Search results for: high corrosion resistance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21885

Search results for: high corrosion resistance

18165 Hydrogen Production from Solid Waste of Sago Processing Industries in Indonesia: Effect of Chemical and Biological Pretreatment

Authors: Pratikno Hidayat, Khamdan Cahyari

Abstract:

Hydrogen is the ultimate choice of energy carriers in future. It contents high energy density (42 kJ/g), emits only water vapor during combustion and has high energy conversion up to 50% in fuel cell application. One of the promising methods to produce hydrogen is from organic waste through dark fermentation method. It utilizes sugar-rich organic waste as substrate and hydrogen-producing microorganisms to generate the hydrogen. Solid waste of sago processing industries in Indonesia is one of the promising raw materials for both producing biofuel hydrogen and mitigating the environmental impact due to the waste disposal. This research was meant to investigate the effect of chemical and biological pretreatment i.e. acid treatment and mushroom cultivation toward lignocellulosic waste of these sago industries. Chemical pretreatment was conducted through exposing the waste into acid condition using sulfuric acid (H2SO4) (various molar i.e. 0.2, 0.3, and 0.4 M and various duration of exposure i.e. 30, 60 and 90 minutes). Meanwhile, biological treatment was conducted through utilization of the solid waste as growth media of mushroom (Oyster and Ling-zhi) for 3 months. Dark fermentation was conducted at pH 5.0, temperature 27℃ and atmospheric pressure. It was noticed that chemical and biological pretreatment could improve hydrogen yield with the highest yield at 3.8 ml/g VS (31%v H2). The hydrogen production was successfully performed to generate high percentage of hydrogen, although the yield was still low. This result indicated that the explosion of acid chemical and biological method might need to be extended to improve degradability of the solid waste. However, high percentage of hydrogen was resulted from proper pretreatment of residual sludge of biogas plant to generate hydrogen-producing inoculum.

Keywords: hydrogen, sago waste, chemical, biological, dark fermentation, Indonesia

Procedia PDF Downloads 358
18164 Solar-Blind Ni-Schottky Photodetector Based on MOCVD Grown ZnGa₂O₄

Authors: Taslim Khan, Ray Hua Horng, Rajendra Singh

Abstract:

This study presents a comprehensive analysis of the design, fabrication, and performance evaluation of a solar-blind Schottky photodetector based on ZnGa₂O₄ grown via MOCVD, utilizing Ni/Au as the Schottky electrode. ZnGa₂O₄, with its wide bandgap of 5.2 eV, is well-suited for high-performance solar-blind photodetection applications. The photodetector demonstrates an impressive responsivity of 280 A/W, indicating its exceptional sensitivity within the solar-blind ultraviolet band. One of the device's notable attributes is its high rejection ratio of 10⁵, which effectively filters out unwanted background signals, enhancing its reliability in various environments. The photodetector also boasts a photodetector responsivity contrast ratio (PDCR) of 10⁷, showcasing its ability to detect even minor changes in incident UV light. Additionally, the device features an outstanding detective of 10¹⁸ Jones, underscoring its capability to precisely detect faint UV signals. It exhibits a fast response time of 80 ms and an ON/OFF ratio of 10⁵, making it suitable for real-time UV sensing applications. The noise-equivalent power (NEP) of 10^-17 W/Hz further highlights its efficiency in detecting low-intensity UV signals. The photodetector also achieves a high forward-to-backward current rejection ratio of 10⁶, ensuring high selectivity. Furthermore, the device maintains an extremely low dark current of approximately 0.1 pA. These findings position the ZnGa₂O₄-based Schottky photodetector as a leading candidate for solar-blind UV detection applications. It offers a compelling combination of sensitivity, selectivity, and operational efficiency, making it a highly promising tool for environments requiring precise and reliable UV detection.

Keywords: wideband gap, solar blind photodetector, MOCVD, zinc gallate

Procedia PDF Downloads 24
18163 Fully Printed Strain Gauges: A Comparison of Aerosoljet-Printing and Micropipette-Dispensing

Authors: Benjamin Panreck, Manfred Hild

Abstract:

Strain sensors based on a change in resistance are well established for the measurement of forces, stresses, or material fatigue. Within the scope of this paper, fully additive manufactured strain sensors were produced using an ink of silver nanoparticles. Their behavior was evaluated by periodic tensile tests. Printed strain sensors exhibit two advantages: Their measuring grid is adaptable to the use case and they do not need a carrier-foil, as the measuring structure can be printed directly onto a thin sprayed varnish layer on the aluminum specimen. In order to compare quality characteristics, the sensors have been manufactured using two different technologies, namely aerosoljet-printing and micropipette-dispensing. Both processes produce structures which exhibit continuous features (in contrast to what can be achieved with droplets during inkjet printing). Briefly summarized the results show that aerosoljet-printing is the preferable technology for specimen with non-planar surfaces whereas both technologies are suitable for flat specimen.

Keywords: aerosoljet-printing, micropipette-dispensing, printed electronics, printed sensors, strain gauge

Procedia PDF Downloads 194
18162 Identifying Network Subgraph-Associated Essential Genes in Molecular Networks

Authors: Efendi Zaenudin, Chien-Hung Huang, Ka-Lok Ng

Abstract:

Essential genes play an important role in the survival of an organism. It has been shown that cancer-associated essential genes are genes necessary for cancer cell proliferation, where these genes are potential therapeutic targets. Also, it was demonstrated that mutations of the cancer-associated essential genes give rise to the resistance of immunotherapy for patients with tumors. In the present study, we focus on studying the biological effects of the essential genes from a network perspective. We hypothesize that one can analyze a biological molecular network by decomposing it into both three-node and four-node digraphs (subgraphs). These network subgraphs encode the regulatory interaction information among the network’s genetic elements. In this study, the frequency of occurrence of the subgraph-associated essential genes in a molecular network was quantified by using the statistical parameter, odds ratio. Biological effects of subgraph-associated essential genes are discussed. In summary, the subgraph approach provides a systematic method for analyzing molecular networks and it can capture useful biological information for biomedical research.

