Search results for: service learning
6708 Comparison Study of Machine Learning Classifiers for Speech Emotion Recognition
Authors: Aishwarya Ravindra Fursule, Shruti Kshirsagar
Abstract:
In the intersection of artificial intelligence and human-centered computing, this paper delves into speech emotion recognition (SER). It presents a comparative analysis of machine learning models such as K-Nearest Neighbors (KNN),logistic regression, support vector machines (SVM), decision trees, ensemble classifiers, and random forests, applied to SER. The research employs four datasets: Crema D, SAVEE, TESS, and RAVDESS. It focuses on extracting salient audio signal features like Zero Crossing Rate (ZCR), Chroma_stft, Mel Frequency Cepstral Coefficients (MFCC), root mean square (RMS) value, and MelSpectogram. These features are used to train and evaluate the models’ ability to recognize eight types of emotions from speech: happy, sad, neutral, angry, calm, disgust, fear, and surprise. Among the models, the Random Forest algorithm demonstrated superior performance, achieving approximately 79% accuracy. This suggests its suitability for SER within the parameters of this study. The research contributes to SER by showcasing the effectiveness of various machine learning algorithms and feature extraction techniques. The findings hold promise for the development of more precise emotion recognition systems in the future. This abstract provides a succinct overview of the paper’s content, methods, and results.Keywords: comparison, ML classifiers, KNN, decision tree, SVM, random forest, logistic regression, ensemble classifiers
Procedia PDF Downloads 456707 Cognition of Driving Context for Driving Assistance
Authors: Manolo Dulva Hina, Clement Thierry, Assia Soukane, Amar Ramdane-Cherif
Abstract:
In this paper, we presented our innovative way of determining the driving context for a driving assistance system. We invoke the fusion of all parameters that describe the context of the environment, the vehicle and the driver to obtain the driving context. We created a training set that stores driving situation patterns and from which the system consults to determine the driving situation. A machine-learning algorithm predicts the driving situation. The driving situation is an input to the fission process that yields the action that must be implemented when the driver needs to be informed or assisted from the given the driving situation. The action may be directed towards the driver, the vehicle or both. This is an ongoing work whose goal is to offer an alternative driving assistance system for safe driving, green driving and comfortable driving. Here, ontologies are used for knowledge representation.Keywords: cognitive driving, intelligent transportation system, multimodal system, ontology, machine learning
Procedia PDF Downloads 3686706 Low Enrollment in Civil Engineering Departments: Challenges and Opportunities
Authors: Alaa Yehia, Ayatollah Yehia, Sherif Yehia
Abstract:
There is a recurring issue of low enrollments across many civil engineering departments in postsecondary institutions. While there have been moments where enrollments begin to increase, civil engineering departments find themselves facing low enrollments at around 60% over the last five years across the Middle East. There are many reasons that could be attributed to this decline, such as low entry-level salaries, over-saturation of civil engineering graduates in the job market, and a lack of construction projects due to the impending or current recession. However, this recurring problem alludes to an intrinsic issue of the curriculum. The societal shift to the usage of high technology such as machine learning (ML) and artificial intelligence (AI) demands individuals who are proficient at utilizing it. Therefore, existing curriculums must adapt to this change in order to provide an education that is suitable for potential and current students. In this paper, In order to provide potential solutions for this issue, the analysis considers two possible implementations of high technology into the civil engineering curriculum. The first approach is to implement a course that introduces applications of high technology in Civil Engineering contexts. While the other approach is to intertwine applications of high technology throughout the degree. Both approaches, however, should meet requirements of accreditation agencies. In addition to the proposed improvement in civil engineering curriculum, a different pedagogical practice must be adapted as well. The passive learning approach might not be appropriate for Gen Z students; current students, now more than ever, need to be introduced to engineering topics and practice following different learning methods to ensure they will have the necessary skills for the job market. Different learning methods that incorporate high technology applications, like AI, must be integrated throughout the curriculum to make the civil engineering degree more attractive to prospective students. Moreover, the paper provides insight on the importance and approach of adapting the Civil Engineering curriculum to address the current low enrollment crisis that civil engineering departments globally, but specifically in the Middle East, are facing.Keywords: artificial intelligence (AI), civil engineering curriculum, high technology, low enrollment, pedagogy
Procedia PDF Downloads 1676705 Experience Report about the Inclusion of People with Disabilities in the Process of Testing an Accessible System for Learning Management
Authors: Marcos Devaner, Marcela Alves, Cledson Braga, Fabiano Alves, Wilton Bezerra
Abstract:
This article discusses the inclusion of people with disabilities in the process of testing an accessible system solution for distance education. The accessible system, team profile, methodologies and techniques covered in the testing process are presented. The testing process shown in this paper was designed from the experience with user. The testing process emerged from lessons learned from past experiences and the end user is present at all stages of the tests. Also, lessons learned are reported and how it was possible the maturing of the team and the methods resulting in a simple, productive and effective process.Keywords: experience report, accessible systems, software testing, testing process, systems, e-learning
Procedia PDF Downloads 3976704 Liquid Biopsy Based Microbial Biomarker in Coronary Artery Disease Diagnosis
Authors: Eyup Ozkan, Ozkan U. Nalbantoglu, Aycan Gundogdu, Mehmet Hora, A. Emre Onuk
Abstract:
The human microbiome has been associated with cardiological conditions and this relationship is becoming to be defined beyond the gastrointestinal track. In this study, we investigate the alteration in circulatory microbiota in the context of Coronary Artery Disease (CAD). We received circulatory blood samples from suspected CAD patients and maintain 16S ribosomal RNA sequencing to identify each patient’s microbiome. It was found that Corynebacterium and Methanobacteria genera show statistically significant differences between healthy and CAD patients. The overall biodiversities between the groups were observed to be different revealed by machine learning classification models. We also achieve and demonstrate the performance of a diagnostic method using circulatory blood microbiome-based estimation.Keywords: coronary artery disease, blood microbiome, machine learning, angiography, next-generation sequencing
