Search results for: mechanical axis
502 Humins: From Industrial By-Product to High Value Polymers
Authors: Pierluigi Tosi, Ed de Jong, Gerard van Klink, Luc Vincent, Alice Mija
Abstract:
During the last decades renewable and low-cost resources have attracted increasingly interest. Carbohydrates can be derived by lignocellulosic biomasses, which is an attractive option since they represent the most abundant carbon source available in nature. Carbohydrates can be converted in a plethora of industrially relevant compounds, such as 5-hydroxymethylfurfural (HMF) and levulinic acid (LA), within acid catalyzed dehydration of sugars with mineral acids. Unfortunately, these acid catalyzed conversions suffer of the unavoidable formation of highly viscous heterogeneous poly-disperse carbon based materials known as humins. This black colored low value by-product is made by a complex mixture of macromolecules built by covalent random condensations of the several compounds present during the acid catalyzed conversion. Humins molecular structure is still under investigation but seems based on furanic rings network linked by aliphatic chains and decorated by several reactive moieties (ketones, aldehydes, hydroxyls, …). Despite decades of research, currently there is no way to avoid humins formation. The key parameter for enhance the economic viability of carbohydrate conversion processes is, therefore, increasing the economic value of the humins by-product. Herein are presented new humins based polymeric materials that can be prepared starting from the raw by-product by thermal treatment, without any step of purification or pretreatment. Humins foams can be produced with the control of reaction key parameters, obtaining polymeric porous materials with designed porosity, density, thermal and electrical conductivity, chemical and electrical stability, carbon amount and mechanical properties. Physico chemical properties can be enhanced by modifications on the starting raw material or adding different species during the polymerization. A comparisons on the properties of different compositions will be presented, along with tested applications. The authors gratefully acknowledge the European Community for financial support through Marie-Curie H2020-MSCA-ITN-2015 "HUGS" Project.Keywords: by-product, humins, polymers, valorization
Procedia PDF Downloads 143501 Combined Effect of Therapeutic Exercises and Shock Wave versus Therapeutic Exercises and Phonophoresis in Treatment of Shoulder Impingement Syndrome: A Randomized Controlled Trial
Authors: Mohamed M. Mashaly, Ahmed M. F. El Shiwi
Abstract:
Background: Shoulder impingement syndrome is an encroachment of subacromial tissues, rotator cuff, subacromial bursa, and the long head of the biceps tendon, as a result of narrowing of the subacromial space. Activities requiring repetitive or sustained use of the arms over head often predispose the rotator cuff tendon to injury. Purpose: To compare between Combined effect therapeutic exercises and Shockwave therapy versus therapeutic exercises and phonophoresis in the treatment of shoulder impingement syndrome. Methods: Thirty patients diagnosed as shoulder impingement syndrome stage II Neer classification due to mechanical causes. Patients were randomly distributed into two equal groups. The first group consisted of 15 patients with a mean age of (45.46+8.64) received therapeutic exercises (stretching exercise of posterior shoulder capsule and strengthening exercises of shoulder muscles) and shockwave therapy (6000 shocks, 2000/session, 3 sessions, 2 weeks apart, 0.22mJ/mm^2) years. The second group consisted of 15 patients with a mean age of 46.26 (+ 8.05) received same therapeutic exercises and phonophoresis (3 times per week, each other day, for 4 consecutive weeks). Patients were evaluated pretreatment and post treatment for shoulder pain severity, shoulder functional disability, shoulder flexion, abduction and internal rotation motions. Results: Patients of both groups showed significant improvement in all the measured variables. In between groups difference the shock wave group showed a significant improvement in all measured variables than phonophoresis group. Interpretation/Conclusion: Combined effect of therapeutic exercises and shock wave were more effective than therapeutic exercises and phonophoresis on decreasing shoulder pain severity, shoulder functional disability, increasing in shoulder flexion, abduction, internal rotation in patients with shoulder impingement syndrome.Keywords: shoulder impingement syndrome, therapeutic exercises, shockwave, phonophoresis
Procedia PDF Downloads 472500 Field Prognostic Factors on Discharge Prediction of Traumatic Brain Injuries
Authors: Mohammad Javad Behzadnia, Amir Bahador Boroumand
Abstract:
Introduction: Limited facility situations require allocating the most available resources for most casualties. Accordingly, Traumatic Brain Injury (TBI) is the one that may need to transport the patient as soon as possible. In a mass casualty event, deciding when the facilities are restricted is hard. The Extended Glasgow Outcome Score (GOSE) has been introduced to assess the global outcome after brain injuries. Therefore, we aimed to evaluate the prognostic factors associated with GOSE. Materials and Methods: In a multicenter cross-sectional study conducted on 144 patients with TBI admitted to trauma emergency centers. All the patients with isolated TBI who were mentally and physically healthy before the trauma entered the study. The patient’s information was evaluated, including demographic characteristics, duration of hospital stays, mechanical ventilation on admission laboratory measurements, and on-admission vital signs. We recorded the patients’ TBI-related symptoms and brain computed tomography (CT) scan findings. Results: GOSE assessments showed an increasing trend by the comparison of on-discharge (7.47 ± 1.30), within a month (7.51 ± 1.30), and within three months (7.58 ± 1.21) evaluations (P < 0.001). On discharge, GOSE was positively correlated with Glasgow Coma Scale (GCS) (r = 0.729, P < 0.001) and motor GCS (r = 0.812, P < 0.001), and inversely with age (r = −0.261, P = 0.002), hospitalization period (r = −0.678, P < 0.001), pulse rate (r = −0.256, P = 0.002) and white blood cell (WBC). Among imaging signs and trauma-related symptoms in univariate analysis, intracranial hemorrhage (ICH), interventricular hemorrhage (IVH) (P = 0.006), subarachnoid hemorrhage (SAH) (P = 0.06; marginally at P < 0.1), subdural hemorrhage (SDH) (P = 0.032), and epidural hemorrhage (EDH) (P = 0.037) were significantly associated with GOSE at discharge in multivariable analysis. Conclusion: Our study showed some predictive factors that could help to decide which casualty should transport earlier to a trauma center. According to the current study findings, GCS, pulse rate, WBC, and among imaging signs and trauma-related symptoms, ICH, IVH, SAH, SDH, and EDH are significant independent predictors of GOSE at discharge in TBI patients.Keywords: field, Glasgow outcome score, prediction, traumatic brain injury.
