Search results for: unconfined compressive strength
208 Enhanced Field Emission from Plasma Treated Graphene and 2D Layered Hybrids
Authors: R. Khare, R. V. Gelamo, M. A. More, D. J. Late, Chandra Sekhar Rout
Abstract:
Graphene emerges out as a promising material for various applications ranging from complementary integrated circuits to optically transparent electrode for displays and sensors. The excellent conductivity and atomic sharp edges of unique two-dimensional structure makes graphene a propitious field emitter. Graphene analogues of other 2D layered materials have emerged in material science and nanotechnology due to the enriched physics and novel enhanced properties they present. There are several advantages of using 2D nanomaterials in field emission based devices, including a thickness of only a few atomic layers, high aspect ratio (the ratio of lateral size to sheet thickness), excellent electrical properties, extraordinary mechanical strength and ease of synthesis. Furthermore, the presence of edges can enhance the tunneling probability for the electrons in layered nanomaterials similar to that seen in nanotubes. Here we report electron emission properties of multilayer graphene and effect of plasma (CO2, O2, Ar and N2) treatment. The plasma treated multilayer graphene shows an enhanced field emission behavior with a low turn on field of 0.18 V/μm and high emission current density of 1.89 mA/cm2 at an applied field of 0.35 V/μm. Further, we report the field emission studies of layered WS2/RGO and SnS2/RGO composites. The turn on field required to draw a field emission current density of 1μA/cm2 is found to be 3.5, 2.3 and 2 V/μm for WS2, RGO and the WS2/RGO composite respectively. The enhanced field emission behavior observed for the WS2/RGO nanocomposite is attributed to a high field enhancement factor of 2978, which is associated with the surface protrusions of the single-to-few layer thick sheets of the nanocomposite. The highest current density of ~800 µA/cm2 is drawn at an applied field of 4.1 V/μm from a few layers of the WS2/RGO nanocomposite. Furthermore, first-principles density functional calculations suggest that the enhanced field emission may also be due to an overlap of the electronic structures of WS2 and RGO, where graphene-like states are dumped in the region of the WS2 fundamental gap. Similarly, the turn on field required to draw an emission current density of 1µA/cm2 is significantly low (almost half the value) for the SnS2/RGO nanocomposite (2.65 V/µm) compared to pristine SnS2 (4.8 V/µm) nanosheets. The field enhancement factor β (~3200 for SnS2 and ~3700 for SnS2/RGO composite) was calculated from Fowler-Nordheim (FN) plots and indicates emission from the nanometric geometry of the emitter. The field emission current versus time plot shows overall good emission stability for the SnS2/RGO emitter. The DFT calculations reveal that the enhanced field emission properties of SnS2/RGO composites are because of a substantial lowering of work function of SnS2 when supported by graphene, which is in response to p-type doping of the graphene substrate. Graphene and 2D analogue materials emerge as a potential candidate for future field emission applications.Keywords: graphene, layered material, field emission, plasma, doping
Procedia PDF Downloads 365207 Graphic Narratives: Representations of Refugeehood in the Form of Illustration
Authors: Pauline Blanchet
Abstract:
In a world where images are a prominent part of our daily lives and a way of absorbing information, the analysis of the representation of migration narratives is vital. This thesis raises questions concerning the power of illustrations, drawings and visual culture in order to represent the migration narratives in the age of Instagram. The rise of graphic novels and comics has come about in the last fifteen years, specifically regarding contemporary authors engaging with complex social issues such as migration and refugeehood. Due to this, refugee subjects are often in these narratives, whether they are autobiographical stories or whether the subject is included in the creative process. Growth in discourse around migration has been present in other art forms; in 2018, there has been dedicated exhibitions around migration such as Tania Bruguera at the TATE (2018-2019), ‘Journeys Drawn’ at the House of Illustration (2018-2019) and dedicated film festivals (2018; the Migration Film Festival), which have shown the recent considerations of using the arts as a medium of expression regarding themes of refugeehood and migration. Graphic visuals are fast becoming a key instrument when representing migration, and the central thesis of this paper is to show the strength and limitations of this form as well the methodology used by the actors in the production process. Recent works which have been released in the last ten years have not being analysed in the same context as previous graphic novels such as Palestine and Persepolis. While a lot of research has been done on the mass media portrayals of refugees in photography and journalism, there is a lack of literature on the representation with illustrations. There is little research about the accessibility of graphic novels such as where they can be found and what the intentions are when writing the novels. It is interesting to see why these authors, NGOs, and curators have decided to highlight these migrant narratives in a time when the mainstream media has done extensive coverage on the ‘refugee crisis’. Using primary data by doing one on one interviews with artists, curators, and NGOs, this paper investigates the efficiency of graphic novels for depicting refugee stories as a viable alternative to other mass medium forms. The paper has been divided into two distinct sections. The first part is concerned with the form of the comic itself and how it either limits or strengthens the representation of migrant narratives. This will involve analysing the layered and complex forms that comics allow such as multimedia pieces, use of photography and forms of symbolism. It will also show how the illustration allows for anonymity of refugees, the empathetic aspect of the form and how the history of the graphic novel form has allowed space for positive representations of women in the last decade. The second section will analyse the creative and methodological process which takes place by the actors and their involvement with the production of the works.Keywords: graphic novel, refugee, communication, media, migration
Procedia PDF Downloads 122206 Evaluating the Benefits of Intelligent Acoustic Technology in Classrooms: A Case Study
Authors: Megan Burfoot, Ali GhaffarianHoseini, Nicola Naismith, Amirhosein GhaffarianHoseini
Abstract:
Intelligent Acoustic Technology (IAT) is a novel architectural device used in buildings to automatically vary the acoustic conditions of space. IAT is realized by integrating two components: Variable Acoustic Technology (VAT) and an intelligent system. The VAT passively alters the RT by changing the total sound absorption in a room. In doing so, the Reverberation Time (RT) is changed and thus, the sound strength and clarity are altered. The intelligent system detects sound waves in real-time to identify the aural situation, and the RT is adjusted accordingly based on pre-programmed algorithms. IAT - the synthesis of these two components - can dramatically improve acoustic comfort, as the acoustic condition is automatically optimized for any detected aural situation. This paper presents an evaluation of the improvements of acoustic comfort in an existing tertiary classroom located at Auckland University of Technology in New Zealand. This is a pilot case study, the first of its’ kind attempting to quantify the benefits of IAT. Naturally, the potential acoustic improvements from IAT can be actualized by only installing the VAT component of IAT and by manually adjusting it rather than utilizing an intelligent system. Such a simplified methodology is adopted for this case study to understand the potential significance of IAT without adopting a time and cost-intensive strategy. For this study, the VAT is built by overlaying reflective, rotating louvers over sound absorption panels. RT's are measured according to international standards before and after installing VAT in the classroom. The louvers are manually rotated in increments by the experimenter and further RT measurements are recorded. The results are compared with recommended guidelines and reference values from national standards for spaces intended for speech and communication. The results obtained from the measurements are used to quantify the potential improvements in classroom acoustic comfort, where IAT to be used. This evaluation reveals the current existence of poor acoustic conditions in the classroom caused by high RT's. The poor acoustics are also largely attributed to the classrooms’ inability to vary acoustic parameters for changing aural situations. The classroom experiences one static acoustic state, neglecting to recognize the nature of classrooms as flexible, dynamic spaces. Evidently, when using VAT the classroom is prescribed with a wide range of RTs it can achieve. Namely, acoustic requirements for varying teaching approaches are satisfied, and acoustic comfort is improved. By quantifying the benefits of using VAT, it can confidently suggest these same benefits are achieved with IAT. Nevertheless, it is encouraged that future studies continue this line of research toward the eventual development of IAT and its’ acceptance into mainstream architecture.Keywords: acoustic comfort, classroom acoustics, intelligent acoustics, variable acoustics
Procedia PDF Downloads 192205 Comparative Analysis of the Expansion Rate and Soil Erodibility Factor (K) of Some Gullies in Nnewi and Nnobi, Anambra State Southeastern Nigeria
Authors: Nzereogu Stella Kosi, Igwe Ogbonnaya, Emeh Chukwuebuka Odinaka
Abstract:
A comparative analysis of the expansion rate and soil erodibility of some gullies in Nnewi and Nnobi both of Nanka Formation were studied. The study involved an integration of field observations, geotechnical analysis, slope stability analysis, multivariate statistical analysis, gully expansion rate analysis, and determination of the soil erodibility factor (K) from Revised Universal Soil Loss Equation (RUSLE). Fifteen representative gullies were studied extensively, and results reveal that the geotechnical properties of the soil, topography, vegetation cover, rainfall intensity, and the anthropogenic activities in the study area were major factors propagating and influencing the erodibility of the soils. The specific gravity of the soils ranged from 2.45-2.66 and 2.54-2.78 for Nnewi and Nnobi, respectively. Grain size distribution analysis revealed that the soils are composed of gravel (5.77-17.67%), sand (79.90-91.01%), and fines (2.36-4.05%) for Nnewi and gravel (7.01-13.65%), sand (82.47-88.67%), and fines (3.78-5.02%) for Nnobi. The soils are moderately permeable with values ranging from 2.92 x 10-5 - 6.80 x 10-4 m/sec and 2.35 x 10-6 - 3.84 x 10⁻⁴m/sec for Nnewi and Nnobi respectively. All have low cohesion values ranging from 1–5kPa and 2-5kPa and internal friction angle ranging from 29-38° and 30-34° for Nnewi and Nnobi, respectively, which suggests that the soils have low shear strength and are susceptible to shear failure. Furthermore, the compaction test revealed that the soils were loose and easily erodible with values of maximum dry density (MDD) and optimum moisture content (OMC) ranging from 1.82-2.11g/cm³ and 8.20-17.81% for Nnewi and 1.98-2.13g/cm³ and 6.00-17.80% respectively. The plasticity index (PI) of the fines showed that they are nonplastic to low plastic soils and highly liquefiable with values ranging from 0-10% and 0-9% for Nnewi and Nnobi, respectively. Multivariate statistical analyses were used to establish relationship among the determined parameters. Slope stability analysis gave factor of safety (FoS) values in the range of 0.50-0.76 and 0.82-0.95 for saturated condition and 0.73-0.98 and 0.87-1.04 for unsaturated condition for both Nnewi and Nnobi, respectively indicating that the slopes are generally unstable to critically stable. The erosion expansion rate analysis for a fifteen-year period (2005-2020) revealed an average longitudinal expansion rate of 36.05m/yr, 10.76m/yr, and 183m/yr for Nnewi, Nnobi, and Nanka type gullies, respectively. The soil erodibility factor (K) are 8.57x10⁻² and 1.62x10-4 for Nnewi and Nnobi, respectively, indicating that the soils in Nnewi have higher erodibility potentials than those of Nnobi. From the study, both the Nnewi and Nnobi areas are highly prone to erosion. However, based on the relatively lower fine content of the soil, relatively lower topography, steeper slope angle, and sparsely vegetated terrain in Nnewi, soil erodibility and gully intensity are more profound in Nnewi than Nnobi.Keywords: soil erodibility, gully expansion, nnewi-nnobi, slope stability, factor of safety
Procedia PDF Downloads 133204 Measurement of Magnetic Properties of Grainoriented Electrical Steels at Low and High Fields Using a Novel Single
Authors: Nkwachukwu Chukwuchekwa, Joy Ulumma Chukwuchekwa
Abstract:
Magnetic characteristics of grain-oriented electrical steel (GOES) are usually measured at high flux densities suitable for its typical applications in power transformers. There are limited magnetic data at low flux densities which are relevant for the characterization of GOES for applications in metering instrument transformers and low frequency magnetic shielding in magnetic resonance imaging medical scanners. Magnetic properties such as coercivity, B-H loop, AC relative permeability and specific power loss of conventional grain oriented (CGO) and high permeability grain oriented (HGO) electrical steels were measured and compared at high and low flux densities at power magnetising frequency. 40 strips comprising 20 CGO and 20 HGO, 305 mm x 30 mm x 0.27 mm from a supplier were tested. The HGO and CGO strips had average grain sizes of 9 mm and 4 mm respectively. Each strip was singly magnetised under sinusoidal peak flux density from 8.0 mT to 1.5 T at a magnetising frequency of 50 Hz. The novel single sheet tester comprises a personal computer in which LabVIEW version 8.5 from National Instruments (NI) was installed, a NI 4461 data acquisition (DAQ) card, an impedance matching transformer, to match the 600 minimum load impedance of the DAQ card with the 5 to 20 low impedance of the magnetising circuit, and a 4.7 Ω shunt resistor. A double vertical yoke made of GOES which is 290 mm long and 32 mm wide is used. A 500-turn secondary winding, about 80 mm in length, was wound around a plastic former, 270 mm x 40 mm, housing the sample, while a 100-turn primary winding, covering the entire length of the plastic former was wound over the secondary winding. A standard Epstein strip to be tested is placed between the yokes. The magnetising voltage was generated by the LabVIEW program through a voltage output from the DAQ card. The voltage drop across the shunt resistor and the secondary voltage were acquired by the card for calculation of magnetic field strength and flux density respectively. A feedback control system implemented in LabVIEW was used to control the flux density and to make the induced secondary voltage waveforms sinusoidal to have repeatable and comparable measurements. The low noise NI4461 card with 24 bit resolution and a sampling rate of 204.8 KHz and 92 KHz bandwidth were chosen to take the measurements to minimize the influence of thermal noise. In order to reduce environmental noise, the yokes, sample and search coil carrier were placed in a noise shielding chamber. HGO was found to have better magnetic properties at both high and low magnetisation regimes. This is because of the higher grain size of HGO and higher grain-grain misorientation of CGO. HGO is better CGO in both low and high magnetic field applications.Keywords: flux density, electrical steel, LabVIEW, magnetization
Procedia PDF Downloads 293203 Exploring the Lived Experiences of Breast Cancer Survivors Post-Treatment
Authors: Nova Grail S. Luminang, Gwyneth B. Gortiza, Alvin E. Haboc, Marinol K. Hate, Rhean Mitchel N. Joven, Kara Kate D. Lammao, Rosemarie M. Lambayung, Elmo Carl D. Lardizabal, Zyra B. Linggayo, Rizza Mae G. Liwag, Ronalyn O. Songcuan
Abstract:
Breast cancer survivorship represents a complex and continuous journey extending beyond the completion of treatment, involving coping with physical, emotional, and psychological aspects of life post-treatment. This study aimed to explore the lived experiences of breast cancer survivors after successful treatment in Tabuk City, focusing on their post-treatment experiences, coping mechanisms, and necessary lifestyle changes. Researchers have selected Tabuk City as their research locale. Utilizing Martin Heidegger’s descriptive phenomenological design, this qualitative research included six participants, allowing for data saturation. Purposive sampling was employed to select participants. Researchers used Colaizzi’s Phenomenological Method in analyzing the data in order to achieve a reliable understanding of the participants’ experiences. The findings revealed three main themes: going through post-treatment hurdles, building resilience, and transformative wellness adjustments. Breast cancer survivors faced significant challenges, including physical adversities, emotional turmoil, limited social life, memory lapses, decreased sexual intimacy, and economic constraints. To cope, survivors adjusted their thoughts and attitudes, accepted their situation, relied on religious beliefs, and joined the support group Kalinga Cancer Care Ministry INC. Additionally, they strived to return to a normal life and embraced gratitude. Survivors made essential changes to their daily routines, modifying their diets, exploring herbal remedies, and incorporating physical activities such as walking and household chores. These adjustments helped improve their overall well-being and prevent cancer recurrence. The researchers concluded that the journey of breast cancer survivors is marked by significant challenges and inspiring resilience. The impact of breast cancer treatment extends beyond physical recovery, encompassing profound emotional and social dimensions. Despite these difficulties, survivors demonstrate remarkable strength and adaptability, making positive lifestyle changes that offer a hopeful and inspiring narrative of recovery and perseverance.Keywords: breast cancer, lived experiences, breast cancer survivor, post-treatment hurdles, emotional turmoil
Procedia PDF Downloads 39202 Civilian and Military Responses to Domestic Security Threats: A Cross-Case Analysis of Belgium, France, and the United Kingdom
Authors: John Hardy
Abstract:
The domestic security environment in Europe has changed dramatically in recent years. Since January 2015, a significant number of domestic security threats that emerged in Europe were located in Belgium, France and the United Kingdom. While some threats were detected in the planning phase, many also resulted in terrorist attacks. Authorities in all three countries instituted special or emergency measures to provide additional security to their populations. Each country combined an additional policing presence with a specific military operation to contribute to a comprehensive security response to domestic threats. This study presents a cross-case analysis of three countries’ civilian and military responses to domestic security threats in Europe. Each case study features a unique approach to combining civilian and military capabilities in similar domestic security operations during the same time period and threat environment. The research design focuses on five variables relevant to the relationship between civilian and military roles in each security response. These are the distinction between policing and military roles, the legal framework for the domestic deployment of military forces, prior experience in civil-military coordination, the institutional framework for threat assessments, and the level of public support for the domestic use of military forces. These variables examine the influence of domestic social, political, and legal factors on the design of combined civil-military operations in response to domestic security threats. Each case study focuses on a specific operation: Operation Vigilant Guard in Belgium, Operation Sentinel in France, and Operation Temperer in the United Kingdom. The results demonstrate that the level of distinction between policing and military roles and the existence of a clear and robust legal framework for the domestic use force by military personnel significantly influence the design and implementation of civilian and military roles in domestic security operations. The findings of this study indicate that Belgium, France and the United Kingdom experienced different design and implementation challenges for their domestic security operations. Belgium and France initially had less-developed legal frameworks for deploying the military in domestic security operations than the United Kingdom. This was offset by public support for enacting emergency measures and the strength of existing civil-military coordination mechanisms. The United Kingdom had a well-developed legal framework for integrating civilian and military capabilities in domestic security operations. However, its experiences in Ireland also made the government more sensitive to public perceptions regarding the domestic deployment of military forces.Keywords: counter-terrorism, democracy, homeland security, intelligence, militarization, policing
Procedia PDF Downloads 145201 Mechanical Properties of Carbon Fibre Reinforced Thermoplastic Composites Consisting of Recycled Carbon Fibres and Polyamide 6 Fibres
Authors: Mir Mohammad Badrul Hasan, Anwar Abdkader, Chokri Cherif
Abstract:
With the increasing demand and use of carbon fibre reinforced composites (CFRC), disposal of the carbon fibres (CF) and end of life composite parts is gaining tremendous importance on the issue especially of sustainability. Furthermore, a number of processes (e. g. pyrolysis, solvolysis, etc.) are available currently to obtain recycled CF (rCF) from end-of-life CFRC. Since the CF waste or rCF are neither allowed to be thermally degraded nor landfilled (EU Directive 1999/31/EC), profitable recycling and re-use concepts are urgently necessary. Currently, the market for materials based on rCF mainly consists of random mats (nonwoven) made from short fibres. The strengths of composites that can be achieved from injection-molded components and from nonwovens are between 200-404 MPa and are characterized by low performance and suitable for non-structural applications such as in aircraft and vehicle interiors. On the contrary, spinning rCF to yarn constructions offers good potential for higher CFRC material properties due to high fibre orientation and compaction of rCF. However, no investigation is reported till yet on the direct comparison of the mechanical properties of thermoplastic CFRC manufactured from virgin CF filament yarn and spun yarns from staple rCF. There is a lack of understanding on the level of performance of the composites that can be achieved from hybrid yarns consisting of rCF and PA6 fibres. In this drop back, extensive research works are being carried out at the Textile Machinery and High-Performance Material Technology (ITM) on the development of new thermoplastic CFRC from hybrid yarns consisting of rCF. For this purpose, a process chain is developed at the ITM starting from fibre preparation to hybrid yarns manufacturing consisting of staple rCF by mixing with thermoplastic fibres. The objective is to apply such hybrid yarns for the manufacturing of load bearing textile reinforced thermoplastic CFRCs. In this paper, the development of innovative multi-component core-sheath hybrid yarn structures consisting of staple rCF and polyamide 6 (PA 6) on a DREF-3000 friction spinning machine is reported. Furthermore, Unidirectional (UD) CFRCs are manufactured from the developed hybrid yarns, and the mechanical properties of the composites such as tensile and flexural properties are analyzed. The results show that the UD composite manufactured from the developed hybrid yarns consisting of staple rCF possesses approximately 80% of the tensile strength and E-module to those produced from virgin CF filament yarn. The results show a huge potential of the DREF-3000 friction spinning process to develop composites from rCF for high-performance applications.Keywords: recycled carbon fibres, hybrid yarn, friction spinning, thermoplastic composite
Procedia PDF Downloads 256200 A Systematic Review on the Whole-Body Cryotherapy versus Control Interventions for Recovery of Muscle Function and Perceptions of Muscle Soreness Following Exercise-Induced Muscle Damage in Runners
Authors: Michael Nolte, Iwona Kasior, Kala Flagg, Spiro Karavatas
Abstract:
Background: Cryotherapy has been used as a post-exercise recovery modality for decades. Whole-body cryotherapy (WBC) is an intervention which involves brief exposures to extremely cold air in order to induce therapeutic effects. It is currently being investigated for its effectiveness in treating certain exercise-induced impairments. Purpose: The purpose of this systematic review was to determine whether WBC as a recovery intervention is more, less, or equally as effective as other interventions at reducing perceived levels of muscle soreness and promoting recovery of muscle function after exercise-induced muscle damage (EIMD) from running. Methods: A systematic review of the current literature was performed utilizing the following MeSH terms: cryotherapy, whole-body cryotherapy, exercise-induced muscle damage, muscle soreness, muscle recovery, and running. The databases utilized were PubMed, CINAHL, EBSCO Host, and Google Scholar. Articles were included if they were published within the last ten years, had a CEBM level of evidence of IIb or higher, had a PEDro scale score of 5 or higher, studied runners as primary subjects, and utilized both perceived levels of muscle soreness and recovery of muscle function as dependent variables. Articles were excluded if subjects did not include runners, if the interventions included PBC instead of WBC, and if both muscle performance and perceived muscle soreness were not assessed within the study. Results: Two of the four articles revealed that WBC was significantly more effective than treatment interventions such as far-infrared radiation and passive recovery at reducing perceived levels of muscle soreness and restoring muscle power and endurance following simulated trail runs and high-intensity interval running, respectively. One of the four articles revealed no significant difference between WBC and passive recovery in terms of reducing perceived muscle soreness and restoring muscle power following sprint intervals. One of the four articles revealed that WBC had a harmful effect compared to CWI and passive recovery on both perceived muscle soreness and recovery of muscle strength and power following a marathon. Discussion/Conclusion: Though there was no consensus in terms of WBC’s effectiveness at treating exercise-induced muscle damage following running compared to other interventions, it seems as though WBC may at least have a time-dependent positive effect on muscle soreness and recovery following high-intensity interval runs and endurance running, marathons excluded. More research needs to be conducted in order to determine the most effective way to implement WBC as a recovery method for exercise-induced muscle damage, including the optimal temperature, timing, duration, and frequency of treatment.Keywords: cryotherapy, physical therapy intervention, physical therapy, whole body cryotherapy
Procedia PDF Downloads 242199 Morphological Transformation of Traditional Cities: The Case Study of the Historic Center of the City of Najaf
Authors: Sabeeh Lafta Farhan, Ihsan Abbass Jasim, Sohaib Kareem Al-Mamoori
Abstract:
This study addresses the subject of transformation of urban structures and how does this transformation affect the character of traditional cities, which represents the research issue. Hence, the research has aimed at studying and learning about the urban structure characteristics and morphological transformation features in the traditional cities centers, and to look for means and methods to preserve the character of those cities. Cities are not merely locations inhabited by a large number of people, they are political and legal entities, in addition to economic activities that distinguish these cities, thus, they are a complex set of institutions, and the transformation in urban environment cannot be recognized without understanding these relationships. The research presumes an existing impact of urbanization on the properties of traditional structure of the Holy City of Najaf. The research has defined urbanization as restructuring and re-planning of urban areas that have lost their functions and bringing them into social and cultural life in the city, to be able to serve economy in order to better respond to the needs of users. Sacred Cities provide the organic connection between acts of worship and dealings and reveal the mechanisms and reasons behind the regulatory nature of the sacred shrine and their role in achieving organizational assimilation of urban morphology. The research has reached a theoretical framework of the particulars of urbanization. This framework has been applied to the historic center of the old city of Najaf, where the most important findings of the research were that the visual and structural dominant presence of holy shrine of Imam Ali (peace be upon him) remains to emphasize the visual particularity, and the main role of the city, which hosts one of the most important Muslim shrines in the world, in addition to the visible golden dome rising above the skyline, and the Imam Ali Mosque the hub and the center for religious activities. Thus, in view of being a place of main importance and a symbol of religious and Islamic culture, it is very important to have the shrine of Imam Ali (AS) prevailing on all zones of re-development in the old city. Consequently, the research underlined that the distinctive and unique character of the city of Najaf did not proceed from nothing, but was achieved through the unrivaled characteristics and features possessed by the city of Najaf alone, which allowed it and enabled it to occupy this status among the Arab and Muslim cities. That is why the activities arising from the development have to enhance the historical role of the city in order to have this development as clear support, strength and further addition to the city assets and its cultural heritage, and not seeing the developmental activities crushing the city urban traditional fabric, cultural heritage and its historical specificity.Keywords: Iraq, the city of Najaf, heritage, traditional cities, morphological transformation
Procedia PDF Downloads 318198 Evaluation of Suspended Particles Impact on Condensation in Expanding Flow with Aerodynamics Waves
Authors: Piotr Wisniewski, Sławomir Dykas
Abstract:
Condensation has a negative impact on turbomachinery efficiency in many energy processes.In technical applications, it is often impossible to dry the working fluid at the nozzle inlet. One of the most popular working fluid is atmospheric air that always contains water in form of steam, liquid, or ice crystals. Moreover, it always contains some amount of suspended particles which influence the phase change process. It is known that the phenomena of evaporation or condensation are connected with release or absorption of latent heat, what influence the fluid physical properties and might affect the machinery efficiency therefore, the phase transition has to be taken under account. This researchpresents an attempt to evaluate the impact of solid and liquid particles suspended in the air on the expansion of moist air in a low expansion rate, i.e., with expansion rate, P≈1000s⁻¹. The numerical study supported by analytical and experimental research is presented in this work. The experimental study was carried out using an in-house experimental test rig, where nozzle was examined for different inlet air relative humidity values included in the range of 25 to 51%. The nozzle was tested for a supersonic flow as well as for flow with shock waves induced by elevated back pressure. The Schlieren photography technique and measurement of static pressure on the nozzle wall were used for qualitative identification of both condensation and shock waves. A numerical model validated against experimental data available in the literature was used for analysis of occurring flow phenomena. The analysis of the suspended particles number, diameter, and character (solid or liquid) revealed their connection with heterogeneous condensation importance. If the expansion of fluid without suspended particlesis considered, the condensation triggers so called condensation wave that appears downstream the nozzle throat. If the solid particles are considered, with increasing number of them, the condensation triggers upwind the nozzle throat, decreasing the condensation wave strength. Due to the release of latent heat during condensation, the fluid temperature and pressure increase, leading to the shift of normal shock upstream the flow. Owing relatively large diameters of the droplets created during heterogeneous condensation, they evaporate partially on the shock and continues to evaporate downstream the nozzle. If the liquid water particles are considered, due to their larger radius, their do not affect the expanding flow significantly, however might be in major importance while considering the compression phenomena as they will tend to evaporate on the shock wave. This research proves the need of further study of phase change phenomena in supersonic flow especially considering the interaction of droplets with the aerodynamic waves in the flow.Keywords: aerodynamics, computational fluid dynamics, condensation, moist air, multi-phase flows
Procedia PDF Downloads 122197 Control of an Outbreak of Vancomycin-Resistant Enterococci in a Tunisian Teaching Hospital
