Search results for: Artificial Neural network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6715

Search results for: Artificial Neural network

2995 Design and Simulation of All Optical Fiber to the Home Network

Authors: Rahul Malhotra

Abstract:

Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate.

Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT

Procedia PDF Downloads 561
2994 Resource-Constrained Heterogeneous Workflow Scheduling Algorithms in Heterogeneous Computing Clusters

Authors: Lei Wang, Jiahao Zhou

Abstract:

The development of heterogeneous computing clusters provides a strong computility guarantee for large-scale workflows (e.g., scientific computing, artificial intelligence (AI), etc.). However, the tasks within large-scale workflows have also gradually become heterogeneous due to different demands on computing resources, which leads to the addition of a task resource-restricted constraint to the workflow scheduling problem on heterogeneous computing platforms. In this paper, we propose a heterogeneous constrained minimum makespan scheduling algorithm based on the idea of greedy strategy, which provides an efficient solution to the heterogeneous workflow scheduling problem in a heterogeneous platform. In this paper, we test the effectiveness of our proposed scheduling algorithm by randomly generating heterogeneous workflows with heterogeneous computing platform, and the experiments show that our method improves 15.2% over the state-of-the-art methods.

Keywords: heterogeneous computing, workflow scheduling, constrained resources, minimal makespan

Procedia PDF Downloads 43
2993 U Slot Loaded Wearable Textile Antenna

Authors: Varsha Kheradiya, Ganga Prasad Pandey

Abstract:

The use of wearable antennas is rising because wireless devices become small. The wearable antenna is part of clothes used in communication applications, including energy harvesting, medical application, navigation, and tracking. In current years, Antennas embroidered on clothes, conducting antennas based on fabric, polymer embedded antennas, and inkjet-printed antennas are all attractive ways. Also shows the analysis required for wearable antennas, such as wearable antennae interacting with the human body. The primary requirements for the antenna are small size, low profile minimizing radiation absorption by the human body, high efficiency, structural integrity to survive worst situations, and good gain. Therefore, research in energy harvesting, biomedicine, and military application design is increasingly favoring flexible wearable antennas. Textile materials that are effectively used for designing and developing wearable antennas for body area networks. The wireless body area network is primarily concerned with creating effective antenna systems. The antenna should reduce their size, be lightweight, and be adaptable when integrated into clothes. When antennas integrate into clothes, it provides a convenient alternative to those fabricated using rigid substrates. This paper presents a study of U slot loaded wearable textile antenna. U slot patch antenna design is illustrated for wideband from 1GHz to 6 GHz using textile material jeans as substrate and pure copper polyester taffeta fabric as conducting material. This antenna design exhibits dual band results for WLAN at 2.4 GHz and 3.6 GHz frequencies. Also, study U slot position horizontal and vertical shifting. Shifting the horizontal positive X-axis position of the U slot produces the third band at 5.8 GHz.

Keywords: microstrip patch antenna, textile material, U slot wearable antenna, wireless body area network

Procedia PDF Downloads 97
2992 Hormone Replacement Therapy (HRT) and Its Impact on the All-Cause Mortality of UK Women: A Matched Cohort Study 1984-2017

Authors: Nurunnahar Akter, Elena Kulinskaya, Nicholas Steel, Ilyas Bakbergenuly

Abstract:

Although Hormone Replacement Therapy (HRT) is an effective treatment in ameliorating menopausal symptoms, it has mixed effects on different health outcomes, increasing, for instance, the risk of breast cancer. Because of this, many symptomatic women are left untreated. Untreated menopausal symptoms may result in other health issues, which eventually put an extra burden and costs to the health care system. All-cause mortality analysis may explain the net benefits and risks of the HRT therapy. However, it received far less attention in HRT studies. This study investigated the impact of HRT on all-cause mortality using electronically recorded primary care data from The Health Improvement Network (THIN) that broadly represents the female population in the United Kingdom (UK). The study entry date for this study was the record of the first HRT prescription from 1984, and patients were followed up until death or transfer to another GP practice or study end date, which was January 2017. 112,354 HRT users (cases) were matched with 245,320 non-users by age at HRT initiation and general practice (GP). The hazards of all-cause mortality associated with HRT were estimated by a parametric Weibull-Cox model adjusting for a wide range of important medical, lifestyle, and socio-demographic factors. The multilevel multiple imputation techniques were used to deal with missing data. This study found that during 32 years of follow-up, combined HRT reduced the hazard ratio (HR) of all-cause mortality by 9% (HR: 0.91; 95% Confidence Interval, 0.88-0.94) in women of age between 46 to 65 at first treatment compared to the non-users of the same age. Age-specific mortality analyses found that combined HRT decreased mortality by 13% (HR: 0.87; 95% CI, 0.82-0.92), 12% (HR: 0.88; 95% CI, 0.82-0.93), and 8% (HR: 0.92; 95% CI, 0.85-0.98), in 51 to 55, 56 to 60, and 61 to 65 age group at first treatment, respectively. There was no association between estrogen-only HRT and women’s all-cause mortality. The findings from this study may help to inform the choices of women at menopause and to further educate the clinicians and resource planners.

