Search results for: rapid evolution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4212

Search results for: rapid evolution

492 Characterization of a Three-Electrodes Bioelectrochemical System from Mangrove Water and Sediments for the Reduction of Chlordecone in Martinique

Authors: Malory Jonata

Abstract:

Chlordecone (CLD) is an organochlorine pesticide used between 1971 and 1993 in both Guadeloupe and Martinique for the control of banana black weevil. The bishomocubane structure which characterizes this chemical compound led to high stability in organic matter and high persistence in the environment. Recently, researchers found that CLD can be degraded by isolated bacteria consortiums and, particularly, by bacteria such as Citrobacter sp 86 and Delsulfovibrio sp 86. Actually, six transformation product families of CLD are known. Moreover, the latest discovery showed that CLD was disappearing faster than first predicted in highly contaminated soil in Guadeloupe. However, the toxicity of transformation products is still unknown, and knowledge has to be deepened on the degradation ways and chemical characteristics of chlordecone and its transformation products. Microbial fuel cells (MFC) are electrochemical systems that can convert organic matter into electricity thanks to electroactive bacteria. These bacteria can exchange electrons through their membranes to solid surfaces or molecules. MFC have proven their efficiency as bioremediation systems in water and soils. They are already used for the bioremediation of several organochlorine compounds such as perchlorate, trichlorophenol or hexachlorobenzene. In this study, a three-electrodes system, inspired by MFC, is used to try to degrade chlordecone using bacteria from a mangrove swamp in Martinique. As we know, some mangrove bacteria are electroactive. Furthermore, the CLD rate seems to decline in mangrove swamp sediments. This study aims to prove that electroactive bacteria from a mangrove swamp in Martinique can degrade CLD thanks to a three-electrodes bioelectrochemical system. To achieve this goal, the tree-electrodes assembly has been connected to a potentiostat. The substrate used is mangrove water and sediments sampled in the mangrove swamp of La Trinité, a coastal city in Martinique, where CLD contamination has already been studied. Electroactive biofilms are formed by imposing a potential relative to Saturated Calomel Electrode using chronoamperometry. Moreover, their comportment has been studied by using cyclic voltametry. Biofilms have been studied under different imposed potentials, several conditions of the substrate and with or without CLD. In order to quantify the evolution of CLD rates in the substrate’s system, gas chromatography coupled with mass spectrometry (GC-MS) was performed on pre-treated samples of water and sediments after short, medium and long-term contact with the electroactive biofilms. Results showed that between -0,8V and -0,2V, the three-electrodes system was able to reduce the chemical in the substrate solution. The first GC-MS analysis result of samples spiked with CLD seems to reveal decreased CLD concentration over time. In conclusion, the designed bioelectrochemical system can provide the necessary conditions for chlordecone degradation. However, it is necessary to improve three-electrodes control settings in order to increase degradation rates. The biological pathways are yet to enlighten by biologicals analysis of electroactive biofilms formed in this system. Moreover, the electrochemical study of mangrove substrate gives new informations on the potential use of this substrate for bioremediation. But further studies are needed to a better understanding of the electrochemical potential of this environment.

Keywords: bioelectrochemistry, bioremediation, chlordecone, mangrove swamp

Procedia PDF Downloads 55
491 High Strain Rate Behavior of Harmonic Structure Designed Pure Nickel: Mechanical Characterization Microstructure Analysis and 3D Modelisation

Authors: D. Varadaradjou, H. Kebir, J. Mespoulet, D. Tingaud, S. Bouvier, P. Deconick, K. Ameyama, G. Dirras

Abstract:

The development of new architecture metallic alloys with controlled microstructures is one of the strategic ways for designing materials with high innovation potential and, particularly, with improved mechanical properties as required for structural materials. Indeed, unlike conventional counterparts, metallic materials having so-called harmonic structure displays strength and ductility synergy. The latter occurs due to a unique microstructure design: a coarse grain structure surrounded by a 3D continuous network of ultra-fine grain known as “core” and “shell,” respectively. In the present study, pure harmonic-structured (HS) Nickel samples were processed via controlled mechanical milling and followed by spark plasma sintering (SPS). The present work aims at characterizing the mechanical properties of HS pure Nickel under room temperature dynamic loading through a Split Hopkinson Pressure Bar (SHPB) test and the underlying microstructure evolution. A stopper ring was used to maintain the strain at a fixed value of about 20%. Five samples (named B1 to B5) were impacted using different striker bar velocities from 14 m/s to 28 m/s, yielding strain rate in the range 4000-7000 s-1. Results were considered until a 10% deformation value, which is the deformation threshold for the constant strain rate assumption. The non-deformed (INIT – post-SPS process) and post-SHPB microstructure (B1 to B5) were investigated by EBSD. It was observed that while the strain rate is increased, the average grain size within the core decreases. An in-depth analysis of grains and grain boundaries was made to highlight the thermal (such as dynamic recrystallization) or mechanical (such as grains fragmentation by dislocation) contribution within the “core” and “shell.” One of the most widely used methods for determining the dynamic behavior of materials is the SHPB technique developed by Kolsky. A 3D simulation of the SHPB test was created through ABAQUS in dynamic explicit. This 3D simulation allows taking into account all modes of vibration. An inverse approach was used to identify the material parameters from the equation of Johnson-Cook (JC) by minimizing the difference between the numerical and experimental data. The JC’s parameters were identified using B1 and B5 samples configurations. Predictively, identified parameters of JC’s equation shows good result for the other sample configuration. Furthermore, mean rise of temperature within the harmonic Nickel sample can be obtained through ABAQUS and show an elevation of about 35°C for all fives samples. At this temperature, a thermal mechanism cannot be activated. Therefore, grains fragmentation within the core is mainly due to mechanical phenomena for a fixed final strain of 20%.

Keywords: 3D simulation, fragmentation, harmonic structure, high strain rate, Johnson-cook model, microstructure

Procedia PDF Downloads 213
490 Tailorability of Poly(Aspartic Acid)/BSA Complex by Self-Assembling in Aqueous Solutions

Authors: Loredana E. Nita, Aurica P. Chiriac, Elena Stoleru, Alina Diaconu, Tudorachi Nita

Abstract:

Self-assembly processes are an attractive method to form new and complex structures between macromolecular compounds to be used for specific applications. In this context, intramolecular and intermolecular bonds play a key role during self-assembling processes in preparation of carrier systems of bioactive substances. Polyelectrolyte complexes (PECs) are formed through electrostatic interactions, and though they are significantly below of the covalent linkages in their strength, these complexes are sufficiently stable owing to the association processes. The relative ease way of PECs formation makes from them a versatile tool for preparation of various materials, with properties that can be tuned by adjusting several parameters, such as the chemical composition and structure of polyelectrolytes, pH and ionic strength of solutions, temperature and post-treatment procedures. For example, protein-polyelectrolyte complexes (PPCs) are playing an important role in various chemical and biological processes, such as protein separation, enzyme stabilization and polymer drug delivery systems. The present investigation is focused on evaluation of the PPC formation between a synthetic polypeptide (poly(aspartic acid) – PAS) and a natural protein (bovine serum albumin - BSA). The PPC obtained from PAS and BSA in different ratio was investigated by corroboration of various techniques of characterization as: spectroscopy, microscopy, thermo-gravimetric analysis, DLS and zeta potential determination, measurements which were performed in static and/or dynamic conditions. The static contact angle of the sample films was also determined in order to evaluate the changes brought upon surface free energy of the prepared PPCs in interdependence with the complexes composition. The evolution of hydrodynamic diameter and zeta potential of the PPC, recorded in situ, confirm changes of both co-partners conformation, a 1/1 ratio between protein and polyelectrolyte being benefit for the preparation of a stable PPC. Also, the study evidenced the dependence of PPC formation on the temperature of preparation. Thus, at low temperatures the PPC is formed with compact structure, small dimension and hydrodynamic diameter, close to those of BSA. The behavior at thermal treatment of the prepared PPCs is in agreement with the composition of the complexes. From the contact angle determination results the increase of the PPC films cohesion, which is higher than that of BSA films. Also, a higher hydrophobicity corresponds to the new PPC films denoting a good adhesion of the red blood cells onto the surface of PSA/BSA interpenetrated systems. The SEM investigation evidenced as well the specific internal structure of PPC concretized in phases with different size and shape in interdependence with the interpolymer mixture composition.