Keywords: biological molecular networks, essential genes, graph theory, network subgraphs

Procedia PDF Downloads 143
18161 The Principle Probabilities of Space-Distance Resolution for a Monostatic Radar and Realization in Cylindrical Array

Authors: Anatoly D. Pluzhnikov, Elena N. Pribludova, Alexander G. Ryndyk

Abstract:

In conjunction with the problem of the target selection on a clutter background, the analysis of the scanning rate influence on the spatial-temporal signal structure, the generalized multivariate correlation function and the quality of the resolution with the increase pulse repetition frequency is made. The possibility of the object space-distance resolution, which is conditioned by the range-to-angle conversion with an increased scanning rate, is substantiated. The calculations for the real cylindrical array at high scanning rate are presented. The high scanning rate let to get the signal to noise improvement of the order of 10 dB for the space-time signal processing.

Keywords: antenna pattern, array, signal processing, spatial resolution

Procedia PDF Downloads 170
18160 Enhancement of Interface Properties of Thermoplastic Composite Materials

Authors: Reyhan Ozbask, Emek Moroydor Derin, Mustafa Dogu

Abstract:

There are a limited number of global companies in the world that manufacture and commercially offer thermoplastic composite prepregs in accordance with aerospace requirements. High-performance thermoplastic materials supplied for aerospace structural applications are PEEK (polyetheretherketone), PPS (polyphenylsulfite), PEI (polyetherimide), and PEKK (polyetherketoneketone). Among these, PEEK is the raw material used in the first applications and has started to become widespread. However, the use of these thermoplastic raw materials in composite production is very difficult due to their high processing temperatures and impregnation difficulties. This study, it is aimed to develop carbon fiber-reinforced thermoplastic PEEK composites that comply with the requirements of the aviation industry that are superior mechanical properties as well as being lightweight. Therefore, it is aimed to obtain high-performance thermoplastic composite materials with improved interface properties by using the sizing method (suspension development through chemical synthesis and functionalization), to optimize the production process. The use of boron nitride nanotube as a bonding agent by modifying its surface constitutes the original aspect of the study as it has not been used in composite production with high-performance thermoplastic materials yet. For this purpose, laboratory-scale studies on the application of thermoplastic compatible sizing will be carried out in order to increase the fiber-matrix interfacial adhesion. The method respectively consists of the selection of appropriate sizing type, laboratory-scale carbon fiber (CF) / poly ether ether ketone (PEEK) polymer interface enhancement studies, manufacturing of laboratory-scale BNNT coated CF/PEEK woven prepreg composites and their tests.

Keywords: carbon fiber reinforced composite, interface enhancement, boron nitride nanotube, thermoplastic composite

Procedia PDF Downloads 215
18159 An Entropy Stable Three Dimensional Ideal MHD Solver with Guaranteed Positive Pressure

Authors: Andrew R. Winters, Gregor J. Gassner

Abstract:

A high-order numerical magentohydrodynamics (MHD) solver built upon a non-linear entropy stable numerical flux function that supports eight traveling wave solutions will be described. The method is designed to treat the divergence-free constraint on the magnetic field in a similar fashion to a hyperbolic divergence cleaning technique. The solver is especially well-suited for flows involving strong discontinuities due to its strong stability without the need to enforce artificial low density or energy limits. Furthermore, a new formulation of the numerical algorithm to guarantee positivity of the pressure during the simulation is described and presented. By construction, the solver conserves mass, momentum, and energy and is entropy stable. High spatial order is obtained through the use of a third order limiting technique. High temporal order is achieved by utilizing the family of strong stability preserving (SSP) Runge-Kutta methods. Main attributes of the solver are presented as well as details on an implementation of the new solver into the multi-physics, multi-scale simulation code FLASH. The accuracy, robustness, and computational efficiency is demonstrated with a variety of numerical tests. Comparisons are also made between the new solver and existing methods already present in FLASH framework.

Keywords: entropy stability, finite volume scheme, magnetohydrodynamics, pressure positivity

Procedia PDF Downloads 334
18158 "Groomers, Pedos, and Perverts": Strategies for Queer People and Allies to Combat Discourses of Hate

Authors: Todd G. Morrison, C. J. Bishop, Melanie A. Morrison

Abstract:

An upsurge of hatred directed at sexual- and gender-marginalized persons (SGMPs) has been documented in numerous Western nations. The denial of gender-affirmative care for trans youth; the banning of books containing queer content (no matter how innocuous); the boycotting of products affiliated with queer influencers and with pride celebrations; and the silencing of sexual- and gender-marginalized teachers and academics (and their allies) constitute key ways in which this hatred now manifests itself. The health consequences for SGMPs living in environments characterized by hatred of queer people include elevated rates of depression, anxiety, suicidality, and substance misuse. Given these sequelae, in this paper, the authors outline the challenges that academics experience when adopting an advocacy role. The authors also provide an overview of specific strategies that SGMPs may find helpful when engaging with persons committed to harming queer people.