Keywords: hormone replacement therapy, multiple imputations, primary care data, the health improvement network (THIN)

Procedia PDF Downloads 175
2991 LED Lighting Interviews and Assessment in Forest Machines

Authors: Rauno Pääkkönen, Fabriziomaria Gobba, Leena Korpinen

Abstract:

The objective of the study is to assess the implementation of LED lighting into forest machine work in the dark. In addition, the paper includes a wide variety of important and relevant safety and health parameters. In modern, computerized work in the cab of forest machines, artificial illumination is a demanding task when performing duties, such as the visual inspections of wood and computer calculations. We interviewed entrepreneurs and gathered the following as the most pertinent themes: (1) safety, (2) practical problems, and (3) work with LED lighting. The most important comments were in regards to the practical problems of LED lighting. We found indications of technical problems in implementing LED lighting, like snow and dirt on the surfaces of lamps that dim the emission of light. Moreover, service work in the dark forest is dangerous and increases the risks of on-site accidents. We also concluded that the amount of blue light to the eyes should be assessed, especially, when the drivers are working in a semi-dark cab.

Keywords: forest machines, health, LED, safety

Procedia PDF Downloads 434
2990 Impact of Agricultural Infrastructure on Diffusion of Technology of the Sample Farmers in North 24 Parganas District, West Bengal

Authors: Saikat Majumdar, D. C. Kalita

Abstract:

The Agriculture sector plays an important role in the rural economy of India. It is the backbone of our Indian economy and is the dominant sector in terms of employment and livelihood. Agriculture still contributes significantly to export earnings and is an important source of raw materials as well as of demand for many industrial products particularly fertilizers, pesticides, agricultural implements and a variety of consumer goods, etc. The performance of the agricultural sector influences the growth of Indian economy. According to the 2011 Agricultural Census of India, an estimated 61.5 percentage of rural populations are dependent on agriculture. Proper Agricultural infrastructure has the potential to transform the existing traditional agriculture into a most modern, commercial and dynamic farming system in India through its diffusion of technology. The rate of adoption of modern technology reflects the progress of development in agricultural sector. The adoption of any improved agricultural technology is also dependent on the development of road infrastructure or road network. The present study was consisting of 300 sample farmers out which 150 samples was taken from the developed area and rest 150 samples was taken from underdeveloped area. The samples farmers under develop and underdeveloped areas were collected by using Multistage Random Sampling procedure. In the first stage, North 24 Parganas District have been selected purposively. Then from the district, one developed and one underdeveloped block was selected randomly. In the third phase, 10 villages have been selected randomly from each block. Finally, from each village 15 sample farmers was selected randomly. The extents of adoption of technology in different areas were calculated through various parameters. These are percentage area under High Yielding Variety Cereals, percentage area under High Yielding Variety pulses, area under hybrids vegetables, irrigated area, mechanically operated area, amount spent on fertilizer and pesticides, etc. in both developed and underdeveloped areas of North 24 Parganas District, West Bengal. The percentage area under High Yielding Variety Cereals in the developed and underdeveloped areas was 34.86 and 22.59. 42.07 percentages and 31.46 percentages for High Yielding Variety pulses respectively. In the case the area under irrigation it was 57.66 and 35.71 percent while for the mechanically operated area it was 10.60 and 3.13 percent respectively in developed and underdeveloped areas of North 24 Parganas district, West Bengal. It clearly showed that the extent of adoption of technology was significantly higher in the developed area over underdeveloped area. Better road network system helps the farmers in increasing his farm income, farm assets, cropping intensity, marketed surplus and the rate of adoption of new technology. With this background, an attempt is made in this paper to study the impact of Agricultural Infrastructure on the adoption of modern technology in agriculture in North 24 Parganas District, West Bengal.

Keywords: agricultural infrastructure, adoption of technology, farm income, road network

Procedia PDF Downloads 105
2989 Multiscale Process Modeling Analysis for the Prediction of Composite Strength Allowables

Authors: Marianna Maiaru, Gregory M. Odegard

Abstract:

During the processing of high-performance thermoset polymer matrix composites, chemical reactions occur during elevated pressure and temperature cycles, causing the constituent monomers to crosslink and form a molecular network that gradually can sustain stress. As the crosslinking process progresses, the material naturally experiences a gradual shrinkage due to the increase in covalent bonds in the network. Once the cured composite completes the cure cycle and is brought to room temperature, the thermal expansion mismatch of the fibers and matrix cause additional residual stresses to form. These compounded residual stresses can compromise the reliability of the composite material and affect the composite strength. Composite process modeling is greatly complicated by the multiscale nature of the composite architecture. At the molecular level, the degree of cure controls the local shrinkage and thermal-mechanical properties of the thermoset. At the microscopic level, the local fiber architecture and packing affect the magnitudes and locations of residual stress concentrations. At the macroscopic level, the layup sequence controls the nature of crack initiation and propagation due to residual stresses. The goal of this research is use molecular dynamics (MD) and finite element analysis (FEA) to predict the residual stresses in composite laminates and the corresponding effect on composite failure. MD is used to predict the polymer shrinkage and thermomechanical properties as a function of degree of cure. This information is used as input into FEA to predict the residual stresses on the microscopic level resulting from the complete cure process. Virtual testing is subsequently conducted to predict strength allowables. Experimental characterization is used to validate the modeling.