Keywords: polyelectrolyte – protein complex, bovine serum albumin, poly(aspartic acid), self-assembly

Procedia PDF Downloads 225
489 Green Synthesis of Silver and Silver-Gold Alloy Nanoparticle Using Cyanobacteria as Bioreagent

Authors: Piya Roychoudhury, Ruma Pal

Abstract:

Cyanobacteria, commonly known as blue green algae were found to be an effective bioreagent for nanoparticle synthesis. Nowadays silver nanoparticles (AgNPs) are very popular due to their antimicrobial and anti-proliferative activity. To exploit these characters in different biotechnological fields, it is very essential to synthesize more stable, non-toxic nano-silver. For this reason silver-gold alloy (Ag-AuNPs) nanoparticles are of great interest as they are more stable, harder and more effective than single metal nanoparticles. In the present communication we described a simple technique for rapid synthesis of biocompatible AgNP and Ag-AuNP employing cyanobacteria, Leptolyngbya and Lyngbya respectively. For synthesis of AgNP the biomass of Leptolyngbya valderiana (200 mg Fresh weight) was exposed to 9 mM AgNO3 solution (pH 4). For synthesis of Ag-AuNP Lyngbya majuscula (200 mg Fresh weight) was exposed to equimolar solution of hydrogen tetra-auro chlorate and silver nitrate (1mM, pH 4). After 72 hrs of exposure thallus of Leptolyngyba turned brown in color and filaments of Lyngbya turned pink in color that indicated synthesis of nanoparticles. The produced particles were extracted from the cyanobacterial biomass using nano-capping agent, sodium citrate. Firstly, extracted brown and pink suspensions were taken for Energy Dispersive X-ray (EDAX) analysis to confirm the presence of silver in brown suspension and presence of both gold and silver in pink suspension. Extracted nanoparticles showed a distinct single plasmon band (AgNP at 411 nm; Ag-Au NP at 481 nm) in Uv-vis spectroscopy. It was revealed from Transmission electron microscopy (TEM) that all the synthesized particles were spherical in nature with a size range of ~2-25 nm. In X-ray powder diffraction (XRD) analysis four intense peaks appeared at 38.2°, 44.5°, 64.8°and 77.8° which confirmed the crystallographic nature of synthesized particles. Presence of different functional groups viz. N-H, C=C, C–O, C=O on the surface of nanoparticles were recorded by Fourier transform infrared spectroscopy (FTIR). Scanning Electron microscopy (SEM) images showed the surface topography of metal treated filaments of cyanobacteria. The stability of the particles was observed by Zeta potential study. Antibiotic property of synthesized particles was tested by Agar well diffusion method against gram negative bacteria Pseudomonas aeruginosa. Overall, this green-technique requires low energy, less manufacturing cost and produces rapidly eco-friendly metal nanoparticles.

Keywords: cyanobacteria, silver nanoparticles, silver-gold alloy nanoparticles, spectroscopy

Procedia PDF Downloads 305
488 Ecosystem Modeling along the Western Bay of Bengal

Authors: A. D. Rao, Sachiko Mohanty, R. Gayathri, V. Ranga Rao

Abstract:

Modeling on coupled physical and biogeochemical processes of coastal waters is vital to identify the primary production status under different natural and anthropogenic conditions. About 7, 500 km length of Indian coastline is occupied with number of semi enclosed coastal bodies such as estuaries, inlets, bays, lagoons, and other near shore, offshore shelf waters, etc. This coastline is also rich in wide varieties of ecosystem flora and fauna. Directly/indirectly extensive domestic and industrial sewage enter into these coastal water bodies affecting the ecosystem character and create environment problems such as water quality degradation, hypoxia, anoxia, harmful algal blooms, etc. lead to decline in fishery and other related biological production. The present study is focused on the southeast coast of India, starting from Pulicat to Gulf of Mannar, which is rich in marine diversity such as lagoon, mangrove and coral ecosystem. Three dimensional Massachusetts Institute of Technology general circulation model (MITgcm) along with Darwin biogeochemical module is configured for the western Bay of Bengal (BoB) to study the biogeochemistry over this region. The biogeochemical module resolves the cycling of carbon, phosphorous, nitrogen, silica, iron and oxygen through inorganic, living, dissolved and particulate organic phases. The model domain extends from 4°N-16.5°N and 77°E-86°E with a horizontal resolution of 1 km. The bathymetry is derived from General Bathymetric Chart of the Oceans (GEBCO), which has a resolution of 30 sec. The model is initialized by using the temperature, salinity filed from the World Ocean Atlas (WOA2013) of National Oceanographic Data Centre with a resolution of 0.25°. The model is forced by the surface wind stress from ASCAT and the photosynthetically active radiation from the MODIS-Aqua satellite. Seasonal climatology of nutrients (phosphate, nitrate and silicate) for the southwest BoB region are prepared using available National Institute of Oceanography (NIO) in-situ data sets and compared with the WOA2013 seasonal climatology data. The model simulations with the two different initial conditions viz., WOA2013 and the generated NIO climatology, showed evident changes in the concentration and the evolution of the nutrients in the study region. It is observed that the availability of nutrients is more in NIO data compared to WOA in the model domain. The model simulated primary productivity is compared with the spatially distributed satellite derived chlorophyll data and at various locations with the in-situ data. The seasonal variability of the model simulated primary productivity is also studied.

Keywords: Bay of Bengal, Massachusetts Institute of Technology general circulation model, MITgcm, biogeochemistry, primary productivity

Procedia PDF Downloads 122
487 Alkali Activation of Fly Ash, Metakaolin and Slag Blends: Fresh and Hardened Properties

Authors: Weiliang Gong, Lissa Gomes, Lucile Raymond, Hui Xu, Werner Lutze, Ian L. Pegg

Abstract:

Alkali-activated materials, particularly geopolymers, have attracted much interest in academia. Commercial applications are on the rise, as well. Geopolymers are produced typically by a reaction of one or two aluminosilicates with an alkaline solution at room temperature. Fly ash is an important aluminosilicate source. However, using low-Ca fly ash, the byproduct of burning hard or black coal reacts and sets slowly at room temperature. The development of mechanical durability, e.g., compressive strength, is slow as well. The use of fly ashes with relatively high contents ( > 6%) of unburned carbon, i.e., high loss on ignition (LOI), is particularly disadvantageous as well. This paper will show to what extent these impediments can be mitigated by mixing the fly ash with one or two more aluminosilicate sources. The fly ash used here is generated at the Orlando power plant (Florida, USA). It is low in Ca ( < 1.5% CaO) and has a high LOI of > 6%. The additional aluminosilicate sources are metakaolin and blast furnace slag. Binary fly ash-metakaolin and ternary fly ash-metakaolin-slag geopolymers were prepared. Properties of geopolymer pastes before and after setting have been measured. Fresh mixtures of aluminosilicates with an alkaline solution were studied by Vicat needle penetration, rheology, and isothermal calorimetry up to initial setting and beyond. The hardened geopolymers were investigated by SEM/EDS and the compressive strength was measured. Initial setting (fluid to solid transition) was indicated by a rapid increase in yield stress and plastic viscosity. The rheological times of setting were always smaller than the Vicat times of setting. Both times of setting decreased with increasing replacement of fly ash with blast furnace slag in a ternary fly ash-metakaolin-slag geopolymer system. As expected, setting with only Orlando fly ash was the slowest. Replacing 20% fly ash with metakaolin shortened the set time. Replacing increasing fractions of fly ash in the binary system by blast furnace slag (up to 30%) shortened the time of setting even further. The 28-day compressive strength increased drastically from < 20 MPa to 90 MPa. The most interesting finding relates to the calorimetric measurements. The use of two or three aluminosilicates generated significantly more heat (20 to 65%) than the calculated from the weighted sum of the individual aluminosilicates. This synergetic heat contributes or may be responsible for most of the increase of compressive strength of our binary and ternary geopolymers. The synergetic heat effect may be also related to increased incorporation of calcium in sodium aluminosilicate hydrate to form a hybrid (N,C)A-S-H) gel. The time of setting will be correlated with heat release and maximum heat flow.

Keywords: alkali-activated materials, binary and ternary geopolymers, blends of fly ash, metakaolin and blast furnace slag, rheology, synergetic heats

Procedia PDF Downloads 103
486 Changing the Landscape of Fungal Genomics: New Trends

Authors: Igor V. Grigoriev

Abstract:

Understanding of biological processes encoded in fungi is instrumental in addressing future food, feed, and energy demands of the growing human population. Genomics is a powerful and quickly evolving tool to understand these processes. The Fungal Genomics Program of the US Department of Energy Joint Genome Institute (JGI) partners with researchers around the world to explore fungi in several large scale genomics projects, changing the fungal genomics landscape. The key trends of these changes include: (i) rapidly increasing scale of sequencing and analysis, (ii) developing approaches to go beyond culturable fungi and explore fungal ‘dark matter,’ or unculturables, and (iii) functional genomics and multi-omics data integration. Power of comparative genomics has been recently demonstrated in several JGI projects targeting mycorrhizae, plant pathogens, wood decay fungi, and sugar fermenting yeasts. The largest JGI project ‘1000 Fungal Genomes’ aims at exploring the diversity across the Fungal Tree of Life in order to better understand fungal evolution and to build a catalogue of genes, enzymes, and pathways for biotechnological applications. At this point, at least 65% of over 700 known families have one or more reference genomes sequenced, enabling metagenomics studies of microbial communities and their interactions with plants. For many of the remaining families no representative species are available from culture collections. To sequence genomes of unculturable fungi two approaches have been developed: (a) sequencing DNA from fruiting bodies of ‘macro’ and (b) single cell genomics using fungal spores. The latter has been tested using zoospores from the early diverging fungi and resulted in several near-complete genomes from underexplored branches of the Fungal Tree, including the first genomes of Zoopagomycotina. Genome sequence serves as a reference for transcriptomics studies, the first step towards functional genomics. In the JGI fungal mini-ENCODE project transcriptomes of the model fungus Neurospora crassa grown on a spectrum of carbon sources have been collected to build regulatory gene networks. Epigenomics is another tool to understand gene regulation and recently introduced single molecule sequencing platforms not only provide better genome assemblies but can also detect DNA modifications. For example, 6mC methylome was surveyed across many diverse fungi and the highest among Eukaryota levels of 6mC methylation has been reported. Finally, data production at such scale requires data integration to enable efficient data analysis. Over 700 fungal genomes and other -omes have been integrated in JGI MycoCosm portal and equipped with comparative genomics tools to enable researchers addressing a broad spectrum of biological questions and applications for bioenergy and biotechnology.