Keywords: queer people, resistance, minority rights, hate speech

Procedia PDF Downloads 47
18157 Nonlinear Aerodynamic Parameter Estimation of a Supersonic Air to Air Missile by Using Artificial Neural Networks

Authors: Tugba Bayoglu

Abstract:

Aerodynamic parameter estimation is very crucial in missile design phase, since accurate high fidelity aerodynamic model is required for designing high performance and robust control system, developing high fidelity flight simulations and verification of computational and wind tunnel test results. However, in literature, there is not enough missile aerodynamic parameter identification study for three main reasons: (1) most air to air missiles cannot fly with constant speed, (2) missile flight test number and flight duration are much less than that of fixed wing aircraft, (3) variation of the missile aerodynamic parameters with respect to Mach number is higher than that of fixed wing aircraft. In addition to these challenges, identification of aerodynamic parameters for high wind angles by using classical estimation techniques brings another difficulty in the estimation process. The reason for this, most of the estimation techniques require employing polynomials or splines to model the behavior of the aerodynamics. However, for the missiles with a large variation of aerodynamic parameters with respect to flight variables, the order of the proposed model increases, which brings computational burden and complexity. Therefore, in this study, it is aimed to solve nonlinear aerodynamic parameter identification problem for a supersonic air to air missile by using Artificial Neural Networks. The method proposed will be tested by using simulated data which will be generated with a six degree of freedom missile model, involving a nonlinear aerodynamic database. The data will be corrupted by adding noise to the measurement model. Then, by using the flight variables and measurements, the parameters will be estimated. Finally, the prediction accuracy will be investigated.

Keywords: air to air missile, artificial neural networks, open loop simulation, parameter identification

Procedia PDF Downloads 262
18156 Experimental Investigation of the Out-of-Plane Dynamic Behavior of Adhesively Bonded Composite Joints at High Strain Rates

Authors: Sonia Sassi, Mostapha Tarfaoui, Hamza Ben Yahia

Abstract:

In this investigation, an experimental technique in which the dynamic response, damage kinetic and heat dissipation are measured simultaneously during high strain rates on adhesively bonded joints materials. The material used in this study is widely used in the design of structures for military applications. It was composed of a 45° Bi-axial fiber-glass mat of 0.286 mm thickness in a Polyester resin matrix. In adhesive bonding, a NORPOL Polyvinylester of 1 mm thickness was used to assemble the composite substrate. The experimental setup consists of a compression Split Hopkinson Pressure Bar (SHPB), a high-speed infrared camera and a high-speed Fastcam rapid camera. For the dynamic compression tests, 13 mm x 13 mm x 9 mm samples for out-of-plane tests were considered from 372 to 1030 s-1. Specimen surface is controlled and monitored in situ and in real time using the high-speed camera which acquires the damage progressive in specimens and with the infrared camera which provides thermal images in time sequence. Preliminary compressive stress-strain vs. strain rates data obtained show that the dynamic material strength increases with increasing strain rates. Damage investigations have revealed that the failure mainly occurred in the adhesive/adherent interface because of the brittle nature of the polymeric adhesive. Results have shown the dependency of the dynamic parameters on strain rates. Significant temperature rise was observed in dynamic compression tests. Experimental results show that the temperature change depending on the strain rate and the damage mode and their maximum exceed 100 °C. The dependence of these results on strain rate indicates that there exists a strong correlation between damage rate sensitivity and heat dissipation, which might be useful when developing damage models under dynamic loading tacking into account the effect of the energy balance of adhesively bonded joints.

Keywords: adhesive bonded joints, Hopkinson bars, out-of-plane tests, dynamic compression properties, damage mechanisms, heat dissipation

Procedia PDF Downloads 206
18155 Disaggregation the Daily Rainfall Dataset into Sub-Daily Resolution in the Temperate Oceanic Climate Region

Authors: Mohammad Bakhshi, Firas Al Janabi

Abstract:

High resolution rain data are very important to fulfill the input of hydrological models. Among models of high-resolution rainfall data generation, the temporal disaggregation was chosen for this study. The paper attempts to generate three different rainfall resolutions (4-hourly, hourly and 10-minutes) from daily for around 20-year record period. The process was done by DiMoN tool which is based on random cascade model and method of fragment. Differences between observed and simulated rain dataset are evaluated with variety of statistical and empirical methods: Kolmogorov-Smirnov test (K-S), usual statistics, and Exceedance probability. The tool worked well at preserving the daily rainfall values in wet days, however, the generated data are cumulated in a shorter time period and made stronger storms. It is demonstrated that the difference between generated and observed cumulative distribution function curve of 4-hourly datasets is passed the K-S test criteria while in hourly and 10-minutes datasets the P-value should be employed to prove that their differences were reasonable. The results are encouraging considering the overestimation of generated high-resolution rainfall data.

Keywords: DiMoN Tool, disaggregation, exceedance probability, Kolmogorov-Smirnov test, rainfall

Procedia PDF Downloads 193
18154 Transitivity Analysis in Reading Passage of English Text Book for Senior High School

Authors: Elitaria Bestri Agustina Siregar, Boni Fasius Siregar

Abstract:

The paper concerned with the transitivity in the reading passage of English textbook for Senior High School. The six types of process were occurred in the passages with percentage as follows: Material Process is 166 (42%), Relational Process is 155 (39%), Mental Process is 39 (10%), Verbal Process is 21 (5%), Existential Process is 13 (3), and Behavioral Process is 5 (1%). The material processes were found to be the most frequently used process type in the samples in our corpus (41,60 %). This indicates that the twenty reading passages are centrally concerned with action and events. Related to developmental psychology theory, this book fits the needs of students of this age.