Procedia PDF Downloads 1576703 Playing with Gender Identity through Learning English as a Foreign Language in Algeria: A Gender-Based Analysis of Linguistic Practices
Authors: Amina Babou
Abstract:
Gender and language is a moot and miscellaneous arena in the sphere of socio-linguistics, which has been proliferated so widely and rapidly in recent years. The dawn of research on gender and foreign language education was against the feminist researchers who allowed space for the bustling concourse of voices and perspectives in the arena of gender and language differences, in the early to the mid-1970. The objective of this scrutiny is to explore to what extent teaching gender and language in the English as a Foreign Language (EFL) classroom plays a pivotal role in learning language information and skills. Moreover, the gist of this paper is to investigate how EFL students in Algeria conflate their gender identities with the linguistic practices and scholastic expertise. To grapple with the full range of issues about the EFL students’ awareness about the negotiation of meanings in the classroom, we opt for observing, interviewing, and questioning later to check using ‘how-do-you do’ procedure. The analysis of the EFL classroom discourse, from five Algerian universities, reveals that speaking strategies such as the manners students make an abrupt topic shifts, respond spontaneously to the teacher, ask more questions, interrupt others to seize control of conversations and monopolize the speaking floor through denying what others have said, do not sit very lightly on 80.4% of female students’ shoulders. The data indicate that female students display the assertive style as a strategy of learning to subvert the norms of femininity, especially in the speaking module.Keywords: EFL students, gender identity, linguistic styles, foreign language
Procedia PDF Downloads 4636702 Importance of Collegiality to Improve the Effectiveness of a Poorly Resourced School
Authors: Prakash Singh
Abstract:
This study focused on the importance of collegiality to improve the effectiveness of a poorly resourced school (PRS). In an effective school that embraces collegiality as its culture, one can expect to find a teaching staff and a management team that shares responsibilities and accountabilities through the development of a common purpose and vision, regardless of whether the school is considered to be poorly resourced or not. Working together in collegial teams is a more effective way to accomplish tasks and to create a climate for effective learning, even for learners in PRSs from poor communities. The main aim of this study was therefore to determine whether collegiality as a leadership strategy could extract the best from people in a PRS, and consequently create the most effective and efficient educational climate possible. The responses received from the teachers and the principal at the PRS supports the notion that collegiality does have a positive influence on learning, as demonstrated by the improved academic achievement of the learners. The teachers were now more involved in the school. They agreed that this was a positive development. Their descriptions of increased involvement, shared accountability and shared decision-making identified important aspects of collegiality that transformed the school from being dysfunctional. Hence, it is abundantly clear that a collegial leadership style can help extract the best from people because the most effective and efficient educational climate can be created at a school when collegiality is employed. Collegial leadership demonstrates that even in PRSs, there are boundless opportunities to improve teaching and learning.Keywords: collegiality, collegial leadership, effective educational climate, poorly resourced school
Procedia PDF Downloads 4036701 A Comparative Analysis of Body Idioms in Two Romance Languages and in English Aiming at Vocabulary Teaching and Learning
Authors: Marilei Amadeu Sabino
Abstract:
Before the advent of Cognitive Linguistics, metaphor was considered a stylistic issue, but now it is viewed as a critical component of everyday language and a fundamental mechanism of human conceptualizations of the world. It means that human beings' conceptual system (the way we think and act) is metaphorical in nature. Another interesting hypothesis in Cognitive Linguistics is that cognition is embodied, that is, our cognition is influenced by our experiences in the physical world: the mind is connected to the body and the body influences the mind. In this sense, it is believed that many conceptual metaphors appear to be potentially universal or near-universal, because people across the world share certain bodily experiences. In these terms, many metaphors may be identical or very similar in several languages. Thus, in this study, we analyzed some somatic (also called body) idioms of Italian and Portuguese languages, in order to investigate the proportion in which their metaphors are the same, similar or different in both languages. It was selected hundreds of Italian idioms in dictionaries and indicated their corresponding idioms in Portuguese. The analysis allowed to conclude that much of the studied expressions are really structurally, semantically and metaphorically identical or similar in both languages. We also contrasted some Portuguese and Italian somatic expressions to their corresponding English idioms to have a multilingual perspective of the issue, and it also led to the conclusion that the most common idioms based on metaphors are probably those that have to do with the human body. Although this is mere speculation and needs more study, the results found incite relevant discussions on issues that matter Foreign and Second Language Teaching and Learning, including the retention of vocabulary. The teaching of the metaphorically different body idioms also plays an important role in language learning and teaching as it will be shown in this paper. Acknowledgments: FAPESP – São Paulo State Research Support Foundation –the financial support offered (proc. n° 2017/02064-7).Keywords: body idioms, cognitive linguistics, metaphor, vocabulary teaching and learning
Procedia PDF Downloads 3356700 The Learning Loops in the Public Realm Project in South Verona: Air Quality and Noise Pollution Participatory Data Collection towards Co-Design, Planning and Construction of Mitigation Measures in Urban Areas
Authors: Massimiliano Condotta, Giovanni Borga, Chiara Scanagatta
Abstract:
Urban systems are places where the various actors involved interact and enter in conflict, in particular with reference to topics such as traffic congestion and security. But topics of discussion, and often clash because of their strong complexity, are air and noise pollution. For air pollution, the complexity stems from the fact that atmospheric pollution is due to many factors, but above all, the observation and measurement of the amount of pollution of a transparent, mobile and ethereal element like air is very difficult. Often the perceived condition of the inhabitants does not coincide with the real conditions, because it is conditioned - sometimes in positive ways other in negative ways - from many other factors such as the presence, or absence, of natural elements such as trees or rivers. These problems are seen with noise pollution as well, which is also less considered as an issue even if it’s problematic just as much as air quality. Starting from these opposite positions, it is difficult to identify and implement valid, and at the same time shared, mitigation solutions for the problem of urban pollution (air and noise pollution). The LOOPER (Learning Loops in the Public Realm) project –described in this paper – wants to build and test a methodology and a platform for participatory co-design, planning, and construction process inside a learning loop process. Novelties in this approach are various; the most relevant are three. The first is that citizens participation starts since from the research of problems and air quality analysis through a participatory data collection, and that continues in all process steps (design and construction). The second is that the methodology is characterized by a learning loop process. It means that after the first cycle of (1) problems identification, (2) planning and definition of design solution and (3) construction and implementation of mitigation measures, the effectiveness of implemented solutions is measured and verified through a new participatory data collection campaign. In this way, it is possible to understand if the policies and design solution had a positive impact on the territory. As a result of the learning process produced by the first loop, it will be possible to improve the design of the mitigation measures and start the second loop with new and more effective measures. The third relevant aspect is that the citizens' participation is carried out via Urban Living Labs that involve all stakeholder of the city (citizens, public administrators, associations of all urban stakeholders,…) and that the Urban Living Labs last for all the cycling of the design, planning and construction process. The paper will describe in detail the LOOPER methodology and the technical solution adopted for the participatory data collection and design and construction phases.Keywords: air quality, co-design, learning loops, noise pollution, urban living labs
Procedia PDF Downloads 3656699 Examining the Role of Farmer-Centered Participatory Action Learning in Building Sustainable Communities in Rural Haiti
Authors: Charles St. Geste, Michael Neumann, Catherine Twohig
Abstract:
Our primary aim is to examine farmer-centered participatory action learning as a tool to improve agricultural production, build resilience to climate shocks and, more broadly, advance community-driven solutions for sustainable development in rural communities across Haiti. For over six years, sixty plus farmers from Deslandes, Haiti, organized in three traditional work groups called konbits, have designed and tested low-input agroecology techniques as part of the Konbit Vanyan Kapab Pwoje Agroekoloji. The project utilizes a participatory action learning approach, emphasizing social inclusion, building on local knowledge, experiential learning, active farmer participation in trial design and evaluation, and cross-community sharing. Mixed methods were used to evaluate changes in knowledge and adoption of agroecology techniques, confidence in advancing agroecology locally, and innovation among Konbit Vanyan Kapab farmers. While skill and knowledge in application of agroecology techniques varied among individual farmers, a majority of farmers successfully adopted techniques outside of the trial farms. The use of agroecology techniques on trial and individual farms has doubled crop production in many cases. Farm income has also increased, and farmers report less damage to crops and property caused by extreme weather events. Furthermore, participatory action strategies have led to greater local self-determination and greater capacity for sustainable community development. With increased self-confidence and the knowledge and skills acquired from participating in the project, farmers prioritized sharing their successful techniques with other farmers and have developed a farmer-to-farmer training program that incorporates participatory action learning. Using adult education methods, farmers, trained as agroecology educators, are currently providing training in sustainable farming practices to farmers from five villages in three departments across Haiti. Konbit Vanyan Kapab farmers have also begun testing production of value-added food products, including a dried soup mix and tea. Key factors for success include: opportunities for farmers to actively participate in all phases of the project, group diversity, resources for application of agroecology techniques, focus on group processes and overcoming local barriers to inclusive decision-making.Keywords: agroecology, participatory action learning, rural Haiti, sustainable community development
Procedia PDF Downloads 1566698 New Approach to Interactional Dynamics of E-mail Correspondence
Authors: Olga Karamalak
Abstract:
The paper demonstrates a research about theoretical understanding of writing in the electronic environment as dynamic, interactive, dialogical, and distributed activity aimed at “other-orientation” and consensual domain creation. The purpose is to analyze the personal e-mail correspondence in the academic environment from this perspective. The focus is made on the dynamics of interaction between the correspondents such as contact setting, orientation and co-functions; and the text of an e-letter is regarded as indices of the write’s state or affordances in terms of ecological linguistics. The establishment of consensual domain of interaction brings about a new stage of cognition emergence which may lead to distributed learning. The research can play an important part in the series of works dedicated to writing in the electronic environment.Keywords: consensual domain of interactions, distributed writing and learning, e-mail correspondence, interaction, orientation, co-function
Procedia PDF Downloads 5796697 Input Data Balancing in a Neural Network PM-10 Forecasting System
Authors: Suk-Hyun Yu, Heeyong Kwon
Abstract:
Recently PM-10 has become a social and global issue. It is one of major air pollutants which affect human health. Therefore, it needs to be forecasted rapidly and precisely. However, PM-10 comes from various emission sources, and its level of concentration is largely dependent on meteorological and geographical factors of local and global region, so the forecasting of PM-10 concentration is very difficult. Neural network model can be used in the case. But, there are few cases of high concentration PM-10. It makes the learning of the neural network model difficult. In this paper, we suggest a simple input balancing method when the data distribution is uneven. It is based on the probability of appearance of the data. Experimental results show that the input balancing makes the neural networks’ learning easy and improves the forecasting rates.Keywords: artificial intelligence, air quality prediction, neural networks, pattern recognition, PM-10
Procedia PDF Downloads 2326696 Enhancing the Resilience of Combat System-Of-Systems Under Certainty and Uncertainty: Two-Phase Resilience Optimization Model and Deep Reinforcement Learning-Based Recovery Optimization Method
Authors: Xueming Xu, Jiahao Liu, Jichao Li, Kewei Yang, Minghao Li, Bingfeng Ge
Abstract:
A combat system-of-systems (CSoS) comprises various types of functional combat entities that interact to meet corresponding task requirements in the present and future. Enhancing the resilience of CSoS holds significant military value in optimizing the operational planning process, improving military survivability, and ensuring the successful completion of operational tasks. Accordingly, this research proposes an integrated framework called CSoS resilience enhancement (CSoSRE) to enhance the resilience of CSoS from a recovery perspective. Specifically, this research presents a two-phase resilience optimization model to define a resilience optimization objective for CSoS. This model considers not only task baseline, recovery cost, and recovery time limit but also the characteristics of emergency recovery and comprehensive recovery. Moreover, the research extends it from the deterministic case to the stochastic case to describe the uncertainty in the recovery process. Based on this, a resilience-oriented recovery optimization method based on deep reinforcement learning (RRODRL) is proposed to determine a set of entities requiring restoration and their recovery sequence, thereby enhancing the resilience of CSoS. This method improves the deep Q-learning algorithm by designing a discount factor that adapts to changes in CSoS state at different phases, simultaneously considering the network’s structural and functional characteristics within CSoS. Finally, extensive experiments are conducted to test the feasibility, effectiveness and superiority of the proposed framework. The obtained results offer useful insights for guiding operational recovery activity and designing a more resilient CSoS.Keywords: combat system-of-systems, resilience optimization model, recovery optimization method, deep reinforcement learning, certainty and uncertainty
Procedia PDF Downloads 166695 A Serious Game to Upgrade the Learning of Organizational Skills in Nursing Schools
Authors: Benoit Landi, Hervé Pingaud, Jean-Benoit Culie, Michel Galaup
Abstract:
Serious games have been widely disseminated in the field of digital learning. They have proved their utility in improving skills through virtual environments that simulate the field where new competencies have to be improved and assessed. This paper describes how we created CLONE, a serious game whose purpose is to help nurses create an efficient work plan in a hospital care unit. In CLONE, the number of patients to take care of is similar to the reality of their job, going far beyond what is currently practiced in nurse school classrooms. This similarity with the operational field increases proportionally the number of activities to be scheduled. Moreover, very often, the team of nurses is composed of regular nurses and nurse assistants that must share the work with respect to the regulatory obligations. Therefore, on the one hand, building a short-term planning is a complex task with a large amount of data to deal with, and on the other, good clinical practices have to be systematically applied. We present how reference planning has been defined by addressing an optimization problem formulation using the expertise of teachers. This formulation ensures the gameplay feasibility for the scenario that has been produced and enhanced throughout the game design process. It was also crucial to steer a player toward a specific gaming strategy. As one of our most important learning outcomes is a clear understanding of the workload concept, its factual calculation for each caregiver along time and its inclusion in the nurse reasoning during planning elaboration are focal points. We will demonstrate how to modify the game scenario to create a digital environment in which these somewhat abstract principles can be understood and applied. Finally, we give input on an experience we had on a pilot of a thousand undergraduate nursing students.Keywords: care planning, workload, game design, hospital nurse, organizational skills, digital learning, serious game
Procedia PDF Downloads 1916694 Next-Gen Solutions: How Generative AI Will Reshape Businesses
Authors: Aishwarya Rai
Abstract:
This study explores the transformative influence of generative AI on startups, businesses, and industries. We will explore how large businesses can benefit in the area of customer operations, where AI-powered chatbots can improve self-service and agent effectiveness, greatly increasing efficiency. In marketing and sales, generative AI could transform businesses by automating content development, data utilization, and personalization, resulting in a substantial increase in marketing and sales productivity. In software engineering-focused startups, generative AI can streamline activities, significantly impacting coding processes and work experiences. It can be extremely useful in product R&D for market analysis, virtual design, simulations, and test preparation, altering old workflows and increasing efficiency. Zooming into the retail and CPG industry, industry findings suggest a 1-2% increase in annual revenues, equating to $400 billion to $660 billion. By automating customer service, marketing, sales, and supply chain management, generative AI can streamline operations, optimizing personalized offerings and presenting itself as a disruptive force. While celebrating economic potential, we acknowledge challenges like external inference and adversarial attacks. Human involvement remains crucial for quality control and security in the era of generative AI-driven transformative innovation. This talk provides a comprehensive exploration of generative AI's pivotal role in reshaping businesses, recognizing its strategic impact on customer interactions, productivity, and operational efficiency.Keywords: generative AI, digital transformation, LLM, artificial intelligence, startups, businesses
Procedia PDF Downloads 766693 SIM (Subscriber Identity Module) Banking
Authors: Okanta Andrew, Richmond Kweku Frempong
Abstract:
As mobile networks are upgraded with technologies like WAP, GPRS and UMTS to deliver next-generation multimedia services, so are the banks and other financial institutions also getting ready to unleash the financial products on the mobile platform to meet growing demand for mobile based application services. Hence, the onset of Unstructured Supplementary Services (USSD) Banking which would make banking services available at anywhere, anytime through a string of interactive SMS sessions between a mobile device and an application server of a service provider. The aim of this studies was to find out whether the public will accept the sim banking service when it is implemented. Our target group includes: Working class. E. g. Businessmen/women, office workers, fishermen, market women, teachers etc. Nonworking class. E. g. Students (Tertiary, Senior High School), housewives. etc. The survey was in the form of a questionnaire and a verbal interview (video) which was to investigate their idea about the current banking system and the yet to be introduced sim banking concept. Meanwhile, some challenges accompanied the progression of data gathering because some populace showed reluctance in freeing their information. One other suggestion was that government should put measures against foremost challenges obstructing sim banking in Ghana counter to computers hackers. Government and individual have a key role to undertake to give suitable support to facelift the sim banking industry in the country. It was also suggested that Government put strong regulations on the use of sim banking products and services to streamline all the activities and also create awareness of the need for sim banking and emphasize its relevance in the aspect of national GDP.Keywords: banking, mobile banking, SIM banking, mobile banking in Ghana