Keywords: fungal genomics, single cell genomics, DNA methylation, comparative genomics

Procedia PDF Downloads 187
485 Characterization of Anisotropic Deformation in Sandstones Using Micro-Computed Tomography Technique

Authors: Seyed Mehdi Seyed Alizadeh, Christoph Arns, Shane Latham

Abstract:

Geomechanical characterization of rocks in detail and its possible implications on flow properties is an important aspect of reservoir characterization workflow. In order to gain more understanding of the microstructure evolution of reservoir rocks under stress a series of axisymmetric triaxial tests were performed on two different analogue rock samples. In-situ compression tests were coupled with high resolution micro-Computed Tomography to elucidate the changes in the pore/grain network of the rocks under pressurized conditions. Two outcrop sandstones were chosen in the current study representing a various cementation status of well-consolidated and weakly-consolidated granular system respectively. High resolution images were acquired while the rocks deformed in a purpose-built compression cell. A detailed analysis of the 3D images in each series of step-wise compression tests (up to the failure point) was conducted which includes the registration of the deformed specimen images with the reference pristine dry rock image. Digital Image Correlation (DIC) technique based on the intensity of the registered 3D subsets and particle tracking are utilized to map the displacement fields in each sample. The results suggest the complex architecture of the localized shear zone in well-cemented Bentheimer sandstone whereas for the weakly-consolidated Castlegate sandstone no discernible shear band could be observed even after macroscopic failure. Post-mortem imaging a sister plug from the friable rock upon undergoing continuous compression reveals signs of a shear band pattern. This suggests that for friable sandstones at small scales loading mode may affect the pattern of deformation. Prior to mechanical failure, the continuum digital image correlation approach can reasonably capture the kinematics of deformation. As failure occurs, however, discrete image correlation (i.e. particle tracking) reveals superiority in both tracking the grains as well as quantifying their kinematics (in terms of translations/rotations) with respect to any stage of compaction. An attempt was made to quantify the displacement field in compression using continuum Digital Image Correlation which is based on the reference and secondary image intensity correlation. Such approach has only been previously applied to unconsolidated granular systems under pressure. We are applying this technique to sandstones with various degrees of consolidation. Such element of novelty will set the results of this study apart from previous attempts to characterize the deformation pattern in consolidated sands.

Keywords: deformation mechanism, displacement field, shear behavior, triaxial compression, X-ray micro-CT

Procedia PDF Downloads 172
484 Spatial Ecology of an Endangered Amphibian Litoria Raniformis within Modified Tasmanian Landscapes

Authors: Timothy Garvey, Don Driscoll

Abstract:

Within Tasmania, the growling grass frog (Litoria raniformis) has experienced a rapid contraction in distribution. This decline is primarily attributed to habitat loss through landscape modification and improved land drainage. Reductions in seasonal water-sources have placed increasing importance on permanent water bodies for reproduction and foraging. Tasmanian agricultural and commercial forestry landscapes often feature small artificial ponds, utilized for watering livestock and fighting wildfires. Improved knowledge of how L. raniformis may be exploiting anthropogenic ponds is required for improved conservation management. We implemented telemetric tracking in order to evaluate the spatial ecology of L. raniformis (n = 20) within agricultural and managed forestry sites, with tracking conducted periodically over the breeding season (November/December, January/February, March/April). We investigated (1) potential differences in habitat utilization between agricultural and plantation sites, and (2) the post-breeding dispersal of individual frogs. Frogs were found to remain in close proximity to ponds throughout November/December, with individuals occupying vegetative depauperate water bodies beginning to disperse by January/February. Dispersing individuals traversed exposed plantation understory and agricultural pasture land in order to enter patches of native scrubland. By March/April all individuals captured at minimally vegetated ponds had retreated to adjacent scrub corridors. Animals found in ponds featuring dense riparian vegetation were not recorded to disperse. No difference in behavior was recorded between sexes. Rising temperatures coincided with increased movement by individuals towards native scrub refugia. The patterns of movement reported in this investigation emphasize the significant contribution of manmade water-bodies towards the conservation of L. raniformis within modified landscapes. The use of natural scrubland as cyclical retreats between breeding seasons also highlights the importance of the continued preservation of remnant vegetation corridors. Loss of artificial dams or buffering scrubland in heavily altered landscapes could see the breakdown of the greater L. raniformis meta-population further threatening their regional persistence.

Keywords: habitat loss, modified landscapes, spatial ecology, telemetry

Procedia PDF Downloads 100
483 How Strategic Urban Design Promote Sustainable Urban Mobility: A Comparative Analysis of Cities from Global North and Global South

Authors: Rati Sandeep Choudhari

Abstract:

Mobility flows are considered one of the most important elements of urbanisation, with transport infrastructure serving as a backbone of urban fabrics. Although rapid urbanisation and changing land use patterns have led to an increase in urban mobility levels around the globe, mobility, in general, has become an unpleasant experience for city dwellers, making locations around the city inconvenient to access. With public transport featured in almost every sustainable mobility plan in developing countries, the intermodality and integration with appropriate non–motorised transport infrastructure is often neglected. As a result, people choose to use private cars and two-wheelers to travel, rendering public transit systems underutilised, and encroaching onto pedestrian space on streets, thus making urban mobility unsafe and inconvenient for a major section of society. On the other hand, cities in the West, especially in Europe, depend heavily on inter–modal transit systems, allowing people to shift between metros, buses, trams, walking, and cycling to access even the remote locations of the city. Keeping accessibility as the focal point while designing urban mobility plans and policies, these cities have appropriately refined their urban form, optimised urban densities, developed a multimodal transit system, and adopted place-making strategies to foster a sense of place, thus, improving the quality of urban mobility experience in cities. Using a qualitative research approach, the research looks in detail into the existing literature on what kind of strategies can be applied to improve the urban mobility experience for city dwellers. It further studies and draws out a comparative analysis of cities in both developed and developing parts of the world where these strategies have been used to create people-centric mobility systems, fostering a sense of place with respect to urban mobility and how these strategies affected their social, economic, and environmental dynamics. The examples reflect on how different strategies like redefining land use patterns to form close knit neighbourhoods, development of non – motorise transit systems, and their integration with public transport infrastructure and place-making approach has helped in enhancing the quality and experience of mobility infrastructure in cities. The research finally concludes by laying out strategies that can be adopted by cities of the Global South to develop future mobility systems in a people-centric and sustainable way.

Keywords: urban mobility, sustainable transport, strategic planning, people-centric approach

Procedia PDF Downloads 103
482 Loss of Green Space in Urban Metropolitan and Its Alarming Impacts on Teenagers' Life: A Case Study on Dhaka

Authors: Nuzhat Sharmin

Abstract:

Human being is the most integral part of the nature and responsible for maintaining ecological balance both in rural and urban areas. But unfortunately, we are not doing our job with a holistic approach. The rapid growth of urbanization is making human life more isolated from greenery. Nowadays modern urban living involves sensory deprivation and overloaded stress. In many cities and towns of the world are expanding unabated in the name of urbanization and industrialization and in fact becoming jungles of concrete. Dhaka is one of the examples of such cities where open and green spaces are decreasing because of accommodating the overflow of population. This review paper has been prepared based on interviewing 30 teenagers, both male and female in Dhaka city. There were 12 open-ended questions in the questionnaire. For the literature review information had been gathered from scholarly papers published in various peer-reviewed journals. Some information was collected from the newspapers and some from fellow colleagues working around the world. Ideally about 25% of an urban area should be kept open or with parks, fields and/or plants and vegetation. But currently Dhaka has only about 10-12% open space and these also are being filled up rapidly. Old Dhaka has only about 5% open space while the new Dhaka has about 12%. Dhaka is now one of the most populated cities in the world. Accommodating this huge influx of people Dhaka is continuously losing its open space. As a result, children and teenagers are losing their interest in playing games and making friends, rather they are mostly occupied by television, gadgets and social media. It has been known from the interview that only 28% of teenagers regularly play. But the majority of them have to play on the street and rooftop for the lack of open space. On an average they are occupied with electronic devices for 8.3 hours/day. 64% of them has chronic diseases and often visit doctors. Most shockingly 35% of them claimed for not having any friends. Green space offers relief from stress. Areas of natural environment in towns and cities are theoretically seen providing setting for recovery and recuperation from anxiety and strains of the urban environment. Good quality green spaces encourage people to walk, run, cycle and play. Green spaces improve air quality and reduce noise, while trees and shrubbery help to filter out dust and pollutants. Relaxation, contemplation and passive recreation are essential to stress management. All city governments that are losing its open spaces should immediately pay attention to this aesthetic issue for the benefit of urban people. All kinds of development must be sustainable both for human being and nature.