Keywords: transitivity, types of processes, reading passages, developmental psycholoy

Procedia PDF Downloads 398
18153 Optimization of Pressure in Deep Drawing Process

Authors: Ajay Kumar Choubey, Geeta Agnihotri, C. Sasikumar, Rashmi Dwivedi

Abstract:

Deep-drawing operations are performed widely in industrial applications. It is very important for efficiency to achieve parts with no or minimum defects. Deep drawn parts are used in high performance, high strength and high reliability applications where tension, stress, load and human safety are critical considerations. Wrinkling is a kind of defect caused by stresses in the flange part of the blank during metal forming operations. To avoid wrinkling appropriate blank-holder pressure/force or drawbead can be applied. Now-a-day computer simulation plays a vital role in the field of manufacturing process. So computer simulation of manufacturing has much advantage over previous conventional process i.e. mass production, good quality of product, fast working etc. In this study, a two dimensional elasto-plastic Finite Element (F.E.) model for Mild Steel material blank has been developed to study the behavior of the flange wrinkling and deep drawing parameters under different Blank-Holder Pressure (B.H.P.). For this, commercially available Finite Element software ANSYS 14 has been used in this study. Simulation results are critically studied and salient conclusions have been drawn.

Keywords: ANSYS, deep drawing, BHP, finite element simulation, wrinkling

Procedia PDF Downloads 445
18152 High-Accuracy Satellite Image Analysis and Rapid DSM Extraction for Urban Environment Evaluations (Tripoli-Libya)

Authors: Abdunaser Abduelmula, Maria Luisa M. Bastos, José A. Gonçalves

Abstract:

The modeling of the earth's surface and evaluation of urban environment, with 3D models, is an important research topic. New stereo capabilities of high-resolution optical satellites images, such as the tri-stereo mode of Pleiades, combined with new image matching algorithms, are now available and can be applied in urban area analysis. In addition, photogrammetry software packages gained new, more efficient matching algorithms, such as SGM, as well as improved filters to deal with shadow areas, can achieve denser and more precise results. This paper describes a comparison between 3D data extracted from tri-stereo and dual stereo satellite images, combined with pixel based matching and Wallis filter. The aim was to improve the accuracy of 3D models especially in urban areas, in order to assess if satellite images are appropriate for a rapid evaluation of urban environments. The results showed that 3D models achieved by Pleiades tri-stereo outperformed, both in terms of accuracy and detail, the result obtained from a Geo-eye pair. The assessment was made with reference digital surface models derived from high-resolution aerial photography. This could mean that tri-stereo images can be successfully used for the proposed urban change analyses.

Keywords: 3D models, environment, matching, pleiades

Procedia PDF Downloads 320
18151 Yield, Biochemical Responses and Evaluation of Drought Tolerance of Two Barley Accessions 'Ardhaoui' under Deficit Drip Irrigation Using Saline Water in Southern Tunisia

Authors: Mohamed Bagues, Ikbel Souli, Feiza Boussora, Kamel Nagaz

Abstract:

In southern Tunisia, two local barley accessions CV. Ardhaoui; 'Bengardeni' and 'Karkeni' were cultivated in the field under deficit drip irrigation with saline water. Three treatments were used: control or full irrigation T0 (100%ETc) and stressed T1 (75%ETc), T2 (50%ETc). Proline and soluble sugars contents increase significantly under drought between accessions compared to control and varies between growth stages. Moreover, the increasing of Ca2+ concentration enhances the absorption of Na+ ion, consequently K+/Na+ decrease significantly between accessions, these results suggest that a high tolerance of Bengardeni accession to drought stress. Therefore, drought tolerance indices (STI, SSI, MP, GMP, YSI and TOL) were used to identify high yielding and drought tolerant between accessions. MP explained the variation of GYi. GMP and STI explained the variation of GYs. The high values of MP, STI and GMP were associated with higher yielding accession. Higher TOL value is associated with significant grain yield reduction in stressed environment suggesting higher stress responses of accessions. Significant positive correlations between MP, STI and GMP and negative between YSI and SSI. MP, STI, GMP and YSI, TOL, SSI are not correlated with each other.

Keywords: drought, proline, soluble sugars, minerals, yield, drought tolerance indices, barley

Procedia PDF Downloads 231
18150 Challenging Clinical Scenario of Blood Stream Candida Infections – An Indian Experience

Authors: P. Uma Devi, S. Sujith, K. Rahul, T. S. Dipu, V. Anil Kumar , Vidya Menon

Abstract:

Introduction: Candida is an important cause of bloodstream infections (BSIs), causing significant mortality and morbidity. The epidemiology of Candida infection is also changing, mainly in relation to the number of episodes caused by species Candida non-albicans. However, in India, the true burden of candidemia is not clear. Thus, this study was conducted to evaluate the clinical characteristics, species distribution, antifungal susceptibility and outcome of candidemia at our hospital. Methodology: Between January 2012 and April 2014, adult patients with at least one positive blood culture for Candida species were identified through the microbiology laboratory database (for each patient only the first episode of candidemia was recorded). Patient data was collected by retrospective chart review of clinical characteristics including demographic data, risk factors; species distribution, resistance to antifungals and survival. Results: A total of 165 episodes of Candida BSI were identified, with 115 episodes occurring in adult patients. Most of the episodes occurred in males (69.6%). Nearly 82.6% patients were between 41 to 80 years and majority of the patients were in the intensive care unit (65.2%) at the time of diagnosis. On admission, 26.1% and 18.3% patients had pneumonia and urinary tract infection, respectively. Majority of the candidemia episodes were found in the general medicine department (23.5%) followed by gastrointestinal surgery (13.9%) and medical oncology & haematology (13%). Risk factors identified were prior hospitalization within one year (83.5%), antibiotic therapy within the last one month (64.3%), indwelling urinary catheter (63.5%), central venous catheter use (59.1%), diabetes mellitus (53%), severe sepsis (45.2%), mechanical ventilation (43.5%) and surgery (36.5%). C. tropicalis (30.4%) was the leading cause of infection followed by C. parapsilosis (28.7%) and C. albicans (13%). Other non-albicans species isolated included C. haemulonii (7.8%), C. glabrata (7%), C. famata (4.3%) and C. krusei (1.7%). Antifungal susceptibility to fluconazole was 87.9% (C. parapsilosis), 100% (C. tropicalis) and 93.3% (C. albicans). Mortality was noted in 51 patients (44.3%). Early mortality (within 7 days) was noted in 32 patients while late mortality (between 7 and 30 days) was noted in 19 patients. Conclusion: In recent years, candidemia has been flourishing in critically ill patients. Comparison of data from our own hospital from 2005 shows a doubling of the incidence. Rapid changes in the rate of infection, potential risk factors, and emergence of non-albicans Candida demand continued surveillance of this serious BSI. High index of suspicion and sensitive diagnostics are essential to improve outcomes in resource limited settings with emergence of non-albicans Candida.