Authors: Hela Ghali, Sihem Ben Fredj, Mohamed Ben Rejeb, Sawssen Layouni, Salwa Khefacha, Lamine Dhidah, Houyem Said Laatiri
Abstract:
Background: Antimicrobial resistance is a growing threat to public health and motivates to improve prevention and control programs both at international (WHO) and national levels. Despite their low pathogenicity, vancomycin-resistant enterococci (VRE) are common nosocomial pathogens in several countries. The high potential for transmission of VRE between patients and the threat to send its resistance genes to other bacteria such as staphylococcus aureus already resistant to meticilin, justify strict control measures. Indeed, in Europe, the proportion of Enterococcus faecium responsible for invasive infections, varies from 1% to 35% in 2011 and less than 5% were resistant to vancomycin. In addition, it represents the second cause of urinary tract and wound infections and the third cause of nosocomial bacteremia in the United States. The nosocomial outbreaks of VRE have been mainly described in intensive care services, hematology-oncology and haemodialysis. An epidemic of VRE has affected our hospital and the objective of this work is to describe the measures put in place. Materials/Methods: Following the alert given by the service of plastic surgery concerning a patient carrier of VRE, a team of the prevention and healthcare security service (doctor + technician) made an investigation. A review of files was conducted to draw the synoptic table and the table of cases. Results: By contacting the microbiology laboratory, we have identified four other cases of VRE and who were hospitalized in Medical resuscitation department (2 cases, one of them was transferred to the Physical rehabilitation department), and Nephrology department (2 cases). The visit has allowed to detect several malfunctions in professional practice. A crisis cell has allowed to validate, coordinate and implement control measures following the recommendations of the Technical Center of nosocomial infections. In fact, the process was to technically isolate cases in their sector of hospitalization, to restrict the use of antibiotics, to strength measures of basic hygiene, and to make a screening by rectal swab for both cases and contacts (other patients and health staff). These measures have helped to control the situation and no other case has been reported for a month. 2 new cases have been detected in the intensive care unit after a month. However, these are short-term strategies, and other measures in the medium and long term should be taken into account in order to face similar outbreaks. Conclusion: The efforts to control the outbreak were not efficient since 2 new cases have been reported after a month. Therefore, a continuous monitoring in order to detect new cases earlier is crucial to minimize the dissemination of VRE.Keywords: hospitals, nosocomial infection, outbreak, vancomycin-resistant enterococci
Procedia PDF Downloads 307196 Low Frequency Ultrasonic Degassing to Reduce Void Formation in Epoxy Resin and Its Effect on the Thermo-Mechanical Properties of the Cured Polymer
Authors: A. J. Cobley, L. Krishnan
Abstract:
The demand for multi-functional lightweight materials in sectors such as automotive, aerospace, electronics is growing, and for this reason fibre-reinforced, epoxy polymer composites are being widely utilized. The fibre reinforcing material is mainly responsible for the strength and stiffness of the composites whilst the main role of the epoxy polymer matrix is to enhance the load distribution applied on the fibres as well as to protect the fibres from the effect of harmful environmental conditions. The superior properties of the fibre-reinforced composites are achieved by the best properties of both of the constituents. Although factors such as the chemical nature of the epoxy and how it is cured will have a strong influence on the properties of the epoxy matrix, the method of mixing and degassing of the resin can also have a significant impact. The production of a fibre-reinforced epoxy polymer composite will usually begin with the mixing of the epoxy pre-polymer with a hardener and accelerator. Mechanical methods of mixing are often employed for this stage but such processes naturally introduce air into the mixture, which, if it becomes entrapped, will lead to voids in the subsequent cured polymer. Therefore, degassing is normally utilised after mixing and this is often achieved by placing the epoxy resin mixture in a vacuum chamber. Although this is reasonably effective, it is another process stage and if a method of mixing could be found that, at the same time, degassed the resin mixture this would lead to shorter production times, more effective degassing and less voids in the final polymer. In this study the effect of four different methods for mixing and degassing of the pre-polymer with hardener and accelerator were investigated. The first two methods were manual stirring and magnetic stirring which were both followed by vacuum degassing. The other two techniques were ultrasonic mixing/degassing using a 40 kHz ultrasonic bath and a 20 kHz ultrasonic probe. The cured cast resin samples were examined under scanning electron microscope (SEM), optical microscope, and Image J analysis software to study morphological changes, void content and void distribution. Three point bending test and differential scanning calorimetry (DSC) were also performed to determine the thermal and mechanical properties of the cured resin. It was found that the use of the 20 kHz ultrasonic probe for mixing/degassing gave the lowest percentage voids of all the mixing methods in the study. In addition, the percentage voids found when employing a 40 kHz ultrasonic bath to mix/degas the epoxy polymer mixture was only slightly higher than when magnetic stirrer mixing followed by vacuum degassing was utilized. The effect of ultrasonic mixing/degassing on the thermal and mechanical properties of the cured resin will also be reported. The results suggest that low frequency ultrasound is an effective means of mixing/degassing a pre-polymer mixture and could enable a significant reduction in production times.Keywords: degassing, low frequency ultrasound, polymer composites, voids
Procedia PDF Downloads 297195 Syntheses of Anionic Poly(urethanes) with Imidazolium, Phosphonium, and Ammonium as Counter-cations and Their Evaluation for CO2 Separation
Authors: Franciele L. Bernard, Felipe Dalla Vecchia, Barbara B. Polesso, Jose A. Donato, Marcus Seferin, Rosane Ligabue, Jailton F. do Nascimento, Sandra Einloft
Abstract:
The increasing level of carbon dioxide concentration in the atmosphere related to fossil fuels processing and utilization are contributing to global warming phenomena considerably. Carbon capture and storage (CCS) technologies appear as one of the key technologies to reduce CO2 emissions mitigating the effects of climate change. Absorption using amines solutions as solvents have been extensively studied and used in industry for decades. However, solvent degradation and equipment corrosion are two of the main problems in this process. Poly (ionic liquid) (PIL) is considered as a promising material for CCS technology, potentially more environmentally friendly and lesser energy demanding than traditional material. PILs possess a unique combination of ionic liquids (ILs) features, such as affinity for CO2, thermal and chemical stability and adjustable properties, coupled with the intrinsic properties of the polymer. This study investigated new Poly (ionic liquid) (PIL) based on polyurethanes with different ionic liquids cations and its potential for CO2 capture. The PILs were synthesized by the addition of diisocyante to a difunctional polyol, followed by an exchange reaction with the ionic Liquids 1-butyl-3-methylimidazolium chloride (BMIM Cl); tetrabutylammonium bromide (TBAB) and tetrabutylphosphonium bromide (TBPB). These materials were characterized by Fourier transform infrared spectroscopy (FTIR), Proton Nuclear Magnetic Resonance (1H-NMR), Atomic force microscopy (AFM), Tensile strength analysis, Field emission scanning electron microscopy (FESEM), Thermogravimetric analysis (TGA), Differential scanning calorimetry (DSC). The PILs CO2 sorption capacity were gravimetrically assessed in a Magnetic Suspension Balance (MSB). It was found that the ionic liquids cation influences in the compounds properties as well as in the CO2 sorption. The best result for CO2 sorption (123 mgCO2/g at 30 bar) was obtained for the PIL (PUPT-TBA). The higher CO2 sorption in PUPT-TBA is probably linked to the fact that the tetraalkylammonium cation having a higher positive density charge can have a stronger interaction with CO2, while the imidazolium charge is delocalized. The comparative CO2 sorption values of the PUPT-TBA with different ionic liquids showed that this material has greater capacity for capturing CO2 when compared to the ILs even at higher temperature. This behavior highlights the importance of this study, as the poly (urethane) based PILs are cheap and versatile materials.Keywords: capture, CO2, ionic liquids, ionic poly(urethane)
Procedia PDF Downloads 238194 Chemical Technology Approach for Obtaining Carbon Structures Containing Reinforced Ceramic Materials Based on Alumina
Authors: T. Kuchukhidze, N. Jalagonia, T. Archuadze, G. Bokuchava
Abstract:
The growing scientific-technological progress in modern civilization causes actuality of producing construction materials which can successfully work in conditions of high temperature, radiation, pressure, speed, and chemically aggressive environment. Such extreme conditions can withstand very few types of materials and among them, ceramic materials are in the first place. Corundum ceramics is the most useful material for creation of constructive nodes and products of various purposes for its low cost, easy accessibility to raw materials and good combination of physical-chemical properties. However, ceramic composite materials have one disadvantage; they are less plastics and have lower toughness. In order to increase the plasticity, the ceramics are reinforced by various dopants, that reduces the growth of the cracks. It is shown, that adding of even small amount of carbon fibers and carbon nanotubes (CNT) as reinforcing material significantly improves mechanical properties of the products, keeping at the same time advantages of alundum ceramics. Graphene in composite material acts in the same way as inorganic dopants (MgO, ZrO2, SiC and others) and performs the role of aluminum oxide inhibitor, as it creates shell, that gives possibility to reduce sintering temperature and at the same time it acts as damper, because scattering of a shock wave takes place on carbon structures. Application of different structural modification of carbon (graphene, nanotube and others) as reinforced material, gives possibility to create multi-purpose highly requested composite materials based on alundum ceramics. In the present work offers simplified technology for obtaining of aluminum oxide ceramics, reinforced with carbon nanostructures, during which chemical modification with doping carbon nanostructures will be implemented in the process of synthesis of final powdery composite – Alumina. In charge doping carbon nanostructures connected to matrix substance with C-O-Al bonds, that provide their homogeneous spatial distribution. In ceramic obtained as a result of consolidation of such powders carbon fragments equally distributed in the entire matrix of aluminum oxide, that cause increase of bending strength and crack-resistance. The proposed way to prepare the charge simplifies the technological process, decreases energy consumption, synthesis duration and therefore requires less financial expenses. In the implementation of this work, modern instrumental methods were used: electronic and optical microscopy, X-ray structural and granulometric analysis, UV, IR, and Raman spectroscopy.Keywords: ceramic materials, α-Al₂O₃, carbon nanostructures, composites, characterization, hot-pressing