Keywords: molecular dynamics, finite element analysis, processing modeling, multiscale modeling

Procedia PDF Downloads 96
2988 The Use of Emerging Technologies in Higher Education Institutions: A Case of Nelson Mandela University, South Africa

Authors: Ayanda P. Deliwe, Storm B. Watson

Abstract:

The COVID-19 pandemic has disrupted the established practices of higher education institutions (HEIs). Most higher education institutions worldwide had to shift from traditional face-to-face to online learning. The online environment and new online tools are disrupting the way in which higher education is presented. Furthermore, the structures of higher education institutions have been impacted by rapid advancements in information and communication technologies. Emerging technologies should not be viewed in a negative light because, as opposed to the traditional curriculum that worked to create productive and efficient researchers, emerging technologies encourage creativity and innovation. Therefore, using technology together with traditional means will enhance teaching and learning. Emerging technologies in higher education not only change the experience of students, lecturers, and the content, but it is also influencing the attraction and retention of students. Higher education institutions are under immense pressure because not only are they competing locally and nationally, but emerging technologies also expand the competition internationally. Emerging technologies have eliminated border barriers, allowing students to study in the country of their choice regardless of where they are in the world. Higher education institutions are becoming indifferent as technology is finding its way into the lecture room day by day. Academics need to utilise technology at their disposal if they want to get through to their students. Academics are now competing for students' attention with social media platforms such as WhatsApp, Snapchat, Instagram, Facebook, TikTok, and others. This is posing a significant challenge to higher education institutions. It is, therefore, critical to pay attention to emerging technologies in order to see how they can be incorporated into the classroom in order to improve educational quality while remaining relevant in the work industry. This study aims to understand how emerging technologies have been utilised at Nelson Mandela University in presenting teaching and learning activities since April 2020. The primary objective of this study is to analyse how academics are incorporating emerging technologies in their teaching and learning activities. This primary objective was achieved by conducting a literature review on clarifying and conceptualising the emerging technologies being utilised by higher education institutions, reviewing and analysing the use of emerging technologies, and will further be investigated through an empirical analysis of the use of emerging technologies at Nelson Mandela University. Findings from the literature review revealed that emerging technology is impacting several key areas in higher education institutions, such as the attraction and retention of students, enhancement of teaching and learning, increase in global competition, elimination of border barriers, and highlighting the digital divide. The literature review further identified that learning management systems, open educational resources, learning analytics, and artificial intelligence are the most prevalent emerging technologies being used in higher education institutions. The identified emerging technologies will be further analysed through an empirical analysis to identify how they are being utilised at Nelson Mandela University.

Keywords: artificial intelligence, emerging technologies, learning analytics, learner management systems, open educational resources

Procedia PDF Downloads 71
2987 Book Exchange System with a Hybrid Recommendation Engine

Authors: Nilki Upathissa, Torin Wirasinghe

Abstract:

This solution addresses the challenges faced by traditional bookstores and the limitations of digital media, striking a balance between the tactile experience of printed books and the convenience of modern technology. The book exchange system offers a sustainable alternative, empowering users to access a diverse range of books while promoting community engagement. The user-friendly interfaces incorporated into the book exchange system ensure a seamless and enjoyable experience for users. Intuitive features for book management, search, and messaging facilitate effortless exchanges and interactions between users. By streamlining the process, the system encourages readers to explore new books aligned with their interests, enhancing the overall reading experience. Central to the system's success is the hybrid recommendation engine, which leverages advanced technologies such as Long Short-Term Memory (LSTM) models. By analyzing user input, the engine accurately predicts genre preferences, enabling personalized book recommendations. The hybrid approach integrates multiple technologies, including user interfaces, machine learning models, and recommendation algorithms, to ensure the accuracy and diversity of the recommendations. The evaluation of the book exchange system with the hybrid recommendation engine demonstrated exceptional performance across key metrics. The high accuracy score of 0.97 highlights the system's ability to provide relevant recommendations, enhancing users' chances of discovering books that resonate with their interests. The commendable precision, recall, and F1score scores further validate the system's efficacy in offering appropriate book suggestions. Additionally, the curve classifications substantiate the system's effectiveness in distinguishing positive and negative recommendations. This metric provides confidence in the system's ability to navigate the vast landscape of book choices and deliver recommendations that align with users' preferences. Furthermore, the implementation of this book exchange system with a hybrid recommendation engine has the potential to revolutionize the way readers interact with printed books. By facilitating book exchanges and providing personalized recommendations, the system encourages a sense of community and exploration within the reading community. Moreover, the emphasis on sustainability aligns with the growing global consciousness towards eco-friendly practices. With its robust technical approach and promising evaluation results, this solution paves the way for a more inclusive, accessible, and enjoyable reading experience for book lovers worldwide. In conclusion, the developed book exchange system with a hybrid recommendation engine represents a progressive solution to the challenges faced by traditional bookstores and the limitations of digital media. By promoting sustainability, widening access to printed books, and fostering engagement with reading, this system addresses the evolving needs of book enthusiasts. The integration of user-friendly interfaces, advanced machine learning models, and recommendation algorithms ensure accurate and diverse book recommendations, enriching the reading experience for users.