Procedia PDF Downloads 4846692 Optimization of Hate Speech and Abusive Language Detection on Indonesian-language Twitter using Genetic Algorithms
Authors: Rikson Gultom
Abstract:
Hate Speech and Abusive language on social media is difficult to detect, usually, it is detected after it becomes viral in cyberspace, of course, it is too late for prevention. An early detection system that has a fairly good accuracy is needed so that it can reduce conflicts that occur in society caused by postings on social media that attack individuals, groups, and governments in Indonesia. The purpose of this study is to find an early detection model on Twitter social media using machine learning that has high accuracy from several machine learning methods studied. In this study, the support vector machine (SVM), Naïve Bayes (NB), and Random Forest Decision Tree (RFDT) methods were compared with the Support Vector machine with genetic algorithm (SVM-GA), Nave Bayes with genetic algorithm (NB-GA), and Random Forest Decision Tree with Genetic Algorithm (RFDT-GA). The study produced a comparison table for the accuracy of the hate speech and abusive language detection model, and presented it in the form of a graph of the accuracy of the six algorithms developed based on the Indonesian-language Twitter dataset, and concluded the best model with the highest accuracy.Keywords: abusive language, hate speech, machine learning, optimization, social media
Procedia PDF Downloads 1286691 The Effect of Attention-Deficit/Hyperactivity Disorder on Additional Language Learning: Voices of English as a Foreign Language Teachers in Poland
Authors: Agnieszka Kałdonek-Crnjaković
Abstract:
Research on Attention-Deficit/Hyperactivity Disorder (ADHD) is abundant but not in the field of applied linguistics and foreign or second language education. To fill this research gap, the present study aimed to investigate the effect of ADHD on skills and systems development in a second and foreign language from the teacher's perspective. The participants were 51 English as a foreign language (EFL) teachers in Poland working in state pre-, primary, and high schools. Research questions were as follows: Do ADHD-type behaviors affect EFL learning of the individual with the condition and their classmates to the same extent considering different educational settings and specific skills and systems? And To what extent do ADHD-type behaviors affect ESL/EFL skills and systems considering different ADHD presentations? Data were collected by means of a questionnaire distributed via a Google form. It contained 14 statements on a six-point Likert scale related to the effect of ADHD on specific language skills and systems in the context of an individual with the condition and their classmates and situations related to inattention and hyperactivity/impulsivity presentations of the condition, where the participants needed to identify skills and systems affected by the given ADHD manifestation. The results show that ADHD affects all language skills and systems development in both the individual with the condition and their classmates, but this effect is more significant in the latter. However, ADHD affected skills and systems to a different degree; writing skills were reported as the most affected by this disorder. Also, the effect of ADHD differed depending on the educational setting, being the highest in high school and lowest in the first three grades of primary school. These findings will be discussed in the context of foreign/second language teaching in the school context, considering different phases of education as well as future research on ADHD and language learning and teaching.Keywords: ADHD, EFL teachers, foreign/second language learning, language skills and systems development
Procedia PDF Downloads 756690 Day-To-Day Variations in Health Behaviors and Daily Functioning: Two Intensive Longitudinal Studies
Authors: Lavinia Flueckiger, Roselind Lieb, Andrea H. Meyer, Cornelia Witthauer, Jutta Mata
Abstract:
Objective: Health behaviors tend to show a high variability over time within the same person. However, most existing research can only assess a snapshot of a person’s behavior and not capture this natural daily variability. Two intensive longitudinal studies examine the variability in health behavior over one academic year and their implications for other aspects of daily life such as affect and academic performance. Can already a single day of increased physical activity, snacking, or improved sleep have beneficial effects? Methods: In two intensive longitudinal studies with up to 65 assessment days over an entire academic year, university students (Study 1: N = 292; Study 2: N = 304) reported sleep quality, physical activity, snacking, positive and negative affect, and learning goal achievement. Results: Multilevel structural equation models showed that on days on which participants reported better sleep quality or more physical activity than usual, they also reported increased positive affect, decreased negative affect, and better learning goal achievement. Higher day-to-day snacking was only associated with increased positive affect. Both, increased day-to-day sleep quality and physical activity were indirectly associated with better learning goal achievement through changes in positive and negative affect; results for snacking were mixed. Importantly, day-to-day sleep quality was a stronger predictor for affect and learning goal achievement than physical activity or snacking. Conclusion: One day of better sleep or more physical activity than usual is associated with improved affect and academic performance. These findings have important implications for low-threshold interventions targeting the improvement of daily functioning.Keywords: sleep quality, physical activity, snacking, affect, academic performance, multilevel structural equation model
Procedia PDF Downloads 5766689 Evaluating the Impact of English Immersion in Kolkata’s High-Cost Private Schools
Authors: Ashmita Bhattacharya
Abstract:
This study aims to investigate whether the English immersion experience offered by Kolkata’s high-cost private English-medium schools lead to additive or subtractive language learning outcomes for students. In India, English has increasingly become associated with power, social status, and socio-economic mobility. As a result, a proliferation of English-medium schools has emerged across Kolkata and the wider Indian context. While in some contexts, English language learning can be an additive experience, in others, it can be subtractive where proficiency in English is developed at the expense of students’ native language proficiency development. Subtractive educational experiences can potentially have severe implications, including heritage language loss, detachment from cultural roots, and a diminished sense of national identity. Thus, with the use of semi-structured interviews, the language practices and lived experiences of 12 former students who attended high-cost private English-medium schools in Kolkata were thoroughly explored. The data collected was thematically coded and analysis was conducted using the Thematic Analysis approach. The findings indicate that the English immersion experience at Kolkata’s high-cost private English-medium schools provide a subtractive language learning experience to students. Additionally, this study suggests that robust home-based support for native languages might be crucial for mitigating the effects of subtractive English education. Furthermore, the study underscores the importance of integrating opportunities within schools that promote Indian languages and cultures as it can create a more positive, inclusive, and culturally responsive environment. Finally, although subject to further evaluation, the study recommends the implementation of bilingual and multilingual educational systems and provides suggestions for future research in this area.Keywords: bilingual education, English immersion, language loss, multilingual education, subtractive language learning