Procedia PDF Downloads 125193 Electret: A Solution of Partial Discharge in High Voltage Applications
Authors: Farhina Haque, Chanyeop Park
Abstract:
The high efficiency, high field, and high power density provided by wide bandgap (WBG) semiconductors and advanced power electronic converter (PEC) topologies enabled the dynamic control of power in medium to high voltage systems. Although WBG semiconductors outperform the conventional Silicon based devices in terms of voltage rating, switching speed, and efficiency, the increased voltage handling properties, high dv/dt, and compact device packaging increase local electric fields, which are the main causes of partial discharge (PD) in the advanced medium and high voltage applications. PD, which occurs actively in voids, triple points, and airgaps, is an inevitable dielectric challenge that causes insulation and device aging. The aging process accelerates over time and eventually leads to the complete failure of the applications. Hence, it is critical to mitigating PD. Sharp edges, airgaps, triple points, and bubbles are common defects that exist in any medium to high voltage device. The defects are created during the manufacturing processes of the devices and are prone to high-electric-field-induced PD due to the low permittivity and low breakdown strength of the gaseous medium filling the defects. A contemporary approach of mitigating PD by neutralizing electric fields in high power density applications is introduced in this study. To neutralize the locally enhanced electric fields that occur around the triple points, airgaps, sharp edges, and bubbles, electrets are developed and incorporated into high voltage applications. Electrets are electric fields emitting dielectric materials that are embedded with electrical charges on the surface and in bulk. In this study, electrets are fabricated by electrically charging polyvinylidene difluoride (PVDF) films based on the widely used triode corona discharge method. To investigate the PD mitigation performance of the fabricated electret films, a series of PD experiments are conducted on both the charged and uncharged PVDF films under square voltage stimuli that represent PWM waveform. In addition to the use of single layer electrets, multiple layers of electrets are also experimented with to mitigate PD caused by higher system voltages. The electret-based approach shows great promise in mitigating PD by neutralizing the local electric field. The results of the PD measurements suggest that the development of an ultimate solution to the decades-long dielectric challenge would be possible with further developments in the fabrication process of electrets.Keywords: electrets, high power density, partial discharge, triode corona discharge
Procedia PDF Downloads 206192 A Geochemical Perspective on A-Type Granites of Khanak and Devsar Areas, Haryana, India: Implications for Petrogenesis
Authors: Naresh Kumar, Radhika Sharma, A. K. Singh
Abstract:
Granites from Khanak and Devsar areas, a part of Malani Igneous Suite (MIS) were investigated for their geochemical characteristics to understand the petrogenetic aspect of the research area. Neoproterozoic rocks of MIS are well exposed in Jhunjhunu, Jodhpur, Pali, Barmer, Jalor, Jaisalmer districts of Rajasthan and Bhiwani district of Haryana and also occur at Kirana hills of Pakistan. The MIS predominantly consists of acidic volcanic with acidic plutonic (granite of various types), mafic volcanic, mafic intrusive and minor amount of pyroclasts. Based on the field and petrographical studies, 28 samples were selected and analyzed for geochemical analysis of major, trace and rare earth elements at the Wadia Institute of Himalayan Geology, Dehradun by X-Ray Fluorescence Spectrometer (XRF) and ICP-MS (Inductively Coupled Plasma- Mass Spectrometry). Granites from the studied areas are categorized as grey, green and pink. Khanak granites consist of quartz, k-feldspar, plagioclase, and biotite as essential minerals and hematite, zircon, annite, monazite & rutile as accessory minerals. In Devsar granites, plagioclase is replaced by perthite and occurs as dominantly. Geochemically, granites from Khanak and Devsar areas exhibit typical A-type granites characteristics with their enrichment in SiO2, Na2O+K2O, Fe/Mg, Rb, Zr, Y, Th, U, REE (except Eu) and significant depletion in MgO, CaO, Sr, P, Ti, Ni, Cr, V and Eu suggested about A-type affinities in Northwestern Peninsular India. The amount of heat production (HP) in green and grey granites of Devsar area varies upto 9.68 & 11.70 μWm-3 and total heat generation unit (HGU) i.e. 23.04 & 27.86 respectively. Pink granites of Khanak area display a higher enrichment of HP (16.53 μWm-3) and HGU (39.37) than the granites from Devsar area. Overall, they have much higher values of HP and HGU than the average value of continental crust (3.8 HGU), which imply a possible linear relationship among the surface heat flow and crustal heat generation in the rocks of MIS. Chondrite-normalized REE patterns show enriched LREE, moderate to strong negative Eu anomalies and more or less flat heavy REE. In primitive mantle-normalized multi-element variation diagrams, the granites show pronounced depletions in the high-field-strength elements (HFSE) Nb, Zr, Sr, P, and Ti. Geochemical characteristics (major, trace and REE) along with the use of various discrimination schemes revealed their probable correspondence to magma derived from the crustal origin by a different degree of partial melting.Keywords: A-type granite, neoproterozoic, Malani igneous suite, Khanak, Devsar
Procedia PDF Downloads 273191 Schema Therapy as Treatment for Adults with Autism Spectrum Disorder and Comorbid Personality Disorder: A Multiple Baseline Case Series Study Testing Cognitive-Behavioral and Experiential Interventions
Authors: Richard Vuijk, Arnoud Arntz
Abstract:
Rationale: To our knowledge treatment of personality disorder comorbidity in adults with autism spectrum disorder (ASD) is understudied and is still in its infancy: We do not know if treatment of personality disorders may be applicable to adults with ASD. In particular, it is unknown whether patients with ASD benefit from experiential techniques that are part of schema therapy developed for the treatment of personality disorders. Objective: The aim of the study is to investigate the efficacy of a schema mode focused treatment with adult clients with ASD and comorbid personality pathology (i.e. at least one personality disorder). Specifically, we investigate if they can benefit from both cognitive-behavioral, and experiential interventions. Study design: A multiple baseline case series study. Study population: Adult individuals (age > 21 years) with ASD and at least one personality disorder. Participants will be recruited from Sarr expertise center for autism in Rotterdam. The study requires 12 participants. Intervention: The treatment protocol consists of 35 weekly offered sessions, followed by 10 monthly booster sessions. A multiple baseline design will be used with baseline varying from 5 to 10 weeks, with weekly supportive sessions. After baseline, a 5-week exploration phase follows with weekly sessions during which current and past functioning, psychological symptoms, schema modes are explored, and information about the treatment will be given. Then 15 weekly sessions with cognitive-behavioral interventions and 15 weekly sessions with experiential interventions will be given. Finally, there will be a 10-month follow-up phase with monthly booster sessions. Participants are randomly assigned to baseline length, and respond weekly during treatment and monthly at follow-up on Belief Strength of negative core beliefs (by VAS), and fill out SMI, SCL-90 and SRS-A 7 times during screening procedure (i.e. before baseline), after baseline, after exploration, after cognitive and behavioral interventions, after experiential interventions, and after 5- and 10- month follow-up. The SCID-II will be administered during screening procedure (i.e. before baseline), at 5- and at 10-month follow-up. Main study parameters: The primary study parameter is negative core beliefs. Secondary study parameters include schema modes, personality disorder manifestations, psychological symptoms, and social interaction and communication. Discussion: To the best of author’s knowledge so far no study has been published on the application of schema mode focused interventions in adult patients with ASD and comorbid PD(s). This study offers the first systematic test of application of schema therapy for adults with ASD. The results of this study will provide initial evidence for the effectiveness of schema therapy in treating adults with both ASD and PD(s). The study intends to provide valuable information for future development and implementation of therapeutic interventions for adults with both ASD and PD(s).Keywords: adults, autism spectrum disorder, personality disorder, schema therapy
Procedia PDF Downloads 243190 A Dynamic Mechanical Thermal T-Peel Test Approach to Characterize Interfacial Behavior of Polymeric Textile Composites
Authors: J. R. Büttler, T. Pham
Abstract:
Basic understanding of interfacial mechanisms is of importance for the development of polymer composites. For this purpose, we need techniques to analyze the quality of interphases, their chemical and physical interactions and their strength and fracture resistance. In order to investigate the interfacial phenomena in detail, advanced characterization techniques are favorable. Dynamic mechanical thermal analysis (DMTA) using a rheological system is a sensitive tool. T-peel tests were performed with this system, to investigate the temperature-dependent peel behavior of woven textile composites. A model system was made of polyamide (PA) woven fabric laminated with films of polypropylene (PP) or PP modified by grafting with maleic anhydride (PP-g-MAH). Firstly, control measurements were performed with solely PP matrixes. Polymer melt investigations, as well as the extensional stress, extensional viscosity and extensional relaxation modulus at -10°C, 100 °C and 170 °C, demonstrate similar viscoelastic behavior for films made of PP-g-MAH and its non-modified PP-control. Frequency sweeps have shown that PP-g-MAH has a zero phase viscosity of around 1600 Pa·s and PP-control has a similar zero phase viscosity of 1345 Pa·s. Also, the gelation points are similar at 2.42*104 Pa (118 rad/s) and 2.81*104 Pa (161 rad/s) for PP-control and PP-g-MAH, respectively. Secondly, the textile composite was analyzed. The extensional stress of PA66 fabric laminated with either PP-control or PP-g-MAH at -10 °C, 25 °C and 170 °C for strain rates of 0.001 – 1 s-1 was investigated. The laminates containing the modified PP need more stress for T-peeling. However, the strengthening effect due to the modification decreases by increasing temperature and at 170 °C, just above the melting temperature of the matrix, the difference disappears. Independent of the matrix used in the textile composite, there is a decrease of extensional stress by increasing temperature. It appears that the more viscous is the matrix, the weaker the laminar adhesion. Possibly, the measurement is influenced by the fact that the laminate becomes stiffer at lower temperatures. Adhesive lap-shear testing at room temperature supports the findings obtained with the T-peel test. Additional analysis of the textile composite at the microscopic level ensures that the fibers are well embedded in the matrix. Atomic force microscopy (AFM) imaging of a cross section of the composite shows no gaps between the fibers and matrix. Measurements of the water contact angle show that the MAH grafted PP is more polar than the virgin-PP, and that suggests a more favorable chemical interaction of PP-g-MAH with PA, compared to the non-modified PP. In fact, this study indicates that T-peel testing by DMTA is a technique to achieve more insights into polymeric textile composites.Keywords: dynamic mechanical thermal analysis, interphase, polyamide, polypropylene, textile composite