Keywords: recommendation systems, hybrid recommendation systems, machine learning, data science, long short-term memory, recurrent neural network

Procedia PDF Downloads 99
2986 The Role of Context in Interpreting Emotional Body Language in Robots

Authors: Jekaterina Novikova, Leon Watts

Abstract:

In the emerging world of human-robot interaction, people and robots will interact socially in real-world situations. This paper presents the results of an experimental study probing the interaction between situational context and emotional body language in robots. 34 people rated video clips of robots performing expressive behaviours in different situational contexts both for emotional expressivity on Valence-Arousal-Dominance dimensions and by selecting a specific emotional term from a list of suggestions. Results showed that a contextual information enhanced a recognition of emotional body language of a robot, although it did not override emotional signals provided by robot expressions. Results are discussed in terms of design guidelines on how an emotional body language of a robot can be used by roboticists developing social robots.

Keywords: social robotics, non-verbal communication, situational context, artificial emotions, body language

Procedia PDF Downloads 290
2985 Verification of the Supercavitation Phenomena: Investigation of the Cavity Parameters and Drag Coefficients for Different Types of Cavitator

Authors: Sezer Kefeli, Sertaç Arslan

Abstract:

Supercavitation is a pressure dependent process which gives opportunity to eliminate the wetted surface effects on the underwater vehicle due to the differences of viscosity and velocity effects between liquid (freestream) and gas phase. Cavitation process occurs depending on rapid pressure drop or temperature rising in liquid phase. In this paper, pressure based cavitation is investigated due to the fact that is encountered in the underwater world, generally. Basically, this vapor-filled pressure based cavities are unstable and harmful for any underwater vehicle because these cavities (bubbles or voids) lead to intense shock waves while collapsing. On the other hand, supercavitation is a desired and stabilized phenomena than general pressure based cavitation. Supercavitation phenomena offers the idea of minimizing form drag, and thus supercavitating vehicles are revived. When proper circumstances are set up, which are either increasing the operating speed of the underwater vehicle or decreasing the pressure difference between free stream and artificial pressure, the continuity of the supercavitation is obtainable. There are 2 types of supercavitation to obtain stable and continuous supercavitation, and these are called as natural and artificial supercavitation. In order to generate natural supercavitation, various mechanical structures are discovered, which are called as cavitators. In literature, a lot of cavitator types are studied either experimentally or numerically on a CFD platforms with intent to observe natural supercavitation since the 1900s. In this paper, firstly, experimental results are obtained, and trend lines are generated based on supercavitation parameters in terms of cavitation number (), form drag coefficientC_D, dimensionless cavity diameter (d_m/d_c), and length (L_c/d_c). After that, natural cavitation verification studies are carried out for disk and cone shape cavitators. In addition, supercavitation parameters are numerically analyzed at different operating conditions, and CFD results are fitted into trend lines of experimental results. The aims of this paper are to generate one generally accepted drag coefficient equation for disk and cone cavitators at different cavitator half angle and investigation of the supercavitation parameters with respect to cavitation number. Moreover, 165 CFD analysis are performed at different cavitation numbers on FLUENT version 21R2. Five different cavitator types are modeled on SCDM with respect tocavitator’s half angles. After that, CFD database is generated depending on numerical results, and new trend lines are generated based on supercavitation parameters. These trend lines are compared with experimental results. Finally, the generally accepted drag coefficient equation and equations of supercavitation parameters are generated.

