Search results for: SoC soft error rate
6738 Use of Geosynthetics as Reinforcement Elements in Unpaved Tertiary Roads
Authors: Vivian A. Galindo, Maria C. Galvis, Jaime R. Obando, Alvaro Guarin
Abstract:
In Colombia, most of the roads of the national tertiary road network are unpaved roads with granular rolling surface. These are very important ways of guaranteeing the mobility of people, products, and inputs from the agricultural sector from the most remote areas to urban centers; however, it has not paid much attention to the search for alternatives to avoid the occurrence of deteriorations that occur shortly after its commissioning. In recent years, geosynthetics have been used satisfactorily to reinforce unpaved roads on soft soils, with geotextiles and geogrids being the most widely used. The interaction of the geogrid and the aggregate minimizes the lateral movement of the aggregate particles and increases the load capacity of the material, which leads to a better distribution of the vertical stresses, consequently reducing the vertical deformations in the subgrade. Taking into account the above, the research aimed at the mechanical behavior of the granular material, used in unpaved roads with and without the presence of geogrids, from the development of laboratory tests through the loaded wheel tester (LWT). For comparison purposes, the reinforced conditions and traffic conditions to which this type of material can be accessed in practice were simulated. In total four types of geogrids, were tested with granular material; this means that five test sets, the reinforced material and the non-reinforced control sample were evaluated. The results of the numbers of load cycles and depth rutting supported by each test body showed the influence of the properties of the reinforcement on the mechanical behavior of the assembly and the significant increases in the number of load cycles of the reinforced specimens in relation to those without reinforcement.Keywords: geosynthetics, load wheel tester LWT, tertiary roads, unpaved road, vertical deformation
Procedia PDF Downloads 2506737 Sectoral Energy Consumption in South Africa and Its Implication for Economic Growth
Authors: Kehinde Damilola Ilesanmi, Dev Datt Tewari
Abstract:
South Africa is in its post-industrial era moving from the primary and secondary sector to the tertiary sector. The study investigated the impact of the disaggregated energy consumption (coal, oil, and electricity) on the primary, secondary and tertiary sectors of the economy between 1980 and 2012 in South Africa. Using vector error correction model, it was established that South Africa is an energy dependent economy, and that energy (especially electricity and oil) is a limiting factor of growth. This implies that implementation of energy conservation policies may hamper economic growth. Output growth is significantly outpacing energy supply, which has necessitated load shedding. To meet up the excess energy demand, there is a need to increase the generating capacity which will necessitate increased investment in the electricity sector as well as strategic steps to increase oil production. There is also need to explore more renewable energy sources, in order to meet the growing energy demand without compromising growth and environmental sustainability. Policy makers should also pursue energy efficiency policies especially at sectoral level of the economy.Keywords: causality, economic growth, energy consumption, hypothesis, sectoral output
Procedia PDF Downloads 4706736 A Visual Inspection System for Automotive Sheet Metal Chasis Parts Produced with Cold-Forming Method
Authors: İmren Öztürk Yılmaz, Abdullah Yasin Bilici, Yasin Atalay Candemir
Abstract:
The system consists of 4 main elements: motion system, image acquisition system, image processing software, and control interface. The parts coming out of the production line to enter the image processing system with the conveyor belt at the end of the line. The 3D scanning of the produced part is performed with the laser scanning system integrated into the system entry side. With the 3D scanning method, it is determined at what position and angle the parts enter the system, and according to the data obtained, parameters such as part origin and conveyor speed are calculated with the designed software, and the robot is informed about the position where it will take part. The robot, which receives the information, takes the produced part on the belt conveyor and shows it to high-resolution cameras for quality control. Measurement processes are carried out with a maximum error of 20 microns determined by the experiments.Keywords: quality control, industry 4.0, image processing, automated fault detection, digital visual inspection
Procedia PDF Downloads 1136735 Optimization Technique for the Contractor’s Portfolio in the Bidding Process
Authors: Taha Anjamrooz, Sareh Rajabi, Salwa Bheiry
Abstract:
Selection between the available projects in bidding processes for the contractor is one of the essential areas to concentrate on. It is important for the contractor to choose the right projects within its portfolio during the tendering stage based on certain criteria. It should align the bidding process with its origination strategies and goals as a screening process to have the right portfolio pool to start with. Secondly, it should set the proper framework and use a suitable technique in order to optimize its selection process for concertation purpose and higher efforts during the tender stage with goals of success and winning. In this research paper, a two steps framework proposed to increase the efficiency of the contractor’s bidding process and the winning chance of getting the new projects awarded. In this framework, initially, all the projects pass through the first stage screening process, in which the portfolio basket will be evaluated and adjusted in accordance with the organization strategies to the reduced version of the portfolio pool, which is in line with organization activities. In the second stage, the contractor uses linear programming to optimize the portfolio pool based on available resources such as manpower, light equipment, heavy equipment, financial capability, return on investment, and success rate of winning the bid. Therefore, this optimization model will assist the contractor in utilizing its internal resource to its maximum and increase its winning chance for the new project considering past experience with clients, built-relation between two parties, and complexity in the exertion of the projects. The objective of this research will be to increase the contractor's winning chance in the bidding process based on the success rate and expected return on investment.Keywords: bidding process, internal resources, optimization, contracting portfolio management
Procedia PDF Downloads 1426734 Role of Speech Articulation in English Language Learning
Authors: Khadija Rafi, Neha Jamil, Laiba Khalid, Meerub Nawaz, Mahwish Farooq
Abstract:
Speech articulation is a complex process to produce intelligible sounds with the help of precise movements of various structures within the vocal tract. All these structures in the vocal tract are named as articulators, which comprise lips, teeth, tongue, and palate. These articulators work together to produce a range of distinct phonemes, which happen to be the basis of language. It starts with the airstream from the lungs passing through the trachea and into oral and nasal cavities. When the air passes through the mouth, the tongue and the muscles around it form such coordination it creates certain sounds. It can be seen when the tongue is placed in different positions- sometimes near the alveolar ridge, soft palate, roof of the mouth or the back of the teeth which end up creating unique qualities of each phoneme. We can articulate vowels with open vocal tracts, but the height and position of the tongue is different every time depending upon each vowel, while consonants can be pronounced when we create obstructions in the airflow. For instance, the alphabet ‘b’ is a plosive and can be produced only by briefly closing the lips. Articulation disorders can not only affect communication but can also be a hurdle in speech production. To improve articulation skills for such individuals, doctors often recommend speech therapy, which involves various kinds of exercises like jaw exercises and tongue twisters. However, this disorder is more common in children who are going through developmental articulation issues right after birth, but in adults, it can be caused by injury, neurological conditions, or other speech-related disorders. In short, speech articulation is an essential aspect of productive communication, which also includes coordination of the specific articulators to produce different intelligible sounds, which are a vital part of spoken language.Keywords: linguistics, speech articulation, speech therapy, language learning
Procedia PDF Downloads 626733 A Sequential Approach for Random-Effects Meta-Analysis
Authors: Samson Henry Dogo, Allan Clark, Elena Kulinskaya
Abstract:
The objective in meta-analysis is to combine results from several independent studies in order to create generalization and provide evidence based for decision making. But recent studies show that the magnitude of effect size estimates reported in many areas of research finding changed with year publication and this can impair the results and conclusions of meta-analysis. A number of sequential methods have been proposed for monitoring the effect size estimates in meta-analysis. However they are based on statistical theory applicable to fixed effect model (FEM). For random-effects model (REM), the analysis incorporates the heterogeneity variance, tau-squared and its estimation create complications. In this paper proposed the use of Gombay and Serbian (2005) truncated CUSUM-type test with asymptotically valid critical values for sequential monitoring of REM. Simulation results show that the test does not control the Type I error well, and is not recommended. Further work required to derive an appropriate test in this important area of application.Keywords: meta-analysis, random-effects model, sequential test, temporal changes in effect sizes
Procedia PDF Downloads 4676732 Application of Support Vector Machines in Forecasting Non-Residential
Authors: Wiwat Kittinaraporn, Napat Harnpornchai, Sutja Boonyachut
Abstract:
This paper deals with the application of a novel neural network technique, so-called Support Vector Machine (SVM). The objective of this study is to explore the variable and parameter of forecasting factors in the construction industry to build up forecasting model for construction quantity in Thailand. The scope of the research is to study the non-residential construction quantity in Thailand. There are 44 sets of yearly data available, ranging from 1965 to 2009. The correlation between economic indicators and construction demand with the lag of one year was developed by Apichat Buakla. The selected variables are used to develop SVM models to forecast the non-residential construction quantity in Thailand. The parameters are selected by using ten-fold cross-validation method. The results are indicated in term of Mean Absolute Percentage Error (MAPE). The MAPE value for the non-residential construction quantity predicted by Epsilon-SVR in corporation with Radial Basis Function (RBF) of kernel function type is 5.90. Analysis of the experimental results show that the support vector machine modelling technique can be applied to forecast construction quantity time series which is useful for decision planning and management purpose.Keywords: forecasting, non-residential, construction, support vector machines
Procedia PDF Downloads 4346731 Sensitivity of the Estimated Output Energy of the Induction Motor to both the Asymmetry Supply Voltage and the Machine Parameters
Authors: Eyhab El-Kharashi, Maher El-Dessouki
Abstract:
The paper is dedicated to precise assessment of the induction motor output energy during the unbalanced operation. Since many years ago and until now the voltage complex unbalance factor (CVUF) is used only to assess the output energy of the induction motor while this output energy for asymmetry supply voltage does not depend on the value of unbalanced voltage only but also on the machine parameters. The paper illustrates the variation of the two unbalance factors, complex voltage unbalance factor (CVUF) and impedance unbalance factor (IUF), with positive sequence voltage component, reveals that degree and manner of unbalance in supply voltage. From this point of view the paper delineates the current unbalance factor (CUF) to exactly reflect the output energy during unbalanced operation. The paper proceeds to illustrate the importance of using this factor in the multi-machine system to precise prediction of the output energy during the unbalanced operation. The use of the proposed unbalance factor (CUF) avoids the accumulation of the error due to more than one machine in the system which is expected if only the complex voltage unbalance factor (CVUF) is used.Keywords: induction motor, electromagnetic torque, voltage unbalance, energy conversion
Procedia PDF Downloads 5576730 High Temperature Deformation Behavior of Al0.2CoCrFeNiMo0.5 High Entropy alloy
Authors: Yasam Palguna, Rajesh Korla
Abstract:
The efficiency of thermally operated systems can be improved by increasing the operating temperature, thereby decreasing the fuel consumption and carbon footprint. Hence, there is a continuous need for replacing the existing materials with new alloys with higher temperature working capabilities. During the last decade, multi principal element alloys, commonly known as high entropy alloys are getting more attention because of their superior high temperature strength along with good high temperature corrosion and oxidation resistance, The present work focused on the microstructure and high temperature tensile behavior of Al0.2CoCrFeNiMo0.5 high entropy alloy (HEA). Wrought Al0.2CoCrFeNiMo0.5 high entropy alloy, produced by vacuum induction melting followed by thermomechanical processing, is tested in the temperature range of 200 to 900oC. It is exhibiting very good resistance to softening with increasing temperature up to 700oC, and thereafter there is a rapid decrease in the strength, especially beyond 800oC, which may be due to simultaneous occurrence of recrystallization and precipitate coarsening. Further, it is exhibiting superplastic kind of behavior with a uniform elongation of ~ 275 % at 900 oC temperature and 1 x 10-3 s-1 strain rate, which may be due to the presence of fine stable equi-axed grains. Strain rate sensitivity of 0.3 was observed, suggesting that solute drag dislocation glide might be the active mechanism during superplastic kind of deformation. Post deformation microstructure suggesting that cavitation at the sigma phase-matrix interface is the failure mechanism during high temperature deformation. Finally, high temperature properties of the present alloy will be compared with the contemporary high temperature materials such as ferritic, austenitic steels, and superalloys.Keywords: high entropy alloy, high temperature deformation, super plasticity, post-deformation microstructures
Procedia PDF Downloads 1656729 An Analysis of the Impact of Government Budget Deficits on Economic Performance. A Zimbabwean Perspective
Authors: Tafadzwa Shumba, Rose C. Nyatondo, Regret Sunge
Abstract:
This research analyses the impact of budget deficits on the economic performance of Zimbabwe. The study employs the autoregressive distributed lag (ARDL) confines testing method to co-integration and long-run estimation using time series data from 1980-2018. The Augmented Dick Fuller (ADF) and the Granger approach were used to testing for stationarity and causality among the factors. Co-integration test results affirm a long term association between GDP development rate and descriptive factors. Causality test results show a unidirectional connection between budget shortfall to GDP development and bi-directional causality amid debt and budget deficit. This study also found unidirectional causality from debt to GDP growth rate. ARDL estimates indicate a significantly positive long term and significantly negative short term impact of budget shortfall on GDP. This suggests that budget deficits have a short-run growth retarding effect and a long-run growth-inducing effect. The long-run results follow the Keynesian theory that posits that fiscal deficits result in an increase in GDP growth. Short-run outcomes follow the neoclassical theory. In light of these findings, the government is recommended to minimize financing of recurrent expenditure using a budget deficit. To achieve sustainable growth and development, the government needs to spend an absorbable budget deficit focusing on capital projects such as the development of human capital and infrastructure.Keywords: ARDL, budget deficit, economic performance, long run
Procedia PDF Downloads 976728 Towards an Effective Approach for Modelling near Surface Air Temperature Combining Weather and Satellite Data
Authors: Nicola Colaninno, Eugenio Morello
Abstract:
The urban environment affects local-to-global climate and, in turn, suffers global warming phenomena, with worrying impacts on human well-being, health, social and economic activities. Physic-morphological features of the built-up space affect urban air temperature, locally, causing the urban environment to be warmer compared to surrounding rural. This occurrence, typically known as the Urban Heat Island (UHI), is normally assessed by means of air temperature from fixed weather stations and/or traverse observations or based on remotely sensed Land Surface Temperatures (LST). The information provided by ground weather stations is key for assessing local air temperature. However, the spatial coverage is normally limited due to low density and uneven distribution of the stations. Although different interpolation techniques such as Inverse Distance Weighting (IDW), Ordinary Kriging (OK), or Multiple Linear Regression (MLR) are used to estimate air temperature from observed points, such an approach may not effectively reflect the real climatic conditions of an interpolated point. Quantifying local UHI for extensive areas based on weather stations’ observations only is not practicable. Alternatively, the use of thermal remote sensing has been widely investigated based on LST. Data from Landsat, ASTER, or MODIS have been extensively used. Indeed, LST has an indirect but significant influence on air temperatures. However, high-resolution near-surface air temperature (NSAT) is currently difficult to retrieve. Here we have experimented Geographically Weighted Regression (GWR) as an effective approach to enable NSAT estimation by accounting for spatial non-stationarity of the phenomenon. The model combines on-site measurements of air temperature, from fixed weather stations and satellite-derived LST. The approach is structured upon two main steps. First, a GWR model has been set to estimate NSAT at low resolution, by combining air temperature from discrete observations retrieved by weather stations (dependent variable) and the LST from satellite observations (predictor). At this step, MODIS data, from Terra satellite, at 1 kilometer of spatial resolution have been employed. Two time periods are considered according to satellite revisit period, i.e. 10:30 am and 9:30 pm. Afterward, the results have been downscaled at 30 meters of spatial resolution by setting a GWR model between the previously retrieved near-surface air temperature (dependent variable), the multispectral information as provided by the Landsat mission, in particular the albedo, and Digital Elevation Model (DEM) from the Shuttle Radar Topography Mission (SRTM), both at 30 meters. Albedo and DEM are now the predictors. The area under investigation is the Metropolitan City of Milan, which covers an area of approximately 1,575 km2 and encompasses a population of over 3 million inhabitants. Both models, low- (1 km) and high-resolution (30 meters), have been validated according to a cross-validation that relies on indicators such as R2, Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). All the employed indicators give evidence of highly efficient models. In addition, an alternative network of weather stations, available for the City of Milano only, has been employed for testing the accuracy of the predicted temperatures, giving and RMSE of 0.6 and 0.7 for daytime and night-time, respectively.Keywords: urban climate, urban heat island, geographically weighted regression, remote sensing
Procedia PDF Downloads 1956727 Prediction of the Mechanical Power in Wind Turbine Powered Car Using Velocity Analysis
Authors: Abdelrahman Alghazali, Youssef Kassem, Hüseyin Çamur, Ozan Erenay
Abstract:
Savonius is a drag type vertical axis wind turbine. Savonius wind turbines have a low cut-in speed and can operate at low wind speed. This makes it suitable for electricity or mechanical generation in low-power applications such as individual domestic installations. Therefore, the primary purpose of this work was to investigate the relationship between the type of Savonius rotor and the torque and mechanical power generated. And it was to illustrate how the type of rotor might play an important role in the prediction of mechanical power of wind turbine powered car. The main purpose of this paper is to predict and investigate the aerodynamic effects by means of velocity analysis on the performance of a wind turbine powered car by converting the wind energy into mechanical energy to overcome load that rotates the main shaft. The predicted results based on theoretical analysis were compared with experimental results obtained from literature. The percentage of error between the two was approximately around 20%. Prediction of the torque was done at a wind speed of 4 m/s, and an angular velocity of 130 RPM according to meteorological statistics in Northern Cyprus.Keywords: mechanical power, torque, Savonius rotor, wind car
Procedia PDF Downloads 3376726 Biology and Life Fertility of the Cabbage Aphid, Brevicoryne brassicae (L) on Cauliflower Cultivars
Authors: Mandeep Kaur, K. C. Sharma, P. L. Sharma, R. S. Chandel
Abstract:
Cauliflower is an important vegetable crop grown throughout the world and is attacked by a large number of insect pests at various stages of the crop growth. Amongst them, the cabbage aphid, Brevicoryne brassicae (Linnaeus) (Hemiptera: Aphididae) is an important insect pest. Continued feeding by both nymphs and adults of this aphid causes yellowing, wilting and stunting of plants. Amongst various management practices, the use of resistant cultivars is important and can be an effective method of reducing the population of this aphid. So it is imperative to know the complete record on various biological parameters and life table on specific cultivars. The biology and life fertility of the cabbage aphid were studied on five cauliflower cultivars viz. Megha, Shweta, K-1, PSB-1 and PSBK-25 under controlled temperature conditions of 20 ± 2°C, 70 ± 5% relative humidity and 16:8 h (Light: Dark) photoperiods. For studying biology; apterous viviparous adults were picked up from the laboratory culture of all five cauliflower cultivars after rearing them at least for two generations and placed individually on the desired plants of cauliflower cultivars grown in pots with ten replicates of each. Daily record on the duration of nymphal period, adult longevity, mortality in each stage and the total number of progeny produced per female was made. This biological data were further used to construct life fertility table on each cultivar. Statistical analysis showed that there was a significant difference ( P < 0.05) between the different growth stages and the mean number of laid nymphs. The maximum and minimum growth periods were observed on Shweta and Megha (at par with K-1) cultivars, respectively. The maximum number of nymphs were laid on Shweta cultivar (26.40 nymphs per female) and minimum on Megha (at par with K-1) cultivar (15.20 nymphs per female). The true intrinsic rate of increase (rm) was found to be maximum on Shweta (0.233 nymphs/female/day) followed by PSB K-25 (0.207 nymphs/female/day), PSB-1 (0.203 nymphs/female/day), Megha (0.166 nymphs/female/day) and K-1 (0.153 nymphs/female/day). The finite rate of natural increase (λ) was also found to be in the order: K-1 < Megha < PSB-1 < PSBK-25 < Shweta whereas the doubling time (DT) was in the order of K-1 >Megha> PSB-1 >PSBk-25> Shweta. The aphids reared on the K-1 cultivar had the lowest values of rm & λ and the highest value of DT whereas on Shweta cultivar the values of rm & λ were the highest and the lowest value of DT. So on the basis of these studies, K-1 cultivar was found to be the least suitable and the Shweta cultivar was the most suitable for the cabbage aphid population growth. Although the cauliflower cultivars used in different parts of the world may be different yet the results of the present studies indicated that the application of cultivars affecting multiplication rate and reproductive parameters could be a good solution for the management of the cabbage aphid.Keywords: biology, cauliflower, cultivars, fertility
Procedia PDF Downloads 1846725 Spatial Distribution and Time Series Analysis of COVID-19 Pandemic in Italy: A Geospatial Perspective
Authors: Muhammad Farhan Ul Moazzam, Tamkeen Urooj Paracha, Ghani Rahman, Byung Gul Lee, Nasir Farid, Adnan Arshad
Abstract:
The novel coronavirus pandemic disease (COVID-19) affected the whole globe, though there is a lack of clinical studies and its epidemiological features. But as per the observation, it has been seen that most of the COVID-19 infected patients show mild to moderate symptoms, and they get better without any medical assistance due to a better immune system to generate antibodies against the novel coronavirus. In this study, the active cases, serious cases, recovered cases, deaths and total confirmed cases had been analyzed using the geospatial inverse distance weightage technique (IDW) within the time span of 2nd March to 3rd June 2020. As of 3rd June, the total number of COVID-19 cases in Italy were 231,238, total deaths 33,310, serious cases 350, recovered cases 158,951, and active cases were 39,177, which has been reported by the Ministry of Health, Italy. March 2nd-June 3rd, 2020 a sum of 231,238 cases has been reported in Italy out of which 38.68% cases reported in the Lombardia region with a death rate of 18%, which is high from its national mortality rate followed by Emilia-Romagna (14.89% deaths), Piemonte (12.68% deaths), and Vento (10% deaths). As per the total cases in the region, the highest number of recoveries has been observed in Umbria (92.52%), followed by Basilicata (87%), Valle d'Aosta (86.85%), and Trento (84.54%). The COVID-19 evolution in Italy has been particularly found in the major urban area, i.e., Rome, Milan, Naples, Bologna, and Florence. Geospatial technology played a vital role in this pandemic by tracking infected patient, active cases, and recovered cases. Geospatial techniques are very important in terms of monitoring and planning to control the pandemic spread in the country.Keywords: COVID-19, public health, geospatial analysis, IDW, Italy
Procedia PDF Downloads 1546724 Analysis of Production Forecasting in Unconventional Gas Resources Development Using Machine Learning and Data-Driven Approach
Authors: Dongkwon Han, Sangho Kim, Sunil Kwon
Abstract:
Unconventional gas resources have dramatically changed the future energy landscape. Unlike conventional gas resources, the key challenges in unconventional gas have been the requirement that applies to advanced approaches for production forecasting due to uncertainty and complexity of fluid flow. In this study, artificial neural network (ANN) model which integrates machine learning and data-driven approach was developed to predict productivity in shale gas. The database of 129 wells of Eagle Ford shale basin used for testing and training of the ANN model. The Input data related to hydraulic fracturing, well completion and productivity of shale gas were selected and the output data is a cumulative production. The performance of the ANN using all data sets, clustering and variables importance (VI) models were compared in the mean absolute percentage error (MAPE). ANN model using all data sets, clustering, and VI were obtained as 44.22%, 10.08% (cluster 1), 5.26% (cluster 2), 6.35%(cluster 3), and 32.23% (ANN VI), 23.19% (SVM VI), respectively. The results showed that the pre-trained ANN model provides more accurate results than the ANN model using all data sets.Keywords: unconventional gas, artificial neural network, machine learning, clustering, variables importance