Procedia PDF Downloads 130189 Development of the Family Capacity of Management of Patients with Autism Spectrum Disorder Diagnosis
Authors: Marcio Emilio Dos Santos, Kelly C. F. Dos Santos
Abstract:
Caregivers of patients diagnosed with ASD are subjected to high stress situations due to the complexity and multiple levels of daily activities that require the organization of events, behaviors and socioemotional situations, such as immediate decision making and in public spaces. The cognitive and emotional requirement needed to fulfill this caregiving role exceeds the regular cultural process that adults receive in their process of preparation for conjugal and parental life. Therefore, in many cases, caregivers present a high level of overload, poor capacity to organize and mediate the development process of the child or patient about their care. Aims: Improvement in the cognitive and emotional capacities related to the caregiver function, allowing the reduction of the overload, the feeling of incompetence and the characteristic level of stress, developing a more organized conduct and decision making more oriented towards the objectives and procedural gains necessary for the integral development of the patient with diagnosis of ASD. Method: The study was performed with 20 relatives, randomly selected from a total of 140 patients attended. The family members were submitted to the Wechsler Adult Intelligence Scale III intelligence test and the Family assessment Management Measure (FaMM) questionnaire as a previous evaluation. Therapeutic activity in a small group of family members or caregivers, with weekly frequency, with a minimum workload of two hours, using the Feuerstein Instrumental Enrichment Cognitive Development Program - Feuerstein Instrumental Enrichment for ten months. Reapplication of the previous tests to verify the gains obtained. Results and Discussion: There is a change in the level of caregiver overload, improvement in the results of the Family assessment Management Measure and highlight to the increase of performance in the cognitive aspects related to problem solving, planned behavior and management of behavioral crises. These results lead to the discussion of the need to invest in the integrated care of patients and their caregivers, mainly by enabling cognitively to deal with the complexity of Autism. This goes beyond the simple therapeutic orientation about adjustments in family and school routines. The study showed that when the caregiver improves his/her capacity of management, the results of the treatment are potentiated and there is a reduction of the level of the caregiver's overload. Importantly, the study was performed for only ten months and the number of family members attended in the study (n = 20) needs to be expanded to have statistical strength.Keywords: caregiver overload, cognitive development program ASD caregivers, feuerstein instrumental enrichment, family assessment management measure
Procedia PDF Downloads 133188 Predictive Pathogen Biology: Genome-Based Prediction of Pathogenic Potential and Countermeasures Targets
Authors: Debjit Ray
Abstract:
Horizontal gene transfer (HGT) and recombination leads to the emergence of bacterial antibiotic resistance and pathogenic traits. HGT events can be identified by comparing a large number of fully sequenced genomes across a species or genus, define the phylogenetic range of HGT, and find potential sources of new resistance genes. In-depth comparative phylogenomics can also identify subtle genome or plasmid structural changes or mutations associated with phenotypic changes. Comparative phylogenomics requires that accurately sequenced, complete and properly annotated genomes of the organism. Assembling closed genomes requires additional mate-pair reads or “long read” sequencing data to accompany short-read paired-end data. To bring down the cost and time required of producing assembled genomes and annotating genome features that inform drug resistance and pathogenicity, we are analyzing the performance for genome assembly of data from the Illumina NextSeq, which has faster throughput than the Illumina HiSeq (~1-2 days versus ~1 week), and shorter reads (150bp paired-end versus 300bp paired end) but higher capacity (150-400M reads per run versus ~5-15M) compared to the Illumina MiSeq. Bioinformatics improvements are also needed to make rapid, routine production of complete genomes a reality. Modern assemblers such as SPAdes 3.6.0 running on a standard Linux blade are capable in a few hours of converting mixes of reads from different library preps into high-quality assemblies with only a few gaps. Remaining breaks in scaffolds are generally due to repeats (e.g., rRNA genes) are addressed by our software for gap closure techniques, that avoid custom PCR or targeted sequencing. Our goal is to improve the understanding of emergence of pathogenesis using sequencing, comparative genomics, and machine learning analysis of ~1000 pathogen genomes. Machine learning algorithms will be used to digest the diverse features (change in virulence genes, recombination, horizontal gene transfer, patient diagnostics). Temporal data and evolutionary models can thus determine whether the origin of a particular isolate is likely to have been from the environment (could it have evolved from previous isolates). It can be useful for comparing differences in virulence along or across the tree. More intriguing, it can test whether there is a direction to virulence strength. This would open new avenues in the prediction of uncharacterized clinical bugs and multidrug resistance evolution and pathogen emergence.Keywords: genomics, pathogens, genome assembly, superbugs
Procedia PDF Downloads 199187 Active Vibration Reduction for a Flexible Structure Bonded with Sensor/Actuator Pairs on Efficient Locations Using a Developed Methodology
Authors: Ali H. Daraji, Jack M. Hale, Ye Jianqiao
Abstract:
With the extensive use of high specific strength structures to optimise the loading capacity and material cost in aerospace and most engineering applications, much effort has been expended to develop intelligent structures for active vibration reduction and structural health monitoring. These structures are highly flexible, inherently low internal damping and associated with large vibration and long decay time. The modification of such structures by adding lightweight piezoelectric sensors and actuators at efficient locations integrated with an optimal control scheme is considered an effective solution for structural vibration monitoring and controlling. The size and location of sensor and actuator are important research topics to investigate their effects on the level of vibration detection and reduction and the amount of energy provided by a controller. Several methodologies have been presented to determine the optimal location of a limited number of sensors and actuators for small-scale structures. However, these studies have tackled this problem directly, measuring the fitness function based on eigenvalues and eigenvectors achieved with numerous combinations of sensor/actuator pair locations and converging on an optimal set using heuristic optimisation techniques such as the genetic algorithms. This is computationally expensive for small- and large-scale structures subject to optimise a number of s/a pairs to suppress multiple vibration modes. This paper proposes an efficient method to determine optimal locations for a limited number of sensor/actuator pairs for active vibration reduction of a flexible structure based on finite element method and Hamilton’s principle. The current work takes the simplified approach of modelling a structure with sensors at all locations, subjecting it to an external force to excite the various modes of interest and noting the locations of sensors giving the largest average percentage sensors effectiveness measured by dividing all sensor output voltage over the maximum for each mode. The methodology was implemented for a cantilever plate under external force excitation to find the optimal distribution of six sensor/actuator pairs to suppress the first six modes of vibration. It is shown that the results of the optimal sensor locations give good agreement with published optimal locations, but with very much reduced computational effort and higher effectiveness. Furthermore, it is shown that collocated sensor/actuator pairs placed in these locations give very effective active vibration reduction using optimal linear quadratic control scheme.Keywords: optimisation, plate, sensor effectiveness, vibration control
Procedia PDF Downloads 238186 Metalorganic Chemical Vapor Deposition Overgrowth on the Bragg Grating for Gallium Nitride Based Distributed Feedback Laser
Abstract:
Laser diodes fabricated from the III-nitride material system are emerging solutions for the next generation telecommunication systems and optical clocks based on Ca at 397nm, Rb at 420.2nm and Yb at 398.9nm combined 556 nm. Most of the applications require single longitudinal optical mode lasers, with very narrow linewidth and compact size, such as communication systems and laser cooling. In this case, the GaN based distributed feedback (DFB) laser diode is one of the most effective candidates with gratings are known to operate with narrow spectra as well as high power and efficiency. Given the wavelength range, the period of the first-order diffraction grating is under 100 nm, and the realization of such gratings is technically difficult due to the narrow line width and the high quality nitride overgrowth based on the Bragg grating. Some groups have reported GaN DFB lasers with high order distributed feedback surface gratings, which avoids the overgrowth. However, generally the strength of coupling is lower than that with Bragg grating embedded into the waveguide within the GaN laser structure by two-step-epitaxy. Therefore, the overgrowth on the grating technology need to be studied and optimized. Here we propose to fabricate the fine step shape structure of first-order grating by the nanoimprint combined inductively coupled plasma (ICP) dry etching, then carry out overgrowth high quality AlGaN film by metalorganic chemical vapor deposition (MOCVD). Then a series of gratings with different period, depths and duty ratios are designed and fabricated to study the influence of grating structure to the nano-heteroepitaxy. Moreover, we observe the nucleation and growth process by step-by-step growth to study the growth mode for nitride overgrowth on grating, under the condition that the grating period is larger than the mental migration length on the surface. The AFM images demonstrate that a smooth surface of AlGaN film is achieved with an average roughness of 0.20 nm over 3 × 3 μm2. The full width at half maximums (FWHMs) of the (002) reflections in the XRD rocking curves are 278 arcsec for the AlGaN film, and the component of the Al within the film is 8% according to the XRD mapping measurement, which is in accordance with design values. By observing the samples with growth time changing from 200s, 400s to 600s, the growth model is summarized as the follow steps: initially, the nucleation is evenly distributed on the grating structure, as the migration length of Al atoms is low; then, AlGaN growth alone with the grating top surface; finally, the AlGaN film formed by lateral growth. This work contributed to carrying out GaN DFB laser by fabricating grating and overgrowth on the nano-grating patterned substrate by wafer scale, moreover, growth dynamics had been analyzed as well.Keywords: DFB laser, MOCVD, nanoepitaxy, III-niitride