Procedia PDF Downloads 296688 Graph Clustering Unveiled: ClusterSyn - A Machine Learning Framework for Predicting Anti-Cancer Drug Synergy Scores
Authors: Babak Bahri, Fatemeh Yassaee Meybodi, Changiz Eslahchi
Abstract:
In the pursuit of effective cancer therapies, the exploration of combinatorial drug regimens is crucial to leverage synergistic interactions between drugs, thereby improving treatment efficacy and overcoming drug resistance. However, identifying synergistic drug pairs poses challenges due to the vast combinatorial space and limitations of experimental approaches. This study introduces ClusterSyn, a machine learning (ML)-powered framework for classifying anti-cancer drug synergy scores. ClusterSyn employs a two-step approach involving drug clustering and synergy score prediction using a fully connected deep neural network. For each cell line in the training dataset, a drug graph is constructed, with nodes representing drugs and edge weights denoting synergy scores between drug pairs. Drugs are clustered using the Markov clustering (MCL) algorithm, and vectors representing the similarity of drug pairs to each cluster are input into the deep neural network for synergy score prediction (synergy or antagonism). Clustering results demonstrate effective grouping of drugs based on synergy scores, aligning similar synergy profiles. Subsequently, neural network predictions and synergy scores of the two drugs on others within their clusters are used to predict the synergy score of the considered drug pair. This approach facilitates comparative analysis with clustering and regression-based methods, revealing the superior performance of ClusterSyn over state-of-the-art methods like DeepSynergy and DeepDDS on diverse datasets such as Oniel and Almanac. The results highlight the remarkable potential of ClusterSyn as a versatile tool for predicting anti-cancer drug synergy scores.Keywords: drug synergy, clustering, prediction, machine learning., deep learning
Procedia PDF Downloads 796687 An Empirical Study for the Data-Driven Digital Transformation of the Indian Telecommunication Service Providers
Authors: S. Jigna, K. Nanda Kumar, T. Anna
Abstract:
Being a major contributor to the Indian economy and a critical facilitator for the country’s digital India vision, the Indian telecommunications industry is also a major source of employment for the country. Since the last few years, the Indian telecommunication service providers (TSPs), however, are facing business challenges related to increasing competition, losses, debts, and decreasing revenue. The strategic use of digital technologies for a successful digital transformation has the potential to equip organizations to meet these business challenges. Despite an increased focus on digital transformation, the telecom service providers globally, including Indian TSPs, have seen limited success so far. The purpose of this research was thus to identify the factors that are critical for the digital transformation and to what extent they influence the successful digital transformation of the Indian TSPs. The literature review of more than 300 digital transformation-related articles, mostly from 2013-2019, demonstrated a lack of an empirical model consisting of factors for the successful digital transformation of the TSPs. This study theorizes a research framework grounded in multiple theories, and a research model consisting of 7 constructs that may be influencing business success during the digital transformation of the organization was proposed. The questionnaire survey of senior managers in the Indian telecommunications industry was seeking to validate the research model. Based on 294 survey responses, the validation of the Structural equation model using the statistical tool ADANCO 2.1.1 was found to be robust. Results indicate that Digital Capabilities, Digital Strategy, and Corporate Level Data Strategy in that order has a strong influence on the successful Business Performance, followed by IT Function Transformation, Digital Innovation, and Transformation Management respectively. Even though Digital Organization did not have a direct significance on Business Performance outcomes, it had a strong influence on IT Function Transformation, thus affecting the Business Performance outcomes indirectly. Amongst numerous practical and theoretical contributions of the study, the main contribution for the Indian TSPs is a validated reference for prioritizing the transformation initiatives in their strategic roadmap. Also, the main contribution to the theory is the possibility to use the research framework artifact of the present research for quantitative validation in different industries and geographies.Keywords: corporate level data strategy, digital capabilities, digital innovation, digital strategy
Procedia PDF Downloads 1296686 Faculty Use of Geospatial Tools for Deep Learning in Science and Engineering Courses
Authors: Laura Rodriguez Amaya
Abstract:
Advances in science, technology, engineering, and mathematics (STEM) are viewed as important to countries’ national economies and their capacities to be competitive in the global economy. However, many countries experience low numbers of students entering these disciplines. To strengthen the professional STEM pipelines, it is important that students are retained in these disciplines at universities. Scholars agree that to retain students in universities’ STEM degrees, it is necessary that STEM course content shows the relevance of these academic fields to their daily lives. By increasing students’ understanding on the importance of these degrees and careers, students’ motivation to remain in these academic programs can also increase. An effective way to make STEM content relevant to students’ lives is the use of geospatial technologies and geovisualization in the classroom. The Geospatial Revolution, and the science and technology associated with it, has provided scientists and engineers with an incredible amount of data about Earth and Earth systems. This data can be used in the classroom to support instruction and make content relevant to all students. The purpose of this study was to find out the prevalence use of geospatial technologies and geovisualization as teaching practices in a USA university. The Teaching Practices Inventory survey, which is a modified version of the Carl Wieman Science Education Initiative Teaching Practices Inventory, was selected for the study. Faculty in the STEM disciplines that participated in a summer learning institute at a 4-year university in the USA constituted the population selected for the study. One of the summer learning institute’s main purpose was to have an impact on the teaching of STEM courses, particularly the teaching of gateway courses taken by many STEM majors. The