Search results for: erosion rate prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10438

Search results for: erosion rate prediction

6748 Accidental Compartment Fire Dynamics: Experiment, Computational Fluid Dynamics Weakness and Expert Interview Analysis

Authors: Timothy Onyenobi

Abstract:

Accidental fires and its dynamic as it relates to building compartmentation and the impact of the compartment morphology, is still an on-going area of study; especially with the use of computational fluid dynamics (CFD) modeling methods. With better knowledge on this subject come better solution recommendations by fire engineers. Interviews were carried out for this study where it was identified that the response perspectives to accidental fire were different with the fire engineer providing qualitative data which is based on “what is expected in real fires” and the fire fighters provided information on “what actually obtains in real fires”. This further led to a study and analysis of two real and comprehensively instrumented fire experiments: the Open Plan Office Project by National Institute of Standard and Technology (NIST) USA (to study time to flashover) and the TF2000 project by the Building Research Establishment (BRE) UK (to test for conformity with Building Regulation requirements). The findings from the analysis of the experiments revealed the relative yet critical weakness of fire prediction using a CFD model (usually used by fire engineers) as well as explained the differences in response perspectives of the fire engineers and firefighters from the interview analysis.

Keywords: CFD, compartment fire, experiment, fire fighters, fire engineers

Procedia PDF Downloads 342
6747 An In-Depth Inquiry into the Impact of Poor Teacher-Student Relationships on Chronic Absenteeism in Secondary Schools of West Java Province, Indonesia

Authors: Yenni Anggrayni

Abstract:

The lack of awareness of the significant prevalence of school absenteeism in Indonesia, which ultimately results in high rates of school dropouts, is an unresolved issue. Therefore, this study aims to investigate the root causes of chronic absenteeism qualitatively and quantitatively using the bioecological systems paradigm in secondary schools for any reason. This study used an open-ended questionnaire to collect data from 1,148 students in six West Java Province districts/cities. Univariate and stepwise multiple logistic regression analyses produced a prediction model for the components. Analysis results show that poor teacher-student relationships, bullying by peers or teachers, negative perception of education, and lack of parental involvement in learning activities are the leading causes of chronic absenteeism. Another finding is to promote home-school partnerships to improve school climate and parental involvement in learning to address chronic absenteeism.

Keywords: bullying, chronic absenteeism, dropout of school, home-school partnerships, parental involvement

Procedia PDF Downloads 73
6746 Analysis of Factors Affecting the Number of Infant and Maternal Mortality in East Java with Geographically Weighted Bivariate Generalized Poisson Regression Method

Authors: Luh Eka Suryani, Purhadi

Abstract:

Poisson regression is a non-linear regression model with response variable in the form of count data that follows Poisson distribution. Modeling for a pair of count data that show high correlation can be analyzed by Poisson Bivariate Regression. Data, the number of infant mortality and maternal mortality, are count data that can be analyzed by Poisson Bivariate Regression. The Poisson regression assumption is an equidispersion where the mean and variance values are equal. However, the actual count data has a variance value which can be greater or less than the mean value (overdispersion and underdispersion). Violations of this assumption can be overcome by applying Generalized Poisson Regression. Characteristics of each regency can affect the number of cases occurred. This issue can be overcome by spatial analysis called geographically weighted regression. This study analyzes the number of infant mortality and maternal mortality based on conditions in East Java in 2016 using Geographically Weighted Bivariate Generalized Poisson Regression (GWBGPR) method. Modeling is done with adaptive bisquare Kernel weighting which produces 3 regency groups based on infant mortality rate and 5 regency groups based on maternal mortality rate. Variables that significantly influence the number of infant and maternal mortality are the percentages of pregnant women visit health workers at least 4 times during pregnancy, pregnant women get Fe3 tablets, obstetric complication handled, clean household and healthy behavior, and married women with the first marriage age under 18 years.

Keywords: adaptive bisquare kernel, GWBGPR, infant mortality, maternal mortality, overdispersion

Procedia PDF Downloads 164
6745 Going Global by Going Local-How Website Localization and Translation Can Break the Internet Language Barrier and Contribute to Globalization

Authors: Hela Fathallah

Abstract:

With 6,500 spoken languages all over the world but 80 percent of online content available only in 10 languages – English, Chinese, Spanish, Japanese, Arabic, Portuguese, German, French, Russian, and Korean – language represents a barrier to the universal access to knowledge, information and services that the internet wants to provide. Translation and its related fields of localization, interpreting, globalization, and internationalization, remove that barrier for billions of people worldwide, unlocking new markets for technology companies, mobile device makers, service providers and language vendors as well. This paper gathers different surveys conducted in different regions of the world that demonstrate a growing demand for consumption of web content with distinctive values and in languages others than the aforementioned ones. It also adds new insights to the contribution of translation in languages preservation. The idea that English is the language of internet and that, in a globalized world, everyone should learn English to cope with new technologies is no longer true. This idea has reached its limits. It collides with cultural diversity and differences around the world and generates an accelerated rate of languages extinction. Studies prove that internet exacerbates this rate and web giants such as Facebook or Google are, today, facing the impact of such a misconception of globalization. For internet and dot-com companies, localization is the solution; they are spending a significant amount of time to understand what people want and to figure out how to provide it. They are committed to making their content accessible, if not in all the languages spoken today, at least in most of them, and to adapting it to most cultures. Technology has broken down the barriers of time and space, and it will break down the language barrier as well by undertaking a process of translation and localization and through a new definition of globalization that takes into consideration these two processes.