Keywords: greenery, health, human, urban

Procedia PDF Downloads 148
481 The Rise of Blue Water Navy and its Implication for the Region

Authors: Riddhi Chopra

Abstract:

Alfred Thayer Mahan described the sea as a ‘great common,’ which would serve as a medium for communication, trade, and transport. The seas of Asia are witnessing an intriguing historical anomaly – rise of an indigenous maritime power against the backdrop of US domination over the region. As China transforms from an inward leaning economy to an outward-leaning economy, it has become increasingly dependent on the global sea; as a result, we witness an evolution in its maritime strategy from near seas defense to far seas deployment strategies. It is not only patrolling the international waters but has also built a network of civilian and military infrastructure across the disputed oceanic expanse. The paper analyses the reorientation of China from a naval power to a blue water navy in an era of extensive globalisation. The actions of the Chinese have created a zone of high alert amongst its neighbors such as Japan, Philippines, Vietnam and North Korea. These nations are trying to align themselves so as to counter China’s growing brinkmanship, but China has been pursuing claims through a carefully calibrated strategy in the region shunning any coercive measures taken by other forces. If China continues to expand its maritime boundaries, its neighbors – all smaller and weaker Asian nations would be limited to a narrow band of the sea along its coastlines. Hence it is essential for the US to intervene and support its allies to offset Chinese supremacy. The paper intends to provide a profound analysis over the disputes in South China Sea and East China Sea focusing on Philippines and Japan respectively. Moreover, the paper attempts to give an account of US involvement in the region and its alignment with its South Asian allies. The geographic dynamics is said the breed a national coalition dominating the strategic ambitions of China as well as the weak littoral states. China has conducted behind the scenes diplomacy trying to persuade its neighbors to support its position on the territorial disputes. These efforts have been successful in creating fault lines in ASEAN thereby undermining regional integrity to reach a consensus on the issue. Chinese diplomatic efforts have also forced the US to revisit its foreign policy and engage with players like Cambodia and Laos. The current scenario in the SCS points to a strong Chinese hold trying to outspace all others with no regards to International law. Chinese activities are in contrast with US principles like Freedom of Navigation thereby signaling US to take bold actions to prevent Chinese hegemony in the region. The paper ultimately seeks to explore the changing power dynamics among various claimants where a rival superpower like US can pursue the traditional policy of alliance formation play a decisive role in changing the status quo in the arena, consequently determining the future trajectory.

Keywords: China, East China Sea, South China Sea, USA

Procedia PDF Downloads 223
480 Bringing the World to Net Zero Carbon Dioxide by Sequestering Biomass Carbon

Authors: Jeffrey A. Amelse

Abstract:

Many corporations aspire to become Net Zero Carbon Carbon Dioxide by 2035-2050. This paper examines what it will take to achieve those goals. Achieving Net Zero CO₂ requires an understanding of where energy is produced and consumed, the magnitude of CO₂ generation, and proper understanding of the Carbon Cycle. The latter leads to the distinction between CO₂ and biomass carbon sequestration. Short reviews are provided for prior technologies proposed for reducing CO₂ emissions from fossil fuels or substitution by renewable energy, to focus on their limitations and to show that none offer a complete solution. Of these, CO₂ sequestration is poised to have the largest impact. It will just cost money, scale-up is a huge challenge, and it will not be a complete solution. CO₂ sequestration is still in the demonstration and semi-commercial scale. Transportation accounts for only about 30% of total U.S. energy demand, and renewables account for only a small fraction of that sector. Yet, bioethanol production consumes 40% of U.S. corn crop, and biodiesel consumes 30% of U.S. soybeans. It is unrealistic to believe that biofuels can completely displace fossil fuels in the transportation market. Bioethanol is traced through its Carbon Cycle and shown to be both energy inefficient and inefficient use of biomass carbon. Both biofuels and CO₂ sequestration reduce future CO₂ emissions from continued use of fossil fuels. They will not remove CO₂ already in the atmosphere. Planting more trees has been proposed as a way to reduce atmospheric CO₂. Trees are a temporary solution. When they complete their Carbon Cycle, they die and release their carbon as CO₂ to the atmosphere. Thus, planting more trees is just 'kicking the can down the road.' The only way to permanently remove CO₂ already in the atmosphere is to break the Carbon Cycle by growing biomass from atmospheric CO₂ and sequestering biomass carbon. Sequestering tree leaves is proposed as a solution. Unlike wood, leaves have a short Carbon Cycle time constant. They renew and decompose every year. Allometric equations from the USDA indicate that theoretically, sequestrating only a fraction of the world’s tree leaves can get the world to Net Zero CO₂ without disturbing the underlying forests. How can tree leaves be permanently sequestered? It may be as simple as rethinking how landfills are designed to discourage instead of encouraging decomposition. In traditional landfills, municipal waste undergoes rapid initial aerobic decomposition to CO₂, followed by slow anaerobic decomposition to methane and CO₂. The latter can take hundreds to thousands of years. The first step in anaerobic decomposition is hydrolysis of cellulose to release sugars, which those who have worked on cellulosic ethanol know is challenging for a number of reasons. The key to permanent leaf sequestration may be keeping the landfills dry and exploiting known inhibitors for anaerobic bacteria.

Keywords: carbon dioxide, net zero, sequestration, biomass, leaves

Procedia PDF Downloads 107
479 The Lonely Entrepreneur: Antecedents and Effects of Social Isolation on Entrepreneurial Intention and Output

Authors: Susie Pryor, Palak Sadhwani

Abstract:

The purpose of this research is to provide the foundations for a broad research agenda examining the role loneliness plays in entrepreneurship. While qualitative research in entrepreneurship incidentally captures the existence of loneliness as a part of the lived reality of entrepreneurs, to the authors’ knowledge, no academic work has to date explored this construct in this context. Moreover, many individuals reporting high levels of loneliness (women, ethnic minorities, immigrants, low income, low education) reflect those who are currently driving small business growth in the United States. Loneliness is a persistent state of emotional distress which results from feelings of estrangement and rejection or develops in the absence of social relationships and interactions. Empirical work finds links between loneliness and depression, suicide and suicide ideation, anxiety, hostility and passiveness, lack of communication and adaptability, shyness, poor social skills and unrealistic social perceptions, self-doubts, fear of rejection, and negative self-evaluation. Lonely individuals have been found to exhibit lower levels of self-esteem, higher levels of introversion, lower affiliative tendencies, less assertiveness, higher sensitivity to rejection, a heightened external locus of control, intensified feelings of regret and guilt over past events and rigid and overly idealistic goals concerning the future. These characteristics are likely to impact entrepreneurs and their work. Research identifies some key dangers of loneliness. Loneliness damages human love and intimacy, can disturb and distract individuals from channeling creative and effective energies in a meaningful way, may result in the formation of premature, poorly thought out and at times even irresponsible decisions, and produce hard and desensitized individuals, with compromised health and quality of life concerns. The current study utilizes meta-analysis and text analytics to distinguish loneliness from other related constructs (e.g., social isolation) and categorize antecedents and effects of loneliness across subpopulations. This work has the potential to materially contribute to the field of entrepreneurship by cleanly defining constructs and providing foundational background for future research. It offers a richer understanding of the evolution of loneliness and related constructs over the life cycle of entrepreneurial start-up and development. Further, it suggests preliminary avenues for exploration and methods of discovery that will result in knowledge useful to the field of entrepreneurship. It is useful to both entrepreneurs and those work with them as well as academics interested in the topics of loneliness and entrepreneurship. It adopts a grounded theory approach.

Keywords: entrepreneurship, grounded theory, loneliness, meta-analysis

Procedia PDF Downloads 99
478 Numerical Investigation of the Boundary Conditions at Liquid-Liquid Interfaces in the Presence of Surfactants

Authors: Bamikole J. Adeyemi, Prashant Jadhawar, Lateef Akanji

Abstract:

Liquid-liquid interfacial flow is an important process that has applications across many spheres. One such applications are residual oil mobilization, where crude oil and low salinity water are emulsified due to lowered interfacial tension under the condition of low shear rates. The amphiphilic components (asphaltenes and resins) in crude oil are considered to assemble at the interface between the two immiscible liquids. To justify emulsification, drag and snap-off suppression as the main effects of low salinity water, mobilization of residual oil is visualized as thickening and slip of the wetting phase at the brine/crude oil interface which results in the squeezing and drag of the non-wetting phase to the pressure sinks. Meanwhile, defining the boundary conditions for such a system can be very challenging since the interfacial dynamics do not only depend on interfacial tension but also the flow rate. Hence, understanding the flow boundary condition at the brine/crude oil interface is an important step towards defining the influence of low salinity water composition on residual oil mobilization. This work presents a numerical evaluation of three slip boundary conditions that may apply at liquid-liquid interfaces. A mathematical model was developed to describe the evolution of a viscoelastic interfacial thin liquid film. The base model is developed by the asymptotic expansion of the full Navier-Stokes equations for fluid motion due to gradients of surface tension. This model was upscaled to describe the dynamics of the film surface deformation. Subsequently, Jeffrey’s model was integrated into the formulations to account for viscoelastic stress within a long wave approximation of the Navier-Stokes equations. To study the fluid response to a prescribed disturbance, a linear stability analysis (LSA) was performed. The dispersion relation and the corresponding characteristic equation for the growth rate were obtained. Three slip (slip, 1; locking, -1; and no-slip, 0) boundary conditions were examined using the resulted characteristic equation. Also, the dynamics of the evolved interfacial thin liquid film were numerically evaluated by considering the influence of the boundary conditions. The linear stability analysis shows that the boundary conditions of such systems are greatly impacted by the presence of amphiphilic molecules when three different values of interfacial tension were tested. The results for slip and locking conditions are consistent with the fundamental solution representation of the diffusion equation where there is film decay. The interfacial films at both boundary conditions respond to exposure time in a similar manner with increasing growth rate which resulted in the formation of more droplets with time. Contrarily, no-slip boundary condition yielded an unbounded growth and it is not affected by interfacial tension.