Procedia PDF Downloads 75499 The Onset of Ironing during Casing Expansion
Authors: W. Assaad, D. Wilmink, H. R. Pasaribu, H. J. M. Geijselaers
Abstract:
Shell has developed a mono-diameter well concept for oil and gas wells as opposed to the traditional telescopic well design. A Mono-diameter well design allows well to have a single inner diameter from the surface all the way down to reservoir to increase production capacity, reduce material cost and reduce environmental footprint. This is achieved by expansion of liners (casing string) concerned using an expansion tool (e.g. a cone). Since the well is drilled in stages and liners are inserted to support the borehole, overlap sections between consecutive liners exist which should be expanded. At overlap, the previously inserted casing which can be expanded or unexpanded is called the host casing and the newly inserted casing is called the expandable casing. When the cone enters the overlap section, an expandable casing is expanded against a host casing, a cured cement layer and formation. In overlap expansion, ironing or lengthening may appear instead of shortening in the expandable casing when the pressure exerted by the host casing, cured cement layer and formation exceeds a certain limit. This pressure is related to cement strength, thickness of cement layer, host casing material mechanical properties, host casing thickness, formation type and formation strength. Ironing can cause implications that hinder the deployment of the technology. Therefore, the understanding of ironing becomes essential. A physical model is built in-house to calculate expansion forces, stresses, strains and post expansion casing dimensions under different conditions. In this study, only free casing and overlap expansion of two casings are addressed while the cement and formation will be incorporated in future study. Since the axial strain can be predicted by the physical model, the onset of ironing can be confirmed. In addition, this model helps in understanding ironing and the parameters influencing it. Finally, the physical model is validated with Finite Element (FE) simulations and small-scale experiments. The results of the study confirm that high pressure leads to ironing when the casing is expanded in tension mode.Keywords: casing expansion, cement, formation, metal forming, plasticity, well design
Procedia PDF Downloads 180498 Development of Vapor Absorption Refrigeration System for Mini-Bus Car’s Air Conditioning: A Two-Fluid Model
Authors: Yoftahe Nigussie
Abstract:
This research explores the implementation of a vapor absorption refrigeration system (VARS) in mini-bus cars to enhance air conditioning efficiency. The conventional vapor compression refrigeration system (VCRS) in vehicles relies on mechanical work from the engine, leading to increased fuel consumption. The proposed VARS aims to utilize waste heat and exhaust gas from the internal combustion engine to cool the mini-bus cabin, thereby reducing fuel consumption and atmospheric pollution. The project involves two models: Model 1, a two-fluid vapor absorption system (VAS), and Model 2, a three-fluid VAS. Model 1 uses ammonia (NH₃) and water (H₂O) as refrigerants, where water absorbs ammonia rapidly, producing a cooling effect. The absorption cycle operates on the principle that absorbing ammonia in water decreases vapor pressure. The ammonia-water solution undergoes cycles of desorption, condensation, expansion, and absorption, facilitated by a generator, condenser, expansion valve, and absorber. The objectives of this research include reducing atmospheric pollution, minimizing air conditioning maintenance costs, lowering capital costs, enhancing fuel economy, and eliminating the need for a compressor. The comparison between vapor absorption and compression systems reveals advantages such as smoother operation, fewer moving parts, and the ability to work at lower evaporator pressures without affecting the Coefficient of Performance (COP). The proposed VARS demonstrates potential benefits for mini-bus air conditioning systems, providing a sustainable and energy-efficient alternative. By utilizing waste heat and exhaust gas, this system contributes to environmental preservation while addressing economic considerations for vehicle owners. Further research and development in this area could lead to the widespread adoption of vapor absorption technology in automotive air conditioning systems.Keywords: room, zone, space, thermal resistance
Procedia PDF Downloads 70497 Model Based Design and Development of Horticultural Produce Crate from Bamboo
Authors: Sisay Wondmagegn Molla, Mulugeta Admasu Delele, Tadelle Nigusu Mekonen
Abstract:
It is common to observe quality deterioration and mechanical injury of horticulture products as a result of suboptimal design and handling of the packaging systems. Society uses the old and primitive way of handling horticulture products, which is produced through trial and error This method is known to have many limitations on quality, environmental pollution, labor and cost. Ethiopia stands first in bamboo resources in Africa, which is 67 % of the African and 7 % of the world's bamboo resources. The purpose of this project was to design and develop bamboo-based ventilated horticultural produce crates using validated computational fluid dynamics (CFD). The model was used to predict the airflow and temperature distribution inside the loaded crate. The study included: sizing, collection of the thermo-physical properties, and designing and developing a CFD model of the bamboo-based ventilated horticultural crate. The designed crate (40×30×25cm) had a capacity of about 18 kg, and cold air temperature (130C) was used for cooling the fruit. Airflow in the loaded crate is far from uniform. There is a relatively high-velocity flow at the top, near inlet and near outlet sections, and a relatively low airflow near the center of the loaded crate. The predicted velocity variation within the bulk of the produce was relatively large, it was in the range of 0.04-7m/s. The vented produce package contributed the highest cooling airflow resistance. Similar to the airflow, the cooling characteristics of the product were not uniform. There was a difference in the cooling rate of the produce in the airflow direction and from the top to the bottom section of the loaded crate. The products that were located near the inlet side and top of the bulk showed a faster cooling rate than the rest of the bulk. The result showed that the produced volume average temperature was 17.9°C after a cooling period of 3 hr. It was reduced by 12.05°C. The result showed the potential of the CFD modeling approach in developing the bamboo-based design of horticultural produce crates in terms of airflow and heat transfer characteristics.Keywords: bamboo, modeling, cooling, horticultural, packaging
Procedia PDF Downloads 25496 Investigation of Supercapacitor Properties of Nanocomposites Obtained from Acid and Base-functionalized Multi-walled Carbon Nanotube (MWCNT) and Polypyrrole (PPy)
Authors: Feridun Demir, Pelin Okdem
Abstract:
Polymers are versatile materials with many unique properties, such as low density, reasonable strength, flexibility, and easy processability. However, the mechanical properties of these materials are insufficient for many engineering applications. Therefore, there is a continuous search for new polymeric materials with improved properties. Polymeric nanocomposites are an advanced class of composite materials that have attracted great attention in both academic and industrial fields. Since nano-reinforcement materials are very small in size, they provide ultra-large interfacial area per volume between the nano-element and the polymer matrix. This allows the nano-reinforcement composites to exhibit enhanced toughness without compromising hardness or optical clarity. PPy and MWCNT/PPy nanocomposites were synthesized by the chemical oxidative polymerization method and the supercapacitor properties of the obtained nanocomposites were investigated. In addition, pure MWCNT was functionalized with acid (H₂SO₄/H₂O₂) and base (NH₄OH/H₂O₂) solutions at a ratio of 3:1 and a-MWCNT/d-PPy, and b-MWCNT/d-PPy nanocomposites were obtained. The homogeneous distribution of MWCNTs in the polypyrrole matrix and shell-core type morphological structures of the nanocomposites was observed with SEM images. It was observed with SEM, FTIR and XRD analyses that the functional groups formed by the functionalization of MWCNTs caused the MWCNTs to come together and partially agglomerate. It was found that the conductivity of the nanocomposites consisting of MWCNT and d-PPy was higher than that of pure d-PPy. CV, GCD and EIS results show that the use of a-MWCNT and b-MWCNTs in nanocomposites with low particle content positively affects the supercapacitor properties of the materials but negatively at high particle content. It was revealed that the functional MWCNT particles combined in nanocomposites with high particle content cause a decrease in the conductivity and distribution of ions in the electrodes and, thus, a decrease in their energy storage capacity.Keywords: polypyrrole, multi-walled carbon nanotube (MWCNT), conducting polymer, chemical oxidative polymerization, nanocomposite, supercapacitor