Keywords: globalization, internet, localization, translation

Procedia PDF Downloads 364
6744 Parameter Study for TPU Nanofibers Fabricated via Centrifugal Spinning

Authors: Yasin Akgül, Yusuf Polat, Emine Canbay, Ali Kılıç

Abstract:

Electrospinning is the most common method to produce nanofibers. However, low production rate is still a big challenge for industrial applications of this method. In this study, morphology of nanofibers obtained from namely centrifugal spinning was investigated. Dominant process parameters acting on the fiber diameter and fiber orientation were discussed.

Keywords: centrifugal spinning, electrospinning, nanofiber, TPU nanofibers

Procedia PDF Downloads 455
6743 Indirect Regeneration and Somatic Embryogenesis from Leaf and Stem Explants of Crassula ovata 42-45 (Mill.) Druce: An Ornamental Medicinal Plant

Authors: A. B. A. Ahmed, D. I. Amar, R. M. Taha

Abstract:

This research aims to investigate callus induction, somatic embryogenesis and indirect plant regeneration of Crassula ovata (Mill.) Druce – the famous ornamental plant. Experiment no.1: Callus induction was obtained from leaf and stem explants on Murashige and Skoog (MS) medium supplemented with various plant growth regulators (PGRs). Effects of different PGRs, plant regeneration and subsequent plantlet conversion were also assessed. Indirect plant regeneration was achieved from the callus of stem explants by the addition of 1.5 mg/L Kinetin (KN) alone. Best shoot induction was achieved (6.5 shoots/per explant) after 60 days. For successful rooting, regenerated plantlets were sub-cultured on the same MS media supplemented with 1.5 mg/L KN alone. The rooted plantlets were acclimatized and the survival rate was 90%. Experiment no.2: Results revealed that 0.5 mg/L 2,4-D alone and in combination with 1.0 mg/L 6-Benzyladenine (BA) gave 89.8% callus from the stem explants as compared to leaf explants. Callus proliferation and somatic embryo formation were also evaluated by ‘Double Staining Method’ and different stages of somatic embryogenesis were revealed by scanning electron microscope. Full Strength MS medium produced the highest number (49.6%) of cotyledonary stage somatic embryos (SEs). Mature cotyledonary stage SEs developed into plantlets after 12 weeks of culture. Well-rooted plantlets were successfully acclimatized at the survival rate of 85%. Indirectly regenerated plants did not show any detectable variation in morphological and growth characteristics when compared with the donor plant.

Keywords: callus induction, indirect plant regeneration, double staining, somatic embryogenesis, Crassula ovata

Procedia PDF Downloads 386
6742 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain

Authors: Zachary Blanks, Solomon Sonya

Abstract:

Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.

Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection

Procedia PDF Downloads 295
6741 Prediction of Fracture Aperture in Fragmented Rocks

Authors: Hossein Agheshlui, Stephan Matthai

Abstract:

In fractured rock masses open fractures tend to act as the main pathways of fluid flow. The permeability of a rock fracture depends on its aperture. The change of aperture with stress can cause a many-orders-of-magnitude change in the hydraulic conductivity at moderate compressive stress levels. In this study, the change of aperture in fragmented rocks is investigated using finite element analysis. A full 3D mechanical model of a simplified version of an outcrop analog is created and studied. A constant initial aperture value is applied to all fractures. Different far field stresses are applied and the change of aperture is monitored considering the block to block interaction. The fragmented rock layer is assumed to be sandwiched between softer layers. Frictional contact forces are defined at the layer boundaries as well as among contacting rock blocks. For a given in situ stress, the blocks slide and contact each other, resulting in new aperture distributions. A map of changed aperture is produced after applying the in situ stress and compared to the initial apertures. Subsequently, the permeability of the system before and after the stress application is compared.

Keywords: fractured rocks, mechanical model, aperture change due to stress, frictional interface

Procedia PDF Downloads 419
6740 A Spatial Point Pattern Analysis to Recognize Fail Bit Patterns in Semiconductor Manufacturing

Authors: Youngji Yoo, Seung Hwan Park, Daewoong An, Sung-Shick Kim, Jun-Geol Baek

Abstract:

The yield management system is very important to produce high-quality semiconductor chips in the semiconductor manufacturing process. In order to improve quality of semiconductors, various tests are conducted in the post fabrication (FAB) process. During the test process, large amount of data are collected and the data includes a lot of information about defect. In general, the defect on the wafer is the main causes of yield loss. Therefore, analyzing the defect data is necessary to improve performance of yield prediction. The wafer bin map (WBM) is one of the data collected in the test process and includes defect information such as the fail bit patterns. The fail bit has characteristics of spatial point patterns. Therefore, this paper proposes the feature extraction method using the spatial point pattern analysis. Actual data obtained from the semiconductor process is used for experiments and the experimental result shows that the proposed method is more accurately recognize the fail bit patterns.

