Search results for: healthcare data security
24194 Talent-to-Vec: Using Network Graphs to Validate Models with Data Sparsity
Authors: Shaan Khosla, Jon Krohn
Abstract:
In a recruiting context, machine learning models are valuable for recommendations: to predict the best candidates for a vacancy, to match the best vacancies for a candidate, and compile a set of similar candidates for any given candidate. While useful to create these models, validating their accuracy in a recommendation context is difficult due to a sparsity of data. In this report, we use network graph data to generate useful representations for candidates and vacancies. We use candidates and vacancies as network nodes and designate a bi-directional link between them based on the candidate interviewing for the vacancy. After using node2vec, the embeddings are used to construct a validation dataset with a ranked order, which will help validate new recommender systems.Keywords: AI, machine learning, NLP, recruiting
Procedia PDF Downloads 8924193 A Web Service-Based Framework for Mining E-Learning Data
Authors: Felermino D. M. A. Ali, S. C. Ng
Abstract:
E-learning is an evolutionary form of distance learning and has become better over time as new technologies emerged. Today, efforts are still being made to embrace E-learning systems with emerging technologies in order to make them better. Among these advancements, Educational Data Mining (EDM) is one that is gaining a huge and increasing popularity due to its wide application for improving the teaching-learning process in online practices. However, even though EDM promises to bring many benefits to educational industry in general and E-learning environments in particular, its principal drawback is the lack of easy to use tools. The current EDM tools usually require users to have some additional technical expertise to effectively perform EDM tasks. Thus, in response to these limitations, this study intends to design and implement an EDM application framework which aims at automating and simplify the development of EDM in E-learning environment. The application framework introduces a Service-Oriented Architecture (SOA) that hides the complexity of technical details and enables users to perform EDM in an automated fashion. The framework was designed based on abstraction, extensibility, and interoperability principles. The framework implementation was made up of three major modules. The first module provides an abstraction for data gathering, which was done by extending Moodle LMS (Learning Management System) source code. The second module provides data mining methods and techniques as services; it was done by converting Weka API into a set of Web services. The third module acts as an intermediary between the first two modules, it contains a user-friendly interface that allows dynamically locating data provider services, and running knowledge discovery tasks on data mining services. An experiment was conducted to evaluate the overhead of the proposed framework through a combination of simulation and implementation. The experiments have shown that the overhead introduced by the SOA mechanism is relatively small, therefore, it has been concluded that a service-oriented architecture can be effectively used to facilitate educational data mining in E-learning environments.Keywords: educational data mining, e-learning, distributed data mining, moodle, service-oriented architecture, Weka
Procedia PDF Downloads 23824192 Navigating Shadows: Examining a Moderation Mediation model of Punitive supervision, Innovative Work Behavior and Employee’s Knowledge Hiding
Authors: Sadia Anwara, Weng Qingxionga, Jahan Zeb Aslamb
Abstract:
Drawing on the Conservation of Resources Theory and Theory of Displaced Aggression, current research study aims to explore the impact of an emerging destructive leadership style i.e., Punitive Supervision on the Employees’ Innovative Work Behavior (IWB) and Employee’s Knowledge Hiding (EKH) within the hospitality sector of Pakistan. This paper further elaborates the underlying mechanism by introducing job security as the mediator and Perceived Organisational Support (POS) as the coping mechanism to manage the deteriorating effects of Punitive supervision on the IWS and EKH. Two wave data (N=267) was obtained from the frontline employees of the hospitality sector of Pakistan in order to test the hypothesized moderation mediation model. Study findings unveiled that, punitive supervision negatively affects employees' innovative work behavior (IWB) and increases employee’s knowledge hiding (EKH), with job insecurity serving as a significant mediator in these relationships. Specifically, punitive supervision increases employees' perceptions of job insecurity, decreasing their innovative work behaviors and increasing their tendencies to engage in knowledge hiding. From a managerial perspective, this research study suggests that managers must evaluate their behavior and leadership style to prevent the drastic effect of dark leadership on the employee’s IWB and EKH. In addition, organizations must strive to foster an organizational culture of trust and open communication to reduce job insecurity. Employees should receive sufficient training and development opportunities to reduce job insecurity, while clear performance expectations and constructive feedback should be encouraged to help them excel.Keywords: punitive supervision, job insecurity, perceived organisational support, innovative work behavior, knowledge hiding
Procedia PDF Downloads 2924191 Demonic Possession and Health Care Complications: Concept and Remedy from Islamic Point-of-View
Authors: Khalid Ishola Bello
Abstract:
Many religions and cultures believe in the existence of invisible beings who co-exist with man on earth. Muslims, for example, believe in malaikah (Angel) and jinn (demon), who have their source of creation from light and flame, respectively. Jinn, according to Islamic texts, possesses unique characteristics which give them an advantage over the man. Invisibility, transforming into or taking possession of another being are parts of advantages jinn have above man. Hence, jinn can attack man and truncate his well-being by causing malfunction of his physiological and psychological realms, which may go beyond physical health care. It is on this background that this paper aims to articulate the possibility of a demonic attack on human health and the care processes recommended by Islam to heal and restore well-being of the victim. Through analysis of the inductive, deductive, and historical approaches, the process of ruqyah (healing method based on recitation of the Qur’an) and hijamah (cupping) therapies shall be analyzed. The finding shows the efficacy of Islamic remedies to demonic possession, which usually complicates health challenges in the care of man. This alternative approach is therefore recommended for holistic health care since physical health care cannot fix spiritual health challenges.Keywords: wellbeing, healthcare, demonic possession, cupping, jinn