Keywords: antifungal susceptibility, candida albicans, candidemia, non-albicans candida

Procedia PDF Downloads 445
18149 Insecticide Efficacy against Jassids in Egg Plants

Authors: Zunnu Raen Akhtar, Farhan Ali, Muhammad Saeed-Ur-Rehman

Abstract:

Jassids are considered as serious sucking pests in eggplants. Jassids can be controlled using imidacloprid, but it can also result in non-target ecological impacts on eco-system. It can also result in reduced population of predators of jassids in the field. An experiment was conducted on jassids, Amrasca sp. reared on eggplant leaves were treated with insecticide imidacloprid at lower, recommended and higher doses including 1L, 2L, 3L respectively. 3rd instar larvae and adults of jassids were exposed to lower, recommended, higher doses. Mortality tests were repeated three times for each dose and insect growth stage. Imidacloprid was sprayed on the leaves followed by drying. Data was recorded for 4, 8, 12, 16, 20, 24 hours after spraying insecticide on the leaves. Results showed that higher mortality was observed in higher and recommended doses, while slow mortality was observed in the case of lower dose. It can be asserted that higher and recommended doses causing immediate mortality of insects are better to control Amrasca sp. in the field, it will not cause immediate resistance development in insects against imidacloprid.

Keywords: Amrasca sp., imidacloprid, egg plant, efficacy

Procedia PDF Downloads 215
18148 Assessment of Runway Micro Texture Using Surface Laser Scanners: An Explorative Study

Authors: Gerard Van Es

Abstract:

In this study, the use of a high resolution surface laser scanner to assess the micro texture of runway surfaces was investigated experimentally. Micro texture is one of the important surface components that helps to provide high braking friction between aircraft tires and a wet runway surface. Algorithms to derive different parameters that characterise micro texture was developed. Surface scans with a high resolution laser scanner were conducted on 40 different runway (like) surfaces. For each surface micro texture parameters were calculated from the laser scan data. These results were correlated with results obtained from a British pendulum tester that was used on the same surface. Results obtained with the British pendulum tester are generally considered to be indicative for the micro texture related friction characteristics. The results show that a meaningful correlation can be found between different parameters that characterise micro texture obtained with the laser scanner and the British pendulum tester results. Surface laser scanners are easier to operate and give more consistent results than a British pendulum tester. Therefore for airport operators surface laser scanners can be a useful tool to determine if their runway becomes slippery when wet due to a smooth micro texture.

Keywords: runway friction, micro texture, aircraft braking performance, slippery runways

Procedia PDF Downloads 104
18147 A Study on the Performance Improvement of Zeolite Catalyst for Endothermic Reaction

Authors: Min Chang Shin, Byung Hun Jeong, Jeong Sik Han, Jung Hoon Park

Abstract:

In modern times, as flight speeds have increased due to improvements in aircraft and missile engine performance, thermal loads have also increased. Because of the friction heat of air flow with high speed on the surface of the vehicle, it is not easy to cool the superheat of the vehicle by the simple air cooling method. For this reason, a cooling method through endothermic heat is attracting attention by using a fuel that causes an endothermic reaction in a high-speed vehicle. There are two main ways of cooling the fuel through the endothermic reaction. The first is physical heat absorption. When the temperature rises, there is a sensible heat that accompanies it. The second is the heat of reaction corresponding to the chemical heat absorption, which absorbs heat during the fuel decomposes. Generally, since the decomposition reaction of the fuel proceeds at a high temperature, it does not achieve a great efficiency in cooling the high-speed flight body. However, when the catalyst is used, decomposition proceeds at a low temperature thereby increasing the cooling efficiency. However, when the catalyst is used as a powder, the catalyst enters the engine and damages the engine or the catalyst can deteriorate the performance due to the sintering. On the other hand, when used in the form of pellets, catalyst loss can be prevented. However, since the specific surface of pellet is small, the efficiency of the catalyst is low. And it can interfere with the flow of fuel, resulting in pressure loss and problems with fuel injection. In this study, we tried to maximize the performance of the catalyst by preparing a hollow fiber type pellet for zeolite ZSM-5, which has a higher amount of heat absorption, than other conventional pellets. The hollow fiber type pellet was prepared by phase inversion method. The hollow fiber type pellet has a finger-like pore and sponge-like pore. So it has a higher specific surface area than conventional pellets. The crystal structure of the prepared ZSM-5 catalyst was confirmed by XRD, and the characteristics of the catalyst were analyzed by TPD/TPR device. This study was conducted as part of the Basic Research Project (Pure-17-20) of Defense Acquisition Program Administration.