Keywords: semiconductor, wafer bin map, feature extraction, spatial point patterns, contour map

Procedia PDF Downloads 388
6739 The Use of the Phytase in Aquaculture, Its Zootechnical Interests and the Possibilities of Incorporation in the Aquafeed

Authors: Niang Mamadou Sileye

Abstract:

The study turns on the use of the phytase in aquaculture, its zootechnical interests and the possibilities of incorporation in the feed. The goal is to reduce the waste in phosphorus linked to the feeding of fishes, without any loss of zootechnical performances and with a decrease of feed costs. We have studied the literature in order to evaluate the raw materials (total phosphorus, phytate and available phosphorus) used by a company to manufacture feed for rainbow trout; to determine the phosphorus requirements for aquaculture species; to determine the requirements of phosphorus for aquaculture species, to determine the sings of lack of phosphorus for fishes; to study the antagonism between the phosphorus and the calcium and to study also the different forms of waste for the rainbow trout. The results found in the bibliography enable us test several Hypothesis of feed formulation for rainbow trout with different raw materials. This simulation and the calculation for wastes allowed to validate two formulation of feed: a control feed (0.5% of monocalcique phosphate) and a trial feed (supplementation with 0.002% of phytase Ronozyme PL and without inorganic phosphate). The feeds have been produced and sent to a experimental structure (agricultural college of Brehoulou).The result of the formulation give a decrease of the phosphorus waste of 28% for the trial feed compared to the feed. The supplementation enables a gain of 2.3 euro per ton. The partial results of the current test show no significant difference yet for the zootechnical parameters (growth rate, mortality, weight gain and obvious conversion rate) between control feed and the trial one. The waste measures do not show either significant difference between the control feed and the trial one, but however, the average difference would to decrease the wastes of 35.6% thanks to the use of phytase.

Keywords: phosphorus, phytic acid, phytase, need, digestibility, formulation, food, waste, rainbow trout

Procedia PDF Downloads 104
6738 In-Plume H₂O, CO₂, H₂S and SO₂ in the Fumarolic Field of La Fossa Cone (Vulcano Island, Aeolian Archipelago)

Authors: Cinzia Federico, Gaetano Giudice, Salvatore Inguaggiato, Marco Liuzzo, Maria Pedone, Fabio Vita, Christoph Kern, Leonardo La Pica, Giovannella Pecoraino, Lorenzo Calderone, Vincenzo Francofonte

Abstract:

The periods of increased fumarolic activity at La Fossa volcano have been characterized, since early 80's, by changes in the gas chemistry and in the output rate of fumaroles. Excepting the direct measurements of the steam output from fumaroles performed from 1983 to 1995, the mass output of the single gas species has been recently measured, with various methods, only sporadically or for short periods. Since 2008, a scanning DOAS system is operating in the Palizzi area for the remote measurement of the in-plume SO₂ flux. On these grounds, the need of a cross-comparison of different methods for the in situ measurement of the output rate of different gas species is envisaged. In 2015, two field campaigns have been carried out, aimed at: 1. The mapping of the concentration of CO₂, H₂S and SO₂ in the fumarolic plume at 1 m from the surface, by using specific open-path diode tunable lasers (GasFinder Boreal Europe Ltd.) and an Active DOAS for SO₂, respectively; these measurements, coupled to simultaneous ultrasonic wind speed and meteorological data, have been elaborated to obtain the dispersion map and the output rate of single species in the overall fumarolic field; 2. The mapping of the concentrations of CO₂, H₂S, SO₂, H₂O in the fumarolic plume at 0.5 m from the soil, by using an integrated system, including IR spectrometers and specific electrochemical sensors; this has provided the concentration ratios of the analysed gas species and their distribution in the fumarolic field; 3. The in-fumarole sampling of vapour and measurement of the steam output, to validate the remote measurements. The dispersion map of CO₂, obtained from the tunable laser measurements, shows a maximum CO₂ concentration at 1m from the soil of 1000 ppmv along the rim, and 1800 ppmv in the inner slopes. As observed, the largest contribution derives from a wide fumarole of the inner-slope, despite its present outlet temperature of 230°C, almost 200°C lower than those measured at the rim fumaroles. Actually, fumaroles in the inner slopes are among those emitting the largest amount of magmatic vapour and, during the 1989-1991 crisis, reached the temperature of 690°C. The estimated CO₂ and H₂S fluxes are 400 t/d and 4.4 t/d, respectively. The coeval SO₂ flux, measured by the scanning DOAS system, is 9±1 t/d. The steam output, recomputed from CO₂ flux measurements, is about 2000 t/d. The various direct and remote methods (as described at points 1-3) have produced coherent results, which encourage to the use of daily and automatic DOAS SO₂ data, coupled with periodic in-plume measurements of different acidic gases, to obtain the total mass rates.

Keywords: DOAS, fumaroles, plume, tunable laser

Procedia PDF Downloads 401
6737 Optimizing Rectangular Microstrip Antenna Performance with Nanofiller Integration

Authors: Chejarla Raghunathababu, E. Logashanmugam

Abstract:

An antenna is an assortment of linked devices that function together to transmit and receive radio waves as a single antenna. Antennas occur in a variety of sizes and forms, but the microstrip patch antenna outperforms other types in terms of effectiveness and prediction. These antennas are easy to generate with discreet benefits. Nevertheless, the antenna's effectiveness will be affected because of the patch's shape above a thick dielectric substrate. As a result, a double-pole rectangular microstrip antenna with nanofillers was suggested in this study. By employing nano-composite substances (Fumed Silica and Aluminum Oxide), which are composites of graphene with nanofillers, the physical characteristics of the microstrip antenna, that is, the elevation of the microstrip antenna substrate and the width of the patch microstrip antenna have been improved in this research. The surface conductivity of graphene may be modified to function at specific frequencies. In order to prepare for future wireless communication technologies, a microstrip patch antenna operating at 93 GHz resonant frequency is constructed and investigated. The goal of this study was to reduce VSWR and increase gain. The simulation yielded results for the gain and VSWR, which were 8.26 dBi and 1.01, respectively.