Procedia PDF Downloads 197185 Agricultural Education and Research in India: Challenges and Way Forward
Authors: Kiran Kumar Gellaboina, Padmaja Kaja
Abstract:
Agricultural Education and Research in India needs a transformation to serve the needs of the farmers and that of the nation. The fact that Agriculture and allied activities act as main source of livelihood for more than 70% population of rural India reinforces its importance in administrative and policy arena. As per Census 2011 of India it provides employment to approximately 56.6 % of labour. India has achieved significant growth in agriculture, milk, fish, oilseeds and fruits and vegetables owing to green, white, blue and yellow revolutions which have brought prosperity to farmers. Many factors are responsible for these achievement viz conducive government policies, receptivity of the farmers and also establishment of higher agricultural education institutions. The new breed of skilled human resources were instrumental in generating new technologies, and in its assessment, refinement and finally its dissemination to the farming community through extension methods. In order to sustain, diversify and realize the potential of agriculture sectors, it is necessary to develop skilled human resources. Agricultural human resource development is a continuous process undertaken by agricultural universities. The Department of Agricultural Research and Education (DARE) coordinates and promotes agricultural research & education in India. In India, agricultural universities were established on ‘land grant’ pattern of USA which helped incorporation of a number of diverse subjects in the courses as also provision of hands-on practical exposure to the student. The State Agricultural Universities (SAUs) established through the legislative acts of the respective states and with major financial support from them leading to administrative and policy controls. It has been observed that pace and quality of technology generation and human resource development in many of the SAUs has gone down. The reason for this slackening are inadequate state funding, reduced faculty strength, inadequate faculty development programmes, lack of modern infrastructure for education and research etc. Establishment of new state agricultural universities and new faculties/colleges without providing necessary financial and faculty support has aggrieved the problem. The present work highlights some of the key issues affecting agricultural education and research in India and the impact it would have on farm productivity and sustainability. Secondary data pertaining to budgetary spend on agricultural education and research will be analyzed. This paper will study the trends in public spending on agricultural education and research and the per capita income of farmers in India. This paper tries to suggest that agricultural education and research has a key role in equipping the human resources for enhanced agricultural productivity and sustainable use of natural resources. Further, a total re-orientation of agricultural education with emphasis on other agricultural related social sciences is needed for effective agricultural policy research.Keywords: agriculture, challenges, education, research
Procedia PDF Downloads 237184 Finding the Association Rule between Nursing Interventions and Early Evaluation Results of In-Hospital Cardiac Arrest to Improve Patient Safety
Authors: Wei-Chih Huang, Pei-Lung Chung, Ching-Heng Lin, Hsuan-Chia Yang, Der-Ming Liou
Abstract:
Background: In-Hospital Cardiac Arrest (IHCA) threaten life of the inpatients, cause serious effect to patient safety, quality of inpatients care and hospital service. Health providers must identify the signs of IHCA early to avoid the occurrence of IHCA. This study will consider the potential association between early signs of IHCA and the essence of patient care provided by nurses and other professionals before an IHCA occurs. The aim of this study is to identify significant associations between nursing interventions and abnormal early evaluation results of IHCA that can assist health care providers in monitoring inpatients at risk of IHCA to increase opportunities of IHCA early detection and prevention. Materials and Methods: This study used one of the data mining techniques called association rules mining to compute associations between nursing interventions and abnormal early evaluation results of IHCA. The nursing interventions and abnormal early evaluation results of IHCA were considered to be co-occurring if nursing interventions were provided within 24 hours of last being observed in abnormal early evaluation results of IHCA. The rule based methods were utilized 23.6 million electronic medical records (EMR) from a medical center in Taipei, Taiwan. This dataset includes 733 concepts of nursing interventions that coded by clinical care classification (CCC) codes and 13 early evaluation results of IHCA with binary codes. The values of interestingness and lift were computed as Q values to measure the co-occurrence and associations’ strength between all in-hospital patient care measures and abnormal early evaluation results of IHCA. The associations were evaluated by comparing the results of Q values and verified by medical experts. Results and Conclusions: The results show that there are 4195 pairs of associations between nursing interventions and abnormal early evaluation results of IHCA with their Q values. The indication of positive association is 203 pairs with Q values greater than 5. Inpatients with high blood sugar level (hyperglycemia) have positive association with having heart rate lower than 50 beats per minute or higher than 120 beats per minute, Q value is 6.636. Inpatients with temporary pacemaker (TPM) have significant association with high risk of IHCA, Q value is 47.403. There is significant positive correlation between inpatients with hypovolemia and happened abnormal heart rhythms (arrhythmias), Q value is 127.49. The results of this study can help to prevent IHCA from occurring by making health care providers early recognition of inpatients at risk of IHCA, assist with monitoring patients for providing quality of care to patients, improve IHCA surveillance and quality of in-hospital care.Keywords: in-hospital cardiac arrest, patient safety, nursing intervention, association rule mining
Procedia PDF Downloads 274183 Condition Assessment and Diagnosis for Aging Drinking Water Pipeline According to Scientific and Reasonable Methods
Authors: Dohwan Kim, Dongchoon Ryou, Pyungjong Yoo
Abstract:
In public water facilities, drinking water distribution systems have played an important role along with water purification systems. The water distribution network is one of the most expensive components of water supply infrastructure systems. To improve the reliability for the drinking rate of tap water, advanced water treatment processes such as granular activated carbon and membrane filtration were used by water service providers in Korea. But, distrust of the people for tap water are still. Therefore, accurate diagnosis and condition assessment for water pipelines are required to supply the clean water. The internal corrosion of water pipe has increased as time passed. Also, the cross-sectional areas in pipe are reduced by the rust, deposits and tubercles. It is the water supply ability decreases as the increase of hydraulic pump capacity is required to supply an amount of water, such as the initial condition. If not, the poor area of water supply will be occurred by the decrease of water pressure. In order to solve these problems, water managers and engineers should be always checked for the current status of the water pipe, such as water leakage and damage of pipe. If problems occur, it should be able to respond rapidly and make an accurate estimate. In Korea, replacement and rehabilitation of aging drinking water pipes are carried out based on the circumstances of simply buried years. So, water distribution system management may not consider the entire water pipeline network. The long-term design and upgrading of a water distribution network should address economic, social, environmental, health, hydraulic, and other technical issues. This is a multi-objective problem with a high level of complexity. In this study, the thickness of the old water pipes, corrosion levels of the inner and outer surface for water pipes, basic data research (i.e. pipe types, buried years, accident record, embedded environment, etc.), specific resistance of soil, ultimate tensile strength and elongation of metal pipes, samples characteristics, and chemical composition analysis were performed about aging drinking water pipes. Samples of water pipes used in this study were cement mortar lining ductile cast iron pipe (CML-DCIP, diameter 100mm) and epoxy lining steel pipe (diameter 65 and 50mm). Buried years of CML-DCIP and epoxy lining steel pipe were respectively 32 and 23 years. The area of embedded environment was marine reclamation zone since 1940’s. The result of this study was that CML-DCIP needed replacement and epoxy lining steel pipe was still useful.Keywords: drinking water distribution system, water supply, replacement, rehabilitation, water pipe
Procedia PDF Downloads 262182 Novel Framework for MIMO-Enhanced Robust Selection of Critical Control Factors in Auto Plastic Injection Moulding Quality Optimization
Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari
Abstract:
Apparent quality defects such as warpage, shrinkage, weld line, etc. are such an irresistible phenomenon in mass production of auto plastic appearance parts. These frequently occurred manufacturing defects should be satisfied concurrently so as to achieve a final product with acceptable quality standards. Determining the significant control factors that simultaneously affect multiple quality characteristics can significantly improve the optimization results by eliminating the deviating effect of the so-called ineffective outliers. Hence, a robust quantitative approach needs to be developed upon which major control factors and their level can be effectively determined to help improve the reliability of the optimal processing parameter design. Hence, the primary objective of current study was to develop a systematic methodology for selection of significant control factors (SCF) relevant to multiple quality optimization of auto plastic appearance part. Auto bumper was used as a specimen with the most identical quality and production characteristics to APAP group. A preliminary failure modes and effect analysis (FMEA) was conducted to nominate a database of pseudo significant significant control factors prior to the optimization phase. Later, CAE simulation Moldflow analysis was implemented to manipulate four rampant plastic injection quality defects concerned with APAP group including warpage deflection, volumetric shrinkage, sink mark and weld line. Furthermore, a step-backward elimination searching method (SESME) has been developed for systematic pre-optimization selection of SCF based on hierarchical orthogonal array design and priority-based one-way analysis of variance (ANOVA). The development of robust parameter design in the second phase was based on DOE module powered by Minitab v.16 statistical software. Based on the F-test (F 0.05, 2, 14) one-way ANOVA results, it was concluded that for warpage deflection, material mixture percentage was the most significant control factor yielding a 58.34% of contribution while for the other three quality defects, melt temperature was the most significant control factor with a 25.32%, 84.25%, and 34.57% contribution for sin mark, shrinkage and weld line strength control. Also, the results on the he least significant control factors meaningfully revealed injection fill time as the least significant factor for both warpage and sink mark with respective 1.69% and 6.12% contribution. On the other hand, for shrinkage and weld line defects, the least significant control factors were holding pressure and mold temperature with a 0.23% and 4.05% overall contribution accordingly.Keywords: plastic injection moulding, quality optimization, FMEA, ANOVA, SESME, APAP
Procedia PDF Downloads 353181 Application of a Submerged Anaerobic Osmotic Membrane Bioreactor Hybrid System for High-Strength Wastewater Treatment and Phosphorus Recovery
Authors: Ming-Yeh Lu, Shiao-Shing Chen, Saikat Sinha Ray, Hung-Te Hsu
Abstract:
Recently, anaerobic membrane bioreactors (AnMBRs) has been widely utilized, which combines anaerobic biological treatment process and membrane filtration, that can be present an attractive option for wastewater treatment and water reuse. Conventional AnMBR is having several advantages, such as improving effluent quality, compact space usage, lower sludge yield, without aeration and production of energy. However, the removal of nitrogen and phosphorus in the AnMBR permeate was negligible which become the biggest disadvantage. In recent years, forward osmosis (FO) is an emerging technology that utilizes osmotic pressure as driving force to extract clean water without additional external pressure. The pore size of FO membrane is kindly mentioned the pore size, so nitrogen or phosphorus could effectively improve removal of nitrogen or phosphorus. Anaerobic bioreactor with FO membrane (AnOMBR) can retain the concentrate organic matters and nutrients. However, phosphorus is a non-renewable resource. Due to the high rejection property of FO membrane, the high amount of phosphorus could be recovered from the combination of AnMBR and FO. In this study, development of novel submerged anaerobic osmotic membrane bioreactor integrated with periodic microfiltration (MF) extraction for simultaneous phosphorus and clean water recovery from wastewater was evaluated. A laboratory-scale AnOMBR utilizes cellulose triacetate (CTA) membranes with effective membrane area of 130 cm² was fully submerged into a 5.5 L bioreactor at 30-35℃. Active layer-facing feed stream orientation was utilized, for minimizing fouling and scaling. Additionally, a peristaltic pump was used to circulate draw solution (DS) at a cross flow velocity of 0.7 cm/s. Magnesium sulphate (MgSO₄) solution was used as DS. Microfiltration membrane periodically extracted about 1 L solution when the TDS reaches to 5 g/L to recover phosphorus and simultaneous control the salt accumulation in the bioreactor. During experiment progressed, the average water flux was achieved around 1.6 LMH. The AnOMBR process show greater than 95% removal of soluble chemical oxygen demand (sCOD), nearly 100% of total phosphorous whereas only partial removal of ammonia, and finally average methane production of 0.22 L/g sCOD was obtained. Therefore, AnOMBR system periodically utilizes MF membrane extracted for phosphorus recovery with simultaneous pH adjustment. The overall performance demonstrates that a novel submerged AnOMBR system is having potential for simultaneous wastewater treatment and resource recovery from wastewater, and hence, the new concept of this system can be used to replace for conventional AnMBR in the future.Keywords: anaerobic treatment, forward osmosis, phosphorus recovery, membrane bioreactor
Procedia PDF Downloads 275180 Chebyshev Collocation Method for Solving Heat Transfer Analysis for Squeezing Flow of Nanofluid in Parallel Disks
Authors: Mustapha Rilwan Adewale, Salau Ayobami Muhammed
Abstract:
This study focuses on the heat transfer analysis of magneto-hydrodynamics (MHD) squeezing flow between parallel disks, considering a viscous incompressible fluid. The upper disk exhibits both upward and downward motion, while the lower disk remains stationary but permeable. By employing similarity transformations, a system of nonlinear ordinary differential equations is derived to describe the flow behavior. To solve this system, a numerical approach, namely the Chebyshev collocation method, is utilized. The study investigates the influence of flow parameters and compares the obtained results with existing literature. The significance of this research lies in understanding the heat transfer characteristics of MHD squeezing flow, which has practical implications in various engineering and industrial applications. By employing the similarity transformations, the complex governing equations are simplified into a system of nonlinear ordinary differential equations, facilitating the analysis of the flow behavior. To obtain numerical solutions for the system, the Chebyshev collocation method is implemented. This approach provides accurate approximations for the nonlinear equations, enabling efficient computations of the heat transfer properties. The obtained results are compared with existing literature, establishing the validity and consistency of the numerical approach. The study's major findings shed light on the influence of flow parameters on the heat transfer characteristics of the squeezing flow. The analysis reveals the impact of parameters such as magnetic field strength, disk motion amplitude, fluid viscosity on the heat transfer rate between the disks, the squeeze number(S), suction/injection parameter(A), Hartman number(M), Prandtl number(Pr), modified Eckert number(Ec), and the dimensionless length(δ). These findings contribute to a comprehensive understanding of the system's behavior and provide insights for optimizing heat transfer processes in similar configurations. In conclusion, this study presents a thorough heat transfer analysis of magneto-hydrodynamics squeezing flow between parallel disks. The numerical solutions obtained through the Chebyshev collocation method demonstrate the feasibility and accuracy of the approach. The investigation of flow parameters highlights their influence on heat transfer, contributing to the existing knowledge in this field. The agreement of the results with previous literature further strengthens the reliability of the findings. These outcomes have practical implications for engineering applications and pave the way for further research in related areas.Keywords: squeezing flow, magneto-hydro-dynamics (MHD), chebyshev collocation method(CCA), parallel manifolds, finite difference method (FDM)
Procedia PDF Downloads 78179 Critical Conditions for the Initiation of Dynamic Recrystallization Prediction: Analytical and Finite Element Modeling
Authors: Pierre Tize Mha, Mohammad Jahazi, Amèvi Togne, Olivier Pantalé
Abstract:
Large-size forged blocks made of medium carbon high-strength steels are extensively used in the automotive industry as dies for the production of bumpers and dashboards through the plastic injection process. The manufacturing process of the large blocks starts with ingot casting, followed by open die forging and a quench and temper heat treatment process to achieve the desired mechanical properties and numerical simulation is widely used nowadays to predict these properties before the experiment. But the temperature gradient inside the specimen remains challenging in the sense that the temperature before loading inside the material is not the same, but during the simulation, constant temperature is used to simulate the experiment because it is assumed that temperature is homogenized after some holding time. Therefore to be close to the experiment, real distribution of the temperature through the specimen is needed before the mechanical loading. Thus, We present here a robust algorithm that allows the calculation of the temperature gradient within the specimen, thus representing a real temperature distribution within the specimen before deformation. Indeed, most numerical simulations consider a uniform temperature gradient which is not really the case because the surface and core temperatures of the specimen are not identical. Another feature that influences the mechanical properties of the specimen is recrystallization which strongly depends on the deformation conditions and the type of deformation like Upsetting, Cogging...etc. Indeed, Upsetting and Cogging are the stages where the greatest deformations are observed, and a lot of microstructural phenomena can be observed, like recrystallization, which requires in-depth characterization. Complete dynamic recrystallization plays an important role in the final grain size during the process and therefore helps to increase the mechanical properties of the final product. Thus, the identification of the conditions for the initiation of dynamic recrystallization is still relevant. Also, the temperature distribution within the sample and strain rate influence the recrystallization initiation. So the development of a technique allowing to predict the initiation of this recrystallization remains challenging. In this perspective, we propose here, in addition to the algorithm allowing to get the temperature distribution before the loading stage, an analytical model leading to determine the initiation of this recrystallization. These two techniques are implemented into the Abaqus finite element software via the UAMP and VUHARD subroutines for comparison with a simulation where an isothermal temperature is imposed. The Artificial Neural Network (ANN) model to describe the plastic behavior of the material is also implemented via the VUHARD subroutine. From the simulation, the temperature distribution inside the material and recrystallization initiation is properly predicted and compared to the literature models.Keywords: dynamic recrystallization, finite element modeling, artificial neural network, numerical implementation
Procedia PDF Downloads 83