manufacturing approach and its application to brake pad product of an automotive parts manufacturing company. Although the firm claimed that only defects, excess inventory, and over-production were the few wastes that grossly affect their productivity and profitability, a careful study and analysis of their manufacturing processes with the application of Single Minute Exchange of Dies (SMED) tool showed that the waste of waiting is the fourth waste that bedevils the firm. The selection of the Taguchi L9 orthogonal array which is based on the four parameters and the three levels of variation for each parameter revealed that with a range of 2.17, that waiting is the major waste that the company must reduce in order to continue to be viable. Also, to enhance the company’s throughput and profitability, the wastes of over-production, excess inventory, and defects with ranges of 2.01, 1.46, and 0.82, ranking second, third, and fourth respectively must also be reduced to the barest minimum. After proposing -33.84 as the highest optimum Signal-to-Noise ratio to be maintained for the waste of waiting, the paper advocated for the adoption of all the tools and techniques of Lean Production System (LPS), and Continuous Improvement (CI), and concluded by recommending SMED in order to drastically reduce set up time which leads to unnecessary waiting.Keywords: lean production system, single minute exchange of dies, signal to noise ratio, Taguchi robust design, waste
Procedia PDF Downloads 1273330 A Near-Optimal Domain Independent Approach for Detecting Approximate Duplicates
Authors: Abdelaziz Fellah, Allaoua Maamir
Abstract:
We propose a domain-independent merging-cluster filter approach complemented with a set of algorithms for identifying approximate duplicate entities efficiently and accurately within a single and across multiple data sources. The near-optimal merging-cluster filter (MCF) approach is based on the Monge-Elkan well-tuned algorithm and extended with an affine variant of the Smith-Waterman similarity measure. Then we present constant, variable, and function threshold algorithms that work conceptually in a divide-merge filtering fashion for detecting near duplicates as hierarchical clusters along with their corresponding representatives. The algorithms take recursive refinement approaches in the spirit of filtering, merging, and updating, cluster representatives to detect approximate duplicates at each level of the cluster tree. Experiments show a high effectiveness and accuracy of the MCF approach in detecting approximate duplicates by outperforming the seminal Monge-Elkan’s algorithm on several real-world benchmarks and generated datasets.Keywords: data mining, data cleaning, approximate duplicates, near-duplicates detection, data mining applications and discovery
Procedia PDF Downloads 3883329 Experimental Modal Analysis of Reinforced Concrete Square Slabs
Authors: M. S. Ahmed, F. A. Mohammad
Abstract:
The aim of this paper is to perform experimental modal analysis (EMA) of reinforced concrete (RC) square slabs. EMA is the process of determining the modal parameters (Natural Frequencies, damping factors, modal vectors) of a structure from a set of frequency response functions FRFs (curve fitting). Although experimental modal analysis (or modal testing) has grown steadily in popularity since the advent of the digital FFT spectrum analyzer in the early 1970’s, studying all members and materials using such method have not yet been well documented. Therefore, in this work, experimental tests were conducted on RC square specimens (0.6m x 0.6m with 40 mm). Experimental analysis is based on freely supported boundary condition. Moreover, impact testing as a fast and economical means of finding the modes of vibration of a structure was used during the experiments. In addition, Pico Scope 6 device and MATLAB software were used to acquire data, analyze and plot Frequency Response Function (FRF). The experimental natural frequencies which were extracted from measurements exhibit good agreement with analytical predictions. It is showed that EMA method can be usefully employed to perform the dynamic behavior of RC slabs.Keywords: natural frequencies, mode shapes, modal analysis, RC slabs
Procedia PDF Downloads 4083328 Study of Synergetic Effect by Combining Dielectric Barrier Discharge (DBD) Plasma and Photocatalysis for Abatement of Pollutants in Air Mixture System: Influence of Some Operating Conditions and Identification of Byproducts
Authors: Wala Abou Saoud, Aymen Amine Assadi, Monia Guiza, Abdelkrim Bouzaza, Wael Aboussaoud, Abdelmottaleb Ouederni, Dominique Wolbert
Abstract:
Volatile organic compounds (VOCs) constitute one of the most important families of chemicals involved in atmospheric pollution, causing damage to the environment and human health, and need, consequently, to be eliminated. Among the promising technologies, dielectric barrier discharge (DBD) plasma - photocatalysis coupling reveals very interesting prospects in terms of process synergy of compounds mineralization’s, with low energy consumption. In this study, the removal of organic compounds such butyraldehyde (BUTY) and dimethyl disulfide (DMDS) (exhaust gasses from animal quartering centers.) in air mixture using DBD plasma coupled with photocatalysis was tested, in order to determine whether or not synergy effect was present. The removal efficiency of these pollutants, a selectivity of CO₂ and CO, and byproducts formation such as ozone formation were investigated in order to evaluate the performance of the combined process. For this purpose, a series of experiments were carried out in a continuous reactor. Many operating parameters were also investigated such as the specific energy of discharge, the inlet concentration of pollutant and the flowrate. It appears from this study that, the performance of the process has enhanced and a synergetic effect is observed. In fact, we note an enhancement of 10 % on removal efficiency. It is interesting to note that the combined system leads to better CO₂ selectivity than for plasma. Consequently, intermediates by-products have been reduced due to various other species (O•, N, OH•, O₂•-, O₃, NO₂, NOx, etc.). Additionally, the behavior of combining DBD plasma and photocatalysis has shown that the ozone can be easily also decomposed in presence of photocatalyst.Keywords: combined process, DBD plasma, photocatalysis, pilot scale, synergetic effect, VOCs
Procedia PDF Downloads 3313327 Classification of Echo Signals Based on Deep Learning
Authors: Aisulu Tileukulova, Zhexebay Dauren
Abstract:
Radar plays an important role because it is widely used in civil and military fields. Target detection is one of the most important radar applications. The accuracy of detecting inconspicuous aerial objects in radar facilities is lower against the background of noise. Convolutional neural networks can be used to improve the recognition of this type of aerial object. The purpose of this work is to develop an algorithm for recognizing aerial objects using convolutional neural networks, as well as training a neural network. In this paper, the structure of a convolutional neural network (CNN) consists of different types of layers: 8 convolutional layers and 3 layers of a fully connected perceptron. ReLU is used as an activation function in convolutional layers, while the last layer uses softmax. It is necessary to form a data set for training a neural network in order to detect a target. We built a Confusion Matrix of the CNN model to measure the effectiveness of our model. The results showed that the accuracy when testing the model was 95.7%. Classification of echo signals using CNN shows high accuracy and significantly speeds up the process of predicting the target.Keywords: radar, neural network, convolutional neural network, echo signals
Procedia PDF Downloads 3553326 Flexural Response of Glass Fiber Reinforced Polymer Sandwich Panels with 3D Woven Honeycomb Core
Authors: Elif Kalkanli, Constantinos Soutis
Abstract:
The use of textile preform in the advanced fields including aerospace, automotive and marine has exponentially grown in recent years. These preforms offer excellent advantages such as being lightweight and low-cost, and also, their suitability for creating different fiber architectures with different materials whilst improved mechanical properties in certain aspects. In this study, a novel honeycomb core is developed by a 3Dweaving process. The assembly of the layers is achieved thanks to innovative weaving design. Polyester yarn is selected for the 3D woven honeycomb core (3DWHC). The core is used to manufacture a sandwich panel with 2x2 twill glass fiber composite face sheets. These 3DWHC sandwich panels will be tested in three-point bending. The in-plane and out-of-plane (through-the-thickness) mechanical response of the core will be examined as a function of cell size in addition to the flexural response of the sandwich panel. The failure mechanisms of the core and the sandwich skins will be reported in addition to flexural strength and stiffness. Possible engineering applications will be identified.Keywords: 3D woven, assembly, failure modes, honeycomb sandwich panel
Procedia PDF Downloads 2063325 A Continuous Real-Time Analytic for Predicting Instability in Acute Care Rapid Response Team Activations
Authors: Ashwin Belle, Bryce Benson, Mark Salamango, Fadi Islim, Rodney Daniels, Kevin Ward
Abstract:
A reliable, real-time, and non-invasive system that can identify patients at risk for hemodynamic instability is needed to aid clinicians in their efforts to anticipate patient deterioration and initiate early interventions. The purpose of this pilot study was to explore the clinical capabilities of a real-time analytic from a single lead of an electrocardiograph to correctly distinguish between rapid response team (RRT) activations due to hemodynamic (H-RRT) and non-hemodynamic (NH-RRT) causes, as well as predict H-RRT cases with actionable lead times. The study consisted of a single center, retrospective cohort of 21 patients with RRT activations from step-down and telemetry units. Through electronic health record review and blinded to the analytic’s output, each patient was categorized by clinicians into H-RRT and NH-RRT cases. The analytic output and the categorization were compared. The prediction lead time prior to the RRT call was calculated. The analytic correctly distinguished between H-RRT and NH-RRT cases with 100% accuracy, demonstrating 100% positive and negative predictive values, and 100% sensitivity and specificity. In H-RRT cases, the analytic detected hemodynamic deterioration with a median lead time of 9.5 hours prior to the RRT call (range 14 minutes to 52 hours). The study demonstrates that an electrocardiogram (ECG) based analytic has the potential for providing clinical decision and monitoring support for caregivers to identify at risk patients within a clinically relevant timeframe allowing for increased vigilance and early interventional support to reduce the chances of continued patient deterioration.Keywords: critical care, early warning systems, emergency medicine, heart rate variability, hemodynamic instability, rapid response team
Procedia PDF Downloads 1443324 Proposing an Index for Determining Key Knowledge Management Processes in Decision Making Units Using Fuzzy Quality Function Deployment (QFD), Data Envelopment Analysis (DEA) Method
Authors: Sadegh Abedi, Ali Yaghoubi, Hamidreza Mashatzadegan
Abstract:
This paper proposes an approach to identify key processes required by an organization in the field of knowledge management and aligning them with organizational objectives. For this purpose, first, organization’s most important non-financial objectives which are impacted by knowledge management processes are identified and then, using a quality house, are linked with knowledge management processes which are regarded as technical elements. Using this method, processes that are in need of improvement and more attention are prioritized based on their significance. This means that if a process has more influence on organization’s objectives and is in a dire situation comparing to others, is prioritized for choice and improvement. In this research process dominance is considered to be an influential element in process ranking (in addition to communication matrix). This is the reason for utilizing DEA techniques for prioritizing processes in quality house. Results of implementing the method in Khuzestan steel company represents this method’s capability of identifying key processes that require improvements in organization’s knowledge management system.Keywords: knowledge management, organizational performance, fuzzy data, envelopment analysis
Procedia PDF Downloads 4203323 Relationship of Indoor and Outdoor Levels of Black Carbon in an Urban Environment
Authors: Daria Pashneva, Julija Pauraite, Agne Minderyte, Vadimas Dudoitis, Lina Davuliene, Kristina Plauskaite, Inga Garbariene, Steigvile Bycenkiene
Abstract:
Black carbon (BC) has received particular attention around the world, not only for its impact on regional and global climate change but also for its impact on air quality and public health. In order to study the relationship between indoor and outdoor BC concentrations, studies were carried out in Vilnius, Lithuania. The studies are aimed at determining the relationship of concentrations, identifying dependencies during the day and week with a further opportunity to analyze the key factors affecting the indoor concentration of BC. In this context, indoor and outdoor continuous real-time measurements of optical BC-related light absorption by aerosol particles were carried out during the cold season (from October to December 2020). The measurement venue was an office located in an urban background environment. Equivalent black carbon (eBC) mass concentration was measured by an Aethalometer (Magee Scientific, model AE-31). The optical transmission of carbonaceous aerosol particles was measured sequentially at seven wavelengths (λ= 370, 470, 520, 590, 660, 880, and 950 nm), where the eBC mass concentration was derived from the light absorption coefficient (σab) at 880 nm wavelength. The diurnal indoor eBC mass concentration was found to vary in the range from 0.02 to 0.08 µgm⁻³, while the outdoor eBC mass concentration - from 0.34 to 0.99 µgm⁻³. Diurnal variations of eBC mass concentration outdoor vs. indoor showed an increased contribution during 10:00 and 12:00 AM (GMT+2), with the highest indoor eBC mass concentration of 0.14µgm⁻³. An indoor/outdoor eBC ratio (I/O) was below one throughout the entire measurement period. The weekend levels of eBC mass concentration were lower than in weekdays for indoor and outdoor for 33% and 28% respectively. Hourly mean mass concentrations of eBC for weekdays and weekends show diurnal cycles, which could be explained by the periodicity of traffic intensity and heating activities. The results show a moderate influence of outdoor eBC emissions on the indoor eBC level.Keywords: black carbon, climate change, indoor air quality, I/O ratio