Keywords: cavity envelope, CFD, high speed underwater vehicles, supercavitation, supercavitating flows, supercavitation parameters, drag reduction, viscous force elimination, natural cavitation verification

Procedia PDF Downloads 133
2984 Continuous Land Cover Change Detection in Subtropical Thicket Ecosystems

Authors: Craig Mahlasi

Abstract:

The Subtropical Thicket Biome has been in peril of transformation. Estimates indicate that as much as 63% of the Subtropical Thicket Biome is severely degraded. Agricultural expansion is the main driver of transformation. While several studies have sought to document and map the long term transformations, there is a lack of information on disturbance events that allow for timely intervention by authorities. Furthermore, tools that seek to perform continuous land cover change detection are often developed for forests and thus tend to perform poorly in thicket ecosystems. This study investigates the utility of Earth Observation data for continuous land cover change detection in Subtropical Thicket ecosystems. Temporal Neural Networks are implemented on a time series of Sentinel-2 observations. The model obtained 0.93 accuracy, a recall score of 0.93, and a precision score of 0.91 in detecting Thicket disturbances. The study demonstrates the potential of continuous land cover change in Subtropical Thicket ecosystems.

Keywords: remote sensing, land cover change detection, subtropical thickets, near-real time

Procedia PDF Downloads 166
2983 Seismic Behavior of a Jumbo Container Crane in the Low Seismicity Zone Using Time-History Analyses

Authors: Huy Q. Tran, Bac V. Nguyen, Choonghyun Kang, Jungwon Huh

Abstract:

Jumbo container crane is an important part of port structures that needs to be designed properly, even when the port locates in low seismicity zone such as in Korea. In this paper, 30 artificial ground motions derived from the elastic response spectra of Korean Building Code (2005) are used for time history analysis. It is found that the uplift might not occur in this analysis when the crane locates in the low seismic zone. Therefore, a selection of a pinned or a gap element for base supporting has not much effect on the determination of the total base shear. The relationships between the total base shear and peak ground acceleration (PGA) and the relationships between the portal drift and the PGA are proposed in this study.

Keywords: jumbo container crane, portal drift, time history analysis, total base shear

Procedia PDF Downloads 191
2982 Angiogenesis and Blood Flow: The Role of Blood Flow in Proliferation and Migration of Endothelial Cells

Authors: Hossein Bazmara, Kaamran Raahemifar, Mostafa Sefidgar, Madjid Soltani

Abstract:

Angiogenesis is formation of new blood vessels from existing vessels. Due to flow of blood in vessels, during angiogenesis, blood flow plays an important role in regulating the angiogenesis process. Multiple mathematical models of angiogenesis have been proposed to simulate the formation of the complicated network of capillaries around a tumor. In this work, a multi-scale model of angiogenesis is developed to show the effect of blood flow on capillaries and network formation. This model spans multiple temporal and spatial scales, i.e. intracellular (molecular), cellular, and extracellular (tissue) scales. In intracellular or molecular scale, the signaling cascade of endothelial cells is obtained. Two main stages in development of a vessel are considered. In the first stage, single sprouts are extended toward the tumor. In this stage, the main regulator of endothelial cells behavior is the signals from extracellular matrix. After anastomosis and formation of closed loops, blood flow starts in the capillaries. In this stage, blood flow induced signals regulate endothelial cells behaviors. In cellular scale, growth and migration of endothelial cells is modeled with a discrete lattice Monte Carlo method called cellular Pott's model (CPM). In extracellular (tissue) scale, diffusion of tumor angiogenic factors in the extracellular matrix, formation of closed loops (anastomosis), and shear stress induced by blood flow is considered. The model is able to simulate the formation of a closed loop and its extension. The results are validated against experimental data. The results show that, without blood flow, the capillaries are not able to maintain their integrity.

Keywords: angiogenesis, endothelial cells, multi-scale model, cellular Pott's model, signaling cascade

Procedia PDF Downloads 428
2981 Rule-Based Expert System for Headache Diagnosis and Medication Recommendation

Authors: Noura Al-Ajmi, Mohammed A. Almulla

Abstract:

With the increased utilization of technology devices around the world, healthcare and medical diagnosis are critical issues that people worry about these days. Doctors are doing their best to avoid any medical errors while diagnosing diseases and prescribing the wrong medication. Subsequently, artificial intelligence applications that can be installed on mobile devices such as rule-based expert systems facilitate the task of assisting doctors in several ways. Due to their many advantages, the usage of expert systems has increased recently in health sciences. This work presents a backward rule-based expert system that can be used for a headache diagnosis and medication recommendation system. The structure of the system consists of three main modules, namely the input unit, the processing unit, and the output unit.

Keywords: headache diagnosis system, prescription recommender system, expert system, backward rule-based system

Procedia PDF Downloads 224
2980 Optimizing Approach for Sifting Process to Solve a Common Type of Empirical Mode Decomposition Mode Mixing

Authors: Saad Al-Baddai, Karema Al-Subari, Elmar Lang, Bernd Ludwig

Abstract:

Empirical mode decomposition (EMD), a new data-driven of time-series decomposition, has the advantage of supposing that a time series is non-linear or non-stationary, as is implicitly achieved in Fourier decomposition. However, the EMD suffers of mode mixing problem in some cases. The aim of this paper is to present a solution for a common type of signals causing of EMD mode mixing problem, in case a signal suffers of an intermittency. By an artificial example, the solution shows superior performance in terms of cope EMD mode mixing problem comparing with the conventional EMD and Ensemble Empirical Mode decomposition (EEMD). Furthermore, the over-sifting problem is also completely avoided; and computation load is reduced roughly six times compared with EEMD, an ensemble number of 50.