Keywords: catalyst, endothermic reaction, high-speed vehicle cooling, zeolite, ZSM-5

Procedia PDF Downloads 301
18146 Applications of High Intensity Ultrasound to Modify Millet Protein Concentrate Functionality

Authors: B. Nazari, M. A. Mohammadifar, S. Shojaee-Aliabadi, L. Mirmoghtadaie

Abstract:

Millets as a new source of plant protein were not used in food applications due to its poor functional properties. In this study, the effect of high intensity ultrasound (frequency: 20 kHz, with contentious flow) (US) in 100% amplitude for varying times (5, 12.5, and 20 min) on solubility, emulsifying activity index (EAI), emulsion stability (ES), foaming capacity (FC), and foaming stability (FS) of millet protein concentrate (MPC) were evaluated. In addition, the structural properties of best treatments such as molecular weight and surface charge were compared with the control sample to prove the US effect. The US treatments significantly (P<0.05) increased the solubility of the native MPC (65.8±0.6%) at all sonicated times with the maximum solubility that is recorded at 12.5 min treatment (96.9±0.82 %). The FC of MPC was also significantly affected by the US treatment. Increase in sonicated time up to 12.5 min significantly increased the FC of native MPC (271.03±4.51 ml), but higher increase reduced it significantly. Minimal improvements were observed in the FS of all sonicated MPC compared to the native MPC. Sonicated time for 12.5 min affected the EAI and ES of the native MPC more markedly than 5 and 20 min that may be attributed to higher increase in proteins tendency to adsorption at the oil and water interfaces after the US treatment at this time. SDS-PAGE analysis showed changes in the molecular weight of MPC that attributed to shearing forces created by cavitation phenomenon. Also, this phenomenon caused an increase in the exposure of more amino acids with negative charge in the surface of US treated MPC, that was demonstrated by Zetasizer data. High intensity ultrasound, as a green technology, can significantly increase the functional properties of MPC and can make this usable for food applications.

Keywords: functional properties, high intensity ultrasound, millet protein concentrate, structural properties

Procedia PDF Downloads 227
18145 Delineation of Oil– Polluted Sites in Ibeno LGA, Nigeria

Authors: Ime R. Udotong, Ofonime U. M. John, Justina I. R. Udotong

Abstract:

Ibeno, Nigeria hosts the operational base of Mobil Producing Nigeria Unlimited (MPNU), a subsidiary of ExxonMobil and the current highest oil and condensate producer in Nigeria. Besides MPNU, other multinational oil companies like Shell Petroleum Development Company Ltd, Elf Petroleum Nigeria Ltd and Nigerian Agip Energy, a subsidiary of ENI E&P operate onshore, on the continental shelf and deep offshore of the Atlantic Ocean in Ibeno, Nigeria, respectively. This study was designed to carry out the survey of the oil impacted sites in Ibeno, Nigeria. A combinations of electrical resistivity (ER), ground penetrating radar (GPR) and physico-chemical as well as microbiological characterization of soils and water samples from the area were carried out. Results obtained revealed that there have been hydrocarbon contaminations of this environment by past crude oil spills as observed from significant concentrations of THC, BTEX and heavy metal contents in the environment. Also, high resistivity values and GPR profiles clearly showing the distribution, thickness and lateral extent of hydrocarbon contamination as represented on the radargram reflector tones corroborates previous significant oil input. Contaminations were of varying degrees, ranging from slight to high, indicating levels of substantial attenuation of crude oil contamination over time. Hydrocarbon pollution of the study area was confirmed by the results of soil and water physico-chemical and microbiological analysis. The levels of THC contamination observed in this study are indicative of high levels of crude oil contamination. Moreover, the display of relatively lower resistivities of locations outside the impacted areas compared to resistivity values within the impacted areas, the 3-D Cartesian images of oil contaminant plume depicted by red, light brown and magenta for high, low and very low oil impacted areas, respectively as well as the high counts of hydrocarbonoclastic microorganisms in excess of 1% confirmed significant recent pollution of the study area.

Keywords: oil-polluted sites, physico-chemical analyses, microbiological characterization, geotechnical investigations, total hydrocarbon content

Procedia PDF Downloads 383
18144 Two-Level Separation of High Air Conditioner Consumers and Demand Response Potential Estimation Based on Set Point Change

Authors: Mehdi Naserian, Mohammad Jooshaki, Mahmud Fotuhi-Firuzabad, Mohammad Hossein Mohammadi Sanjani, Ashknaz Oraee

Abstract:

In recent years, the development of communication infrastructure and smart meters have facilitated the utilization of demand-side resources which can enhance stability and economic efficiency of power systems. Direct load control programs can play an important role in the utilization of demand-side resources in the residential sector. However, investments required for installing control equipment can be a limiting factor in the development of such demand response programs. Thus, selection of consumers with higher potentials is crucial to the success of a direct load control program. Heating, ventilation, and air conditioning (HVAC) systems, which due to the heat capacity of buildings feature relatively high flexibility, make up a major part of household consumption. Considering that the consumption of HVAC systems depends highly on the ambient temperature and bearing in mind the high investments required for control systems enabling direct load control demand response programs, in this paper, a recent solution is presented to uncover consumers with high air conditioner demand among large number of consumers and to measure the demand response potential of such consumers. This can pave the way for estimating the investments needed for the implementation of direct load control programs for residential HVAC systems and for estimating the demand response potentials in a distribution system. In doing so, we first cluster consumers into several groups based on the correlation coefficients between hourly consumption data and hourly temperature data using K-means algorithm. Then, by applying a recent algorithm to the hourly consumption and temperature data, consumers with high air conditioner consumption are identified. Finally, demand response potential of such consumers is estimated based on the equivalent desired temperature setpoint changes.

