Search results for: vehicle following models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8015

Search results for: vehicle following models

4385 Experimental Study of Local Scour Depth around Cylindrical Bridge Pier

Authors: Mohammed T. Shukri

Abstract:

The failure of bridges due to excessive local scour during floods poses a challenging problem to hydraulic engineers. The failure of bridges piers is due to many reasons such as localized scour combined with general riverbed degradation. In this paper, we try to estimate the temporal variation of scour depth at nonuniform cylindrical bridge pier, by experimental work conducted in hydraulic laboratories of Gaziantep University Civil Engineering Department on a flume having dimensions of 8.3 m length, 0.8 m width and 0.9 m depth. The experiments will be carried on 20 cm depth of sediment layer having d50=0.4 mm. Three bridge pier shapes having different scaled models will be constructed in a 1.5m of test section in the channel.

Keywords: scour, local scour, bridge piers, scour depth

Procedia PDF Downloads 260
4384 Insulin Receptor Substrate-1 (IRS1) and Transcription Factor 7-Like 2 (TCF7L2) Gene Polymorphisms Associated with Type 2 Diabetes Mellitus in Eritreans

Authors: Mengistu G. Woldu, Hani Y. Zaki, Areeg Faggad, Badreldin E. Abdalla

Abstract:

Background: Type 2 diabetes mellitus (T2DM) is a complex, degenerative, and multi-factorial disease, which is culpable for huge mortality and morbidity worldwide. Even though relatively significant numbers of studies are conducted on the genetics domain of this disease in the developed world, there is huge information gap in the sub-Saharan Africa region in general and in Eritrea in particular. Objective: The principal aim of this study was to investigate the association of common variants of the Insulin Receptor Substrate 1 (IRS1) and Transcription Factor 7-Like 2 (TCF7L2) genes with T2DM in the Eritrean population. Method: In this cross-sectional case control study 200 T2DM patients and 112 non-diabetes subjects were participated and genotyping of the IRS1 (rs13431179, rs16822615, 16822644rs, rs1801123) and TCF7L2 (rs7092484) tag SNPs were carries out using PCR-RFLP method of analysis. Haplotype analyses were carried out using Plink version 1.07, and Haploview 4.2 software. Linkage disequilibrium (LD), and Hardy-Weinberg equilibrium (HWE) analyses were performed using the Plink software. All descriptive statistical data analyses were carried out using SPSS (Version-20) software. Throughout the analysis p-value ≤0.05 was considered statistically significant. Result: Significant association was found between rs13431179 SNP of the IRS1 gene and T2DM under the recessive model of inheritance (OR=9.00, 95%CI=1.17-69.07, p=0.035), and marginally significant association found in the genotypic model (OR=7.50, 95%CI=0.94-60.06, p=0.058). The rs7092484 SNP of the TCF7L2 gene also showed markedly significant association with T2DM in the recessive (OR=3.61, 95%CI=1.70-7.67, p=0.001); and allelic (OR=1.80, 95%CI=1.23-2.62, p=0.002) models. Moreover, eight haplotypes of the IRS1 gene found to have significant association withT2DM (p=0.013 to 0.049). Assessments made on the interactions of genotypes of the rs13431179 and rs7092484 SNPs with various parameters demonstrated that high density lipoprotein (HDL), low density lipoprotein (LDL), waist circumference (WC), and systolic blood pressure (SBP) are the best T2DM onset predicting models. Furthermore, genotypes of the rs7092484 SNP showed significant association with various atherogenic indexes (Atherogenic index of plasma, LDL/HDL, and CHLO/HDL); and Eritreans carrying the GG or GA genotypes were predicted to be more susceptible to cardiovascular diseases onset. Conclusions: Results of this study suggest that IRS1 (rs13431179) and TCF7L2 (rs7092484) gene polymorphisms are associated with increased risk of T2DM in Eritreans.

Keywords: IRS1, SNP, TCF7L2, type 2 diabetes

Procedia PDF Downloads 225
4383 Analysis of the Statistical Characterization of Significant Wave Data Exceedances for Designing Offshore Structures

Authors: Rui Teixeira, Alan O’Connor, Maria Nogal

Abstract:

The statistical theory of extreme events is progressively a topic of growing interest in all the fields of science and engineering. The changes currently experienced by the world, economic and environmental, emphasized the importance of dealing with extreme occurrences with improved accuracy. When it comes to the design of offshore structures, particularly offshore wind turbines, the importance of efficiently characterizing extreme events is of major relevance. Extreme events are commonly characterized by extreme values theory. As an alternative, the accurate modeling of the tails of statistical distributions and the characterization of the low occurrence events can be achieved with the application of the Peak-Over-Threshold (POT) methodology. The POT methodology allows for a more refined fit of the statistical distribution by truncating the data with a minimum value of a predefined threshold u. For mathematically approximating the tail of the empirical statistical distribution the Generalised Pareto is widely used. Although, in the case of the exceedances of significant wave data (H_s) the 2 parameters Weibull and the Exponential distribution, which is a specific case of the Generalised Pareto distribution, are frequently used as an alternative. The Generalized Pareto, despite the existence of practical cases where it is applied, is not completely recognized as the adequate solution to model exceedances over a certain threshold u. References that set the Generalised Pareto distribution as a secondary solution in the case of significant wave data can be identified in the literature. In this framework, the current study intends to tackle the discussion of the application of statistical models to characterize exceedances of wave data. Comparison of the application of the Generalised Pareto, the 2 parameters Weibull and the Exponential distribution are presented for different values of the threshold u. Real wave data obtained in four buoys along the Irish coast was used in the comparative analysis. Results show that the application of the statistical distributions to characterize significant wave data needs to be addressed carefully and in each particular case one of the statistical models mentioned fits better the data than the others. Depending on the value of the threshold u different results are obtained. Other variables of the fit, as the number of points and the estimation of the model parameters, are analyzed and the respective conclusions were drawn. Some guidelines on the application of the POT method are presented. Modeling the tail of the distributions shows to be, for the present case, a highly non-linear task and, due to its growing importance, should be addressed carefully for an efficient estimation of very low occurrence events.