Keywords: graphene, microstrip patch antenna, substrate material, wireless communication, nanocomposite material

Procedia PDF Downloads 115
6736 Shear Modulus Degradation of a Liquefiable Sand Deposit by Shaking Table Tests

Authors: Henry Munoz, Muhammad Mohsan, Takashi Kiyota

Abstract:

Strength and deformability characteristics of a liquefiable sand deposit including the development of earthquake-induced shear stress and shear strain as well as soil softening via the progressive degradation of shear modulus were studied via shaking table experiments. To do so, a model of a liquefiable sand deposit was constructed and densely instrumented where accelerations, pressures, and displacements at different locations were continuously monitored. Furthermore, the confinement effects on the strength and deformation characteristics of the liquefiable sand deposit due to an external surcharge by placing a heavy concrete slab (i.e. the model of an actual structural rigid pavement) on the ground surface were examined. The results indicate that as the number of seismic-loading cycles increases, the sand deposit softens progressively as large shear strains take place in different sand elements. Liquefaction state is reached after the combined effects of the progressive degradation of the initial shear modulus associated with the continuous decrease in the mean principal stress, and the buildup of the excess of pore pressure takes place in the sand deposit. Finally, the confinement effects given by a concrete slab placed on the surface of the sand deposit resulted in a favorable increasing in the initial shear modulus, an increase in the mean principal stress and a decrease in the softening rate (i.e. the decreasing rate in shear modulus) of the sand, thus making the onset of liquefaction to take place at a later stage. This is, only after the sand deposit having a concrete slab experienced a higher number of seismic loading cycles liquefaction took place, in contrast to an ordinary sand deposit having no concrete slab.

Keywords: liquefaction, shear modulus degradation, shaking table, earthquake

Procedia PDF Downloads 391
6735 Body Farming in India and Asia

Authors: Yogesh Kumar, Adarsh Kumar

Abstract:

A body farm is a research facility where research is done on forensic investigation and medico-legal disciplines like forensic entomology, forensic pathology, forensic anthropology, forensic archaeology, and related areas of forensic veterinary. All the research is done to collect data on the rate of decomposition (animal and human) and forensically important insects to assist in crime detection. The data collected is used by forensic pathologists, forensic experts, and other experts for the investigation of crime cases and further research. The research work includes different conditions of a dead body like fresh, bloating, decay, dry, and skeleton, and data on local insects which depends on the climatic conditions of the local areas of that country. Therefore, it is the need of time to collect appropriate data in managed conditions with a proper set-up in every country. Hence, it is the duty of the scientific community of every country to establish/propose such facilities for justice and social management. The body farms are also used for training of police, military, investigative dogs, and other agencies. At present, only four countries viz. U.S., Australia, Canada, and Netherlands have body farms and related facilities in organised manner. There is no body farm in Asia also. In India, we have been trying to establish a body farm in A&N Islands that is near Singapore, Malaysia, and some other Asian countries. In view of the above, it becomes imperative to discuss the matter with Asian countries to collect the data on decomposition in a proper manner by establishing a body farm. We can also share the data, knowledge, and expertise to collaborate with one another to make such facilities better and have good scientific relations to promote science and explore ways of investigation at the world level.

Keywords: body farm, rate of decomposition, forensically important flies, time since death

Procedia PDF Downloads 90
6734 Modal Composition and Tectonic Provenance of the Sandstones of Ecca Group, Karoo Supergroup in the Eastern Cape Province, South Africa

Authors: Christopher Baiyegunhi, Kuiwu Liu, Oswald Gwavava

Abstract:

Petrography of the sandstones of Ecca Group, Karoo Supergroup in the Eastern Cape Province of South Africa have been investigated on composition, provenance and influence of weathering conditions. Petrographic studies based on quantitative analysis of the detrital minerals revealed that the sandstones are composed mostly of quartz, feldspar and lithic fragments of metamorphic and sedimentary rocks. The sandstones have an average framework composition of 24.3% quartz, 19.3% feldspar, 26.1% rock fragments, and 81.33% of the quartz grains are monocrystalline. These sandstones are generally very fine to fine grained, moderate to well sorted, and subangular to subrounded in shape. In addition, they are compositionally immature and can be classified as feldspathic wacke and lithic wacke. The absence of major petrographically distinctive compositional variations in the sandstones perhaps indicate homogeneity of their source. As a result of this, it is inferred that the transportation distance from the source area was quite short and the main mechanism of transportation was by river systems to the basin. The QFL ternary diagrams revealed dissected and transitional arc provenance pointing to an active margin and uplifted basement preserving the signature of a recycled provenance. This is an indication that the sandstones were derived from a magmatic arc provenance. Since magmatic provenance includes transitional arc and dissected arc, it also shows that the source area of the Ecca sediments had a secondary sedimentary and metasedimentary rocks from a marginal belt that developed as a result of rifting. The weathering diagrams and semi-quantitative weathering index indicate that the Ecca sandstones are mostly from a plutonic source area, with climatic conditions ranging from arid to humid. The compositional immaturity of the sandstones is suggested to be due to weathering or recycling and low relief or short transport from the source area. The detrital modal compositions of these sandstones are related to back arc to island and continental margin arc. The origin and deposition of the Ecca sandstones are due to low-moderate weathering, recycling of pre-existing rocks, erosion and transportation of debris from the orogeny of the Cape Fold Belt.