Keywords: boundary conditions, liquid-liquid interfaces, low salinity water, residual oil mobilization

Procedia PDF Downloads 118
477 A Conceptual Model of the Factors Affecting Saudi Citizens' Use of Social Media to Communicate with the Government

Authors: Reemiah Alotaibi, Muthu Ramachandran, Ah-Lian Kor, Amin Hosseinian-Far

Abstract:

In the past decade, developers of Web 2.0 technologies have shown increasing interest in the topic of e-government. There has been a rapid growth in social media technology because of its significant role in backing up some essential social needs. Its importance and power is derived from its capacity to support two-way communication. Governments are curious to get engaged in these websites, hoping to benefit from the new forms of communication and interaction offered by such technology. Greater participation by the public can be viewed as a chief indicator of effective government communication. Yet, the level of public participation in government 2.0 is not quite satisfactory. In general, it is still at the early stage in most developing countries, including Saudi Arabia. Although it is a fact that Saudi people are among the most active in using social media, the number of people who use social media to communicate with the public institutions is not high. Furthermore, most of the governmental organisations are not using social media tools to communicate with the public. They use these platforms to disseminate information. Our study focuses on the factors affecting citizens’ adoption of social media in Saudi Arabia. Our research question is: what are the factors affecting Saudi citizens’ use of social media to communicate with the government? To answer this research question, the research aims to validate the UTAUT model for examining social media tools from the citizen perspective. An amendment will be proposed to fit the adoption of social media platforms as a communication channel in government by using a developed conceptual model which integrates constructs from the UTAUT model and others external variables based on the literature review. The set of potential factors that affect these citizens' decisions to adopt social media to communicate with their government has been identified as perceived encouragement, trust and cultural influence. The connection between the above-mentioned constructs from the basis for the research hypothesis will be examined in the light of a quantitative methodology. Data collection will be performed through a survey targeting a number of Saudi citizens who are social media users. The data collected from the primary survey will later be analysed by using statistical methods. The outcomes of this research project are argued to have potential contributions to the fields of social media and e-Government adoption, both on the theoretical and practical levels. It is believed that this research project is the first of its type that attempts to identify the factors that affect citizens’ adoption of social media to communicate with the government. The importance of identifying these factors stems from the potential use of them to enhance the government’s implementation of social media and help in making more accurate decisions and strategies based on comprehending the most important factors that affect citizens’ decisions.

Keywords: social media, adoption, citizen, UTAUT model

Procedia PDF Downloads 395
476 Successful Excision of Lower Lip Mucocele Using 2780 nm Er,Cr:YSGG Laser

Authors: Lubna M. Al-Otaibi

Abstract:

Mucocele is a common benign neoplasm of the oral cavity and the most common after fibroma. The lesion develops as a result of retention or extravasation of mucous material from minor salivary glands. Extravasation type of mucocele results from trauma and mostly occurs in the lower lip of young patients. The various treatment options available for the treatment of mucocele are associated with a relatively high incidence of recurrence making surgical intervention necessary for a permanent cure. The conventional surgical procedure, however, arouses apprehension in the patient and is associated with bleeding and postoperative pain. Recently, treatment of mucocele with lasers has become a viable treatment option. Various types of lasers are being used and are preferable over the conventional surgical procedure as they provide good hemostasis, reduced postoperative swelling and pain, reduced bacterial population, lesser need for suturing, faster healing and low recurrence rates. Er,Cr:YSGG is a solid-state laser with great affinity to water molecule. Its hydrokinetic cutting action allows it to work effectively on hydrated tissues without any thermal damage. However, up to date, only a few studies have reported its use in the removal of lip mucocele, especially in children. In this case, a 6 year old female patient with history of trauma to the lower lip presented with a soft, sessile, whitish-bluish 4 mm papule. The lesion was present for approximately four months and was fluctuant in size. The child developed a habit of biting the lesion causing injury, bleeding and discomfort. Surgical excision under local anaesthesia was performed using 2780 nm Er,Cr:YSGG Laser (WaterLase iPlus, Irvine, CA) with a Gold handpiece and MZ6 tip (3.5w, 50 Hz, 20% H2O, 20% Air, S mode). The tip was first applied in contact mode with focused beam using the Circumferential Incision Technique (CIT) to excise the tissue followed by the removal of the underlying causative minor salivary gland. Bleeding was stopped using Laser Dry Bandage setting (0.5w, 50 Hz, 1% H2O, 20% Air, S mode) and no suturing was needed. Safety goggles were worn and high-speed suction was used for smoke evacuation. Mucocele excision using 2780 nm Er,Cr:YSGG laser was rapid, easy to perform with excellent precision and allowed for histopathological examination of the excised tissue. The patient was comfortable and there were minimum bleeding and no sutures, postoperative pain, scarring or recurrence. Laser assisted mucocele excision appears to have efficient and reliable benefits in young patients and should be considered as an alternative to conventional surgical and non-surgical techniques.

Keywords: Erbium, excision, laser, lip, mucocele

Procedia PDF Downloads 214
475 Geostatistical Analysis of Contamination of Soils in an Urban Area in Ghana

Authors: S. K. Appiah, E. N. Aidoo, D. Asamoah Owusu, M. W. Nuonabuor

Abstract:

Urbanization remains one of the unique predominant factors which is linked to the destruction of urban environment and its associated cases of soil contamination by heavy metals through the natural and anthropogenic activities. These activities are important sources of toxic heavy metals such as arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), and lead (Pb), nickel (Ni) and zinc (Zn). Often, these heavy metals lead to increased levels in some areas due to the impact of atmospheric deposition caused by their proximity to industrial plants or the indiscriminately burning of substances. Information gathered on potentially hazardous levels of these heavy metals in soils leads to establish serious health and urban agriculture implications. However, characterization of spatial variations of soil contamination by heavy metals in Ghana is limited. Kumasi is a Metropolitan city in Ghana, West Africa and is challenged with the recent spate of deteriorating soil quality due to rapid economic development and other human activities such as “Galamsey”, illegal mining operations within the metropolis. The paper seeks to use both univariate and multivariate geostatistical techniques to assess the spatial distribution of heavy metals in soils and the potential risk associated with ingestion of sources of soil contamination in the Metropolis. Geostatistical tools have the ability to detect changes in correlation structure and how a good knowledge of the study area can help to explain the different scales of variation detected. To achieve this task, point referenced data on heavy metals measured from topsoil samples in a previous study, were collected at various locations. Linear models of regionalisation and coregionalisation were fitted to all experimental semivariograms to describe the spatial dependence between the topsoil heavy metals at different spatial scales, which led to ordinary kriging and cokriging at unsampled locations and production of risk maps of soil contamination by these heavy metals. Results obtained from both the univariate and multivariate semivariogram models showed strong spatial dependence with range of autocorrelations ranging from 100 to 300 meters. The risk maps produced show strong spatial heterogeneity for almost all the soil heavy metals with extremely risk of contamination found close to areas with commercial and industrial activities. Hence, ongoing pollution interventions should be geared towards these highly risk areas for efficient management of soil contamination to avert further pollution in the metropolis.

Keywords: coregionalization, heavy metals, multivariate geostatistical analysis, soil contamination, spatial distribution

Procedia PDF Downloads 282
474 Potential of Aerodynamic Feature on Monitoring Multilayer Rough Surfaces

Authors: Ibtissem Hosni, Lilia Bennaceur Farah, Saber Mohamed Naceur

Abstract:

In order to assess the water availability in the soil, it is crucial to have information about soil distributed moisture content; this parameter helps to understand the effect of humidity on the exchange between soil, plant cover and atmosphere in addition to fully understanding the surface processes and the hydrological cycle. On the other hand, aerodynamic roughness length is a surface parameter that scales the vertical profile of the horizontal component of the wind speed and characterizes the surface ability to absorb the momentum of the airflow. In numerous applications of the surface hydrology and meteorology, aerodynamic roughness length is an important parameter for estimating momentum, heat and mass exchange between the soil surface and atmosphere. It is important on this side, to consider the atmosphere factors impact in general, and the natural erosion in particular, in the process of soil evolution and its characterization and prediction of its physical parameters. The study of the induced movements by the wind over soil vegetated surface, either spaced plants or plant cover, is motivated by significant research efforts in agronomy and biology. The known major problem in this side concerns crop damage by wind, which presents a booming field of research. Obviously, most models of soil surface require information about the aerodynamic roughness length and its temporal and spatial variability. We have used a bi-dimensional multi-scale (2D MLS) roughness description where the surface is considered as a superposition of a finite number of one-dimensional Gaussian processes each one having a spatial scale using the wavelet transform and the Mallat algorithm to describe natural surface roughness. We have introduced multi-layer aspect of the humidity of the soil surface, to take into account a volume component in the problem of backscattering radar signal. As humidity increases, the dielectric constant of the soil-water mixture increases and this change is detected by microwave sensors. Nevertheless, many existing models in the field of radar imagery, cannot be applied directly on areas covered with vegetation due to the vegetation backscattering. Thus, the radar response corresponds to the combined signature of the vegetation layer and the layer of soil surface. Therefore, the key issue of the numerical estimation of soil moisture is to separate the two contributions and calculate both scattering behaviors of the two layers by defining the scattering of the vegetation and the soil blow. This paper presents a synergistic methodology, and it is for estimating roughness and soil moisture from C-band radar measurements. The methodology adequately represents a microwave/optical model which has been used to calculate the scattering behavior of the aerodynamic vegetation-covered area by defining the scattering of the vegetation and the soil below.