Keywords: extreme events, offshore structures, peak-over-threshold, significant wave data

Procedia PDF Downloads 273
4382 Effects of Bone Marrow Derived Mesenchymal Stem Cells (MSC) in Acute Respiratory Distress Syndrome (ARDS) Lung Remodeling

Authors: Diana Islam, Juan Fang, Vito Fanelli, Bing Han, Julie Khang, Jianfeng Wu, Arthur S. Slutsky, Haibo Zhang

Abstract:

Introduction: MSC delivery in preclinical models of ARDS has demonstrated significant improvements in lung function and recovery from acute injury. However, the role of MSC delivery in ARDS associated pulmonary fibrosis is not well understood. Some animal studies using bleomycin, asbestos, and silica-induced pulmonary fibrosis show that MSC delivery can suppress fibrosis. While other animal studies using radiation induced pulmonary fibrosis, liver, and kidney fibrosis models show that MSC delivery can contribute to fibrosis. Hypothesis: The beneficial and deleterious effects of MSC in ARDS are modulated by the lung microenvironment at the time of MSC delivery. Methods: To induce ARDS a two-hit mouse model of Hydrochloric acid (HCl) aspiration (day 0) and mechanical ventilation (MV) (day 2) was used. HCl and injurious MV generated fibrosis within 14-28 days. 0.5x106 mouse MSCs were delivered (via both intratracheal and intravenous routes) either in the active inflammatory phase (day 2) or during the remodeling phase (day 14) of ARDS (mouse fibroblasts or PBS used as a control). Lung injury accessed using inflammation score and elastance measurement. Pulmonary fibrosis was accessed using histological score, tissue collagen level, and collagen expression. In addition alveolar epithelial (E) and mesenchymal (M) marker expression profile was also measured. All measurements were taken at day 2, 14, and 28. Results: MSC delivery 2 days after HCl exacerbated lung injury and fibrosis compared to HCl alone, while the day 14 delivery showed protective effects. However in the absence of HCl, MSC significantly reduced the injurious MV-induced fibrosis. HCl injury suppressed E markers and up-regulated M markers. MSC delivery 2 days after HCl further amplified M marker expression, indicating their role in myofibroblast proliferation/activation. While with 14-day delivery E marker up-regulation was observed indicating their role in epithelial restoration. Conclusions: Early MSC delivery can be protective of injurious MV. Late MSC delivery during repair phase may also aid in recovery. However, early MSC delivery during the exudative inflammatory phase of HCl-induced ARDS can result in pro-fibrotic profiles. It is critical to understand the interaction between MSC and the lung microenvironment before MSC-based therapies are utilized for ARDS.

Keywords: acute respiratory distress syndrome (ARDS), mesenchymal stem cells (MSC), hydrochloric acid (HCl), mechanical ventilation (MV)

Procedia PDF Downloads 670
4381 3D Modeling of Tunis Soft Soil Settlement Reinforced with Plastic Wastes

Authors: Aya Rezgui, Lasaad Ajam, Belgacem Jalleli

Abstract:

The Tunis soft soils present a difficult challenge as construction sites and for Geotechnical works. Currently, different techniques are used to improve such soil properties taking into account the environmental considerations. One of the recent methods is involving plastic wastes as a reinforcing materials. The present study pertains to the development of a numerical model for predicting the behavior of Tunis Soft soil (TSS) improved with recycled Monobloc chair wastes.3D numerical models for unreinforced TSS and reinforced TSS aims to evaluate settlement reduction and the values of consolidation times in oedometer conditions.

Keywords: Tunis soft soil, settlement, plastic wastes, finte -difference, FLAC3D modeling

Procedia PDF Downloads 134
4380 Employing Operations Research at Universities to Build Management Systems

Authors: Abdallah A. Hlayel

Abstract:

Operations research science (OR) deals with good success in developing and applying scientific methods for problem solving and decision-making. However, by using OR techniques, we can enhance the use of computer decision support systems to achieve optimal management for institutions. OR applies comprehensive analysis including all factors that affect on it and builds mathematical modeling to solve business or organizational problems. In addition, it improves decision-making and uses available resources efficiently. The adoption of OR by universities would definitely contributes to the development and enhancement of the performance of OR techniques. This paper provides an understanding of the structures, approaches and models of OR in problem solving and decision-making.

Keywords: best candidates' method, decision making, decision support system, operations research

Procedia PDF Downloads 445
4379 Simulation Research of Diesel Aircraft Engine

Authors: Łukasz Grabowski, Michał Gęca, Mirosław Wendeker

Abstract:

This paper presents the simulation results of a new opposed piston diesel engine to power a light aircraft. Created in the AVL Boost, the model covers the entire charge passage, from the inlet up to the outlet. The model shows fuel injection into cylinders and combustion in cylinders. The calculation uses the module for two-stroke engines. The model was created using sub-models available in this software that structure the model. Each of the sub-models is complemented with parameters in line with the design premise. Since engine weight resulting from geometric dimensions is fundamental in aircraft engines, two configurations of stroke were studied. For each of the values, there were calculated selected operating conditions defined by crankshaft speed. The required power was achieved by changing air fuel ratio (AFR). There was also studied brake specific fuel consumption (BSFC). For stroke S1, the BSFC was lowest at all of the three operating points. This difference is approximately 1-2%, which means higher overall engine efficiency but the amount of fuel injected into cylinders is larger by several mg for S1. The cylinder maximum pressure is lower for S2 due to the fact that compressor gear driving remained the same and boost pressure was identical in the both cases. Calculations for various values of boost pressure were the next stage of the study. In each of the calculation case, the amount of fuel was changed to achieve the required engine power. In the former case, the intake system dimensions were modified, i.e. the duct connecting the compressor and the air cooler, so its diameter D = 40 mm was equal to the diameter of the compressor outlet duct. The impact of duct length was also examined to be able to reduce the flow pulsation during the operating cycle. For the so selected geometry of the intake system, there were calculations for various values of boost pressure. The boost pressure was changed by modifying the gear driving the compressor. To reach the required level of cruising power N = 68 kW. Due to the mechanical power consumed by the compressor, high pressure ratio results in a worsened overall engine efficiency. The figure on the change in BSFC from 210 g/kWh to nearly 270 g/kWh shows this correlation and the overall engine efficiency is reduced by about 8%. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK "PZL-KALISZ" S.A." and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: aircraft, diesel, engine, simulation