Keywords: petrography, tectonic setting, provenance, Ecca Group, Karoo Basin

Procedia PDF Downloads 439
6733 A Prospective Study of a Clinically Significant Anatomical Change in Head and Neck Intensity-Modulated Radiation Therapy Using Transit Electronic Portal Imaging Device Images

Authors: Wilai Masanga, Chirapha Tannanonta, Sangutid Thongsawad, Sasikarn Chamchod, Todsaporn Fuangrod

Abstract:

The major factors of radiotherapy for head and neck (HN) cancers include patient’s anatomical changes and tumour shrinkage. These changes can significantly affect the planned dose distribution that causes the treatment plan deterioration. A measured transit EPID images compared to a predicted EPID images using gamma analysis has been clinically implemented to verify the dose accuracy as part of adaptive radiotherapy protocol. However, a global gamma analysis dose not sensitive to some critical organ changes as the entire treatment field is compared. The objective of this feasibility study is to evaluate the dosimetric response to patient anatomical changes during the treatment course in HN IMRT (Head and Neck Intensity-Modulated Radiation Therapy) using a novel comparison method; organ-of-interest gamma analysis. This method provides more sensitive to specific organ change detection. Random replanned 5 HN IMRT patients with causes of tumour shrinkage and patient weight loss that critically affect to the parotid size changes were selected and evaluated its transit dosimetry. A comprehensive physics-based model was used to generate a series of predicted transit EPID images for each gantry angle from original computed tomography (CT) and replan CT datasets. The patient structures; including left and right parotid, spinal cord, and planning target volume (PTV56) were projected to EPID level. The agreement between the transit images generated from original CT and replanned CT was quantified using gamma analysis with 3%, 3mm criteria. Moreover, only gamma pass-rate is calculated within each projected structure. The gamma pass-rate in right parotid and PTV56 between predicted transit of original CT and replan CT were 42.8%( ± 17.2%) and 54.7%( ± 21.5%). The gamma pass-rate for other projected organs were greater than 80%. Additionally, the results of organ-of-interest gamma analysis were compared with 3-dimensional cone-beam computed tomography (3D-CBCT) and the rational of replan by radiation oncologists. It showed that using only registration of 3D-CBCT to original CT does not provide the dosimetric impact of anatomical changes. Using transit EPID images with organ-of-interest gamma analysis can provide additional information for treatment plan suitability assessment.

Keywords: re-plan, anatomical change, transit electronic portal imaging device, EPID, head, and neck

Procedia PDF Downloads 220
6732 Facial Recognition of University Entrance Exam Candidates using FaceMatch Software in Iran

Authors: Mahshid Arabi

Abstract:

In recent years, remarkable advancements in the fields of artificial intelligence and machine learning have led to the development of facial recognition technologies. These technologies are now employed in a wide range of applications, including security, surveillance, healthcare, and education. In the field of education, the identification of university entrance exam candidates has been one of the fundamental challenges. Traditional methods such as using ID cards and handwritten signatures are not only inefficient and prone to fraud but also susceptible to errors. In this context, utilizing advanced technologies like facial recognition can be an effective and efficient solution to increase the accuracy and reliability of identity verification in entrance exams. This article examines the use of FaceMatch software for recognizing the faces of university entrance exam candidates in Iran. The main objective of this research is to evaluate the efficiency and accuracy of FaceMatch software in identifying university entrance exam candidates to prevent fraud and ensure the authenticity of individuals' identities. Additionally, this research investigates the advantages and challenges of using this technology in Iran's educational systems. This research was conducted using an experimental method and random sampling. In this study, 1000 university entrance exam candidates in Iran were selected as samples. The facial images of these candidates were processed and analyzed using FaceMatch software. The software's accuracy and efficiency were evaluated using various metrics, including accuracy rate, error rate, and processing time. The research results indicated that FaceMatch software could accurately identify candidates with a precision of 98.5%. The software's error rate was less than 1.5%, demonstrating its high efficiency in facial recognition. Additionally, the average processing time for each candidate's image was less than 2 seconds, indicating the software's high efficiency. Statistical evaluation of the results using precise statistical tests, including analysis of variance (ANOVA) and t-test, showed that the observed differences were significant, and the software's accuracy in identity verification is high. The findings of this research suggest that FaceMatch software can be effectively used as a tool for identifying university entrance exam candidates in Iran. This technology not only enhances security and prevents fraud but also simplifies and streamlines the exam administration process. However, challenges such as preserving candidates' privacy and the costs of implementation must also be considered. The use of facial recognition technology with FaceMatch software in Iran's educational systems can be an effective solution for preventing fraud and ensuring the authenticity of university entrance exam candidates' identities. Given the promising results of this research, it is recommended that this technology be more widely implemented and utilized in the country's educational systems.