Procedia PDF Downloads 21495 Optimizing Wind Turbine Blade Geometry for Enhanced Performance and Durability: A Computational Approach
Authors: Nwachukwu Ifeanyi
Abstract:
Wind energy is a vital component of the global renewable energy portfolio, with wind turbines serving as the primary means of harnessing this abundant resource. However, the efficiency and stability of wind turbines remain critical challenges in maximizing energy output and ensuring long-term operational viability. This study proposes a comprehensive approach utilizing computational aerodynamics and aeromechanics to optimize wind turbine performance across multiple objectives. The proposed research aims to integrate advanced computational fluid dynamics (CFD) simulations with structural analysis techniques to enhance the aerodynamic efficiency and mechanical stability of wind turbine blades. By leveraging multi-objective optimization algorithms, the study seeks to simultaneously optimize aerodynamic performance metrics such as lift-to-drag ratio and power coefficient while ensuring structural integrity and minimizing fatigue loads on the turbine components. Furthermore, the investigation will explore the influence of various design parameters, including blade geometry, airfoil profiles, and turbine operating conditions, on the overall performance and stability of wind turbines. Through detailed parametric studies and sensitivity analyses, valuable insights into the complex interplay between aerodynamics and structural dynamics will be gained, facilitating the development of next-generation wind turbine designs. Ultimately, this research endeavours to contribute to the advancement of sustainable energy technologies by providing innovative solutions to enhance the efficiency, reliability, and economic viability of wind power generation systems. The findings have the potential to inform the design and optimization of wind turbines, leading to increased energy output, reduced maintenance costs, and greater environmental benefits in the transition towards a cleaner and more sustainable energy future.Keywords: computation, robotics, mathematics, simulation
Procedia PDF Downloads 58494 Measurement Technologies for Advanced Characterization of Magnetic Materials Used in Electric Drives and Automotive Applications
Authors: Lukasz Mierczak, Patrick Denke, Piotr Klimczyk, Stefan Siebert
Abstract:
Due to the high complexity of the magnetization in electrical machines and influence of the manufacturing processes on the magnetic properties of their components, the assessment and prediction of hysteresis and eddy current losses has remained a challenge. In the design process of electric motors and generators, the power losses of stators and rotors are calculated based on the material supplier’s data from standard magnetic measurements. This type of data does not include the additional loss from non-sinusoidal multi-harmonic motor excitation nor the detrimental effects of residual stress remaining in the motor laminations after manufacturing processes, such as punching, housing shrink fitting and winding. Moreover, in production, considerable attention is given to the measurements of mechanical dimensions of stator and rotor cores, whereas verification of their magnetic properties is typically neglected, which can lead to inconsistent efficiency of assembled motors. Therefore, to enable a comprehensive characterization of motor materials and components, Brockhaus Measurements developed a range of in-line and offline measurement technologies for testing their magnetic properties under actual motor operating conditions. Multiple sets of experimental data were obtained to evaluate the influence of various factors, such as elevated temperature, applied and residual stress, and arbitrary magnetization on the magnetic properties of different grades of non-oriented steel. Measured power loss for tested samples and stator cores varied significantly, by more than 100%, comparing to standard measurement conditions. Quantitative effects of each of the applied measurement were analyzed. This research and applied Brockhaus measurement methodologies emphasized the requirement for advanced characterization of magnetic materials used in electric drives and automotive applications.Keywords: magnetic materials, measurement technologies, permanent magnets, stator and rotor cores
Procedia PDF Downloads 140493 Durability Performances of Epoxy Resin/TiO₂ Composited Alkali-Activated Slag/Fly Ash Pastes in Phosphoric Acid Solution
Abstract:
Laden with phosphates at a low pH value, sewage wastewater aggressive environments constitute a great threat to concrete-based pipes which is made of alkaline cementitious materials such as ordinary Portland cement (OPC). As a promising alternative for OPC-based binders, alkali-activated slag/fly ash (AASF) cementitious binders are generally believed to gain similar or better properties compared to OPC-based counterparts, especially durability. However, there is limited research on the performance of AASF binders in phosphoric acid solution. Moreover, the behavior of AASF binders composited with epoxy resin/TiO₂ when exposed to acidic media has been rarely explored. In this study, the performance of AASF paste with the precursor slag:fly ash (50:50 in mass ratio) enhanced with epoxy resin/TiO₂ composite in phosphoric acid solution (pH = 3.0-4.0) was investigated. The exposure towards acid attack lasted for 90 days. The same AASF mixture without resin/TiO₂ composite was used as a reference. The compressive strength and porous-related properties prior to acidic immersion were tested. The mass variations and degradation depth of the two mixtures of binders were also monitored which is based on phenolphthalein-videomicroscope method. The results show that the binder with epoxy resin/TiO₂ addition gained a higher compressive strength and lower water absorption than the reference. In addition, it also displayed a higher resistance towards acid attack indicated by a less mass loss and less degradation depth compared to the control sample. This improvement can be attributed to a dense microstructure evidenced by the higher compressive strength and related porous structures. It can be concluded that the microstructure can be improved by adding epoxy resin/TiO₂ composite in order to enhance the resistance of AASF binder towards acid attacks.Keywords: alkali-activated paste, epoxy resin/TiO₂, composites, mechanical properties, phosphoric acid
Procedia PDF Downloads 121492 Nanoparticles of Hyaluronic Acid for Radiation Induced Lung Damages
Authors: Anna Lierova, Jitka Kasparova, Marcela Jelicova, Lucie Korecka, Zuzana Bilkova, Zuzana Sinkorova
Abstract:
Hyaluronic acid (HA) is a simple linear, unbranched polysaccharide with a lot of exceptional physiological and chemical properties such as high biocompatibility and biodegradability, strong hydration and viscoelasticity that depend on the size of the molecule. It plays the important role in a variety of molecular events as tissue hydration, mechanical protection of tissues and as well as during inflammation, leukocyte migration, and extracellular matrix remodeling. Also, HA-based biomaterials, including HA scaffolds, hydrogels, thin membranes, matrix grafts or nanoparticles are widely use in various biomedical applications. Our goal is to determine the radioprotective effect of hyaluronic acid nanoparticles (HA NPs). We are investigating effect of ionizing radiation on stability of HA NPs, in vitro relative toxicity of nanoscale as well as effect on cell lines and specific surface receptors and their response to ionizing radiation. An exposure to ionizing radiation (IR) can irreversibly damage various cell types and may thus have implications for the level of the whole tissue. Characteristic manifestations are formation of over-granulated tissue, remodeling of extracellular matrix (ECM) and abortive wound healing. Damages are caused by either direct interaction with DNA and IR proteins or indirectly by radicals formed during radiolysis of water Accumulation and turnover of ECM are a hallmark of radiation induces lung injury, characterized by inflammation, repair or remodeling health pulmonary tissue. HA is a major component of ECM in lung and plays an important role in regulating tissue injury, accelerating tissue repair, and controlling disease outcomes. Due to that, HA NPs were applied to in vivo model (C57Bl/6J mice) before total body or partial thorax irradiation. This part of our research is targeting on effect of exogenous HA on the development and/or mitigating acute radiation syndrome and radiation induced lung injuries.Keywords: hyaluronic acid, ionizing radiation, nanoparticles, radiation induces lung damages
Procedia PDF Downloads 167491 FEM Simulation of Tool Wear and Edge Radius Effects on Residual Stress in High Speed Machining of Inconel718
Authors: Yang Liu, Mathias Agmell, Aylin Ahadi, Jan-Eric Stahl, Jinming Zhou