Keywords: aerodynamic, bi-dimensional, vegetation, synergistic

Procedia PDF Downloads 254
473 Performance Estimation of Small Scale Wind Turbine Rotor for Very Low Wind Regime Condition

Authors: Vilas Warudkar, Dinkar Janghel, Siraj Ahmed

Abstract:

Rapid development experienced by India requires huge amount of energy. Actual supply capacity additions have been consistently lower than the targets set by the government. According to World Bank 40% of residences are without electricity. In 12th five year plan 30 GW grid interactive renewable capacity is planned in which 17 GW is Wind, 10 GW is from solar and 2.1 GW from small hydro project, and rest is compensated by bio gas. Renewable energy (RE) and energy efficiency (EE) meet not only the environmental and energy security objectives, but also can play a crucial role in reducing chronic power shortages. In remote areas or areas with a weak grid, wind energy can be used for charging batteries or can be combined with a diesel engine to save fuel whenever wind is available. India according to IEC 61400-1 belongs to class IV Wind Condition; it is not possible to set up wind turbine in large scale at every place. So, the best choice is to go for small scale wind turbine at lower height which will have good annual energy production (AEP). Based on the wind characteristic available at MANIT Bhopal, rotor for small scale wind turbine is designed. Various Aero foil data is reviewed for selection of airfoil in the Blade Profile. Airfoil suited of Low wind conditions i.e. at low Reynold’s number is selected based on Coefficient of Lift, Drag and angle of attack. For designing of the rotor blade, standard Blade Element Momentum (BEM) Theory is implanted. Performance of the Blade is estimated using BEM theory in which axial induction factor and angular induction factor is optimized using iterative technique. Rotor performance is estimated for particular designed blade specifically for low wind Conditions. Power production of rotor is determined at different wind speeds for particular pitch angle of the blade. At pitch 15o and velocity 5 m/sec gives good cut in speed of 2 m/sec and power produced is around 350 Watts. Tip speed of the Blade is considered as 6.5 for which Coefficient of Performance of the rotor is calculated 0.35, which is good acceptable value for Small scale Wind turbine. Simple Load Model (SLM, IEC 61400-2) is also discussed to improve the structural strength of the rotor. In SLM, Edge wise Moment and Flap Wise moment is considered which cause bending stress at the root of the blade. Various Load case mentioned in the IEC 61400-2 is calculated and checked for the partial safety factor of the wind turbine blade.

Keywords: annual energy production, Blade Element Momentum Theory, low wind Conditions, selection of airfoil

Procedia PDF Downloads 320
472 Challenging Clinical Scenario of Blood Stream Candida Infections – An Indian Experience

Authors: P. Uma Devi, S. Sujith, K. Rahul, T. S. Dipu, V. Anil Kumar , Vidya Menon

Abstract:

Introduction: Candida is an important cause of bloodstream infections (BSIs), causing significant mortality and morbidity. The epidemiology of Candida infection is also changing, mainly in relation to the number of episodes caused by species Candida non-albicans. However, in India, the true burden of candidemia is not clear. Thus, this study was conducted to evaluate the clinical characteristics, species distribution, antifungal susceptibility and outcome of candidemia at our hospital. Methodology: Between January 2012 and April 2014, adult patients with at least one positive blood culture for Candida species were identified through the microbiology laboratory database (for each patient only the first episode of candidemia was recorded). Patient data was collected by retrospective chart review of clinical characteristics including demographic data, risk factors; species distribution, resistance to antifungals and survival. Results: A total of 165 episodes of Candida BSI were identified, with 115 episodes occurring in adult patients. Most of the episodes occurred in males (69.6%). Nearly 82.6% patients were between 41 to 80 years and majority of the patients were in the intensive care unit (65.2%) at the time of diagnosis. On admission, 26.1% and 18.3% patients had pneumonia and urinary tract infection, respectively. Majority of the candidemia episodes were found in the general medicine department (23.5%) followed by gastrointestinal surgery (13.9%) and medical oncology & haematology (13%). Risk factors identified were prior hospitalization within one year (83.5%), antibiotic therapy within the last one month (64.3%), indwelling urinary catheter (63.5%), central venous catheter use (59.1%), diabetes mellitus (53%), severe sepsis (45.2%), mechanical ventilation (43.5%) and surgery (36.5%). C. tropicalis (30.4%) was the leading cause of infection followed by C. parapsilosis (28.7%) and C. albicans (13%). Other non-albicans species isolated included C. haemulonii (7.8%), C. glabrata (7%), C. famata (4.3%) and C. krusei (1.7%). Antifungal susceptibility to fluconazole was 87.9% (C. parapsilosis), 100% (C. tropicalis) and 93.3% (C. albicans). Mortality was noted in 51 patients (44.3%). Early mortality (within 7 days) was noted in 32 patients while late mortality (between 7 and 30 days) was noted in 19 patients. Conclusion: In recent years, candidemia has been flourishing in critically ill patients. Comparison of data from our own hospital from 2005 shows a doubling of the incidence. Rapid changes in the rate of infection, potential risk factors, and emergence of non-albicans Candida demand continued surveillance of this serious BSI. High index of suspicion and sensitive diagnostics are essential to improve outcomes in resource limited settings with emergence of non-albicans Candida.

Keywords: antifungal susceptibility, candida albicans, candidemia, non-albicans candida

Procedia PDF Downloads 436
471 Wetting Induced Collapse Behavior of Loosely Compacted Kaolin Soil: A Microstructural Study

Authors: Dhanesh Sing Das, Bharat Tadikonda Venkata

Abstract:

Collapsible soils undergo significant volume reduction upon wetting under the pre-existing mechanically applied normal stress (inundation pressure). These soils exhibit a very high strength in air-dried conditions and can carry up to a considerable magnitude of normal stress without undergoing significant volume change. The soil strength is, however, lost upon saturation and results in a sudden collapse of the soil structure under the existing mechanical stress condition. The intrusion of water into the dry deposits of such soil causes ground subsidence leading to damages in the overlying buildings/structures. A study on the wetting-induced volume change behavior of collapsible soils is essential in dealing with the ground subsidence problems in various geotechnical engineering practices. The collapse of loosely compacted Kaolin soil upon wetting under various inundation pressures has been reported in recent studies. The collapse in the Kaolin soil is attributed to the alteration in the soil particle-particle association (fabric) resulting due to the changes in the various inter-particle (microscale) forces induced by the water saturation. The inundation pressure plays a significant role in the fabric evolution during the wetting process, thus controls the collapse potential of the compacted soil. A microstructural study is useful to understand the collapse mechanisms at various pore-fabric levels under different inundation pressure. Kaolin soil compacted to a dry density of 1.25 g/cc was used in this work to study the wetting-induced volume change behavior under different inundation pressures in the range of 10-1600 kPa. The compacted specimen of Kaolin soil exhibited a consistent collapse under all the studied inundation pressure. The collapse potential was observed to be increasing with an increase in the inundation pressure up to a maximum value of 13.85% under 800 kPa and then decreased to 11.7% under 1600 kPa. Microstructural analysis was carried out based on the fabric images and the pore size distributions (PSDs) obtained from FESEM analysis and mercury intrusion porosimetry (MIP), respectively. The PSDs and the soil fabric images of ‘as-compacted’ specimen and post-collapse specimen under 400 kPa were analyzed to understand the changes in the soil fabric and pores due to wetting. The pore size density curve for the post-collapse specimen was found to be on the finer side with respect to the ‘as-compacted’ specimen, indicating the reduction of the larger pores during the collapse. The inter-aggregate pores in the range of 0.1-0.5μm were identified as the major contributing pore size classes to the macroscopic volume change. Wetting under an inundation pressure results in the reduction of these pore sizes and lead to an increase in the finer pore sizes. The magnitude of inundation pressure influences the amount of reduction of these pores during the wetting process. The collapse potential was directly related to the degree of reduction in the pore volume contributed by these pore sizes.