Keywords: facial recognition, FaceMatch software, Iran, university entrance exam

Procedia PDF Downloads 52
6731 Does Clinical Guidelines Affect Healthcare Quality and Populational Health: Quebec Colorectal Cancer Screening Program

Authors: Nizar Ghali, Bernard Fortin, Guy Lacroix

Abstract:

In Quebec, colonoscopies volumes have continued to rise in recent years in the absence of effective monitoring mechanism for the appropriateness and the quality of these exams. In 2010, November, Quebec Government introduced the colorectal cancer-screening program in the objective to control for volume and cost imperfection. This program is based on clinical standards and was initiated for first group of institutions. One year later, Government adds financial incentives for participants institutions. In this analysis, we want to assess for the causal effect of the two components of this program: clinical pathways and financial incentives. Especially we assess for the reform effect on healthcare quality and population health in the context that medical remuneration is not directly dependent on this additional funding offered by the program. We have data on admissions episodes and deaths for 8 years. We use multistate model analog to difference in difference approach to estimate reform effect on the transition probability between different states for each patient. Our results show that the reform reduced length of stay without deterioration in hospital mortality or readmission rate. In the other hand, the program contributed to decrease the hospitalization rate and a less invasive treatment approach for colorectal surgeries. This is a sign of healthcare quality and population health improvement. We demonstrate in this analysis that physicians’ behavior can be affected by both clinical standards and financial incentives even if offered to facilities.

Keywords: multi-state and multi-episode transition model, healthcare quality, length of stay, transition probability, difference in difference

Procedia PDF Downloads 217
6730 An Approach for Coagulant Dosage Optimization Using Soft Jar Test: A Case Study of Bangkhen Water Treatment Plant

Authors: Ninlawat Phuangchoke, Waraporn Viyanon, Setta Sasananan

Abstract:

The most important process of the water treatment plant process is the coagulation using alum and poly aluminum chloride (PACL), and the value of usage per day is a hundred thousand baht. Therefore, determining the dosage of alum and PACL are the most important factors to be prescribed. Water production is economical and valuable. This research applies an artificial neural network (ANN), which uses the Levenberg–Marquardt algorithm to create a mathematical model (Soft Jar Test) for prediction chemical dose used to coagulation such as alum and PACL, which input data consists of turbidity, pH, alkalinity, conductivity, and, oxygen consumption (OC) of Bangkhen water treatment plant (BKWTP) Metropolitan Waterworks Authority. The data collected from 1 January 2019 to 31 December 2019 cover changing seasons of Thailand. The input data of ANN is divided into three groups training set, test set, and validation set, which the best model performance with a coefficient of determination and mean absolute error of alum are 0.73, 3.18, and PACL is 0.59, 3.21 respectively.

Keywords: soft jar test, jar test, water treatment plant process, artificial neural network

Procedia PDF Downloads 170
6729 Prediction and Optimization of Machining Induced Residual Stresses in End Milling of AISI 1045 Steel

Authors: Wajid Ali Khan

Abstract:

Extensive experimentation and numerical investigation are performed to predict the machining-induced residual stresses in the end milling of AISI 1045 steel, and an optimization code has been developed using the particle swarm optimization technique. Experiments were conducted using a single factor at a time and design of experiments approach. Regression analysis was done, and a mathematical model of the cutting process was developed, thus predicting the machining-induced residual stress with reasonable accuracy. The mathematical model served as the objective function to be optimized using particle swarm optimization. The relationship between the different cutting parameters and the output variables, force, and residual stresses has been studied. The combined effect of the process parameters, speed, feed, and depth of cut was examined, and it is understood that 85% of the variation of these variables can be attributed to these machining parameters under research. A 3D finite element model is developed to predict the cutting forces and the machining-induced residual stresses in end milling operation. The results were validated experimentally and against the Johnson-cook model available in the literature.

Keywords: residual stresses, end milling, 1045 steel, optimization

Procedia PDF Downloads 109
6728 Morphological Processing of Punjabi Text for Sentiment Analysis of Farmer Suicides

Authors: Jaspreet Singh, Gurvinder Singh, Prabhsimran Singh, Rajinder Singh, Prithvipal Singh, Karanjeet Singh Kahlon, Ravinder Singh Sawhney

Abstract:

Morphological evaluation of Indian languages is one of the burgeoning fields in the area of Natural Language Processing (NLP). The evaluation of a language is an eminent task in the era of information retrieval and text mining. The extraction and classification of knowledge from text can be exploited for sentiment analysis and morphological evaluation. This study coalesce morphological evaluation and sentiment analysis for the task of classification of farmer suicide cases reported in Punjab state of India. The pre-processing of Punjabi text involves morphological evaluation and normalization of Punjabi word tokens followed by the training of proposed model using deep learning classification on Punjabi language text extracted from online Punjabi news reports. The class-wise accuracies of sentiment prediction for four negatively oriented classes of farmer suicide cases are 93.85%, 88.53%, 83.3%, and 95.45% respectively. The overall accuracy of sentiment classification obtained using proposed framework on 275 Punjabi text documents is found to be 90.29%.

Keywords: deep neural network, farmer suicides, morphological processing, punjabi text, sentiment analysis

Procedia PDF Downloads 330
6727 Experimental and Numerical Investigations on Flexural Behavior of Macro-Synthetic FRC

Authors: Ashkan Shafee, Ahamd Fahimifar, Sajjad V. Maghvan

Abstract:

Promotion of the Fiber Reinforced Concrete (FRC) as a construction material for civil engineering projects has invoked numerous researchers to investigate their mechanical behavior. Even though there is satisfactory information about the effects of fiber type and length, concrete mixture, casting type and other variables on the strength and deformability parameters of FRC, the numerical modeling of such materials still needs research attention. The focus of this study is to investigate the feasibility of Concrete Damaged Plasticity (CDP) model in prediction of Macro-synthetic FRC structures behavior. CDP model requires the tensile behavior of concrete to be well characterized. For this purpose, a series of uniaxial direct tension and four point bending tests were conducted on the notched specimens to define bilinear tension softening (post-peak tension stress-strain) behavior. With these parameters obtained, the flexural behavior of macro-synthetic FRC beams were modeled and the results showed a good agreement with the experimental measurements.