Keywords: communication infrastructure, smart meters, power systems, HVAC system, residential HVAC systems

Procedia PDF Downloads 51
18143 Geographic Information System-Based Identification of Road Traffic Crash Hotspots on Rural Roads in Oman

Authors: Mohammed Bakhit Kashoob, Mohammed Salim Al-Maashani, Ahmed Abdullah Al-Marhoon

Abstract:

The use of Geographic Information System (GIS) tools in the analysis of traffic crash data can help to identify locations or hotspots with high instances or risk of traffic crashes. The identification of traffic crash hotspots can effectively improve road safety measures. Mapping of road traffic crash hotspots can help the concerned authorities to give priority and take targeted measures and improvements to the road structure at these locations to reduce traffic crashes and fatalities. In Oman, there are countless rural roads that have more risks for traveling vehicles compared to urban roads. The likelihood of traffic crashes as well as fatality rate may increase with the presence of risks that are associated with the rural type of community. In this paper, the traffic crash hotspots on rural roads in Oman are specified using spatial analysis methods in GIS and traffic crash data. These hotspots are ranked based on the frequency of traffic crash occurrence (i.e., number of traffic crashes) and the rate of fatalities. The result of this study presents a map visualization of locations on rural roads with high traffic crashes and high fatalities rates.

Keywords: road safety, rural roads, traffic crash, GIS tools

Procedia PDF Downloads 128
18142 Self-Sensing Concrete Nanocomposites for Smart Structures

Authors: A. D'Alessandro, F. Ubertini, A. L. Materazzi

Abstract:

In the field of civil engineering, Structural Health Monitoring is a topic of growing interest. Effective monitoring instruments permit the control of the working conditions of structures and infrastructures, through the identification of behavioral anomalies due to incipient damages, especially in areas of high environmental hazards as earthquakes. While traditional sensors can be applied only in a limited number of points, providing a partial information for a structural diagnosis, novel transducers may allow a diffuse sensing. Thanks to the new tools and materials provided by nanotechnology, new types of multifunctional sensors are developing in the scientific panorama. In particular, cement-matrix composite materials capable of diagnosing their own state of strain and tension, could be originated by the addition of specific conductive nanofillers. Because of the nature of the material they are made of, these new cementitious nano-modified transducers can be inserted within the concrete elements, transforming the same structures in sets of widespread sensors. This paper is aimed at presenting the results of a research about a new self-sensing nanocomposite and about the implementation of smart sensors for Structural Health Monitoring. The developed nanocomposite has been obtained by inserting multi walled carbon nanotubes within a cementitious matrix. The insertion of such conductive carbon nanofillers provides the base material with piezoresistive characteristics and peculiar sensitivity to mechanical modifications. The self-sensing ability is achieved by correlating the variation of the external stress or strain with the variation of some electrical properties, such as the electrical resistance or conductivity. Through the measurement of such electrical characteristics, the performance and the working conditions of an element or a structure can be monitored. Among conductive carbon nanofillers, carbon nanotubes seem to be particularly promising for the realization of self-sensing cement-matrix materials. Some issues related to the nanofiller dispersion or to the influence of the nano-inclusions amount in the cement matrix need to be carefully investigated: the strain sensitivity of the resulting sensors is influenced by such factors. This work analyzes the dispersion of the carbon nanofillers, the physical properties of the fresh dough, the electrical properties of the hardened composites and the sensing properties of the realized sensors. The experimental campaign focuses specifically on their dynamic characterization and their applicability to the monitoring of full-scale elements. The results of the electromechanical tests with both slow varying and dynamic loads show that the developed nanocomposite sensors can be effectively used for the health monitoring of structures.

Keywords: carbon nanotubes, self-sensing nanocomposites, smart cement-matrix sensors, structural health monitoring

Procedia PDF Downloads 220
18141 High Temperature and High Pressure Purification of Hydrogen from Syngas Using Metal Organic Framework Adsorbent

Authors: Samira Rostom, Robert Symonds, Robin W. Hughes

Abstract:

Hydrogen is considered as one of the most important clean and renewable energy carriers for a sustainable energy future. However, its efficient and cost-effective purification remains challenging. This paper presents the potential of using metal–organic frameworks (MOFs) in combination with pressure swing adsorption (PSA) technology for syngas based H2 purification. PSA process analysis is done considering high pressure and elevated temperature process conditions, it reduces the demand for off-gas recycle to the fuel reactor and simultaneously permits higher desorption pressure, thereby reducing the parasitic load on the hydrogen compressor. The elevated pressure and temperature adsorption we present here is beneficial to minimizing overall process heating and cooling demand compared to existing processes. Here, we report the comparative performance of zeolite-5A, Cu-BTC, and the mix of zeolite-5A/Cu-BTC for H2 purification from syngas typical of those exiting water-gas-shift reactors. The MOFs were synthesized hydrothermally and then mixed systematically at different weight ratios to find the optimum composition based on the adsorption performance. The formation of different compounds were characterized by XRD, N2 adsorption and desorption, SEM, FT-IR, TG, and water vapor adsorption technologies. Single-component adsorption isotherms of CO2, CO, CH4, N2, and H2 over single materials and composites were measured at elevated pressures and different temperatures to determine their equilibrium adsorption capacity. The examination of the stability and regeneration performance of metal–organic frameworks was carried out using a gravimetric system at temperature ranges of 25-150℃ for a pressure range of 0-30 bar. The studies of adsorption/desorption on the MOFs showed selective adsorption of CO2, CH4, CO, and N2 over H2. Overall, the findings of this study suggest that the Ni-MOF-74/Cu-BTC composites are promising candidates for industrial H2 purification processes.

Keywords: MOF, H2 purification, high T, PSA

Procedia PDF Downloads 79
18140 A High Efficiency Reduced Rules Neuro-Fuzzy Based Maximum Power Point Tracking Controller for Photovoltaic Array Connected to Grid

Authors: Lotfi Farah, Nadir Farah, Zaiem Kamar

Abstract:

This paper achieves a maximum power point tracking (MPPT) controller using a high-efficiency reduced rules neuro-fuzzy inference system (HE2RNF) for a 100 kW stand-alone photovoltaic (PV) system connected to the grid. The suggested HE2RNF based MPPT seeks the optimal duty cycle for the boost DC-DC converter, making the designed PV system working at the maximum power point (MPP), then transferring this power to the grid via a three levels voltage source converter (VSC). PV current variation and voltage variation are chosen as HE2RNF-based MPPT controller inputs. By using these inputs with the duty cycle as the only single output, a six rules ANFIS is generated. The high performance of the proposed HE2RNF numerically in the MATLAB/Simulink environment is shown. The 0.006% steady-state error, 0.006s of tracking time, and 0.088s of starting time prove the robustness of this six reduced rules against the widely used twenty-five ones.