Keywords: empirical mode decomposition (EMD), mode mixing, sifting process, over-sifting

Procedia PDF Downloads 400
2979 Enhancing Value of Dam Dredged Sediments as a Component of a Self Compacting Concrete

Authors: N. Belas, O. Belaribi, S. Aggoun, K. Bendani, N. Bouhamou, A. Mebrouki

Abstract:

This experimental work is a part of a long research on the valorization of the dam dredged sediments issued from Fergoug Dam (Mascara-West Algeria). These sediments have to be subjected to thermal treatment to become reactive with the cement and thus to obtain an artificial pozzolana. It is therefore a question of developing the calcined mud as substitutable material in part to the cement used in the composition of self compacting concrete. The objective of the present work is to highlight its influence on the behavior of self compacting concrete compared to that of the natural pozzolana and this, in fresh and hardened states. The study is being conducted on three SCC, the first using 20% in volume of natural pozzolana, the second with 20 % of calcined mud and the third for the sake of comparison is made with cement only. The first results showed the possibility of obtaining SCC with calcined mud complying with the AFGC recommendations having a good mechanical behavior which makes interesting its development as construction materials.

Keywords: dam, fresh state, hardened state mud, sediments, self compacting concrete, valorization

Procedia PDF Downloads 520
2978 An Investigation Enhancing E-Voting Application Performance

Authors: Aditya Verma

Abstract:

E-voting using blockchain provides us with a distributed system where data is present on each node present in the network and is reliable and secure too due to its immutability property. This work compares various blockchain consensus algorithms used for e-voting applications in the past, based on performance and node scalability, and chooses the optimal one and improves on one such previous implementation by proposing solutions for the loopholes of the optimally working blockchain consensus algorithm, in our chosen application, e-voting.

Keywords: blockchain, parallel bft, consensus algorithms, performance

Procedia PDF Downloads 171
2977 The Impact of Artificial Intelligence on Autism Attitude and Skills

Authors: Sara Fayez Fawzy Mikhael

Abstract:

Inclusive education services for students with autism are still developing in Thailand. Although many more children with intellectual disabilities have been attending school since the Thai government enacted the Education for Persons with Disabilities Act in 2008, facilities for students with disabilities and their families are generally inadequate. This comprehensive study used the Attitudes and Preparedness for Teaching Students with Autism Scale (APTSAS) to examine the attitudes and preparedness of 110, elementary teachers in teaching students with autism in the general education setting. Descriptive statistical analyzes showed that the most important factor in the formation of a negative image of teachers with autism is student attitudes. Most teachers also stated that their pre-service training did not prepare them to meet the needs of children with special needs who cannot speak. The study is important and provides directions for improving non-formal teacher education in Thailand.

Keywords: attitude, autism, teachers, thailandsports activates, movement skills, motor skills

Procedia PDF Downloads 74
2976 Solving Ill-Posed Initial Value Problems for Switched Differential Equations

Authors: Eugene Stepanov, Arcady Ponosov

Abstract:

To model gene regulatory networks one uses ordinary differential equations with switching nonlinearities, where the initial value problem is known to be well-posed if the trajectories cross the discontinuities transversally. Otherwise, the initial value problem is usually ill-posed, which lead to theoretical and numerical complications. In the presentation, it is proposed to apply the theory of hybrid dynamical systems, rather than switched ones, to regularize the problem. 'Hybridization' of the switched system means that one attaches a dynamic discrete component ('automaton'), which follows the trajectories of the original system and governs its dynamics at the points of ill-posedness of the initial value problem making it well-posed. The construction of the automaton is based on the classification of the attractors of the specially designed adjoint dynamical system. Several examples are provided in the presentation, which support the suggested analysis. The method can also be of interest in other applied fields, where differential equations contain switchings, e.g. in neural field models.

Keywords: hybrid dynamical systems, ill-posed problems, singular perturbation analysis, switching nonlinearities

Procedia PDF Downloads 190
2975 Predicting Data Center Resource Usage Using Quantile Regression to Conserve Energy While Fulfilling the Service Level Agreement

Authors: Ahmed I. Alutabi, Naghmeh Dezhabad, Sudhakar Ganti

Abstract:

Data centers have been growing in size and dema nd continuously in the last two decades. Planning for the deployment of resources has been shallow and always resorted to over-provisioning. Data center operators try to maximize the availability of their services by allocating multiple of the needed resources. One resource that has been wasted, with little thought, has been energy. In recent years, programmable resource allocation has paved the way to allow for more efficient and robust data centers. In this work, we examine the predictability of resource usage in a data center environment. We use a number of models that cover a wide spectrum of machine learning categories. Then we establish a framework to guarantee the client service level agreement (SLA). Our results show that using prediction can cut energy loss by up to 55%.