Abstract:
Tool wear and tool geometry have significant effects on the residual stresses in the component produced by high-speed machining. In this paper, Coupled Eulerian and Lagrangian (CEL) model is adopted to investigate the residual stress in high-speed machining of Inconel718 with a CBN170 cutting tool. The result shows that the mesh with the smallest size of 5 um yields cutting forces and chip morphology in close agreement with the experimental data. The analysis of thermal loading and mechanical loading are performed to study the effect of segmented chip morphology on the machined surface topography and residual stress distribution. The effects of cutting edge radius and flank wear on residual stresses formation and distribution on the workpiece were also investigated. It is found that the temperature within 100um depth of the machined surface increases drastically due to the more friction heat generation with the contact area of tool and workpiece increasing when a larger edge radius and flank wear are used. With the depth further increasing, the temperature drops rapidly for all cases due to the low conductivity of Inconel718. Consequently, higher and deeper tensile residual stress is generated on the superficial. Furthermore, an increased depth of plastic deformation and compressive residual stress is noticed in the subsurface, which is attributed to the reduction of the yield strength under the thermal effect. Besides, the ploughing effect produced by a larger tool edge radius contributes more than flank wear. The magnitude variation of the compressive residual stress caused by various edge radius and flank wear have a totally opposite trend, which depends on the magnitude of the ploughing and friction pressure acting on the machined surface.Keywords: Coupled Eulerian Lagrangian, segmented chip, residual stress, tool wear, edge radius, Inconel718
Procedia PDF Downloads 146490 Indoor Air Assessment and Health Risk of Volatile Organic Compounds in Secondary School Classrooms in Benin City, Edo State, Nigeria
Authors: Osayomwanbor E. Oghama, John O. Olomukoro
Abstract:
The school environment, apart from home, is probably the most important indoor environment for children. Children spend as much as 80-90% of their indoor time either at school or at home; an average of 35 - 40 hours per week in schools, hence are at the risk of indoor air pollutants such as volatile organic compounds (VOCs). Concentrations of VOCs vary widely but are generally higher indoors than outdoors. This research was, therefore, carried out to evaluate the levels of VOCs in secondary school classrooms in Benin City, Edo State. Samples were obtained from a total of 18 classrooms in 6 secondary schools. Samples were collected 3 times from each school and from 3 different classrooms in each school using Draeger ORSA 5 tubes. Samplers were left to stay for a school-week (5 days). The VOCs detected and analyzed were benzene, ethlybenzene, isopropylbenzene, naphthalene, n-butylbenzene, n-propylbenzene, toluene, m-xylene, p-xylene, o-xylene, styrene, chlorobenzene, chloroform, 1,2-dichloropropane, 2,2-dichloropropane, tetrachloroethane, tetrahydrofuran, isopropyl acetate, α-pinene, and camphene. The results showed that chloroform, o-xylene, and styrene were the most abundant while α-pinene and camphene were the least abundant. The health risk assessment was done in terms of carcinogenic (CRI) and non-carcinogenic risks (THR). The CRI values of the schools ranged from 1.03 × 10-5 to 1.36 × 10-5 μg/m³ (a mean of 1.16 × 10-5 μg/m³) with School 6 and School 3 having the highest and lowest values respectively. The THR values of the study schools ranged from 0.071-0.086 μg/m³ (a mean of 0.078 μg/m³) with School 3 and School 2 having the highest and lowest values respectively. The results show that all the schools pose a potential carcinogenic risks having CRI values greater than the recommended limit of 1 × 10-6 µg/m³ and no non-carcinogenic risk having THR values less than the USEPA hazard quotient of 1 µg/m³. It is recommended that school authorities should ensure adequate ventilation in their schools, supplementing natural ventilation with mechanical sources, where necessary. In addition, indoor air quality should be taken into consideration in the design and construction of classrooms.Keywords: carcinogenic risk indicator, health risk, indoor air, non-carcinogenic risk indicator, secondary schools, volatile organic compounds
Procedia PDF Downloads 191489 Field Emission Scanning Microscope Image Analysis for Porosity Characterization of Autoclaved Aerated Concrete
Authors: Venuka Kuruwita Arachchige Don, Mohamed Shaheen, Chris Goodier
Abstract:
Aerated autoclaved concrete (AAC) is known for its lightweight, easy handling, high thermal insulation, and extremely porous structure. Investigation of pore behavior in AAC is crucial for characterizing the material, standardizing design and production techniques, enhancing the mechanical, durability, and thermal performance, studying the effectiveness of protective measures, and analyzing the effects of weather conditions. The significant details of pores are complicated to observe with acknowledged accuracy. The High-resolution Field Emission Scanning Electron Microscope (FESEM) image analysis is a promising technique for investigating the pore behavior and density of AAC, which is adopted in this study. Mercury intrusion porosimeter and gas pycnometer were employed to characterize porosity distribution and density parameters. The analysis considered three different densities of AAC blocks and three layers in the altitude direction within each block. A set of understandings was presented to extract and analyze the details of pore shape, pore size, pore connectivity, and pore percentages from FESEM images of AAC. Average pore behavior outcomes per unit area were presented. Comparison of porosity distribution and density parameters revealed significant variations. FESEM imaging offered unparalleled insights into porosity behavior, surpassing the capabilities of other techniques. The analysis conducted from a multi-staged approach provides porosity percentage occupied by various pore categories, total porosity, variation of pore distribution compared to AAC densities and layers, number of two-dimensional and three-dimensional pores, variation of apparent and matrix densities concerning pore behaviors, variation of pore behavior with respect to aluminum content, and relationship among shape, diameter, connectivity, and percentage in each pore classification.Keywords: autoclaved aerated concrete, density, imaging technique, microstructure, porosity behavior
Procedia PDF Downloads 68488 Calling the Shots: How Others’ Mistakes May Influence Vaccine Take-up
Authors: Elizabeth Perry, Jylana Sheats
Abstract:
Scholars posit that there is an overlap between the fields of Behavioral Economics (BE) and Behavior Science (BSci)—and that consideration of concepts from both may facilitate a greater understanding of health decision-making processes. For example, the ‘intention-action gap’ is one BE concept to explain sup-optimal decision-making. It is described as having knowledge that does not translate into behavior. Complementary best BSci practices may provide insights into behavioral determinants and relevant behavior change techniques (BCT). Within the context of BSci, this exploratory study aimed to apply a BE concept with demonstrated effectiveness in financial decision-making to a health behavior: influenza (flu) vaccine uptake. Adults aged >18 years were recruited on Amazon’s Mechanical Turk, a digital labor market where anonymous users perform simple tasks at low cost. Eligible participants were randomized into 2 groups, reviewed a scenario, and then completed a survey on the likelihood of receiving a flu shot. The ‘usual care’ group’s scenario included standard CDC guidance that supported the behavior. The ‘intervention’ group’s scenario included messaging about people who did not receive the flu shot. The framing was such that participants could learn from others’ (strangers) mistakes and the subsequent health consequences: ‘Last year, other people who didn’t get the vaccine were about twice as likely to get the flu, and a number of them were hospitalized or even died. Don’t risk it.’ Descriptive statistics and chi-square analyses were performed on the sample. There were 648 participants (usual care, n=326; int., n=322). Among racial/ethnic minorities (n=169; 57% aged < 40), the intervention group was 22% more likely to report that they were ‘extremely’ or ‘moderately’ likely to get the flu vaccine (p = 0.11). While not statistically significant, findings suggest that framing messages from the perspective of learning from the mistakes of unknown others coupled with the BCT ‘knowledge about the health consequences’ may help influence flu vaccine uptake among the study population. With the widely documented disparities in vaccine uptake, exploration of the complementary application of these concepts and strategies may be critical.Keywords: public health, decision-making, vaccination, behavioral science