Procedia PDF Downloads 2023322 Optimal Feature Extraction Dimension in Finger Vein Recognition Using Kernel Principal Component Analysis
Authors: Amir Hajian, Sepehr Damavandinejadmonfared
Abstract:
In this paper the issue of dimensionality reduction is investigated in finger vein recognition systems using kernel Principal Component Analysis (KPCA). One aspect of KPCA is to find the most appropriate kernel function on finger vein recognition as there are several kernel functions which can be used within PCA-based algorithms. In this paper, however, another side of PCA-based algorithms -particularly KPCA- is investigated. The aspect of dimension of feature vector in PCA-based algorithms is of importance especially when it comes to the real-world applications and usage of such algorithms. It means that a fixed dimension of feature vector has to be set to reduce the dimension of the input and output data and extract the features from them. Then a classifier is performed to classify the data and make the final decision. We analyze KPCA (Polynomial, Gaussian, and Laplacian) in details in this paper and investigate the optimal feature extraction dimension in finger vein recognition using KPCA.Keywords: biometrics, finger vein recognition, principal component analysis (PCA), kernel principal component analysis (KPCA)
Procedia PDF Downloads 3663321 Growth of Algal Biomass in Laboratory and in Pilot-Scale Algal Photobioreactors in the Temperate Climate of Southern Ireland
Authors: Linda A. O’Higgins, Astrid Wingler, Jorge Oliveira
Abstract:
The growth of Chlorella vulgaris was characterized as a function of irradiance in a laboratory turbidostat (1 L) and compared to batch growth in sunlit modules (5–25 L) of the commercial Phytobag photobioreactor. The effects of variable sunlight and culture density were deconvoluted by a mathematical model. The analysis showed that algal growth was light-limited due to shading by external construction elements and due to light attenuation within the algal bags. The model was also used to predict maximum biomass productivity. The manipulative experiments and the model predictions were confronted with data from a production season of a 10m2 pilot-scale photobioreactor, Phytobag (10,000 L). The analysis confirmed light limitation in all three photobioreactors. An additional limitation of biomass productivity was caused by the nitrogen starvation that was used to induce lipid accumulation. Reduction of shading and separation of biomass and lipid production are proposed for future optimization.Keywords: microalgae, batch cultivation, Chlorella vulgaris, Mathematical model, photobioreactor, scale-up
Procedia PDF Downloads 1183320 Optimal Protection Coordination in Distribution Systems with Distributed Generations
Authors: Abdorreza Rabiee, Shahla Mohammad Hoseini Mirzaei
Abstract:
The advantages of distributed generations (DGs) based on renewable energy sources (RESs) leads to high penetration level of DGs in distribution network. With incorporation of DGs in distribution systems, the system reliability and security, as well as voltage profile, is improved. However, the protection of such systems is still challenging. In this paper, at first, the related papers are reviewed and then a practical scheme is proposed for coordination of OCRs in distribution system with DGs. The coordination problem is formulated as a nonlinear programming (NLP) optimization problem with the object function of minimizing total operating time of OCRs. The proposed method is studied based on a simple test system. The optimization problem is solved by General Algebraic Modeling System (GAMS) to calculate the optimal time dial setting (TDS) and also pickup current setting of OCRs. The results show the effectiveness of the proposed method and its applicability.Keywords: distributed generation, DG, distribution network, over current relay, OCR, protection coordination, pickup current, time dial setting, TDS
Procedia PDF Downloads 1393319 Deep Learning Based Polarimetric SAR Images Restoration
Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo ferraioli
Abstract:
In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring . SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.Keywords: SAR image, deep learning, convolutional neural network, deep neural network, SAR polarimetry
Procedia PDF Downloads 94