Procedia PDF Downloads 1966723 Computed Tomography Guided Bone Biopsies: Experience at an Australian Metropolitan Hospital
Authors: K. Hinde, R. Bookun, P. Tran
Abstract:
Percutaneous CT guided biopsies provide a fast, minimally invasive, cost effective and safe method for obtaining tissue for histopathology and culture. Standards for diagnostic yield vary depending on whether the tissue is being obtained for histopathology or culture. We present a retrospective audit from Western Health in Melbourne Australia over a 12-month period which aimed to determine the diagnostic yield, technical success and complication rate for CT guided bone biopsies and identify factors affecting these results. The digital imaging storage program (Synapse Picture Archiving and Communication System – Fujifilm Australia) was analysed with key word searches from October 2015 to October 2016. Nineteen CT guided bone biopsies were performed during this time. The most common referring unit was oncology, work up imaging included CT, MRI, bone scan and PET scan. The complication rate was 0%, overall diagnostic yield was 74% with a technical success of 95%. When performing biopsies for histologic analysis diagnostic yield was 85% and when performing biopsies for bacterial culture diagnostic yield was 60%. There was no significant relationship identified between size of lesion, distance of lesion to skin, lesion appearance on CT, the number of samples taken or gauge of needle to diagnostic yield or technical success. CT guided bone biopsy at Western Health meets the standard reported at other major clinical centres for technical success and safety. It is a useful investigation in identification of primary malignancy in distal bone metastases.Keywords: bone biopsy, computed tomography, core biopsy, histopathology
Procedia PDF Downloads 2006722 Role of Cellulose Fibers in Tuning the Microstructure and Crystallographic Phase of α-Fe₂O₃ and α-FeOOH Nanoparticles
Authors: Indu Chauhan, Bhupendra S. Butola, Paritosh Mohanty
Abstract:
It is very well known that properties of material changes as their size approach to nanoscale level due to the high surface area to volume ratio. However, in last few decades, a tenet ‘structure dictates function’ is quickly being adopted by researchers working with nanomaterials. The design and exploitation of nanoparticles with tailored shape and size has become one of the primary goals of materials science researchers to expose the properties of nanostructures. To date, various methods, including soft/hard template/surfactant assisted route hydrothermal reaction, seed mediated growth method, capping molecule-assisted synthesis, polyol process, etc. have been adopted to synthesize the nanostructures with controlled size and shape and monodispersity. However controlling the shape and size of nanoparticles is an ultimate challenge of modern material research. In particular, many efforts have been devoted to rational and skillful control of hierarchical and complex nanostructures. Thus in our research work, role of cellulose in manipulating the nanostructures has been discussed. Nanoparticles of α-Fe₂O₃ (diameter ca. 15 to 130 nm) were immobilized on the cellulose fiber surface by a single step in situ hydrothermal method. However, nanoflakes of α-FeOOH having thickness ca. ~25 nm and length ca. ~250 nm were obtained by the same method in absence of cellulose fibers. A possible nucleation and growth mechanism of the formation of nanostructures on cellulose fibers have been proposed. The covalent bond formation between the cellulose fibers and nanostructures has been discussed with supporting evidence from the spectroscopic and other analytical studies such as Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The role of cellulose in manipulating the nanostructures has been discussed.Keywords: cellulose fibers, α-Fe₂O₃, α-FeOOH, hydrothermal, nanoflakes, nanoparticles
Procedia PDF Downloads 1506721 Reaching a Mobile and Dynamic Nose after Rhinoplasty: A Pilot Study
Authors: Guncel Ozturk
Abstract:
Background: Rhinoplasty is the most commonly performed cosmetic operations in plastic surgery. Maneuvers used in rhinoplasty lead to a firm and stiff nasal tip in the early postoperative months. This unnatural stability of the nose may easily cause distortion in the reshaped nose after severe trauma. Moreover, a firm nasal tip may cause difficulties in performing activities such as touching, hugging, or kissing. Decreasing the stability and increasing the mobility of the nasal tip would help rhinoplasty patients to avoid these small but relatively important problems. Methods: We use delivery approach with closed rhinoplasty and changed positions of intranasal incisions to reach a dynamic and mobile nose. A total of 203 patients who had undergone primary closed rhinoplasty in private practice were inspected retrospectively. Posterior strut flap that was connected with connective tissues in the caudal of septum and the medial crurals were formed. Cartilage of the posterior strut graft was left 2 mm thick in the distal part of septum, it was cut vertically, and the connective tissue in the distal part was preserved. Results: The median patient age was 24 (range 17-42) years. The median follow-up period was15.2 (range12-26) months. Patient satisfaction was assessed with the 'Rhinoplasty Outcome Evaluation' (ROE) questionnaire. Twelve months after surgeries, 87.5% of patients reported excellent outcomes, according to ROE. Conclusion: The soft tissue connections between that segment and surrounding structures should be preserved to save the support of the tip while having a mobile tip at the same time with this method. These modifications would access to a mobile, non-stiff, and dynamic nasal tip in the early postoperative months. Further and prospective studies should be performed for supporting this method.Keywords: closed rhinoplasty, dynamic, mobile, tip
Procedia PDF Downloads 1336720 Evaluation of Three Digital Graphical Methods of Baseflow Separation Techniques in the Tekeze Water Basin in Ethiopia
Authors: Alebachew Halefom, Navsal Kumar, Arunava Poddar
Abstract:
The purpose of this work is to specify the parameter values, the base flow index (BFI), and to rank the methods that should be used for base flow separation. Three different digital graphical approaches are chosen and used in this study for the purpose of comparison. The daily time series discharge data were collected from the site for a period of 30 years (1986 up to 2015) and were used to evaluate the algorithms. In order to separate the base flow and the surface runoff, daily recorded streamflow (m³/s) data were used to calibrate procedures and get parameter values for the basin. Additionally, the performance of the model was assessed by the use of the standard error (SE), the coefficient of determination (R²), and the flow duration curve (FDC) and baseflow indexes. The findings indicate that, in general, each strategy can be used worldwide to differentiate base flow; however, the Sliding Interval Method (SIM) performs significantly better than the other two techniques in this basin. The average base flow index was calculated to be 0.72 using the local minimum method, 0.76 using the fixed interval method, and 0.78 using the sliding interval method, respectively.Keywords: baseflow index, digital graphical methods, streamflow, Emba Madre Watershed
Procedia PDF Downloads 796719 Environmental Fatigue Analysis for Control Rod Drive Mechanisms Seal House
Authors: Xuejiao Shao, Jianguo Chen, Xiaolong Fu
Abstract:
In this paper, the elastoplastic strain correction factor computed by software of ANSYS was modified, and the fatigue usage factor in air was also corrected considering in water under reactor operating condition. The fatigue of key parts on control rod drive mechanisms was analyzed considering the influence of environmental fatigue caused by the coolant in the react pressure vessel. The elastoplastic strain correction factor was modified by analyzing thermal and mechanical loads separately referring the rules of RCC-M 2002. The new elastoplastic strain correction factor Ke(mix) is computed to replace the original Ke computed by the software of ANSYS when evaluating the fatigue produced by thermal and mechanical loads together. Based on the Ke(mix) and the usage cycle and fatigue design curves, the new range of primary plus secondary stresses was evaluated to obtain the final fatigue usage factor. The results show that the precision of fatigue usage factor can be elevated by using modified Ke when the amplify of the primary and secondary stress is large to some extent. One approach has been proposed for incorporating the environmental effects considering the effects of reactor coolant environments on fatigue life in terms of an environmental correction factor Fen, which is the ratio of fatigue life in air at room. To incorporate environmental effects into the RCCM Code fatigue evaluations, the fatigue usage factor based on the current Code design curves is multiplied by the correction factor. The contribution of environmental effects to results is discussed. Fatigue life decreases logarithmically with decreasing strain rate below 10%/s, which is insensitive to strain rate when temperatures below 100°C.Keywords: environmental fatigue, usage factor, elastoplastic strain correction factor, environmental correction
Procedia PDF Downloads 3246718 Lateral Sural Artery Perforators: A Cadaveric Dissection Study to Assess Perforator Surface Anatomy Variability and Average Pedicle Length for Flap Reconstruction
Authors: L. Sun, O. Bloom, K. Anderson
Abstract:
The medial and lateral sural artery perforator flaps (MSAP and LSAP, respectively) are two recently described flaps that are less commonly used in lower limb trauma reconstructive surgeries compared to flaps such as the anterolateral thigh (ALT) flap or the gastrocnemius flap. The LSAP flap has several theoretical benefits over the MSAP, including the ability to be sensate and being more easily manoeuvred into position as a local flap for coverage of lateral knee or leg defects. It is less commonly used in part due to a lack of documented studies of the anatomical reliability of the perforator, and an unquantified average length of the pedicle used for microsurgical anastomosis (if used as a free flap) or flap rotation (if used as a pedicled flap). It has been shown to have significantly lower donor site morbidity compared to other flaps such as the ALT, due to the decreased need for intramuscular dissection and resulting in less muscle loss at the donor site. 11 cadaveric lower limbs were dissected, with a mean of 1.6 perforators per leg, with an average pedicle length of 45mm to the sural artery and 70mm to the popliteal artery. While the majority of perforating arteries lay close to the midline (average of 19mm lateral to the midline), there were patients whose artery was significantly lateral and would have been likely injured by the initial incision during an operation. Adding to the literature base of documented LSAP dissections provides a greater understanding of the anatomical basis of these perforator flaps, and the authors hope this will establish them as a more commonly used and discussed option when managing complicated lower limb trauma requiring soft tissue reconstruction.Keywords: cadaveric, dissection, lateral, perforator flap, sural artery, surface anatomy
Procedia PDF Downloads 1556717 Ground Response Analysis at the Rukni Irrigation Project Site Located in Assam, India
Authors: Tauhidur Rahman, Kasturi Bhuyan
Abstract:
In the present paper, Ground Response Analysis at the Rukni irrigation project has been thoroughly investigated. Surface level seismic hazard is mainly used by the practical Engineers for designing the important structures. Surface level seismic hazard can be obtained accounting the soil factor. Structures on soft soil will show more ground shaking than the structure located on a hard soil. The Surface level ground motion depends on the type of soil. Density and shear wave velocity is different for different types of soil. The intensity of the soil amplification depends on the density and shear wave velocity of the soil. Rukni irrigation project is located in the North Eastern region of India, near the Dauki fault (550 Km length) which has already produced earthquakes of magnitude (Mw= 8.5) in the past. There is a probability of a similar type of earthquake occuring in the future. There are several faults also located around the project site. There are 765 recorded strong ground motion time histories available for the region. These data are used to determine the soil amplification factor by incorporation of the engineering properties of soil. With this in view, three of soil bore holes have been studied at the project site up to a depth of 30 m. It has been observed that in Soil bore hole 1, the shear wave velocity vary from 99.44 m/s to 239.28 m/s. For Soil Bore Hole No 2 and 3, shear wave velocity vary from 93.24 m/s to 241.39 m/s and 93.24m/s to 243.01 m/s. In the present work, surface level seismic hazard at the project site has been calculated based on the Probabilistic seismic hazard approach accounting the soil factor.Keywords: Ground Response Analysis, shear wave velocity, soil amplification, surface level seismic hazard
Procedia PDF Downloads 5496716 Flexible Capacitive Sensors Based on Paper Sheets
Authors: Mojtaba Farzaneh, Majid Baghaei Nejad
Abstract:
This article proposes a new Flexible Capacitive Tactile Sensors based on paper sheets. This method combines the parameters of sensor's material and dielectric, and forms a new model of flexible capacitive sensors. The present article tries to present a practical explanation of this method's application and advantages. With the use of this new method, it is possible to make a more flexibility and accurate sensor in comparison with the current models. To assess the performance of this model, the common capacitive sensor is simulated and the proposed model of this article and one of the existing models are assessed. The results of this article indicate that the proposed model of this article can enhance the speed and accuracy of tactile sensor and has less error in comparison with the current models. Based on the results of this study, it can be claimed that in comparison with the current models, the proposed model of this article is capable of representing more flexibility and more accurate output parameters for touching the sensor, especially in abnormal situations and uneven surfaces, and increases accuracy and practicality.Keywords: capacitive sensor, paper sheets, flexible, tactile, uneven
Procedia PDF Downloads 3536715 Efficacy and Safety of COVID-19 Vaccination in Patients with Multiple Sclerosis: Looking Forward to Post-COVID-19
Authors: Achiron Anat, Mathilda Mandel, Mayust Sue, Achiron Reuven, Gurevich Michael
Abstract:
Introduction: As coronavirus disease 2019 (COVID-19) vaccination is currently spreading around the world, it is of importance to assess the ability of multiple sclerosis (MS) patients to mount an appropriate immune response to the vaccine in the context of disease-modifying treatments (DMT’s). Objectives: Evaluate immunity generated following COVID-19 vaccination in MS patients, and assess factors contributing to protective humoral and cellular immune responses in MS patients vaccinated against severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) virus infection. Methods: Review our recent data related to (1) the safety of PfizerBNT162b2 COVID-19 mRNA vaccine in adult MS patients; (2) the humoral post-vaccination SARS-CoV2 IgG response in MS vaccinees using anti-spike protein-based serology; and (3) the cellular immune response of memory B-cells specific for SARS-CoV-2 receptor-binding domain (RBD) and memory T-cells secreting IFN-g and/or IL-2 in response to SARS-CoV2 peptides using ELISpot/Fluorospot assays in MS patients either untreated or under treatment with fingolimod, cladribine, or ocrelizumab; (4) covariate parameters related to mounting protective immune responses. Results: COVID-19 vaccine proved safe in MS patients, and the adverse event profile was mainly characterised by pain at the injection site, fatigue, and headache. Not any increased risk of relapse activity was noted and the rate of patients with acute relapse was comparable to the relapse rate in non-vaccinated patients during the corresponding follow-up period. A mild increase in the rate of adverse events was noted in younger MS patients, among patients with lower disability, and in patients treated with DMTs. Following COVID-19 vaccination protective humoral immune response was significantly decreased in fingolimod- and ocrelizumab- treated MS patients. SARS-CoV2 specific B-cell and T-cell cellular responses were respectively decreased. Untreated MS patients and patients treated with cladribine demonstrated protective humoral and cellular immune responses, similar to healthy vaccinated subjects. Conclusions: COVID-19 BNT162b2 vaccine proved as safe for MS patients. No increased risk of relapse activity was noted post-vaccination. Although COVID-19 vaccination is new, accumulated data demonstrate differences in immune responses under various DMT’s. This knowledge can help to construct appropriate COVID-19 vaccine guidelines to ensure proper immune responses for MS patients.Keywords: covid-19, vaccination, multiple sclerosis, IgG
Procedia PDF Downloads 1396714 Taphonomy and Paleoecology of Cenomanian Oysters (Mollusca: Bivalvia) from Egypt
Authors: Ahmed El-Sabbagh, Heba Mansour, Magdy El-Hedeny
Abstract:
This study provided a taphonomic alteration and paleoecology of Cenomanian oysters from the Musabaa Salama area, south western Sinai, Egypt. Three oyster zones can be recognized in the studied area, a lower one of Amphidonte (Ceratostreon) flabellatum (lower-middle Cenomanian), a middle zone of Ilymatogyra (Afrogyra) africana (upper Cenomanian) and an upper one of Exogyra (Costagyra) olisiponensis (upper Cenomanian). Taphonomic features including disarticulation, fragmentation, encrustation and bioerosion were subjected to multivariate statistical analyses. The analyses showed that the distributions of the identified ichnospecies were greatly similar within the identified oyster zones in the Musabaa Salama section. With rare exceptions, Entobia cretacea, Gastrochaenolites torpedo and Maeandropolydora decipiens are considered as common to abundant ichnospecies within the three recorded oyster zones. In contrast, and with some exceptions, E. ovula, E. retiformis and Rogerella pattei are considered as frequent to common ichnospecies within the identified oyster zones. Other ichnospecies, including Caulostrepsis cretacea, G. orbicularis, Trypanites solitarius, E. geometrica and C. taeniola, are mostly recorded in rare to frequent occurrences. Careful investigation of these host shells and the preserved encrusters and/or bioerosion sculptures provided data concerning: 1) the substrate characteristics, 2) time of encrustation and bioerosion, 3) rate of sedimentation, 4) the planktonic productivity level, and 5) the general bathymetry and the rate of transgression across the substrate.Keywords: oysters, Cenomanian, taphonomy, palaeoecology, Sinai, Egypt
Procedia PDF Downloads 3096713 A Project-Based Learning Approach in the Course of 'Engineering Skills' for Undergraduate Engineering Students
Authors: Armin Eilaghi, Ahmad Sedaghat, Hayder Abdurazzak, Fadi Alkhatib, Shiva Sadeghi, Martin Jaeger
Abstract:
A summary of experiences, recommendations, and lessons learnt in the application of PBL in the course of “Engineering Skills” in the School of Engineering at Australian College of Kuwait in Kuwait is presented. Four projects were introduced as part of the PBL course “Engineering Skills” to 24 students in School of Engineering. These students were grouped in 6 teams to develop their skills in 10 learning outcomes. The learning outcomes targeted skills such as drawing, design, modeling, manufacturing and analysis at a preliminary level; and also some life line learning and teamwork skills as these students were exposed for the first time to the PBL (project based learning). The students were assessed for 10 learning outcomes of the course and students’ feedback was collected using an anonymous survey at the end of the course. Analyzing the students’ feedbacks, it is observed that 67% of students preferred multiple smaller projects than a single big project because it provided them with more time and attention focus to improve their “soft skills” including project management, risk assessment, and failure analysis. Moreover, it is found that 63% of students preferred to work with different team members during the course to improve their professional communication skills. Among all, 62% of students believed that working with team members from other departments helped them to increase the innovative aspect of projects and improved their overall performance. However, 70% of students counted extra time needed to regenerate momentum with the new teams as the major challenge. Project based learning provided a suitable platform for introducing students to professional engineering practice and meeting the needs of students, employers and educators. It was found that students achieved their 10 learning outcomes and gained new skills developed in this PBL unit. This was reflected in their portfolios and assessment survey.Keywords: project-based learning, engineering skills, undergraduate engineering, problem-based learning