Keywords: concrete damaged plasticity, fiber reinforced concrete, finite element modeling, macro-synthetic fibers, uniaxial tensile test

Procedia PDF Downloads 423
6726 Application of Random Forest Model in The Prediction of River Water Quality

Authors: Turuganti Venkateswarlu, Jagadeesh Anmala

Abstract:

Excessive runoffs from various non-point source land uses, and other point sources are rapidly contaminating the water quality of streams in the Upper Green River watershed, Kentucky, USA. It is essential to maintain the stream water quality as the river basin is one of the major freshwater sources in this province. It is also important to understand the water quality parameters (WQPs) quantitatively and qualitatively along with their important features as stream water is sensitive to climatic events and land-use practices. In this paper, a model was developed for predicting one of the significant WQPs, Fecal Coliform (FC) from precipitation, temperature, urban land use factor (ULUF), agricultural land use factor (ALUF), and forest land-use factor (FLUF) using Random Forest (RF) algorithm. The RF model, a novel ensemble learning algorithm, can even find out advanced feature importance characteristics from the given model inputs for different combinations. This model’s outcomes showed a good correlation between FC and climate events and land use factors (R2 = 0.94) and precipitation and temperature are the primary influencing factors for FC.

Keywords: water quality, land use factors, random forest, fecal coliform

Procedia PDF Downloads 201
6725 The Use of Stochastic Gradient Boosting Method for Multi-Model Combination of Rainfall-Runoff Models

Authors: Phanida Phukoetphim, Asaad Y. Shamseldin

Abstract:

In this study, the novel Stochastic Gradient Boosting (SGB) combination method is addressed for producing daily river flows from four different rain-runoff models of Ohinemuri catchment, New Zealand. The selected rainfall-runoff models are two empirical black-box models: linear perturbation model and linear varying gain factor model, two conceptual models: soil moisture accounting and routing model and Nedbør-Afrstrømnings model. In this study, the simple average combination method and the weighted average combination method were used as a benchmark for comparing the results of the novel SGB combination method. The models and combination results are evaluated using statistical and graphical criteria. Overall results of this study show that the use of combination technique can certainly improve the simulated river flows of four selected models for Ohinemuri catchment, New Zealand. The results also indicate that the novel SGB combination method is capable of accurate prediction when used in a combination method of the simulated river flows in New Zealand.

Keywords: multi-model combination, rainfall-runoff modeling, stochastic gradient boosting, bioinformatics

Procedia PDF Downloads 343
6724 An Adaptive Hybrid Surrogate-Assisted Particle Swarm Optimization Algorithm for Expensive Structural Optimization

Authors: Xiongxiong You, Zhanwen Niu

Abstract:

Choosing an appropriate surrogate model plays an important role in surrogates-assisted evolutionary algorithms (SAEAs) since there are many types and different kernel functions in the surrogate model. In this paper, an adaptive selection of the best suitable surrogate model method is proposed to solve different kinds of expensive optimization problems. Firstly, according to the prediction residual error sum of square (PRESS) and different model selection strategies, the excellent individual surrogate models are integrated into multiple ensemble models in each generation. Then, based on the minimum root of mean square error (RMSE), the best suitable surrogate model is selected dynamically. Secondly, two methods with dynamic number of models and selection strategies are designed, which are used to show the influence of the number of individual models and selection strategy. Finally, some compared studies are made to deal with several commonly used benchmark problems, as well as a rotor system optimization problem. The results demonstrate the accuracy and robustness of the proposed method.

Keywords: adaptive selection, expensive optimization, rotor system, surrogates assisted evolutionary algorithms

Procedia PDF Downloads 144
6723 Reducing Falls in Memory Care through Implementation of the Stopping Elderly Accidents, Deaths, and Injuries Program

Authors: Cory B. Lord

Abstract:

Falls among the elderly population has become an area of concern in healthcare today. The negative impacts of falls lead to increased morbidity, mortality, and financial burdens for both patients and healthcare systems. Falls in the United States is reported at an annual rate of 36 million in those aged 65 and older. Each year, one out of four people in this age group will suffer a fall, with 20% of these falls causing injury. The setting for this Doctor of Nursing Practice (DNP) project was a memory care unit in an assisted living community, as these facilities house cognitively impaired older adults. These communities lack fall prevention programs; therefore, the need exists to add to the body of knowledge to positively impact this population. The objective of this project was to reduce fall rates through the implementation of the Center for Disease Control and Prevention (CDC) STEADI (stopping elderly accidents, deaths, and injuries) program. The DNP project performed was a quality improvement pilot study with a pre and post-test design. This program was implemented in the memory care setting over 12 weeks. The project included an educational session for staff and a fall risk assessment with appropriate resident referrals. The three aims of the DNP project were to reduce fall rates among the elderly aged 65 and older who reside in the memory care unit, increase staff knowledge of STEADI fall prevention measures after an educational session, and assess the willingness of memory care unit staff to adopt an evidence-based a fall prevention program. The Donabedian model was used as a guiding conceptual framework for this quality improvement pilot study. The fall rate data for 12 months before the intervention was evaluated and compared to post-intervention fall rates. The educational session comprised of a pre and post-test to assess staff knowledge of the fall prevention program and the willingness of staff to adopt the fall prevention program. The overarching goal was to reduce falls in the elderly population who live in memory care units. The results of the study showed, on average that the fall rate during the implementation period of STEADI (μ=6.79) was significantly lower when compared to the prior 12 months (μ= 9.50) (p=0.02, α = 0.05). The mean staff knowledge scores improved from pretest (μ=77.74%) to post-test (μ=87.42%) (p=0.00, α= 0.05) after the education session. The results of the willingness to adopt a fall prevention program were scored at 100%. In summation, implementing the STEADI fall prevention program can assist in reducing fall rates for residents aged 65 and older who reside in a memory care setting.