Keywords: machine learning, artificial intelligence, prediction, data center, resource allocation, green computing

Procedia PDF Downloads 111
2974 Emerging Trends of Geographic Information Systems in Built Environment Education: A Bibliometric Review Analysis

Authors: Kiara Lawrence, Robynne Hansmann, Clive Greentsone

Abstract:

Geographic Information Systems (GIS) are used to store, analyze, visualize, capture and monitor geographic data. Built environment professionals as well as urban planners specifically, need to possess GIS skills to effectively and efficiently plan spaces. GIS application extends beyond the production of map artifacts and can be applied to relate to spatially referenced, real time data to support spatial visualization, analysis, community engagement, scenarios, and so forth. Though GIS has been used in the built environment for a few decades, its use in education has not been researched enough to draw conclusions on the trends in the last 20 years. The study looks to discover current and emerging trends of GIS in built environment education. A bibliometric review analysis methodology was carried out through exporting documents from Scopus and Web of Science using keywords around "Geographic information systems" OR "GIS" AND "built environment" OR “geography” OR "architecture" OR "quantity surveying" OR "construction" OR "urban planning" OR "town planning" AND “education” between the years 1994 to 2024. A total of 564 documents were identified and exported. The data was then analyzed using VosViewer software to generate network analysis and visualization maps on the co-occurrence of keywords, co-citation of documents and countries and co-author network analysis. By analyzing each aspect of the data, deeper insight of GIS within education can be understood. Preliminary results from Scopus indicate that GIS research focusing on built environment education seems to have peaked prior to 2014 with much focus on remote sensing, demography, land use, engineering education and so forth. This invaluable data can help in understanding and implementing GIS in built environment education in ways that are foundational and innovative to ensure that students are equipped with sufficient knowledge and skills to carry out tasks in their respective fields.

Keywords: architecture, built environment, construction, education, geography, geographic information systems, quantity surveying, town planning, urban planning

Procedia PDF Downloads 22
2973 Precipitation and Age Hardening in Al-Mg-Si-(Cu) Alloys for Automotive Body Sheet

Authors: Tahar Abid, Haoues Ghouss, Abdelhamid Boubertakh

Abstract:

This present work is focused on the hardening precipitation in two AlMgSi(Cu) automotive body sheets. The effect of pre-aging, aging treatment and 0.10 wt % copper addition on the hardening response was investigated using scanning calorimetry (DSC), transmission electron microscopy (TEM), and Vickers microhardness measurements (Hv). The results reveal the apparition of α-AlFeSi, α-AlFe(Mn)Si type precipitates frequently present and witch remain stable at high temperature in Al-Mg-Si alloys. Indeed, the hardening response in both sheets is certainly due to the predominance of very fine typical phases β' and β'' as rods and needles developed during aging with and without pre-aging. The effect of pre ageing just after homogenization and quenching is to correct the undesirable effect of aging at ambient temperature by making faster alloy hardening during artificial aging.The addition of 0.10 wt % copper has allowed to refine and to enhance the precipitation hardening after quenching.

Keywords: AlMgSi alloys, precipitation, hardening, activation energy

Procedia PDF Downloads 95
2972 Packaging Processes for the Implantable Medical Microelectronics

Authors: Chung-Yu Wu, Chia-Chi Chang, Wei-Ming Chen, Pu-Wei Wu, Shih-Fan Chen, Po-Chun Chen

Abstract:

Electrostimulation medical devices for neural diseases require electroactive and biocompatible materials to transmit signals from electrodes to targeting tissues. Protection of surrounding tissues has become a great challenge for long-term implants. In this study, we designed back-end processes with compatible, efficient, and reliable advantages over the current state-of-the-art. We explored a hermetic packaging process with high quality of adhesion and uniformity as the biocompatible devices for long-term implantation. This approach is able to provide both excellent biocompatibility and protection to the biomedical electronic devices by performing conformal coating of biocompatible materials. We successfully developed a packaging process that is capable of exposing the stimulating electrode and cover all other faces of chip with high quality of protection to prevent leakage of devices and body fluid.

Keywords: biocompatible package, medical microelectronics, surface coating, long-term implantation

Procedia PDF Downloads 527
2971 Credit Risk Assessment Using Rule Based Classifiers: A Comparative Study

Authors: Salima Smiti, Ines Gasmi, Makram Soui

Abstract:

Credit risk is the most important issue for financial institutions. Its assessment becomes an important task used to predict defaulter customers and classify customers as good or bad payers. To this objective, numerous techniques have been applied for credit risk assessment. However, to our knowledge, several evaluation techniques are black-box models such as neural networks, SVM, etc. They generate applicants’ classes without any explanation. In this paper, we propose to assess credit risk using rules classification method. Our output is a set of rules which describe and explain the decision. To this end, we will compare seven classification algorithms (JRip, Decision Table, OneR, ZeroR, Fuzzy Rule, PART and Genetic programming (GP)) where the goal is to find the best rules satisfying many criteria: accuracy, sensitivity, and specificity. The obtained results confirm the efficiency of the GP algorithm for German and Australian datasets compared to other rule-based techniques to predict the credit risk.