Keywords: PV, MPPT, ANFIS, HE2RNF-based MPPT controller, VSC, grid connection

Procedia PDF Downloads 177
18139 Development of Electromyography (EMG) Signal Acquisition System by Simple Electronic Circuits

Authors: Divya Pradip Roy, Md. Zahirul Alam Chowdhury

Abstract:

Electromyography (EMG) sensors are generally used to record the electrical activity produced by skeletal muscles. The conventional EMG sensors available in the market are expensive. This research suggests a low cost EMG sensor design which can be built with simple devices within our reach. In this research, one instrumentation amplifier, two high pass filters, two low pass filters and an inverting amplifier is connected sequentially. The output from the circuit exhibits electrical potential generated by the muscle cells when they are neurologically activated. This electromyography signal is used to control prosthetic devices, identifying neuromuscular diseases and for various other purposes.

Keywords: EMG, high pass filter, instrumentation amplifier, inverting amplifier, low pass filter, neuromuscular

Procedia PDF Downloads 160
18138 Friction Stir Welding of Aluminum Alloys: A Review

Authors: S. K. Tiwari, Dinesh Kumar Shukla, R. Chandra

Abstract:

Friction stir welding is a solid state joining process. High strength aluminum alloys are widely used in aircraft and marine industries. Generally, the mechanical properties of fusion-welded aluminum joints are poor. As friction stir welding occurs in the solid state, no solidification structures are created thereby eliminating the brittle and eutectic phases common in fusion welding of high strength aluminum alloys. In this review, the process parameters, microstructural evolution and effect of friction stir welding on the properties of weld specific to aluminum alloys have been discussed.

Keywords: aluminum alloys, friction stir welding (FSW), microstructure, Properties.

Procedia PDF Downloads 400
18137 An In-Depth Comparison Study of Canadian and Danish's Entrepreneurship and Education System

Authors: Amna Khaliq

Abstract:

In this research paper, a comparison study has been undertaken between Canada and Denmark to analyze the education system between the countries in entrepreneurship. Denmark, a land of high wages and high taxes, and Canada, a land of immigrants and opportunities, have seen a positive relationship in entrepreneurs' growth. They are both considered one of the top ten countries to start a business and to have government support globally. However, education is entirely free to Danish students, including university degrees, compared to Canadians, which can further hurdle for Canadian millennials to grow in the business world—the business experience more growth with educated entrepreneurs with international backgrounds in new immigrants. Denmark has seen a gradual increase in female entrepreneurs over the decade but is still lower than OECD countries. Compassionate management and work-life balance are prioritized in Denmark, unlike in Canada. Danish are early adopters of technology and have excellent infrastructure to support the technology industry, whereas Canada is still a service-oriented and manufacturer-based country. 2018 has been the highest number of opening businesses for Canada and Denmark. Some companies offer high wages, hiring bonuses, flexible working hours, wellness, and mental health benefits during Pandemic to keep the companies running and keep their workers' morale high. Pandemic has taught consumers new patterns to shop online. It is essential now to use technology and automation to increase productivity in businesses. Only those companies will survive that are applying this strategy. The Pandemic has ultimately changed entrepreneurs' and employees' behavior in the business world. Along with Ph.D. professors, entrepreneurs should be allowed to teach at learning intuitions. Millennials turn out to be the most entrepreneurial generation in both countries. Entrepreneurship education will only be beneficial when students create businesses and learn from real-life experiences. Managing physical, mental, emotional, and psychological health while dealing with high pressure in entrepreneurship are soft skills learned through practical work.

Keywords: entrepreneurship education, millennials, pandemic, Denmark, Canada

Procedia PDF Downloads 93
18136 PBI Based Composite Membrane for High Temperature Polymer Electrolyte Membrane Fuel Cells

Authors: Kwangwon Seo, Haksoo Han

Abstract:

Al-Si was synthesized and introduced in poly 2,2’-m-(phenylene)-5,5’-bibenzimidazole (PBI). As a result, a series of five Al-Si/PBI composite (ASPBI) membranes (0, 3, 6, 9, and 12 wt.%) were developed and characterized for application in high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). The chemical and morphological structure of ASPBI membranes were analyzed by Fourier transform infrared spectroscopy, X-ray diffractometer and scanning electron microscopy. According to the doping level test and thermogravimetric analysis, as the concentration of Al-Si increased, the doping level increased up to 475%. Moreover, the proton conductivity, current density at 0.6V, and maximum power density of ASPBI membranes increased up to 0.31 Scm-1, 0.320 Acm-2, and 0.370 Wcm-2, respectively, because the increased concentration of Al-Si allows the membranes to hold more PA. Alternatively, as the amount of Al-Si increased, the tensile strength of PA-doped and -undoped membranes decreased. This was resulted by both excess PA and aggregation, which can cause serious degradation of the membrane and induce cracks. Moreover, the PA-doped and -undoped ASPBI12 had the lowest tensile strength. The improved performances of ASPBI membranes imply that ASPBI membranes are possible candidates for HT-PEMFC applications. However, further studies searching to improve the compatibility between PBI matrix and inorganic and optimize the loading of Al-Si should be performed.

Keywords: composite membrane, high temperature polymer electrolyte membrane fuel cell, membrane electrode assembly, polybenzimidazole, polymer electrolyte membrane, proton conductivity

Procedia PDF Downloads 519