Procedia PDF Downloads 41487 Multi-Stakeholder Involvement in Construction and Challenges of Building Information Modeling Implementation
Authors: Zeynep Yazicioglu
Abstract:
Project development is a complex process where many stakeholders work together. Employers and main contractors are the base stakeholders, whereas designers, engineers, sub-contractors, suppliers, supervisors, and consultants are other stakeholders. A combination of the complexity of the building process with a large number of stakeholders often leads to time and cost overruns and irregular resource utilization. Failure to comply with the work schedule and inefficient use of resources in the construction processes indicate that it is necessary to accelerate production and increase productivity. The development of computer software called Building Information Modeling, abbreviated as BIM, is a major technological breakthrough in this area. The use of BIM enables architectural, structural, mechanical, and electrical projects to be drawn in coordination. BIM is a tool that should be considered by every stakeholder with the opportunities it offers, such as minimizing construction errors, reducing construction time, forecasting, and determination of the final construction cost. It is a process spreading over the years, enabling all stakeholders associated with the project and construction to use it. The main goal of this paper is to explore the problems associated with the adoption of BIM in multi-stakeholder projects. The paper is a conceptual study, summarizing the author’s practical experience with design offices and construction firms working with BIM. In the transition period to BIM, three of the challenges will be examined in this paper: 1. The compatibility of supplier companies with BIM, 2. The need for two-dimensional drawings, 3. Contractual issues related to BIM. The paper reviews the literature on BIM usage and reviews the challenges in the transition stage to BIM. Even on an international scale, the supplier that can work in harmony with BIM is not very common, which means that BIM's transition is continuing. In parallel, employers, local approval authorities, and material suppliers still need a 2-D drawing. In the BIM environment, different stakeholders can work on the same project simultaneously, giving rise to design ownership issues. Practical applications and problems encountered are also discussed, providing a number of suggestions for the future.Keywords: BIM opportunities, collaboration, contract issues about BIM, stakeholders of project
Procedia PDF Downloads 102486 Pathologies in the Left Atrium Reproduced Using a Low-Order Synergistic Numerical Model of the Cardiovascular System
Authors: Nicholas Pearce, Eun-jin Kim
Abstract:
Pathologies of the cardiovascular (CV) system remain a serious and deadly health problem for human society. Computational modelling provides a relatively accessible tool for diagnosis, treatment, and research into CV disorders. However, numerical models of the CV system have largely focused on the function of the ventricles, frequently overlooking the behaviour of the atria. Furthermore, in the study of the pressure-volume relationship of the heart, which is a key diagnosis of cardiac vascular pathologies, previous works often evoke popular yet questionable time-varying elastance (TVE) method that imposes the pressure-volume relationship instead of calculating it consistently. Despite the convenience of the TVE method, there have been various indications of its limitations and the need for checking its validity in different scenarios. A model of the combined left ventricle (LV) and left atrium (LA) is presented, which consistently considers various feedback mechanisms in the heart without having to use the TVE method. Specifically, a synergistic model of the left ventricle is extended and modified to include the function of the LA. The synergy of the original model is preserved by modelling the electro-mechanical and chemical functions of the micro-scale myofiber for the LA and integrating it with the microscale and macro-organ-scale heart dynamics of the left ventricle and CV circulation. The atrioventricular node function is included and forms the conduction pathway for electrical signals between the atria and ventricle. The model reproduces the essential features of LA behaviour, such as the two-phase pressure-volume relationship and the classic figure of eight pressure-volume loops. Using this model, disorders in the internal cardiac electrical signalling are investigated by recreating the mechano-electric feedback (MEF), which is impossible where the time-varying elastance method is used. The effects of AV node block and slow conduction are then investigated in the presence of an atrial arrhythmia. It is found that electrical disorders and arrhythmia in the LA degrade the CV system by reducing the cardiac output, power, and heart rate.Keywords: cardiovascular system, left atrium, numerical model, MEF
Procedia PDF Downloads 115485 Diagnosis of Choledocholithiasis with Endosonography
Authors: A. Kachmazova, A. Shadiev, Y. Teterin, P. Yartcev
Abstract:
Introduction: Biliary calculi disease (LCS) still occupies the leading position among urgent diseases of the abdominal cavity, manifesting itself from asymptomatic course to life-threatening states. Nowadays arsenal of diagnostic methods for choledocholithiasis is quite wide: ultrasound, hepatobiliscintigraphy (HBSG), magnetic resonance imaging (MRI), endoscopic retrograde cholangiography (ERCP). Among them, transabdominal ultrasound (TA ultrasound) is the most accessible and routine diagnostic method. Nowadays ERCG is the "gold" standard in diagnosis and one-stage treatment of biliary tract obstruction. However, transpapillary techniques are accompanied by serious postoperative complications (postmanipulative pancreatitis (3-5%), endoscopic papillosphincterotomy bleeding (2%), cholangitis (1%)), the lethality being 0.4%. GBSG and MRI are also quite informative methods in the diagnosis of choledocholithiasis. Small size of concrements, their localization in intrapancreatic and retroduodenal part of common bile duct significantly reduces informativity of all diagnostic methods described above, that demands additional studying of this problem. Materials and Methods: 890 patients with the diagnosis of cholelithiasis (calculous cholecystitis) were admitted to the Sklifosovsky Scientific Research Institute of Hospital Medicine in the period from August, 2020 to June, 2021. Of them 115 people with mechanical jaundice caused by concrements in bile ducts. Results: Final EUS diagnosis was made in all patients (100,0%). In all patients in whom choledocholithiasis diagnosis was revealed or confirmed after EUS, ERCP was performed urgently (within two days from the moment of its detection) as the X-ray operation room was provided; it confirmed the presence of concrements. All stones were removed by lithoextraction using Dormia basket. The postoperative period in these patients had no complications. Conclusions: EUS is the most informative and safe diagnostic method, which allows to detect choledocholithiasis in patients with discrepancies between clinical-laboratory and instrumental methods of diagnosis in shortest time, that in its turn will help to decide promptly on the further tactics of patient treatment. We consider it reasonable to include EUS in the diagnostic algorithm for choledocholithiasis. Disclosure: Nothing to disclose.Keywords: endoscopic ultrasonography, choledocholithiasis, common bile duct, concrement, ERCP
Procedia PDF Downloads 85484 Climate Smart Agriculture: Nano Technology in Solar Drying
Authors: Figen Kadirgan, M. A. Neset Kadirgan, Gokcen A. Ciftcioglu
Abstract:
Addressing food security and climate change challenges have to be done in an integrated manner. To increase food production and to reduce emissions intensity, thus contributing to mitigate climate change, food systems have to be more efficient in the use of resources. To ensure food security and adapt to climate change they have to become more resilient. The changes required in agricultural and food systems will require the creation of supporting institutions and enterprises to provide services and inputs to smallholders, fishermen and pastoralists, and transform and commercialize their production more efficiently. Thus there is continously growing need to switch to green economy where simultaneously causes reduction in carbon emissions and pollution, enhances energy and resource-use efficiency; and prevents the loss of biodiversity and ecosystem services. Smart Agriculture takes into account the four dimensions of food security, availability, accessibility, utilization, and stability. It is well known that, the increase in world population will strengthen the population-food imbalance. The emphasis on reduction of food losses makes a point on production, on farmers, on increasing productivity and income ensuring food security. Where also small farmers enhance their income and stabilize their budget. The use of solar drying for agricultural, marine or meat products is very important for preservation. Traditional sun drying is a relatively slow process where poor food quality is seen due to an infestation of insects, enzymatic reactions, microorganism growth and micotoxin development. In contrast, solar drying has a sound solution to all these negative effects of natural drying and artificial mechanical drying. The technical directions in the development of solar drying systems for agricultural products are compact collector design with high efficiency and low cost. In this study, using solar selective surface produced in Selektif Teknoloji Co. Inc. Ltd., solar dryers with high efficiency will be developed and a feasibility study will be realized.Keywords: energy, renewable energy, solar collector, solar drying