Procedia PDF Downloads 207
4378 High Resolution Satellite Imagery and Lidar Data for Object-Based Tree Species Classification in Quebec, Canada

Authors: Bilel Chalghaf, Mathieu Varin

Abstract:

Forest characterization in Quebec, Canada, is usually assessed based on photo-interpretation at the stand level. For species identification, this often results in a lack of precision. Very high spatial resolution imagery, such as DigitalGlobe, and Light Detection and Ranging (LiDAR), have the potential to overcome the limitations of aerial imagery. To date, few studies have used that data to map a large number of species at the tree level using machine learning techniques. The main objective of this study is to map 11 individual high tree species ( > 17m) at the tree level using an object-based approach in the broadleaf forest of Kenauk Nature, Quebec. For the individual tree crown segmentation, three canopy-height models (CHMs) from LiDAR data were assessed: 1) the original, 2) a filtered, and 3) a corrected model. The corrected CHM gave the best accuracy and was then coupled with imagery to refine tree species crown identification. When compared with photo-interpretation, 90% of the objects represented a single species. For modeling, 313 variables were derived from 16-band WorldView-3 imagery and LiDAR data, using radiance, reflectance, pixel, and object-based calculation techniques. Variable selection procedures were employed to reduce their number from 313 to 16, using only 11 bands to aid reproducibility. For classification, a global approach using all 11 species was compared to a semi-hierarchical hybrid classification approach at two levels: (1) tree type (broadleaf/conifer) and (2) individual broadleaf (five) and conifer (six) species. Five different model techniques were used: (1) support vector machine (SVM), (2) classification and regression tree (CART), (3) random forest (RF), (4) k-nearest neighbors (k-NN), and (5) linear discriminant analysis (LDA). Each model was tuned separately for all approaches and levels. For the global approach, the best model was the SVM using eight variables (overall accuracy (OA): 80%, Kappa: 0.77). With the semi-hierarchical hybrid approach, at the tree type level, the best model was the k-NN using six variables (OA: 100% and Kappa: 1.00). At the level of identifying broadleaf and conifer species, the best model was the SVM, with OA of 80% and 97% and Kappa values of 0.74 and 0.97, respectively, using seven variables for both models. This paper demonstrates that a hybrid classification approach gives better results and that using 16-band WorldView-3 with LiDAR data leads to more precise predictions for tree segmentation and classification, especially when the number of tree species is large.

Keywords: tree species, object-based, classification, multispectral, machine learning, WorldView-3, LiDAR

Procedia PDF Downloads 134
4377 Profiling Risky Code Using Machine Learning

Authors: Zunaira Zaman, David Bohannon

Abstract:

This study explores the application of machine learning (ML) for detecting security vulnerabilities in source code. The research aims to assist organizations with large application portfolios and limited security testing capabilities in prioritizing security activities. ML-based approaches offer benefits such as increased confidence scores, false positives and negatives tuning, and automated feedback. The initial approach using natural language processing techniques to extract features achieved 86% accuracy during the training phase but suffered from overfitting and performed poorly on unseen datasets during testing. To address these issues, the study proposes using the abstract syntax tree (AST) for Java and C++ codebases to capture code semantics and structure and generate path-context representations for each function. The Code2Vec model architecture is used to learn distributed representations of source code snippets for training a machine-learning classifier for vulnerability prediction. The study evaluates the performance of the proposed methodology using two datasets and compares the results with existing approaches. The Devign dataset yielded 60% accuracy in predicting vulnerable code snippets and helped resist overfitting, while the Juliet Test Suite predicted specific vulnerabilities such as OS-Command Injection, Cryptographic, and Cross-Site Scripting vulnerabilities. The Code2Vec model achieved 75% accuracy and a 98% recall rate in predicting OS-Command Injection vulnerabilities. The study concludes that even partial AST representations of source code can be useful for vulnerability prediction. The approach has the potential for automated intelligent analysis of source code, including vulnerability prediction on unseen source code. State-of-the-art models using natural language processing techniques and CNN models with ensemble modelling techniques did not generalize well on unseen data and faced overfitting issues. However, predicting vulnerabilities in source code using machine learning poses challenges such as high dimensionality and complexity of source code, imbalanced datasets, and identifying specific types of vulnerabilities. Future work will address these challenges and expand the scope of the research.

Keywords: code embeddings, neural networks, natural language processing, OS command injection, software security, code properties

Procedia PDF Downloads 107
4376 Modeling Spatio-Temporal Variation in Rainfall Using a Hierarchical Bayesian Regression Model

Authors: Sabyasachi Mukhopadhyay, Joseph Ogutu, Gundula Bartzke, Hans-Peter Piepho

Abstract:

Rainfall is a critical component of climate governing vegetation growth and production, forage availability and quality for herbivores. However, reliable rainfall measurements are not always available, making it necessary to predict rainfall values for particular locations through time. Predicting rainfall in space and time can be a complex and challenging task, especially where the rain gauge network is sparse and measurements are not recorded consistently for all rain gauges, leading to many missing values. Here, we develop a flexible Bayesian model for predicting rainfall in space and time and apply it to Narok County, situated in southwestern Kenya, using data collected at 23 rain gauges from 1965 to 2015. Narok County encompasses the Maasai Mara ecosystem, the northern-most section of the Mara-Serengeti ecosystem, famous for its diverse and abundant large mammal populations and spectacular migration of enormous herds of wildebeest, zebra and Thomson's gazelle. The model incorporates geographical and meteorological predictor variables, including elevation, distance to Lake Victoria and minimum temperature. We assess the efficiency of the model by comparing it empirically with the established Gaussian process, Kriging, simple linear and Bayesian linear models. We use the model to predict total monthly rainfall and its standard error for all 5 * 5 km grid cells in Narok County. Using the Monte Carlo integration method, we estimate seasonal and annual rainfall and their standard errors for 29 sub-regions in Narok. Finally, we use the predicted rainfall to predict large herbivore biomass in the Maasai Mara ecosystem on a 5 * 5 km grid for both the wet and dry seasons. We show that herbivore biomass increases with rainfall in both seasons. The model can handle data from a sparse network of observations with many missing values and performs at least as well as or better than four established and widely used models, on the Narok data set. The model produces rainfall predictions consistent with expectation and in good agreement with the blended station and satellite rainfall values. The predictions are precise enough for most practical purposes. The model is very general and applicable to other variables besides rainfall.