Keywords: collapse behavior, inundation pressure, kaolin, microstructure

Procedia PDF Downloads 122
470 Patterns of Self-Reported Overweight, Obesity, and Other Chronic Diseases Among University Students in the United Arab Emirates: A Cross-Sectional Study

Authors: Maryam M. Bashir, Luai A. Ahmed, Meera R. Alshamsi, Sara Almahrooqi, Taif Alyammahi, Shooq A. Alshehhi, Waad I. Alhammadi, Fatima H. Alhammadi, Hind A. Alhosani, Rami H. Al-Rifai, Fatma Al-Maskari

Abstract:

Obesity in the Middle East and North Africa (MENA) region has exponentially increased over the past five decades due to rapid urbanization and unhealthy lifestyle changes. It has been well established that overweight and obesity increase the risk of non-communicable diseases (NCDs) and are the leading cause of mortality and economic burden locally, and globally. In the United Arab Emirates (UAE), there is a growing epidemic of obesity and other chronic diseases like type 2 diabetes mellitus and cardiovascular diseases. Prevalence of overweight and obesity in UAE range up to 70% depending on the group being studied. Hence, there is a need to explore their patterns in the country for more targeted and responsive interventions. Our study aimed to explore the patterns of overweight and obesity and some self-reported chronic diseases among university students in Abu Dhabi, the capital city of UAE. A validated online self-administered questionnaire was used to collect data from UAE University (UAEU) students, 18years and above, from August to September 2021. Students’ characteristics were summarized using appropriate descriptive statistics. Overweight, obesity and self-reported chronic diseases were described and compared between male and female students using chi-square and t tests. Other associated factors were also explored in relation to overweight and obesity. All analyses were conducted using STATA statistical software version 16.1 (StataCorp LLC, College Station, TX, USA). 902 students participated in the study. 79.8% were females and mean age was 21.90 ± 5.19 years. Majority of the respondents were undergraduate students (80.71%). The prevalence of self-reported chronic diseases was 22.95%. Obesity (BMI≥30kg/m2), Diabetes Mellitus, and Asthma/Allergies were the commonest diseases (12.48%, 4.21% & 3.22%, respectively). Approximately 5% of the students reported more than one chronic disease. Out of the 833 participating students who had complete weight and height data, prevalence of overweight and obesity was 34.81% (22.33% and 12.48%, respectively). More than half of the male students (54.36%) were overweight or obese. This is significantly higher than in female students (30.56%, p=0.001). Overweight/obesity when compared to normal weight is associated with increasing mean age [23.40 vs 21.01, respectively (p=0.001)]. In addition to gender and age, being married [57.63% vs 31.05% (p=0.001)], being a postgraduate student [51.59% vs 30.92% (p=0.001)] and having two or more chronic diseases [65.85% vs 33.21% (p=0.001)] were also significantly associated with overweight/obesity. Our study showed that almost a quarter of the participating university students reported at least one chronic disease. Obesity was the commonest and more than 1 in 3 students were either overweight or obese. This shows the need for intensive health promotion and screening programs on obesity and other chronic diseases to meet the health needs of these students. This study is also a basis for further research, especially qualitative, to explore the relevant risk factors and risk groups for more targeted interventions.

Keywords: chronic disease, obesity, overweight, students, United Arab Emirates

Procedia PDF Downloads 107
469 Strategies for Improving and Sustaining Quality in Higher Education

Authors: Anshu Radha Aggarwal

Abstract:

Higher Education (HE) in the India has experienced a series of remarkable changes over the last fifteen years as successive governments have sought to make the sector more efficient and more accountable for investment of public funds. Rapid expansion in student numbers and pressures to widen Participation amongst non-traditional students are key challenges facing HE. Learning outcomes can act as a benchmark for assuring quality and efficiency in HE and they also enable universities to describe courses in an unambiguous way so as to demystify (and open up) education to a wider audience. This paper examines how learning outcomes are used in HE and evaluates the implications for curriculum design and student learning. There has been huge expansion in the field of higher education, both technical and non-technical, in India during the last two decades, and this trend is continuing. It is expected that another about 400 colleges and 300 universities will be created by the end of the 13th Plan Period. This has lead to many concerns about the quality of education and training of our students. Many studies have brought the issues ailing our curricula, delivery, monitoring and assessment. Govt. of India, (via MHRD, UGC, NBA,…) has initiated several steps to bring improvement in quality of higher education and training, such as National Skills Qualification Framework, making accreditation of institutions mandatory in order to receive Govt. grants, and so on. Moreover, Outcome-based Education and Training (OBET) has also been mandated and encouraged in the teaching/learning institutions. MHRD, UGC and NBAhas made accreditation of schools, colleges and universities mandatory w.e.f Jan 2014. Outcome-based Education and Training (OBET) approach is learner-centric, whereas the traditional approach has been teacher-centric. OBET is a process which involves the re-orientation/restructuring the curriculum, implementation, assessment/measurements of educational goals, and achievement of higher order learning, rather than merely clearing/passing the university examinations. OBET aims to bring about these desired changes within the students, by increasing knowledge, developing skills, influencing attitudes and creating social-connect mind-set. This approach has been adopted by several leading universities and institutions around the world in advanced countries. Objectives of this paper is to highlight the issues concerning quality in higher education and quality frameworks, to deliberate on the various education and training models, to explain the outcome-based education and assessment processes, to provide an understanding of the NAAC and outcome-based accreditation criteria and processes and to share best-practice outcomes-based accreditation system and process.

Keywords: learning outcomes, curriculum development, pedagogy, outcome based education

Procedia PDF Downloads 502
468 Optimization of Heat Source Assisted Combustion on Solid Rocket Motors

Authors: Minal Jain, Vinayak Malhotra

Abstract:

Solid Propellant ignition consists of rapid and complex events comprising of heat generation and transfer of heat with spreading of flames over the entire burning surface area. Proper combustion and thus propulsion depends heavily on the modes of heat transfer characteristics and cavity volume. Fire safety is an integral component of a successful rocket flight failing to which may lead to overall failure of the rocket. This leads to enormous forfeiture in resources viz., money, time, and labor involved. When the propellant is ignited, thrust is generated and the casing gets heated up. This heat adds on to the propellant heat and the casing, if not at proper orientation starts burning as well, leading to the whole rocket being completely destroyed. This has necessitated active research efforts emphasizing a comprehensive study on the inter-energy relations involved for effective utilization of the solid rocket motors for better space missions. Present work is focused on one of the major influential aspects of this detrimental burning which is the presence of an external heat source, in addition to a potential heat source which is already ignited. The study is motivated by the need to ensure better combustion and fire safety presented experimentally as a simplified small-scale mode of a rocket carrying a solid propellant inside a cavity. The experimental setup comprises of a paraffin wax candle as the pilot fuel and incense stick as the external heat source. The candle is fixed and the incense stick position and location is varied to investigate the find the influence of the pilot heat source. Different configurations of the external heat source presence with separation distance are tested upon. Regression rates of the pilot thin solid fuel are noted to fundamentally understand the non-linear heat and mass transfer which is the governing phenomenon. An attempt is made to understand the phenomenon fundamentally and the mechanism governing it. Results till now indicate non-linear heat transfer assisted with the occurrence of flaming transition at selected critical distances. With an increase in separation distance, the effect is noted to drop in a non-monotonic trend. The parametric study results are likely to provide useful physical insight about the governing physics and utilization in proper testing, validation, material selection, and designing of solid rocket motors with enhanced safety.

Keywords: combustion, propellant, regression, safety

Procedia PDF Downloads 147
467 Liquid Illumination: Fabricating Images of Fashion and Architecture

Authors: Sue Hershberger Yoder, Jon Yoder

Abstract:

“The appearance does not hide the essence, it reveals it; it is the essence.”—Jean-Paul Sartre, Being and Nothingness Three decades ago, transarchitect Marcos Novak developed an early form of algorithmic animation he called “liquid architecture.” In that project, digitally floating forms morphed seamlessly in cyberspace without claiming to evolve or improve. Change itself was seen as inevitable. And although some imagistic moments certainly stood out, none was hierarchically privileged over another. That project challenged longstanding assumptions about creativity and artistic genius by posing infinite parametric possibilities as inviting alternatives to traditional notions of stability, originality, and evolution. Through ephemeral processes of printing, milling, and projecting, the exhibition “Liquid Illumination” destabilizes the solid foundations of fashion and architecture. The installation is neither worn nor built in the conventional sense, but—like the sensual art forms of fashion and architecture—it is still radically embodied through the logics and techniques of design. Appearances are everything. Surface pattern and color are no longer understood as minor afterthoughts or vapid carriers of dubious content. Here, they become essential but ever-changing aspects of precisely fabricated images. Fourteen silk “colorways” (a term from the fashion industry) are framed selections from ongoing experiments with intricate pattern and complex color configurations. Whether these images are printed on fabric, milled in foam, or illuminated through projection, they explore and celebrate the untapped potentials of the surficial and superficial. Some components of individual prints appear to float in front of others through stereoscopic superimpositions; some figures appear to melt into others due to subtle changes in hue without corresponding changes in value; and some layers appear to vibrate via moiré effects that emerge from unexpected pattern and color combinations. The liturgical atmosphere of Liquid Illumination is intended to acknowledge that, like the simultaneously sacred and superficial qualities of rose windows and illuminated manuscripts, artistic and religious ideologies are also always malleable. The intellectual provocation of this paper pushes the boundaries of current thinking concerning viable applications for fashion print designs and architectural images—challenging traditional boundaries between fine art and design. The opportunistic installation of digital printing, CNC milling, and video projection mapping in a gallery that is normally reserved for fine art exhibitions raises important questions about cultural/commercial display, mass customization, digital reproduction, and the increasing prominence of surface effects (color, texture, pattern, reflection, saturation, etc.) across a range of artistic practices and design disciplines.