Procedia PDF Downloads 1656712 Homogenization of a Non-Linear Problem with a Thermal Barrier
Authors: Hassan Samadi, Mustapha El Jarroudi
Abstract:
In this work, we consider the homogenization of a non-linear problem in periodic medium with two periodic connected media exchanging a heat flux throughout their common interface. The interfacial exchange coefficient λ is assumed to tend to zero or to infinity following a rate λ=λ(ε) when the size ε of the basic cell tends to zero. Three homogenized problems are determined according to some critical value depending of λ and ε. Our method is based on Γ-Convergence techniques.Keywords: variational methods, epiconvergence, homogenization, convergence technique
Procedia PDF Downloads 5256711 Ultrasound-Assisted Extraction of Carotenoids from Tangerine Peel Using Ostrich Oil as a Green Solvent and Optimization of the Process by Response Surface Methodology
Authors: Fariba Tadayon, Nika Gharahgolooyan, Ateke Tadayon, Mostafa Jafarian
Abstract:
Carotenoid pigments are a various group of lipophilic compounds that generate the yellow to red colors of many plants, foods and flowers. A well-known type of carotenoids which is pro-vitamin A is β-carotene. Due to the color of citrus fruit’s peel, the peel can be a good source of different carotenoids. Ostrich oil is one of the most valuable foundations in many branches of industry, medicine, cosmetics and nutrition. The animal-based ostrich oil could be considered as an alternative and green solvent. Following this study, wastes of citrus peel will recycle by a simple method and extracted carotenoids can increase properties of ostrich oil. In this work, a simple and efficient method for extraction of carotenoids from tangerine peel was designed. Ultrasound-assisted extraction (UAE) showed significant effect on the extraction rate by increasing the mass transfer rate. Ostrich oil can be used as a green solvent in many studies to eliminate petroleum-based solvents. Since tangerine peel is a complex source of different carotenoids separation and determination was performed by high-performance liquid chromatography (HPLC). In addition, the ability of ostrich oil and sunflower oil in carotenoid extraction from tangerine peel and carrot was compared. The highest yield of β-carotene extracted from tangerine peel using sunflower oil and ostrich oil were 75.741 and 88.110 (mg/L), respectively. Optimization of the process was achieved by response surface methodology (RSM) and the optimal extraction conditions were tangerine peel powder particle size of 0.180 mm, ultrasonic intensity of 19 W/cm2 and sonication time of 30 minutes.Keywords: β-carotene, carotenoids, citrus peel, ostrich oil, response surface methodology, ultrasound-assisted extraction
Procedia PDF Downloads 3166710 Increasing National Health Insurance Scheme Enrolment in Ghana: Pro-Rata Insurance Premium Payment with Mobile Phone as the Answer
Authors: Joseph Marfo Boaheng, Daniel Ansong, Eugenia Amporfo
Abstract:
Health Insurance is proposed to provide financial protection against catastrophic health care cost arising from disease. Ghana has had a National Health Insurance Scheme (NHIS) since 2003 with the current enrolment/retention rate of 36%. The main goal of the scheme is to provide equity in the health sector as well as ensuring affordable health care for the poor. However, the current payment system is not flexible to attract significant proportion of the poor informal sector onto the scheme. Looking at the extensive use of mobiles in the Ghana where about 29,220,602.00 registered mobile phone lines are actively in used as of June 2014, paying health insurance premium through mobile phone could be feasible to attract larger proportion of the informal sector onto the scheme. Methodology: The quantitative cross-sectional survey was used to solicit the required information from 877 respondents living in Kumasi, the second capital city of Ghana. The magnitude of the effect of Pro-rata system (flexible payment terms) on NHIS enrollment rate was estimated with binary logistic regression model. Results: The odds for an individual to enroll onto NHIS with mobile phone increases about 2 times more when payment of insurance premium is on pro-rata basis ie. flexible payment terms (p=0.008, CI=1.212-3.565). Conclusion: The study advocates the National Health Insurance Authority consider this alternative payment system that has the potential of attracting a greater proportion of the informal sector to be enrolled or retained onto the scheme.Keywords: enrollment, health insurance, mobile phone, pro-rata
Procedia PDF Downloads 3946709 Using Artificial Intelligence Method to Explore the Important Factors in the Reuse of Telecare by the Elderly
Authors: Jui-Chen Huang
Abstract:
This research used artificial intelligence method to explore elderly’s opinions on the reuse of telecare, its effect on their service quality, satisfaction and the relationship between customer perceived value and intention to reuse. This study conducted a questionnaire survey on the elderly. A total of 124 valid copies of a questionnaire were obtained. It adopted Backpropagation Network (BPN) to propose an effective and feasible analysis method, which is different from the traditional method. Two third of the total samples (82 samples) were taken as the training data, and the one third of the samples (42 samples) were taken as the testing data. The training and testing data RMSE (root mean square error) are 0.022 and 0.009 in the BPN, respectively. As shown, the errors are acceptable. On the other hand, the training and testing data RMSE are 0.100 and 0.099 in the regression model, respectively. In addition, the results showed the service quality has the greatest effects on the intention to reuse, followed by the satisfaction, and perceived value. This result of the Backpropagation Network method is better than the regression analysis. This result can be used as a reference for future research.Keywords: artificial intelligence, backpropagation network (BPN), elderly, reuse, telecare
Procedia PDF Downloads 212