Keywords: non-stationary covariance function, gaussian process, ungulate biomass, MCMC, maasai mara ecosystem

Procedia PDF Downloads 294
4375 Surface Elevation Dynamics Assessment Using Digital Elevation Models, Light Detection and Ranging, GPS and Geospatial Information Science Analysis: Ecosystem Modelling Approach

Authors: Ali K. M. Al-Nasrawi, Uday A. Al-Hamdany, Sarah M. Hamylton, Brian G. Jones, Yasir M. Alyazichi

Abstract:

Surface elevation dynamics have always responded to disturbance regimes. Creating Digital Elevation Models (DEMs) to detect surface dynamics has led to the development of several methods, devices and data clouds. DEMs can provide accurate and quick results with cost efficiency, in comparison to the inherited geomatics survey techniques. Nowadays, remote sensing datasets have become a primary source to create DEMs, including LiDAR point clouds with GIS analytic tools. However, these data need to be tested for error detection and correction. This paper evaluates various DEMs from different data sources over time for Apple Orchard Island, a coastal site in southeastern Australia, in order to detect surface dynamics. Subsequently, 30 chosen locations were examined in the field to test the error of the DEMs surface detection using high resolution global positioning systems (GPSs). Results show significant surface elevation changes on Apple Orchard Island. Accretion occurred on most of the island while surface elevation loss due to erosion is limited to the northern and southern parts. Concurrently, the projected differential correction and validation method aimed to identify errors in the dataset. The resultant DEMs demonstrated a small error ratio (≤ 3%) from the gathered datasets when compared with the fieldwork survey using RTK-GPS. As modern modelling approaches need to become more effective and accurate, applying several tools to create different DEMs on a multi-temporal scale would allow easy predictions in time-cost-frames with more comprehensive coverage and greater accuracy. With a DEM technique for the eco-geomorphic context, such insights about the ecosystem dynamic detection, at such a coastal intertidal system, would be valuable to assess the accuracy of the predicted eco-geomorphic risk for the conservation management sustainability. Demonstrating this framework to evaluate the historical and current anthropogenic and environmental stressors on coastal surface elevation dynamism could be profitably applied worldwide.

Keywords: DEMs, eco-geomorphic-dynamic processes, geospatial Information Science, remote sensing, surface elevation changes,

Procedia PDF Downloads 267
4374 Equity, Bonds, Institutional Debt and Economic Growth: Evidence from South Africa

Authors: Ashenafi Beyene Fanta, Daniel Makina

Abstract:

Economic theory predicts that finance promotes economic growth. Although the finance-growth link is among the most researched areas in financial economics, our understanding of the link between the two is still incomplete. This is caused by, among others, wrong econometric specifications, using weak proxies of financial development, and inability to address the endogeneity problem. Studies on the finance growth link in South Africa consistently report economic growth driving financial development. Early studies found that economic growth drives financial development in South Africa, and recent studies have confirmed this using different econometric models. However, the monetary aggregate (i.e. M2) utilized used in these studies is considered a weak proxy for financial development. Furthermore, the fact that the models employed do not address the endogeneity problem in the finance-growth link casts doubt on the validity of the conclusions. For this reason, the current study examines the finance growth link in South Africa using data for the period 1990 to 2011 by employing a generalized method of moments (GMM) technique that is capable of addressing endogeneity, simultaneity and omitted variable bias problems. Unlike previous cross country and country case studies that have also used the same technique, our contribution is that we account for the development of bond markets and non-bank financial institutions rather than being limited to stock market and banking sector development. We find that bond market development affects economic growth in South Africa, and no similar effect is observed for the bank and non-bank financial intermediaries and the stock market. Our findings show that examination of individual elements of the financial system is important in understanding the unique effect of each on growth. The observation that bond markets rather than private credit and stock market development promotes economic growth in South Africa induces an intriguing question as to what unique roles bond markets play that the intermediaries and equity markets are unable to play. Crucially, our results support observations in the literature that using appropriate measures of financial development is critical for policy advice. They also support the suggestion that individual elements of the financial system need to be studied separately to consider their unique roles in advancing economic growth. We believe that our understanding of the channels through which bond market contribute to growth would be a fertile ground for future research.

Keywords: bond market, finance, financial sector, growth

Procedia PDF Downloads 424
4373 Analysis of Road Risk in Four French Overseas Territories Compared with Metropolitan France

Authors: Mohamed Mouloud Haddak, Bouthayna Hayou

Abstract:

Road accidents in French overseas territories have been understudied, with relevant data often collected late and incompletely. Although these territories account for only 3% to 4% of road traffic injuries in France, their unique characteristics merit closer attention. Despite lower mobility and, consequently, lower exposure to road risks, the actual road risk in Overseas France is as high or even higher than in Metropolitan France. Significant disparities exist not only between Metropolitan France and Overseas territories but also among the overseas territories themselves. The varying population densities in these regions do not fully explain these differences, as each territory has its own distinct vulnerabilities and road safety challenges. This analysis, based on BAAC data files from 2005 to 2018 for both Metropolitan France and the overseas departments and regions, examines key variables such as gender, age, type of road user, type of obstacle hit, type of trip, road category, traffic conditions, weather, and location of accidents. Logistic regression models were built for each region to investigate the risk factors associated with fatal road accidents, focusing on the probability of being killed versus injured. Due to insufficient data, Mayotte and the Overseas Communities (French Polynesia and New Caledonia) were not included in the models. The findings reveal that road safety is worse in the overseas territories compared to Metropolitan France, particularly for vulnerable road users such as pedestrians and motorized two-wheelers. These territories present an accident profile that sits between that of Metropolitan France and middle-income countries. A pressing need exists to standardize accident data collection between Metropolitan and Overseas France to allow for more detailed comparative analyses. Further epidemiological studies could help identify the specific road safety issues unique to each territory, particularly with regards to socio-economic factors such as social cohesion, which may influence road safety outcomes. Moreover, the lack of data on new modes of travel, such as electric scooters, and the absence of socio-economic details of accident victims complicate the evaluation of emerging risk factors. Additional research, including sociological and psychosocial studies, is essential for understanding road users' behavior and perceptions of road risk, which could also provide valuable insights into accident trends in peri-urban areas in France.

Keywords: multivariate logistic regression, french overseas regions, road safety, road traffic accidents, territorial inequalities

Procedia PDF Downloads 11
4372 A Machine Learning Approach for the Leakage Classification in the Hydraulic Final Test

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

The widespread use of machine learning applications in production is significantly accelerated by improved computing power and increasing data availability. Predictive quality enables the assurance of product quality by using machine learning models as a basis for decisions on test results. The use of real Bosch production data based on geometric gauge blocks from machining, mating data from assembly and hydraulic measurement data from final testing of directional valves is a promising approach to classifying the quality characteristics of workpieces.

Keywords: machine learning, classification, predictive quality, hydraulics, supervised learning

Procedia PDF Downloads 213
4371 Magnetic Activated Carbon: Preparation, Characterization, and Application for Vanadium Removal

Authors: Hakimeh Sharififard, Mansooreh Soleimani

Abstract:

In this work, the magnetic activated carbon nanocomposite (Fe-CAC) has been synthesized by anchorage iron hydr(oxide) nanoparticles onto commercial activated carbon (CAC) surface and characterized using BET, XRF, SEM techniques. The influence of various removal parameters such as pH, contact time and initial concentration of vanadium on vanadium removal was evaluated using CAC and Fe-CAC in batch method. The sorption isotherms were studied using Langmuir, Freundlich and Dubinin–Radushkevich (D–R) isotherm models. These equilibrium data were well described by the Freundlich model. Results showed that CAC had the vanadium adsorption capacity of 37.87 mg/g, while the Fe-AC was able to adsorb 119.01 mg/g of vanadium. Kinetic data was found to confirm pseudo-second-order kinetic model for both adsorbents.

Keywords: magnetic activated carbon, remove, vanadium, nanocomposite, freundlich

Procedia PDF Downloads 463
4370 A Design for Application of Mobile Agent Technology to MicroService Architecture

Authors: Masayuki Higashino, Toshiya Kawato, Takao Kawamura

Abstract:

A monolithic service is based on the N-tier architecture in many cases. In order to divide a monolithic service into microservices, it is necessary to redefine a model as a new microservice by extracting and merging existing models across layers. Refactoring a monolithic service into microservices requires advanced technical capabilities, and it is a difficult way. This paper proposes a design and concept to ease the migration of a monolithic service to microservices using the mobile agent technology. Our proposed approach, mobile agents-based design and concept, enables to ease dividing and merging services.

Keywords: mobile agent, microservice, web service, distributed system

Procedia PDF Downloads 164
4369 Analyzing the Job Satisfaction of Silver Workers Using Structural Equation Modeling

Authors: Valentin Nickolai, Florian Pfeffel, Christian Louis Kühner

Abstract:

In many industrialized nations, the demand for skilled workers rises, causing the current market for employees to be more candidate-driven than employer-driven. Therefore, losing highly skilled and experienced employees due to early or partial retirement negatively impacts firms. Therefore, finding new ways to incentivize older employees (Silver Workers) to stay longer with the company and in their job can be crucial for the success of a firm. This study analyzes how working remotely can be a valid incentive for experienced Silver Workers to stay in their job and instead work from home with more flexible working hours. An online survey with n = 684 respondents, who are employed in the service sector, has been conducted based on 13 constructs that influence job satisfaction. These have been further categorized into three groups “classic influencing factors,” “influencing factors changed by remote working,” and new remote working influencing factors,” and were analyzed using structural equation modeling (SEM). Here, Cronbach’s alpha of the individual constructs was shown to be suitable. Furthermore, the construct validity of the constructs was confirmed by face validity, content validity, convergent validity (AVE > 0.5: CR > 0.7), and discriminant validity. Additionally, confirmatory factor analysis (CFA) confirmed the model fit for the investigated sample (CMIN/DF: 2.567; CFI: 0.927; RMSEA: 0.048). It was shown in the SEM-analysis that the influencing factor on job satisfaction, “identification with the work,” is the most significant with β = 0.540, followed by “Appreciation” (β = 0.151), “Compensation” (β = 0.124), “Work-Life-Balance” (β = 0.116), and “Communication and Exchange of Information” (β = 0.105). While the significance of each factor can vary depending on the work model, the SEM-analysis also shows that the identification with the work is the most significant factor in all three work models mentioned above and, in the case of the traditional office work model, it is the only significant influencing factor. The study shows that employees between the ages of 56 and 65 years have the highest job satisfaction when working entirely from home or remotely. Furthermore, their job satisfaction score of 5.4 on a scale from 1 (very dissatisfied) to 7 (very satisfied) is the highest amongst all age groups in any of the three work models. Due to the significantly higher job satisfaction, it can be argued that giving Silver Workers the offer to work from home or remotely can incentivize them not to opt for early retirement or partial retirement but to stay in their job full-time Furthermore, these findings can indicate that employees in the Silver Worker age are much more inclined to leave their job for early retirement if they have to entirely work in the office.