sample population for the study is 97.5 of the total number of summer learning institute participants. Basic descriptive statistics through the Statistical Package for the Social Sciences (SPSS) were performed to find out: 1) The percentage of faculty using geospatial technologies and geovisualization; 2) Did the faculty associated department impact their use of geospatial tools?; and 3) Did the number of years in a teaching capacity impact their use of geospatial tools? Findings indicate that only 10 percent of respondents had used geospatial technologies, and 18 percent had used geospatial visualization. In addition, the use of geovisualization among faculty of different disciplines was broader than the use of geospatial technologies. The use of geospatial technologies concentrated in the engineering departments. Data seems to indicate the lack of incorporation of geospatial tools in STEM education. The use of geospatial tools is an effective way to engage students in deep STEM learning. Future research should look at the effect on student learning and retention in science and engineering programs when geospatial tools are used.Keywords: engineering education, geospatial technology, geovisualization, STEM
Procedia PDF Downloads 2526685 Modeling Generalization in the Acquired Equivalence Paradigm with the Successor Representation
Authors: Troy M. Houser
Abstract:
The successor representation balances flexible and efficient reinforcement learning by learning to predict the future, given the present. As such, the successor representation models stimuli as what future states they lead to. Therefore, two stimuli that are perceptually dissimilar but lead to the same future state will come to be represented more similarly. This is very similar to an older behavioral paradigm -the acquired equivalence paradigm, which measures the generalization of learned associations. Here, we test via computational modeling the plausibility that the successor representation is the mechanism by which people generalize knowledge learned in the acquired equivalence paradigm. Computational evidence suggests that this is a plausible mechanism for acquired equivalence and thus can guide future empirical work on individual differences in associative-based generalization.Keywords: acquired equivalence, successor representation, generalization, decision-making
Procedia PDF Downloads 276684 Using Deep Learning Real-Time Object Detection Convolution Neural Networks for Fast Fruit Recognition in the Tree
Authors: K. Bresilla, L. Manfrini, B. Morandi, A. Boini, G. Perulli, L. C. Grappadelli
Abstract:
Image/video processing for fruit in the tree using hard-coded feature extraction algorithms have shown high accuracy during recent years. While accurate, these approaches even with high-end hardware are computationally intensive and too slow for real-time systems. This paper details the use of deep convolution neural networks (CNNs), specifically an algorithm (YOLO - You Only Look Once) with 24+2 convolution layers. Using deep-learning techniques eliminated the need for hard-code specific features for specific fruit shapes, color and/or other attributes. This CNN is trained on more than 5000 images of apple and pear fruits on 960 cores GPU (Graphical Processing Unit). Testing set showed an accuracy of 90%. After this, trained data were transferred to an embedded device (Raspberry Pi gen.3) with camera for more portability. Based on correlation between number of visible fruits or detected fruits on one frame and the real number of fruits on one tree, a model was created to accommodate this error rate. Speed of processing and detection of the whole platform was higher than 40 frames per second. This speed is fast enough for any grasping/harvesting robotic arm or other real-time applications.Keywords: artificial intelligence, computer vision, deep learning, fruit recognition, harvesting robot, precision agriculture
Procedia PDF Downloads 4206683 Applying Cognitive Psychology to Education: Translational Educational Science
Authors: Hammache Nadir
Abstract:
The scientific study of human learning and memory is now more than 125 years old. Psychologists have conducted thousands of experiments, correlational analyses, and field studies during this time, in addition to other research conducted by those from neighboring fields. A huge knowledge base has been carefully built up over the decades. Given this backdrop, we may ask ourselves: What great changes in education have resulted from this huge research base? How has the scientific study of learning and memory changed practices in education from those of, say, a century ago? Have we succeeded in building a translational educational science to rival medical science (in which biological knowledge is translated into medical practice) or types of engineering (in which, e.g., basic knowledge in chemistry is translated into products through chemical engineering)? The answer, I am afraid, is rather mixed. Psychologists and psychological research have influenced educational practice, but in fits and starts. After all, some of the great founders of American psychology—William James, Edward L. Thorndike, John Dewey, and others—are also revered as important figures in the history of education. And some psychological research and ideas have made their way into education—for instance, computer-based cognitive tutors for some specific topics have been developed in recent years—and in years past, such practices as teaching machines, programmed learning, and, in higher education, the Keller Plan were all important. These older practices have not been sustained. Was that because they failed or because of a lack of systematic research showing they were effective? At any rate, in 2012, we cannot point to a well-developed translational educational science in which research about learning and memory, thinking and reasoning, and related topics is moved from the lab into controlled field trials (like clinical trials in medicine) and the tested techniques, if they succeed, are introduced into broad educational practice. We are just not there yet, and one question that arises is how we could achieve a translational educational science.Keywords: affective, education, cognition, pshychology
Procedia PDF Downloads 3466682 Choice Analysis of Ground Access to São Paulo/Guarulhos International Airport Using Adaptive Choice-Based Conjoint Analysis (ACBC)
Authors: Carolina Silva Ansélmo
Abstract:
Airports are demand-generating poles that affect the flow of traffic around them. The airport access system must be fast, convenient, and adequately planned, considering its potential users. An airport with good ground access conditions can provide the user with a more satisfactory access experience. When several transport options are available, service providers must understand users' preferences and the expected quality of service. The present study focuses on airport access in a comparative scenario between bus, private vehicle, subway, taxi and urban mobility transport applications to São Paulo/Guarulhos International Airport. The objectives are (i) to identify the factors that influence the choice, (ii) to measure Willingness to Pay (WTP), and (iii) to estimate the market share for each modal. The applied method was Adaptive Choice-based Conjoint Analysis (ACBC) technique using Sawtooth Software. Conjoint analysis, rooted in Utility Theory, is a survey technique that quantifies the customer's perceived utility when choosing alternatives. Assessing user preferences provides insights into their priorities for product or service attributes. An additional advantage of conjoint analysis is its requirement for a smaller sample size compared to other methods. Furthermore, ACBC provides valuable insights into consumers' preferences, willingness to pay, and market dynamics, aiding strategic decision-making to provide a better customer experience, pricing, and market segmentation. In the present research, the ACBC questionnaire had the following variables: (i) access time to the boarding point, (ii) comfort in the vehicle, (iii) number of travelers together, (iv) price, (v) supply power, and (vi) type of vehicle. The case study questionnaire reached 213 valid responses considering the scenario of access from the São Paulo city center to São Paulo/Guarulhos International Airport. As a result, the price and the number of travelers are the most relevant attributes for the sample when choosing airport access. The market share of the selection is mainly urban mobility transport applications, followed by buses, private vehicles, taxis and subways.Keywords: adaptive choice-based conjoint analysis, ground access to airport, market share, willingness to pay
Procedia PDF Downloads 786681 Enhancing Audience Engagement: Informal Music Learning During Classical Concerts
Authors: Linda Dusman, Linda Baker
Abstract:
The Bearman Study of Audience Engagement examined the potential for real-time music education during online symphony orchestra concerts. It follows on the promising results of a preliminary study of STEAM (Science, Technology, Engineering, Arts, and Mathematics) education during live concerts, funded by the National Science Foundation with the Baltimore Symphony Orchestra. For the Bearman Study, audience groups were recruited to attend two previously recorded concerts of the National Orchestral Institute (NOI) in 2020 or the Utah Symphony in 2021. They used a smartphone app called EnCue to present real-time program notes about the music being performed. Short notes along with visual information (photos and score fragments) were designed to provide historical, cultural, biographical, and theoretical information at specific moments in the music where that information would be most pertinent, generally spaced 2-3 minutes apart to avoid distraction. The music performed included Dvorak Symphony No. 8 and Mahler Symphony No. 5 at NOI, and Mendelssohn Scottish Symphony and Richard Strauss Metamorphosen with the Utah Symphony, all standard repertoire for symphony orchestras. During each phase of the study (2020 and 2021), participants were randomly assigned to use the app to view program notes during the first concert or to use the app during the second concert. A total of 139 participants (67 in 2020 and 72 in 2021) completed three online questionnaires, one before attending the first concert, one immediately after the concert, and the third immediately after the second concert. Questionnaires assessed demographic background, expertise in music, engagement during the concert, learning of content about the composers and the symphonies, and interest in the future use of the app. In both phases of the study, participants demonstrated that they learned content presented on the app, evidenced by the fact that their multiple-choice test scores were significantly higher when they used the app than when they did not. In addition, most participants indicated that using the app enriched their experience of the concert. Overall, they were very positive about their experience using the app for real-time learning and they expressed interest in using it in the future at both live and streaming concerts. Results confirmed that informal real-time learning during concerts is possible and can generate enhanced engagement and interest in classical music.Keywords: audience engagement, informal education, music technology, real-time learning
Procedia PDF Downloads 2036680 Predictive Maintenance of Industrial Shredders: Efficient Operation through Real-Time Monitoring Using Statistical Machine Learning
Authors: Federico Pittino, Thomas Arnold
Abstract:
The shredding of waste materials is a key step in the recycling process towards the circular economy. Industrial shredders for waste processing operate in very harsh operating conditions, leading to the need for frequent maintenance of critical components. Maintenance optimization is particularly important also to increase the machine’s efficiency, thereby reducing the operational costs. In this work, a monitoring system has been developed and deployed on an industrial shredder located at a waste recycling plant in Austria. The machine has been monitored for one year, and methods for predictive maintenance have been developed for two key components: the cutting knives and the drive belt. The large amount of collected data is leveraged by statistical machine learning techniques, thereby not requiring very detailed knowledge of the machine or its live operating conditions. The results show that, despite the wide range of operating conditions, a reliable estimate of the optimal time for maintenance can be derived. Moreover, the trade-off between the cost of maintenance and the increase in power consumption due to the wear state of the monitored components of the machine is investigated. This work proves the benefits of real-time monitoring system for the efficient operation of industrial shredders.Keywords: predictive maintenance, circular economy, industrial shredder, cost optimization, statistical machine learning
Procedia PDF Downloads 1256679 Smart Water Main Inspection and Condition Assessment Using a Systematic Approach for Pipes Selection
Authors: Reza Moslemi, Sebastien Perrier
Abstract:
Water infrastructure deterioration can result in increased operational costs owing to increased repair needs and non-revenue water and consequently cause a reduced level of service and customer service satisfaction. Various water main condition assessment technologies have been introduced to the market in order to evaluate the level of pipe deterioration and to develop appropriate asset management and pipe renewal plans. One of the challenges for any condition assessment and inspection program is to determine the percentage of the water network and the combination of pipe segments to be inspected in order to obtain a meaningful representation of the status of the entire water network with a desirable level of accuracy. Traditionally, condition assessment has been conducted by selecting pipes based on age or location. However, this may not necessarily offer the best approach, and it is believed that by using a smart sampling methodology, a better and more reliable estimate of the condition of a water network can be achieved. This research investigates three different sampling methodologies, including random, stratified, and systematic. It is demonstrated that selecting pipes based on the proposed clustering and sampling scheme can considerably improve the ability of the inspected subset to represent the condition of a wider network. With a smart sampling methodology, a smaller data sample can provide the same insight as a larger sample. This methodology offers increased efficiency and cost savings for condition assessment processes and projects.Keywords: condition assessment, pipe degradation, sampling, water main
Procedia PDF Downloads 150