Keywords: dementia, elderly, falls, STEADI

Procedia PDF Downloads 137
6722 A Mobile Application for Analyzing and Forecasting Crime Using Autoregressive Integrated Moving Average with Artificial Neural Network

Authors: Gajaanuja Megalathan, Banuka Athuraliya

Abstract:

Crime is one of our society's most intimidating and threatening challenges. With the majority of the population residing in cities, many experts and data provided by local authorities suggest a rapid increase in the number of crimes committed in these cities in recent years. There has been an increasing graph in the crime rates. People living in Sri Lanka have the right to know the exact crime rates and the crime rates in the future of the place they are living in. Due to the current economic crisis, crime rates have spiked. There have been so many thefts and murders recorded within the last 6-10 months. Although there are many sources to find out, there is no solid way of searching and finding out the safety of the place. Due to all these reasons, there is a need for the public to feel safe when they are introduced to new places. Through this research, the author aims to develop a mobile application that will be a solution to this problem. It is mainly targeted at tourists, and people who recently relocated will gain advantage of this application. Moreover, the Arima Model combined with ANN is to be used to predict crime rates. From the past researchers' works, it is evidently clear that they haven’t used the Arima model combined with Artificial Neural Networks to forecast crimes.

Keywords: arima model, ANN, crime prediction, data analysis

Procedia PDF Downloads 142
6721 The Role of Semi Open Spaces on Exploitation of Wind-Driven Ventilation

Authors: Paria Saadatjoo

Abstract:

Given that HVAC systems are the main sources of carbon dioxide producers, developing ways to reduce dependence on these systems and making use of natural resources is too important to achieve environmentally friendly buildings. A major part of building potential in terms of using natural energy resources depends on its physical features. So architectural decisions at the first step of the design process can influence the building's energy efficiency significantly. Implementation of semi-open spaces into solid apartment blocks inspired by the concept of courtyard in ancient buildings as a passive cooling strategy is currently enjoying great popularity. However, the analysis of these features and their effect on wind behavior at initial design steps is a difficult task for architects. The main objective of this research was to investigate the influence of semi-open to closed space ratio on airflow patterns in and around midrise buildings and introduce the best ratio in terms of harnessing natural ventilation. The main strategy of this paper was semi-experimental, and the research methodology was descriptive statistics. At the first step, by changing the terrace area, 6 models with various open to closed space ratios were created. These forms were then transferred to CFD software to calculate the primary indicators of natural ventilation potentials such as wind force coefficient, air flow rate, age of air distribution, etc. Investigations indicated that modifying the terrace area and, in other words, the open to closed space ratio influenced the wind force coefficient, airflow rate, and age of air distribution.

Keywords: natural ventilation, wind, midrise, open space, energy

Procedia PDF Downloads 173
6720 Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method

Authors: Farhad Asadi, Mohammad Javad Mollakazemi, Aref Ghafouri

Abstract:

Recent research in neural networks science and neuroscience for modeling complex time series data and statistical learning has focused mostly on learning from high input space and signals. Local linear models are a strong choice for modeling local nonlinearity in data series. Locally weighted projection regression is a flexible and powerful algorithm for nonlinear approximation in high dimensional signal spaces. In this paper, different learning scenario of one and two dimensional data series with different distributions are investigated for simulation and further noise is inputted to data distribution for making different disordered distribution in time series data and for evaluation of algorithm in locality prediction of nonlinearity. Then, the performance of this algorithm is simulated and also when the distribution of data is high or when the number of data is less the sensitivity of this approach to data distribution and influence of important parameter of local validity in this algorithm with different data distribution is explained.

Keywords: local nonlinear estimation, LWPR algorithm, online training method, locally weighted projection regression method

Procedia PDF Downloads 505
6719 On the Thermal Behavior of the Slab in a Reheating Furnace with Radiation

Authors: Gyo Woo Lee, Man Young Kim

Abstract:

A mathematical heat transfer model for the prediction of transient heating of the slab in a direct-fired walking beam type reheating furnace has been developed by considering the nongray thermal radiation with given furnace environments. The furnace is modeled as radiating nongray medium with carbon dioxide and water with five-zoned gas temperature and the furnace wall is considered as a constant temperature lower than furnace gas one. The slabs are moving with constant velocity depending on the residence time through the non-firing, charging, preheating, heating, and final soaking zones. Radiative heat flux obtained by considering the radiative heat exchange inside the furnace as well as convective one from the surrounding hot gases are introduced as boundary condition of the transient heat conduction within the slab. After validating thermal radiation model adopted in this work, thermal fields in both model and real reheating furnace are investigated in terms of radiative heat flux in the furnace and temperature inside the slab. The results show that the slab in the furnace can be more heated with higher slab emissivity and residence time.

Keywords: reheating furnace, steel slab, radiative heat transfer, WSGGM, emissivity, residence time

Procedia PDF Downloads 293