Keywords: home office, remote work instead of early or partial retirement, silver worker, structural equation modeling

Procedia PDF Downloads 75
4368 Sequential Data Assimilation with High-Frequency (HF) Radar Surface Current

Authors: Lei Ren, Michael Hartnett, Stephen Nash

Abstract:

The abundant measured surface current from HF radar system in coastal area is assimilated into model to improve the modeling forecasting ability. A simple sequential data assimilation scheme, Direct Insertion (DI), is applied to update model forecast states. The influence of Direct Insertion data assimilation over time is analyzed at one reference point. Vector maps of surface current from models are compared with HF radar measurements. Root-Mean-Squared-Error (RMSE) between modeling results and HF radar measurements is calculated during the last four days with no data assimilation.

Keywords: data assimilation, CODAR, HF radar, surface current, direct insertion

Procedia PDF Downloads 575
4367 A Study of Traffic Assignment Algorithms

Authors: Abdelfetah Laouzai, Rachid Ouafi

Abstract:

In a traffic network, users usually choose their way so that it reduces their travel time between pairs origin-destination. This behavior might seem selfish as it produces congestions in different parts of the network. The traffic assignment problem (TAP) models the interactions between congestion and user travel decisions to obtain vehicles flows over each axis of the traffic network. The resolution methods of TAP serve as a tool allows predicting users’ distribution, identifying congesting points and affecting the travelers’ behavior in the choice of their route in the network following dynamic data. In this article, we will present a review about specific resolution approach of TAP. A comparative analysis is carried out on those approaches so that it highlights the characteristics, advantages and disadvantages of each.

Keywords: network traffic, travel decisions, approaches, traffic assignment, flows

Procedia PDF Downloads 474
4366 The Effective Use of the Network in the Distributed Storage

Authors: Mamouni Mohammed Dhiya Eddine

Abstract:

This work aims at studying the exploitation of high-speed networks of clusters for distributed storage. Parallel applications running on clusters require both high-performance communications between nodes and efficient access to the storage system. Many studies on network technologies led to the design of dedicated architectures for clusters with very fast communications between computing nodes. Efficient distributed storage in clusters has been essentially developed by adding parallelization mechanisms so that the server(s) may sustain an increased workload. In this work, we propose to improve the performance of distributed storage systems in clusters by efficiently using the underlying high-performance network to access distant storage systems. The main question we are addressing is: do high-speed networks of clusters fit the requirements of a transparent, efficient and high-performance access to remote storage? We show that storage requirements are very different from those of parallel computation. High-speed networks of clusters were designed to optimize communications between different nodes of a parallel application. We study their utilization in a very different context, storage in clusters, where client-server models are generally used to access remote storage (for instance NFS, PVFS or LUSTRE). Our experimental study based on the usage of the GM programming interface of MYRINET high-speed networks for distributed storage raised several interesting problems. Firstly, the specific memory utilization in the storage access system layers does not easily fit the traditional memory model of high-speed networks. Secondly, client-server models that are used for distributed storage have specific requirements on message control and event processing, which are not handled by existing interfaces. We propose different solutions to solve communication control problems at the filesystem level. We show that a modification of the network programming interface is required. Data transfer issues need an adaptation of the operating system. We detail several propositions for network programming interfaces which make their utilization easier in the context of distributed storage. The integration of a flexible processing of data transfer in the new programming interface MYRINET/MX is finally presented. Performance evaluations show that its usage in the context of both storage and other types of applications is easy and efficient.

Keywords: distributed storage, remote file access, cluster, high-speed network, MYRINET, zero-copy, memory registration, communication control, event notification, application programming interface

Procedia PDF Downloads 219
4365 Performance and Availability Analysis of 2N Redundancy Models

Authors: Yutae Lee

Abstract:

In this paper, we consider the performance and availability of a redundancy model. The redundancy model is a form of resilience that ensures service availability in the event of component failure. This paper considers a 2N redundancy model. In the model there are at most one active service unit and at most one standby service unit. The active one is providing the service while the standby is prepared to take over the active role when the active fails. We design our analysis model using Stochastic Reward Nets, and then evaluate the performance and availability of 2N redundancy model using Stochastic Petri Net Package (SPNP).

Keywords: availability, performance, stochastic reward net, 2N redundancy

Procedia PDF Downloads 421
4364 Features of Formation and Development of Possessory Risk Management Systems of Organization in the Russian Economy

Authors: Mikhail V. Khachaturyan, Inga A. Koryagina, Maria Nikishova

Abstract:

The study investigates the impact of the ongoing financial crisis, started in the 2nd half of 2014, on marketing budgets spent by Fast-moving consumer goods companies. In these conditions, special importance is given to efficient possessory risk management systems. The main objective for establishing and developing possessory risk management systems for FMCG companies in a crisis is to analyze the data relating to the external environment and consumer behavior in a crisis. Another important objective for possessory risk management systems of FMCG companies is to develop measures and mechanisms to maintain and stimulate sales. In this regard, analysis of risks and threats which consumers define as the main reasons affecting their level of consumption become important. It is obvious that in crisis conditions the effective risk management systems responsible for development and implementation of strategies for consumer demand stimulation, as well as the identification, analysis, assessment and management of other types of risks of economic security will be the key to sustainability of a company. In terms of financial and economic crisis, the problem of forming and developing possessory risk management systems becomes critical not only in the context of management models of FMCG companies, but for all the companies operating in other sectors of the Russian economy. This study attempts to analyze the specifics of formation and development of company possessory risk management systems. In the modern economy, special importance among all the types of owner’s risks has the risk of reduction in consumer activity. This type of risk is common not only for the consumer goods trade. Study of consumer activity decline is especially important for Russia due to domestic market of consumer goods being still in the development stage, despite its significant growth. In this regard, it is especially important to form and develop possessory risk management systems for FMCG companies. The authors offer their own interpretation of the process of forming and developing possessory risk management systems within owner’s management models of FMCG companies as well as in Russian economy in general. Proposed methods and mechanisms of problem analysis of formation and development of possessory risk management systems in FMCG companies and the results received can be helpful for researchers interested in problems of consumer goods market development in Russia and overseas.