Procedia PDF Downloads 224483 Nanotechnology in Construction as a Building Security
Authors: Hanan Fayez Hussein
Abstract:
‘Due to increasing environmental challenges and security problems in the world such as global warming, storms, and terrorism’, humans have discovered new technologies and new materials in order to program daily life. As providing physical and psychological security is one of the primary functions of architecture, so in order to provide security, building must prevents unauthorized entry and harm to occupant and reduce the threat of attack by making building less attractive targets by new technologies such as; Nanotechnology, which has emerged as a major science and technology focus of the 21st century and will be the next industrial revolution. Nanotechnology is control of the properties of matter, and it deals with structures of the size 100 nanometers or smaller in at least one dimension and has wide application in various fields. The construction and architecture sectors were among the first to be identified as a promising application area for nanotechnology. The advantages of using nanomaterials in construction are enormous, and promises heighten building security by utilizing the strength of building materials to make our buildings more secure and get smart home. Access barriers such as wall and windows could incorporate stronger materials benefiting from nano-reinforcement utilizing nanotubes and nano composites to act as protective cover. Carbon nanotubes, as one of nanotechnology application, can be designed up to 250 times stronger than steel. Nano-enabled devices and materials offer both enhanced and, in some cases, completely new defence systems. In the addition, the small amount of carbon nanoparticles to the construction materials such as; cement, concrete, wood, glass, gypson, and steel can make these materials act as defence elements. This paper highlights the fact that nanotechnology can impact the future global security and how building’s envelop can act as a defensive cover for the building and can be resistance to any threats can attack it. Then focus on its effect on construction materials such as; Concrete can obtain by nanoadditives excellent mechanical, chemical, and physical properties with less material, which can acts as a precautionary shield to the building.Keywords: nanomaterial, global warming, building security, smart homes
Procedia PDF Downloads 82482 Cupric Oxide Thin Films for Optoelectronic Application
Authors: Sanjay Kumar, Dinesh Pathak, Sudhir Saralch
Abstract:
Copper oxide is a semiconductor that has been studied for several reasons such as the natural abundance of starting material copper (Cu); the easiness of production by Cu oxidation; their non-toxic nature and the reasonably good electrical and optical properties. Copper oxide is well-known as cuprite oxide. The cuprite is p-type semiconductors having band gap energy of 1.21 to 1.51 eV. As a p-type semiconductor, conduction arises from the presence of holes in the valence band (VB) due to doping/annealing. CuO is attractive as a selective solar absorber since it has high solar absorbency and a low thermal emittance. CuO is very promising candidate for solar cell applications as it is a suitable material for photovoltaic energy conversion. It has been demonstrated that the dip technique can be used to deposit CuO films in a simple manner using metallic chlorides (CuCl₂.2H₂O) as a starting material. Copper oxide films are prepared using a methanolic solution of cupric chloride (CuCl₂.2H₂O) at three baking temperatures. We made three samples, after heating which converts to black colour. XRD data confirm that the films are of CuO phases at a particular temperature. The optical band gap of the CuO films calculated from optical absorption measurements is 1.90 eV which is quite comparable to the reported value. Dip technique is a very simple and low-cost method, which requires no sophisticated specialized setup. Coating of the substrate with a large surface area can be easily obtained by this technique compared to that in physical evaporation techniques and spray pyrolysis. Another advantage of the dip technique is that it is very easy to coat both sides of the substrate instead of only one and to deposit otherwise inaccessible surfaces. This method is well suited for applying coating on the inner and outer surfaces of tubes of various diameters and shapes. The main advantage of the dip coating method lies in the fact that it is possible to deposit a variety of layers having good homogeneity and mechanical and chemical stability with a very simple setup. In this paper, the CuO thin films preparation by dip coating method and their characterization will be presented.Keywords: absorber material, cupric oxide, dip coating, thin film
Procedia PDF Downloads 309481 Understanding the Information in Principal Component Analysis of Raman Spectroscopic Data during Healing of Subcritical Calvarial Defects
Authors: Rafay Ahmed, Condon Lau
Abstract:
Bone healing is a complex and sequential process involving changes at the molecular level. Raman spectroscopy is a promising technique to study bone mineral and matrix environments simultaneously. In this study, subcritical calvarial defects are used to study bone composition during healing without discomposing the fracture. The model allowed to monitor the natural healing of bone avoiding mechanical harm to the callus. Calvarial defects were created using 1mm burr drill in the parietal bones of Sprague-Dawley rats (n=8) that served in vivo defects. After 7 days, their skulls were harvested after euthanizing. One additional defect per sample was created on the opposite parietal bone using same calvarial defect procedure to serve as control defect. Raman spectroscopy (785 nm) was established to investigate bone parameters of three different skull surfaces; in vivo defects, control defects and normal surface. Principal component analysis (PCA) was utilized for the data analysis and interpretation of Raman spectra and helped in the classification of groups. PCA was able to distinguish in vivo defects from normal surface and control defects. PC1 shows that the major variation at 958 cm⁻¹, which corresponds to ʋ1 phosphate mineral band. PC2 shows the major variation at 1448 cm⁻¹ which is the characteristic band of CH2 deformation and corresponds to collagens. Raman parameters, namely, mineral to matrix ratio and crystallinity was found significantly decreased in the in vivo defects compared to surface and controls. Scanning electron microscope and optical microscope images show the formation of newly generated matrix by means of bony bridges of collagens. Optical profiler shows that surface roughness increased by 30% from controls to in vivo defects after 7 days. These results agree with Raman assessment parameters and confirm the new collagen formation during healing.Keywords: Raman spectroscopy, principal component analysis, calvarial defects, tissue characterization
Procedia PDF Downloads 223480 Ni-W-P Alloy Coating as an Alternate to Electroplated Hard Cr Coating
Authors: S. K. Ghosh, C. Srivastava, P. K. Limaye, V. Kain
Abstract:
Electroplated hard chromium is widely known in coatings and surface finishing, automobile and aerospace industries because of its excellent hardness, wear resistance and corrosion properties. However, its precursor, Cr+6 is highly carcinogenic in nature and a consensus has been adopted internationally to eradicate this coating technology with an alternative one. The search for alternate coatings to electroplated hard chrome is continuing worldwide. Various alloys and nanocomposites like Co-W alloys, Ni-Graphene, Ni-diamond nanocomposites etc. have already shown promising results in this regard. Basically, in this study, electroless Ni-P alloys with excellent corrosion resistance was taken as the base matrix and incorporation of tungsten as third alloying element was considered to improve the hardness and wear resistance of the resultant alloy coating. The present work is focused on the preparation of Ni–W–P coatings by electrodeposition with different content of phosphorous and its effect on the electrochemical, mechanical and tribological performances. The results were also compared with Ni-W alloys. Composition analysis by EDS showed deposition of Ni-32.85 wt% W-3.84 wt% P (designated as Ni-W-LP) and Ni-18.55 wt% W-8.73 wt% P (designated as Ni-W-HP) alloy coatings from electrolytes containing of 0.006 and 0.01M sodium hypophosphite respectively. Inhibition of tungsten deposition in the presence of phosphorous was noted. SEM investigation showed cauliflower like growth along with few microcracks. The as-deposited Ni-W-P alloy coating was amorphous in nature as confirmed by XRD investigation and step-wise crystallization was noticed upon annealing at higher temperatures. For all the coatings, the nanohardness was found to increase after heat-treatment and typical nanonahardness values obtained for 400°C annealed samples were 18.65±0.20 GPa, 20.03±0.25 GPa, and 19.17±0.25 for alloy coatings Ni-W, Ni-W-LP and Ni-W-HP respectively. Therefore, the nanohardness data show very promising results. Wear and coefficient of friction data were recorded by applying a different normal load in reciprocating motion using a ball on plate geometry. Post experiment, the wear mechanism was established by detail investigation of wear-scar morphology. Potentiodynamic measurements showed coating with a high content of phosphorous was most corrosion resistant in 3.5wt% NaCl solution.Keywords: corrosion, electrodeposition, nanohardness, Ni-W-P alloy coating
Procedia PDF Downloads 348479 A Dissipative Particle Dynamics Study of a Capsule in Microfluidic Intracellular Delivery System
Authors: Nishanthi N. S., Srikanth Vedantam
Abstract:
Intracellular delivery of materials has always proved to be a challenge in research and therapeutic applications. Usually, vector-based methods, such as liposomes and polymeric materials, and physical methods, such as electroporation and sonoporation have been used for introducing nucleic acids or proteins. Reliance on exogenous materials, toxicity, off-target effects was the short-comings of these methods. Microinjection was an alternative process which addressed the above drawbacks. However, its low throughput had hindered its adoption widely. Mechanical deformation of cells by squeezing them through constriction channel can cause the temporary development of pores that would facilitate non-targeted diffusion of materials. Advantages of this method include high efficiency in intracellular delivery, a wide choice of materials, improved viability and high throughput. This cell squeezing process can be studied deeper by employing simple models and efficient computational procedures. In our current work, we present a finite sized dissipative particle dynamics (FDPD) model to simulate the dynamics of the cell flowing through a constricted channel. The cell is modeled as a capsule with FDPD particles connected through a spring network to represent the membrane. The total energy of the capsule is associated with linear and radial springs in addition to constraint of the fixed area. By performing detailed simulations, we studied the strain on the membrane of the capsule for channels with varying constriction heights. The strain on the capsule membrane was found to be similar though the constriction heights vary. When strain on the membrane was correlated to the development of pores, we found higher porosity in capsule flowing in wider channel. This is due to localization of strain to a smaller region in the narrow constriction channel. But the residence time of the capsule increased as the channel constriction narrowed indicating that strain for an increased time will cause less cell viability.Keywords: capsule, cell squeezing, dissipative particle dynamics, intracellular delivery, microfluidics, numerical simulations
Procedia PDF Downloads 140478 Comparison of Depth of Cure and Degree of Conversion between Opus Bulk Fill and X-Tra Fill Bulk Fill Composites
Authors: Yasaman Samani, Ali Golmohammadi
Abstract:
Introduction: The degree of conversion and depth of cure affects the clinical success of resin composite restorations directly. One of the main challenges in achieving a successful composite restoration is the achievement of sufficient depth of cure. The insufficient polymerization may lead to a decrease in the physical/mechanical and biological properties of resin composites and, as a result of that, unsuccessful composite restoration. Thus, because of the importance of studying and evaluating the depth of cure and degree of conversion in bulk-fill composites, we decided to evaluate and compare the degree of conversion and depth of cure in two bulk-fill composites; x-tra fill (Voco, Germany) and Opus Bulk fill APS (FGM, Brazil). Materials and Methods: Composite resin specimens (n=10) per group were prepared as cylinder blocks (4×8 mm) with bulk-fill composites, x-tra fil (Voco, Germany) designated as Group A, and Opus Bulk fill APS (FGM, Brazil) designated as Group B. Depth of cure was determined according to “ISO 4049; Depth of Cure” method, In which each specimen were cured (iLED, Woodpecker, China) 40 seconds and FTIR spectroscopy method was used to estimate the degree of conversion of both the bulk-fill composites. The degree of conversion of monomer to polymer was estimated individually in the coronal half (Group A1 and B1) and pulpal half (Group A2 and Group B2) by dividing each specimen into two halves. The data were analyzed using a Student’s t-test and one-way ANOVA at a 5% level of significance. Results: The mean depth of cure in x-tra fil (Voco, Germany) was 3.99 (±0.16), and for Opus Bulk fill, APS (FGM, Brazil) was 2.14 (±0.3). The degree of conversion percentage in Group A1 was 82.7 (±6.1), in group A2 was 73.4 (±5.2), in group B1 was 63.3 (±4.7) and in Group B2 was 56.5 (±7.7). Statistical analysis revealed a significant difference in the depth of cure between the two bulk-fill composites with x-tra fil (Voco, Germany) higher than Opus Bulk fill APS (FGM, Brazil) (P<0.001). The degree of conversion percentage also showed a significant difference, Group A1 being higher than A2 (P=0.0085), B1, and B2 (P<0.001). Group A2 was also higher than B1 (P=0.003) and B2 (P<0.001). There was no significant difference between B1 and B2 (P=0.072). Conclusion: The results indicate that x-tra fill has more depth of cure and a higher percentage of the degree of conversion than Opus Bulk fill APS. The coronal half of x-tra fil had the highest depth of cure percentage (82.66%), and the pulpal half of Opus Bulk fill APS had the lowest percentage (56.45%). Even though both bulk-fill composite materials had an acceptable degree of conversion (55% and higher), x-tra fill has shown better results.Keywords: depth of cure, degree of conversion, bulk-fill composite, FTIR
Procedia PDF Downloads 102477 Development of a Paediatric Head Model for the Computational Analysis of Head Impact Interactions
Authors: G. A. Khalid, M. D. Jones, R. Prabhu, A. Mason-Jones, W. Whittington, H. Bakhtiarydavijani, P. S. Theobald
Abstract:
Head injury in childhood is a common cause of death or permanent disability from injury. However, despite its frequency and significance, there is little understanding of how a child’s head responds during injurious loading. Whilst Infant Post Mortem Human Subject (PMHS) experimentation is a logical approach to understand injury biomechanics, it is the authors’ opinion that a lack of subject availability is hindering potential progress. Computer modelling adds great value when considering adult populations; however, its potential remains largely untapped for infant surrogates. The complexities of child growth and development, which result in age dependent changes in anatomy, geometry and physical response characteristics, present new challenges for computational simulation. Further geometric challenges are presented by the intricate infant cranial bones, which are separated by sutures and fontanelles and demonstrate a visible fibre orientation. This study presents an FE model of a newborn infant’s head, developed from high-resolution computer tomography scans, informed by published tissue material properties. To mimic the fibre orientation of immature cranial bone, anisotropic properties were applied to the FE cranial bone model, with elastic moduli representing the bone response both parallel and perpendicular to the fibre orientation. Biofiedility of the computational model was confirmed by global validation against published PMHS data, by replicating experimental impact tests with a series of computational simulations, in terms of head kinematic responses. Numerical results confirm that the FE head model’s mechanical response is in favourable agreement with the PMHS drop test results.Keywords: finite element analysis, impact simulation, infant head trauma, material properties, post mortem human subjects
Procedia PDF Downloads 326476 In vitro Characterization of Mice Bone Microstructural Changes by Low-Field and High-Field Nuclear Magnetic Resonance
Authors: Q. Ni, J. A. Serna, D. Holland, X. Wang
Abstract:
The objective of this study is to develop Nuclear Magnetic Resonance (NMR) techniques to enhance bone related research applied on normal and disuse (Biglycan knockout) mice bone in vitro by using both low-field and high-field NMR simultaneously. It is known that the total amplitude of T₂ relaxation envelopes, measured by the Carr-Purcell-Meiboom-Gill NMR spin echo train (CPMG), is a representation of the liquid phase inside the pores. Therefore, the NMR CPMG magnetization amplitude can be transferred to the volume of water after calibration with the NMR signal amplitude of the known volume of the selected water. In this study, the distribution of mobile water, porosity that can be determined by using low-field (20 MHz) CPMG relaxation technique, and the pore size distributions can be determined by a computational inversion relaxation method. It is also known that the total proton intensity of magnetization from the NMR free induction decay (FID) signal is due to the water present inside the pores (mobile water), the water that has undergone hydration with the bone (bound water), and the protons in the collagen and mineral matter (solid-like protons). Therefore, the components of total mobile and bound water within bone that can be determined by low-field NMR free induction decay technique. Furthermore, the bound water in solid phase (mineral and organic constituents), especially, the dominated component of calcium hydroxyapatite (Ca₁₀(OH)₂(PO₄)₆) can be determined by using high-field (400 MHz) magic angle spinning (MAS) NMR. With MAS technique reducing NMR spectral linewidth inhomogeneous broadening and susceptibility broadening of liquid-solid mix, in particular, we can conduct further research into the ¹H and ³¹P elements and environments of bone materials to identify the locations of bound water such as OH- group within minerals and bone architecture. We hypothesize that with low-field and high-field magic angle spinning NMR can provide a more complete interpretation of water distribution, particularly, in bound water, and these data are important to access bone quality and predict the mechanical behavior of bone.Keywords: bone, mice bone, NMR, water in bone
Procedia PDF Downloads 176475 Phi Thickening Induction as a Response to Abiotic Stress in the Orchid Miltoniopsis
Authors: Nurul Aliaa Idris, David A. Collings
Abstract:
Phi thickenings are specialized secondary cell wall thickenings that are found in the cortex of the roots in a wide range of plant species, including orchids. The role of phi thickenings in the root is still under debate through research have linked environmental conditions, particularly abiotic stresses such as water stress, heavy metal stress and salinity to their induction in the roots. It has also been suggested that phi thickenings may act as a barrier to regulate solute uptake, act as a physical barrier against fungal hyphal penetration due to its resemblance to the Casparian strip and play a mechanical role to support cortical cells. We have investigated phi thickening function in epiphytic orchids of the genus Miltoniopsis through induction experiment against factors such as soil compaction and water stress. The permeability of the phi thickenings in Miltoniopsis was tested through uptake experiments using the fluorescent tracer dyes Calcofluor white, Lucifer yellow and Propidium iodide then viewed with wide-field or confocal microscopy. To test whether phi thickening may prevent fungal colonization in the root cell, fungal re-infection experiment was conducted by inoculating isolated symbiotic fungus to sterile in vitro Miltoniopsis explants. As the movement of fluorescent tracers through the apoplast was not blocked by phi thickenings, and as phi thickenings developed in the roots of sterile cultures in the absence of fungus and did not prevent fungal colonization of cortical cells, the phi thickenings in Miltoniopsis do not function as a barrier. Phi thickenings were found to be absent in roots grown on agar and remained absent when plants were transplanted to moist soil. However, phi thickenings were induced when plants were transplanted to well-drained media, and by the application of water stress in all soils tested. It is likely that phi thickenings stabilize the root cortex during dehydration. Nevertheless, the varied induction responses present in different plant species suggest that the phi thickenings may play several adaptive roles, instead of just one, depending on species.Keywords: abiotic stress, Miltoniopsis, orchid, phi thickening
Procedia PDF Downloads 146474 Automated, Short Cycle Production of Polymer Composite Applications with Special Regards to the Complexity and Recyclability of Composite Elements
Authors: Peter Pomlenyi, Orsolya Semperger, Gergely Hegedus
Abstract:
The purpose of the project is to develop a complex composite component with visible class ‘A’ surface. It is going to integrate more functions, including continuous fiber reinforcement, foam core, injection molded ribs, and metal inserts. Therefore we are going to produce recyclable structural composite part from thermoplastic polymer in serial production with short cycle time for automotive applications. Our design of the process line is determined by the principles of Industry 4.0. Accordingly, our goal is to map in details the properties of the final product including the mechanical properties in order to replace metal elements used in automotive industry, with special regard to the effect of each manufacturing process step on the afore mentioned properties. Period of the project is 3 years, which lasts from the 1st of December 2016 to the 30th November 2019. There are four consortium members in the R&D project evopro systems engineering Ltd., Department of Polymer Engineering of the Budapest University of Technology and Economics, Research Centre for Natural Sciences of Hungarian Academy of Sciences and eCon Engineering Ltd. One of the most important result that we can obtain short cycle time (up to 2-3 min) with in-situ polymerization method, which is an innovation in the field of thermoplastic composite production. Because of the mentioned method, our fully automated production line is able to manufacture complex thermoplastic composite parts and satisfies the short cycle time required by the automotive industry. In addition to the innovative technology, we are able to design, analyze complex composite parts with finite element method, and validate our results. We are continuously collecting all the information, knowledge and experience to improve our technology and obtain even more accurate results with respect to the quality and complexity of the composite parts, the cycle time of the production, and the design and analyzing method of the composite parts.Keywords: T-RTM technology, composite, automotive, class A surface
Procedia PDF Downloads 139473 Numerical Simulation of Precast Concrete Panels for Airfield Pavement
Authors: Josef Novák, Alena Kohoutková, Vladimír Křístek, Jan Vodička
Abstract:
Numerical analysis software belong to the main tools for simulating the real behavior of various concrete structures and elements. In comparison with experimental tests, they offer an affordable way to study the mechanical behavior of structures under various conditions. The contribution deals with a precast element of an innovative airfield pavement system which is being developed within an ongoing scientific project. The proposed system consists a two-layer surface course of precast concrete panels positioned on a two-layer base of fiber-reinforced concrete with recycled aggregate. As the panels are supposed to be installed directly on the hardened base course, imperfections at the interface between the base course and surface course are expected. Considering such circumstances, three various behavior patterns could be established and considered when designing the precast element. Enormous costs of full-scale experiments force to simulate the behavior of the element in a numerical analysis software using finite element method. The simulation was conducted on a nonlinear model in order to obtain such results which could fully compensate results from the experiments. First, several loading schemes were considered with the aim to observe the critical one which was used for the simulation later on. The main objective of the simulation was to optimize reinforcement of the element subject to quasi-static loading from airplanes. When running the simulation several parameters were considered. Namely, it concerns geometrical imperfections, manufacturing imperfections, stress state in reinforcement, stress state in concrete and crack width. The numerical simulation revealed that the precast element should be heavily reinforced to fulfill all the demands assumed. The main cause of using high amount of reinforcement is the size of the imperfections which could occur at real structure. Improving manufacturing quality, the installation of the precast panels on a fresh base course or using a bedding layer underneath the surface course belong to the main steps how to reduce the size of imperfections and consequently lower the consumption of reinforcement.Keywords: nonlinear analysis, numerical simulation, precast concrete, pavement
Procedia PDF Downloads 256