Keywords: fashion, print design, architecture, projection mapping, image, fabrication

Procedia PDF Downloads 77
466 Impact of Reproductive Technologies on Women's Lives in New Delhi: A Study from Feminist Perspective

Authors: Zairunisha

Abstract:

This paper is concerned with the ways in which Assisted Reproductive Technologies (ARTs) affect women’s lives and perceptions regarding their infertility, contraception and reproductive health. Like other female animals, nature has ordained human female with the biological potential of procreation and becoming mother. However, during the last few decades, this phenomenal disposition of women has become a technological affair to achieve fertility and contraception. Medical practices in patriarchal societies are governed by male scientists, technical and medical professionals who try to control women as procreator instead of providing them choices. The use of ARTs presents innumerable waxed ethical questions and issues such as: the place and role of a child in a woman’s life, freedom of women to make their choices related to use of ARTs, challenges and complexities women face at social and personal levels regarding use of ARTs, effect of ARTs on their life as mothers and other relationships. The paper is based on a survey study to explore and analyze the above ethical issues arising from the use of Assisted Reproductive Technologies (ARTs) by women in New Delhi, the capital of India. A rapid rate of increase in fertility clinics has been noticed recently. It is claimed that these clinics serve women by using ARTs procedures for infertile couples and individuals who want to have child or terminate a pregnancy. The study is an attempt to articulate a critique of ARTs from a feminist perspective. A qualitative feminist research methodology has been adopted for conducting the survey study. An attempt has been made to identify the ways in which a woman’s life is affected in terms of her perceptions, apprehensions, choices and decisions regarding new reproductive technologies. A sample of 18 women of New Delhi was taken to conduct in-depth interviews to investigate their perception and response concerning the use of ARTs with a focus on (i) successful use of ARTs, (ii) unsuccessful use of ARTs, (iii) use of ARTs in progress with results yet to be known. The survey was done to investigate the impact of ARTs on women’s physical, emotional, psychological conditions as well as on their social relations and choices. The complexities and challenges faced by women in the voluntary and involuntary (forced) use of ARTs in Delhi have been illustrated. A critical analysis of interviews revealed that these technologies are used and developed for making profits at the cost of women’s lives through which economically privileged women and individuals are able to purchase services from lesser ones. In this way, the amalgamation of technology and cultural traditions are redefining and re-conceptualising the traditional patterns of motherhood, fatherhood, kinship and family relations within the realm of new ways of reproduction introduced through the use of ARTs.

Keywords: reproductive technologies, infertilities, voluntary, involuntary

Procedia PDF Downloads 361
465 Influence of Counter-Face Roughness on the Friction of Bionic Microstructures

Authors: Haytam Kasem

Abstract:

The problem of quick and easy reversible attachment has become of great importance in different fields of technology. For the reason, during the last decade, a new emerging field of adhesion science has been developed. Essentially inspired by some animals and insects, which during their natural evolution have developed fantastic biological attachment systems allowing them to adhere and run on walls and ceilings of uneven surfaces. Potential applications of engineering bio-inspired solutions include climbing robots, handling systems for wafers in nanofabrication facilities, and mobile sensor platforms, to name a few. However, despite the efforts provided to apply bio-inspired patterned adhesive-surfaces to the biomedical field, they are still in the early stages compared with their conventional uses in other industries mentioned above. In fact, there are some critical issues that still need to be addressed for the wide usage of the bio-inspired patterned surfaces as advanced biomedical platforms. For example, surface durability and long-term stability of surfaces with high adhesive capacity should be improved, but also the friction and adhesion capacities of these bio-inspired microstructures when contacting rough surfaces. One of the well-known prototypes for bio-inspired attachment systems is biomimetic wall-shaped hierarchical microstructure for gecko-like attachments. Although physical background of these attachment systems is widely understood, the influence of counter-face roughness and its relationship with the friction force generated when sliding against wall-shaped hierarchical microstructure have yet to be fully analyzed and understood. To elucidate the effect of the counter-face roughness on the friction of biomimetic wall-shaped hierarchical microstructure we have replicated the isotropic topography of 12 different surfaces using replicas made of the same epoxy material. The different counter-faces were fully characterized under 3D optical profilometer to measure roughness parameters. The friction forces generated by spatula-shaped microstructure in contact with the tested counter-faces were measured on a home-made tribometer and compared with the friction forces generated by the spatulae in contact with a smooth reference. It was found that classical roughness parameters, such as average roughness Ra and others, could not be utilized to explain topography-related variation in friction force. This has led us to the development of an integrated roughness parameter obtained by combining different parameters which are the mean asperity radius of curvature (R), the asperity density (η), the deviation of asperities high (σ) and the mean asperities angle (SDQ). This new integrated parameter is capable of explaining the variation of results of friction measurements. Based on the experimental results, we developed and validated an analytical model to predict the variation of the friction force as a function of roughness parameters of the counter-face and the applied normal load, as well.

Keywords: friction, bio-mimetic micro-structure, counter-face roughness, analytical model

Procedia PDF Downloads 226
464 Learners’ Preferences in Selecting Language Learning Institute (A Study in Iran)

Authors: Hoora Dehghani, Meisam Shahbazi, Reza Zare

Abstract:

During the previous decade, a significant evolution has occurred in the number of private educational centers and, accordingly, the increase in the number of providers and students of these centers around the world. The number of language teaching institutes in Iran that are considered private educational sectors is also growing exponentially as the request for learning foreign languages has extremely increased in recent years. This fact caused competition among the institutions in improving better services tailored to the students’ demands to win the competition. Along with the growth in the industry of education, higher education institutes should apply the marketing-related concepts and view students as customers because students’ outlooks are similar to consumers with education. Studying the influential factors in the selection of an institute has multiple benefits. Firstly, it acknowledges the institutions of the students’ choice factors. Secondly, the institutions use the obtained information to improve their marketing methods. It also helps institutions know students’ outlooks that can be applied to expand the student know-how. Moreover, it provides practical evidence for educational centers to plan useful amenities and programs, and use efficient policies to cater to the market, and also helps them execute the methods that increase students’ feeling of contentment and assurance. Thus, this study explored the influencing factors in the selection of a language learning institute by language learners and examined and compared the importance among the varying age groups and genders. In the first phase of the study, the researchers selected 15 language learners as representative cases within the specified age ranges and genders purposefully and interviewed them to explore the comprising elements in their language institute selection process and analyzed the results qualitatively. In the second phase, the researchers identified elements as specified items of a questionnaire, and 1000 English learners across varying educational contexts rated them. The TOPSIS method was used to analyze the data quantitatively by representing the level of importance of the items for the participants generally and specifically in each subcategory; genders and age groups. The results indicated that the educational quality, teaching method, duration of training course, establishing need-oriented courses, and easy access were the most important elements. On the other hand, offering training in different languages, the specialized education of only one language, the uniform and appropriate appearance of office staff, having native professors to the language of instruction, applying Computer or online tests instead of the usual paper tests respectively as the least important choice factors in selecting a language institute. Besides, some comparisons among different groups’ ratings of choice factors were made, which revealed the differences among different groups' priorities in choosing a language institute.

Keywords: choice factors, EFL institute selection, english learning, need analysis, TOPSIS

Procedia PDF Downloads 147
463 Language Education Policy in Arab Schools in Israel

Authors: Fatin Mansour Daas

Abstract:

Language education responds to and is reflective of emerging social and political trends. Language policies and practices are shaped by political, economic, social and cultural considerations. Following this, Israeli language education policy as implemented in Arab schools in Israel is influenced by the particular political and social situation of Arab-Palestinian citizens of Israel. This national group remained in their homeland following the war in 1948 between Israel and its Arab neighbors and became Israeli citizens following the establishment of the State of Israel. This study examines language policy in Arab schools in Israel from 1948 until the present time in light of the unique experience of the Palestinian Arab homeland minority in Israel with a particular focus on questions of politics and identity. The establishment of the State of Israel triggered far-reaching political, social and educational transformations within Arab Palestinian society in Israel, including in the area of language and language studies. Since 1948, the linguistic repertoire of Palestinian Arabs in Israel has become more complex and diverse, while the place and status of different languages have changed. Following the establishment of the State of Israel, only Hebrew and Arabic were retained as the official languages, and Israeli policy reflected this in schools as well: with the advent of the Jewish state, Hebrew language education among Palestinians in Israel has increased. Similarly, in Arab Palestinian schools in Israel, English is taught as a third language, Hebrew as a second language, and Arabic as a first language – even though it has become less important to native Arabic speakers. This research focuses on language studies and language policy in the Arab school system in Israel from 1948 onwards. It will analyze the relative focus of language education between the different languages, the rationale of various language education policies, and the pedagogic approach used to teach each language and student achievements vis-à-vis language skills. This study seeks to understand the extent to which Arab schools in Israel are multi-lingual by examining successes, challenges and difficulties in acquiring the respective languages. This qualitative study will analyze five different components of language education policy: (1) curriculum, (2) learning materials; (3) assessment; (4) interviews and (5) archives. Firstly, it consists of an analysis examining language education curricula, learning materials and assessments used in Arab schools in Israel from 1948-2018 including a selection of language textbooks for the compulsory years of study and the final matriculation (Bagrut) examinations. The findings will also be based on archival material which traces the evolution of language education policy in Arabic schools in Israel from the years 1948-2018. This archival research, furthermore, will reveal power relations and general decision-making in the field of the Arabic education system in Israel. The research will also include interviews with Ministry of Education staff who provide instructional oversight in the instruction of the three languages in the Arabic education system in Israel. These interviews will shed light on the goals of language education as understood by those who are in charge of implementing policy.

Keywords: language education policy, languages, multilingualism, language education, educational policy, identity, Palestinian-Arabs, Arabs in Israel, educational school system

Procedia PDF Downloads 74