Keywords: FMCG companies, marketing budget, risk management, owner, Russian economy, organization, formation, development, system

Procedia PDF Downloads 377
4363 Assessing the Impact of Autonomous Vehicles on Supply Chain Performance – A Case Study of Agri-Food Supply Chain

Authors: Nitish Suvarna, Anjali Awasthi

Abstract:

In an era marked by rapid technological advancements, the integration of Autonomous Vehicles into supply chain networks represents a transformative shift, promising to redefine the paradigms of logistics and transportation. This thesis delves into a comprehensive assessment of the impact of autonomous vehicles on supply chain performance, with a particular focus on network design, operational efficiency, and environmental sustainability. Employing the advanced simulation capabilities of anyLogistix (ALX), the study constructs a digital twin of a conventional supply chain network, encompassing suppliers, production facilities, distribution centers, and customer endpoints. The research methodically integrates Autonomous Vehicles into this intricate network, aiming to unravel the multifaceted effects on transportation logistics including transit times, cost-efficiency, and sustainability. Through simulations and scenarios analysis, the study scrutinizes the operational resilience and adaptability of supply chains in the face of dynamic market conditions and disruptive technologies like Autonomous Vehicles. Furthermore, the thesis undertakes carbon footprint analysis, quantifying the environmental benefits and challenges associated with the adoption of Autonomous Vehicles in supply chain operations. The insights from this research are anticipated to offer a strategic framework for industry stakeholders, guiding the adoption of Autonomous Vehicles to foster a more efficient, responsive, and sustainable supply chain ecosystem. The findings aim to serve as a cornerstone for future research and practical implementations in the realm of intelligent transportation and supply chain management.

Keywords: autonomous vehicle, agri-food supply chain, ALX simulation, anyLogistix

Procedia PDF Downloads 75
4362 Determinants of Internationalization of Social Enterprises: A 20-Year Review

Authors: Xiaoqing Li

Abstract:

Social entrepreneurship drives the global movement as social enterprises create best ways to satisfy social needs through connecting international resources. However, what determines social enterprises to internationalize is underexplored. This study aims to answer this question by conducting a systematic review of studies of past 20 years on social enterprises' internationalization. Findings reveal that factors at the individual (entrepreneur), firm, and environment (home and host country) levels determine the degree of social enterprises' internationalization. Future research is challenged by: a. adopting an integrated approach examining the three levels to explain social enterprises' internationalization; b. the different nature of social enterprises from commercial businesses demands scholars to refine and develop appropriate theoretical models to capture the dynamism of social enterprises' internationalization behavior.

Keywords: determinants, entrepreneurship, internationalization, social enterprises

Procedia PDF Downloads 216
4361 On the Creep of Concrete Structures

Authors: A. Brahma

Abstract:

Analysis of deferred deformations of concrete under sustained load shows that the creep has a leading role on deferred deformations of concrete structures. Knowledge of the creep characteristics of concrete is a Necessary starting point in the design of structures for crack control. Such knowledge will enable the designer to estimate the probable deformation in pre-stressed concrete or reinforced and the appropriate steps can be taken in design to accommodate this movement. In this study, we propose a prediction model that involves the acting principal parameters on the deferred behaviour of concrete structures. For the estimation of the model parameters Levenberg-Marquardt method has proven very satisfactory. A confrontation between the experimental results and the predictions of models designed shows that it is well suited to describe the evolution of the creep of concrete structures.

Keywords: concrete structure, creep, modelling, prediction

Procedia PDF Downloads 291
4360 A Systematic Review of Process Research in Software Engineering

Authors: Tulasi Rayasa, Phani Kumar Pullela

Abstract:

A systematic review is a research method that involves collecting and evaluating the information on a specific topic in order to provide a comprehensive and unbiased review. This type of review aims to improve the software development process by ensuring that the research is thorough and accurate. To ensure objectivity, it is important to follow systematic guidelines and consider multiple sources, such as literature reviews, interviews, and surveys. The evaluation process should also be streamlined by incorporating research from journals and other sources, such as grey literature. The main goal of a systematic review is to identify the consistency of current models in the field of computer application and software engineering.

Keywords: computer application, software engineering, process research, data science

Procedia PDF Downloads 99
4359 The Effect of Absolute and Relative Deprivation on Homicides in Brazil

Authors: Temidayo James Aransiola, Vania Ceccato, Marcelo Justus

Abstract:

This paper investigates the effect of absolute deprivation (proxy unemployment) and relative deprivation (proxy income inequality) on homicide levels in Brazil. A database from the Brazilian Information System about Mortality and Census of the year 2000 and 2010 was used to estimate negative binomial models of homicide levels controlling for socioeconomic, demographic and geographic factors. Findings show that unemployment and income inequality affect homicides levels and that the effect of the former is more pronounced compared to the latter. Moreover, the combination of income inequality and unemployment exacerbates the overall effect of deprivation on homicide levels.

Keywords: deprivation, inequality, interaction, unemployment, violence

Procedia PDF Downloads 146
4358 Towards Creative Movie Title Generation Using Deep Neural Models

Authors: Simon Espigolé, Igor Shalyminov, Helen Hastie

Abstract:

Deep machine learning techniques including deep neural networks (DNN) have been used to model language and dialogue for conversational agents to perform tasks, such as giving technical support and also for general chit-chat. They have been shown to be capable of generating long, diverse and coherent sentences in end-to-end dialogue systems and natural language generation. However, these systems tend to imitate the training data and will only generate the concepts and language within the scope of what they have been trained on. This work explores how deep neural networks can be used in a task that would normally require human creativity, whereby the human would read the movie description and/or watch the movie and come up with a compelling, interesting movie title. This task differs from simple summarization in that the movie title may not necessarily be derivable from the content or semantics of the movie description. Here, we train a type of DNN called a sequence-to-sequence model (seq2seq) that takes as input a short textual movie description and some information on e.g. genre of the movie. It then learns to output a movie title. The idea is that the DNN will learn certain techniques and approaches that the human movie titler may deploy that may not be immediately obvious to the human-eye. To give an example of a generated movie title, for the movie synopsis: ‘A hitman concludes his legacy with one more job, only to discover he may be the one getting hit.’; the original, true title is ‘The Driver’ and the one generated by the model is ‘The Masquerade’. A human evaluation was conducted where the DNN output was compared to the true human-generated title, as well as a number of baselines, on three 5-point Likert scales: ‘creativity’, ‘naturalness’ and ‘suitability’. Subjects were also asked which of the two systems they preferred. The scores of the DNN model were comparable to the scores of the human-generated movie title, with means m=3.11, m=3.12, respectively. There is room for improvement in these models as they were rated significantly less ‘natural’ and ‘suitable’ when compared to the human title. In addition, the human-generated title was preferred overall 58% of the time when pitted against the DNN model. These results, however, are encouraging given the comparison with a highly-considered, well-crafted human-generated movie title. Movie titles go through a rigorous process of assessment by experts and focus groups, who have watched the movie. This process is in place due to the large amount of money at stake and the importance of creating an effective title that captures the audiences’ attention. Our work shows progress towards automating this process, which in turn may lead to a better understanding of creativity itself.

Keywords: creativity, deep machine learning, natural language generation, movies

Procedia PDF Downloads 326
4357 Modeling and Optimizing of Sinker Electric Discharge Machine Process Parameters on AISI 4140 Alloy Steel by Central Composite Rotatable Design Method

Authors: J. Satya Eswari, J. Sekhar Babub, Meena Murmu, Govardhan Bhat

Abstract:

Electrical Discharge Machining (EDM) is an unconventional manufacturing process based on removal of material from a part by means of a series of repeated electrical sparks created by electric pulse generators at short intervals between a electrode tool and the part to be machined emmersed in dielectric fluid. In this paper, a study will be performed on the influence of the factors of peak current, pulse on time, interval time and power supply voltage. The output responses measured were material removal rate (MRR) and surface roughness. Finally, the parameters were optimized for maximum MRR with the desired surface roughness. RSM involves establishing mathematical relations between the design variables and the resulting responses and optimizing the process conditions. RSM is not free from problems when it is applied to multi-factor and multi-response situations. Design of experiments (DOE) technique to select the optimum machining conditions for machining AISI 4140 using EDM. The purpose of this paper is to determine the optimal factors of the electro-discharge machining (EDM) process investigate feasibility of design of experiment techniques. The work pieces used were rectangular plates of AISI 4140 grade steel alloy. The study of optimized settings of key machining factors like pulse on time, gap voltage, flushing pressure, input current and duty cycle on the material removal, surface roughness is been carried out using central composite design. The objective is to maximize the Material removal rate (MRR). Central composite design data is used to develop second order polynomial models with interaction terms. The insignificant coefficients’ are eliminated with these models by using student t test and F test for the goodness of fit. CCD is first used to establish the determine the optimal factors of the electro-discharge machining (EDM) for maximizing the MRR. The responses are further treated through a objective function to establish the same set of key machining factors to satisfy the optimization problem of the electro-discharge machining (EDM) process. The results demonstrate the better performance of CCD data based RSM for optimizing the electro-discharge machining (EDM) process.

Keywords: electric discharge machining (EDM), modeling, optimization, CCRD

Procedia PDF Downloads 341
4356 Modeling of the Fermentation Process of Enzymatically Extracted Annona muricata L. Juice

Authors: Calister Wingang Makebe, Wilson Agwanande Ambindei, Zangue Steve Carly Desobgo, Abraham Billu, Emmanuel Jong Nso, P. Nisha

Abstract:

Traditional liquid-state fermentation processes of Annona muricata L. juice can result in fluctuating product quality and quantity due to difficulties in control and scale up. This work describes a laboratory-scale batch fermentation process to produce a probiotic Annona muricata L. enzymatically extracted juice, which was modeled using the Doehlert design with independent extraction factors being incubation time, temperature, and enzyme concentration. It aimed at a better understanding of the traditional process as an initial step for future optimization. Annona muricata L. juice was fermented with L. acidophilus (NCDC 291) (LA), L. casei (NCDC 17) (LC), and a blend of LA and LC (LCA) for 72 h at 37 °C. Experimental data were fitted into mathematical models (Monod, Logistic and Luedeking and Piret models) using MATLAB software, to describe biomass growth, sugar utilization, and organic acid production. The optimal fermentation time was obtained based on cell viability, which was 24 h for LC and 36 h for LA and LCA. The model was particularly effective in estimating biomass growth, reducing sugar consumption, and lactic acid production. The values of the determination coefficient, R2, were 0.9946, 0.9913 and 0.9946, while the residual sum of square error, SSE, was 0.2876, 0.1738 and 0.1589 for LC, LA and LCA, respectively. The growth kinetic parameters included the maximum specific growth rate, µm, which was 0.2876 h-1, 0.1738 h-1 and 0.1589 h-1, as well as the substrate saturation, Ks, with 9.0680 g/L, 9.9337 g/L and 9.0709 g/L respectively for LC, LA and LCA. For the stoichiometric parameters, the yield of biomass based on utilized substrate (YXS) was 50.7932, 3.3940 and 61.0202, and the yield of product based on utilized substrate (YPS) was 2.4524, 0.2307 and 0.7415 for LC, LA, and LCA, respectively. In addition, the maintenance energy parameter (ms) was 0.0128, 0.0001 and 0.0004 with respect to LC, LA and LCA. With the kinetic model proposed by Luedeking and Piret for lactic acid production rate, the growth associated and non-growth associated coefficients were determined as 1.0028 and 0.0109, respectively. The model was demonstrated for batch growth of LA, LC, and LCA in Annona muricata L. juice. The present investigation validates the potential of Annona muricata L. based medium for heightened economical production of a probiotic medium.

Keywords: L. acidophilus, L. casei, fermentation, modelling, kinetics

Procedia PDF Downloads 68