Keywords: credit risk assessment, classification algorithms, data mining, rule extraction

Procedia PDF Downloads 185
2970 FMR1 Gene Carrier Screening for Premature Ovarian Insufficiency in Females: An Indian Scenario

Authors: Sarita Agarwal, Deepika Delsa Dean

Abstract:

Like the task of transferring photo images to artistic images, image-to-image translation aims to translate the data to the imitated data which belongs to the target domain. Neural Style Transfer and CycleGAN are two well-known deep learning architectures used for photo image-to-art image transfer. However, studies involving these two models concentrate on one-to-one domain translation, not one-to-multi domains translation. Our study tries to investigate deep learning architectures, which can be controlled to yield multiple artistic style translation only by adding a conditional vector. We have expanded CycleGAN and constructed Conditional CycleGAN for 5 kinds of categories translation. Our study found that the architecture inserting conditional vector into the middle layer of the Generator could output multiple artistic images.

Keywords: genetic counseling, FMR1 gene, fragile x-associated primary ovarian insufficiency, premutation

Procedia PDF Downloads 134
2969 Parameters Tuning of a PID Controller on a DC Motor Using Honey Bee and Genetic Algorithms

Authors: Saeid Jalilzadeh

Abstract:

PID controllers are widely used to control the industrial plants because of their robustness and simple structures. Tuning of the controller's parameters to get a desired response is difficult and time consuming. With the development of computer technology and artificial intelligence in automatic control field, all kinds of parameters tuning methods of PID controller have emerged in endlessly, which bring much energy for the study of PID controller, but many advanced tuning methods behave not so perfect as to be expected. Honey Bee algorithm (HBA) and genetic algorithm (GA) are extensively used for real parameter optimization in diverse fields of study. This paper describes an application of HBA and GA to the problem of designing a PID controller whose parameters comprise proportionality constant, integral constant and derivative constant. Presence of three parameters to optimize makes the task of designing a PID controller more challenging than conventional P, PI, and PD controllers design. The suitability of the proposed approach has been demonstrated through computer simulation using MATLAB/SIMULINK.

Keywords: controller, GA, optimization, PID, PSO

Procedia PDF Downloads 546
2968 Use of Artificial Intelligence Should Be Centred Around Emotions to Create Effective Learning Environment in the Corporate Workplace

Authors: Artur Willoński

Abstract:

This research introduces the concept of Emotions Based Collaborative Prompting (EBCP) as a response to the need for a unified learning environment in the corporate workplace. The first section examines the key characteristics of workplace learning, presenting three core propositions: (1) workplace learning is both informal and diverse, requiring adaptable approaches; (2) corporate settings provide inherent structures that can be leveraged for collaborative learning; and (3) emotional engagement and human interaction play a central role in effective learning processes. The second section describes how EBCP framework creates an environment that helps identify emotions, assign emotions with parameters, and allows these parameters to be collected, analysed, and turned into a context-aware learning environment. It concludes that EBCP allows people who come from different social backgrounds, age groups, and positions in the organisation to collaborate and generate knowledge based on both formal and informal interactions.

Keywords: collaborative learning, self-regulated learning, emotions, AI

Procedia PDF Downloads 21
2967 A Mathematical Framework for Expanding a Railway’s Theoretical Capacity

Authors: Robert L. Burdett, Bayan Bevrani

Abstract:

Analytical techniques for measuring and planning railway capacity expansion activities have been considered in this article. A preliminary mathematical framework involving track duplication and section sub divisions is proposed for this task. In railways, these features have a great effect on network performance and for this reason they have been considered. Additional motivations have also arisen from the limitations of prior models that have not included them.

Keywords: capacity analysis, capacity expansion, railways, track sub division, track duplication

Procedia PDF Downloads 363
2966 Modeling of System Availability and Bayesian Analysis of Bivariate Distribution

Authors: Muhammad Farooq, Ahtasham Gul

Abstract:

To meet the desired standard, it is important to monitor and analyze different engineering processes to get desired output. The bivariate distributions got a lot of attention in recent years to describe the randomness of natural as well as artificial mechanisms. In this article, a bivariate model is constructed using two independent models developed by the nesting approach to study the effect of each component on reliability for better understanding. Further, the Bayes analysis of system availability is studied by considering prior parametric variations in the failure time and repair time distributions. Basic statistical characteristics of marginal distribution, like mean median and quantile function, are discussed. We use inverse Gamma prior to study its frequentist properties by conducting Monte Carlo Markov Chain (MCMC) sampling scheme.

Keywords: reliability, system availability Weibull, inverse Lomax, Monte Carlo Markov Chain, Bayesian

Procedia PDF Downloads 81