Procedia PDF Downloads 6824190 The Effect of Relaxing Exercises in Water on Endorphin Hormone for the Beginner in Swimming
Authors: Yasmin Hussein Embaby
Abstract:
Introduction: Athletic Training has its essentials, rules, and methods that help individual in reaching the maximum possible athletic level during the exercised physical activity, therefore; it is important for those working in athletic field to recognize and understand what is going on inside our bodies. This will show the close relationship between physiology and athletic training as the science that explains the various changes that happen to respond to the practice of physical activities. Swimming is one of the water sports that play a major role in influencing the full compatibility of body parts and its systems during the practice of different swimming methods, which uses aqueous to move. It is the initial nucleus in swimming learning and through which the beginner gain a sense of security, safety and the ability to move in aqueous by learning basic skills. Research Methodology: The researcher used the experimental methodology by using pre and post measurement on two equal groups (experimental – control) because it is appropriate for the research. Conclusions: Through the results and information found by the researcher, and in light of the related studies, theoretical readings and the statistical treatments of data; the researcher reached the following conclusions: 1. Muscle relaxation exercises have a positive effect on performance level in crawl swimming and on endorphin hormone as it helps in increasing its normal rater in body, the improvement percentage for experimental group in the relaxation ability, level of endorphin hormone exceeds those of control group. 2. The validity of muscle relaxation exercises proposed for the application, which achieved its objectives, namely increasing the level of endorphin hormone in the body; where research results showed a statistically significant difference in the level of endorphin hormone in favor of the experimental sample.Keywords: beginners, endorphin hormone, relaxing exercises, swimming
Procedia PDF Downloads 21524189 Unstructured-Data Content Search Based on Optimized EEG Signal Processing and Multi-Objective Feature Extraction
Authors: Qais M. Yousef, Yasmeen A. Alshaer
Abstract:
Over the last few years, the amount of data available on the globe has been increased rapidly. This came up with the emergence of recent concepts, such as the big data and the Internet of Things, which have furnished a suitable solution for the availability of data all over the world. However, managing this massive amount of data remains a challenge due to their large verity of types and distribution. Therefore, locating the required file particularly from the first trial turned to be a not easy task, due to the large similarities of names for different files distributed on the web. Consequently, the accuracy and speed of search have been negatively affected. This work presents a method using Electroencephalography signals to locate the files based on their contents. Giving the concept of natural mind waves processing, this work analyses the mind wave signals of different people, analyzing them and extracting their most appropriate features using multi-objective metaheuristic algorithm, and then classifying them using artificial neural network to distinguish among files with similar names. The aim of this work is to provide the ability to find the files based on their contents using human thoughts only. Implementing this approach and testing it on real people proved its ability to find the desired files accurately within noticeably shorter time and retrieve them as a first choice for the user.Keywords: artificial intelligence, data contents search, human active memory, mind wave, multi-objective optimization
Procedia PDF Downloads 18224188 A Bivariate Inverse Generalized Exponential Distribution and Its Applications in Dependent Competing Risks Model
Authors: Fatemah A. Alqallaf, Debasis Kundu
Abstract:
The aim of this paper is to introduce a bivariate inverse generalized exponential distribution which has a singular component. The proposed bivariate distribution can be used when the marginals have heavy-tailed distributions, and they have non-monotone hazard functions. Due to the presence of the singular component, it can be used quite effectively when there are ties in the data. Since it has four parameters, it is a very flexible bivariate distribution, and it can be used quite effectively for analyzing various bivariate data sets. Several dependency properties and dependency measures have been obtained. The maximum likelihood estimators cannot be obtained in closed form, and it involves solving a four-dimensional optimization problem. To avoid that, we have proposed to use an EM algorithm, and it involves solving only one non-linear equation at each `E'-step. Hence, the implementation of the proposed EM algorithm is very straight forward in practice. Extensive simulation experiments and the analysis of one data set have been performed. We have observed that the proposed bivariate inverse generalized exponential distribution can be used for modeling dependent competing risks data. One data set has been analyzed to show the effectiveness of the proposed model.Keywords: Block and Basu bivariate distributions, competing risks, EM algorithm, Marshall-Olkin bivariate exponential distribution, maximum likelihood estimators
Procedia PDF Downloads 14724187 Blind Data Hiding Technique Using Interpolation of Subsampled Images
Authors: Singara Singh Kasana, Pankaj Garg
Abstract:
In this paper, a blind data hiding technique based on interpolation of sub sampled versions of a cover image is proposed. Sub sampled image is taken as a reference image and an interpolated image is generated from this reference image. Then difference between original cover image and interpolated image is used to embed secret data. Comparisons with the existing interpolation based techniques show that proposed technique provides higher embedding capacity and better visual quality marked images. Moreover, the performance of the proposed technique is more stable for different images.Keywords: interpolation, image subsampling, PSNR, SIM
Procedia PDF Downloads 58424186 Hygrothermal Interactions and Energy Consumption in Cold Climate Hospitals: Integrating Numerical Analysis and Case Studies to Investigate and Analyze the Impact of Air Leakage and Vapor Retarding
Authors: Amir E. Amirzadeh, Richard K. Strand
Abstract:
Moisture-induced problems are a significant concern for building owners, architects, construction managers, and building engineers, as they can have substantial impacts on building enclosures' durability and performance. Computational analyses, such as hygrothermal and thermal analysis, can provide valuable information and demonstrate the expected relative performance of building enclosure systems but are not grounded in absolute certainty. This paper evaluates the hygrothermal performance of common enclosure systems in hospitals in cold climates. The study aims to investigate the impact of exterior wall systems on hospitals, focusing on factors such as durability, construction deficiencies, and energy performance. The study primarily examines the impact of air leakage and vapor retarding layers relative to energy consumption. While these factors have been studied in residential and commercial buildings, there is a lack of information on their impact on hospitals in a holistic context. The study integrates various research studies and professional experience in hospital building design to achieve its objective. The methodology involves surveying and observing exterior wall assemblies, reviewing common exterior wall assemblies and details used in hospital construction, performing simulations and numerical analyses of various variables, validating the model and mechanism using available data from industry and academia, visualizing the outcomes of the analysis, and developing a mechanism to demonstrate the relative performance of exterior wall systems for hospitals under specific conditions. The data sources include case studies from real-world projects and peer-reviewed articles, industry standards, and practices. This research intends to integrate and analyze the in-situ and as-designed performance and durability of building enclosure assemblies with numerical analysis. The study's primary objective is to provide a clear and precise roadmap to better visualize and comprehend the correlation between the durability and performance of common exterior wall systems used in the construction of hospitals and the energy consumption of these buildings under certain static and dynamic conditions. As the construction of new hospitals and renovation of existing ones have grown over the last few years, it is crucial to understand the effect of poor detailing or construction deficiencies on building enclosure systems' performance and durability in healthcare buildings. This study aims to assist stakeholders involved in hospital design, construction, and maintenance in selecting durable and high-performing wall systems. It highlights the importance of early design evaluation, regular quality control during the construction of hospitals, and understanding the potential impacts of improper and inconsistent maintenance and operation practices on occupants, owner, building enclosure systems, and Heating, Ventilation, and Air Conditioning (HVAC) systems, even if they are designed to meet the project requirements.Keywords: hygrothermal analysis, building enclosure, hospitals, energy efficiency, optimization and visualization, uncertainty and decision making
Procedia PDF Downloads 7424185 Israeli Households Caring for Children and Adults with Intellectual and Developmental Disabilities: An Explorative Study
Authors: Ayelet Gur
Abstract:
Background: In recent years we are witnessing a welcome trend in which more children/persons with disabilities are living at home with their families and within their communities. This trend is related to various policy innovations as the UN Convention on the Rights of People with Disabilities that reflect a shift from the medical-institutional model to a human rights approach. We also witness the emergence of family centered approaches that perceive the family and not just the individual with the disability as a worthy target of policy planning, implementation and evaluation efforts. The current investigation aims to explore economic, psychological and social factors among households of families of children or adults with intellectual disabilities in Israel and to present policy recommendation. Methods: A national sample of 301 households was recruited through the education and employment settings of persons with intellectual disability. The main caregiver of the person with the disability (a parent) was interviewed. Measurements included the income and expense surveys; assets and debts questionnaire; the questionnaire on resources and stress; the social involvement questionnaire and Personal Wellbeing Index. Results: Findings indicate significant gaps in financial circumstances between households of families of children with intellectual disabilities and households of the general Israeli society. Households of families of children with intellectual disabilities report lower income and higher expenditures and loans than the general society. They experience difficulties in saving and coping with unexpected expenses. Caregivers (the parents) experience high stress, low social participation, low financial support from family, friend and non-governmental organizations and decreased well-being. They are highly dependent on social security allowances which constituted 40% of the household's income. Conclusions: Households' dependency on social security allowances may seem contradictory to the encouragement of persons with intellectual disabilities to favor independent living in light of the human rights approach to disability. New policy should aim at reducing caregivers' stress and enhance their social participation and support, with special emphasis on families of lower socio-economic status. Finally, there is a need to continue monitoring the economic and psycho-social needs of households of families of children with intellectual disabilities and other developmental disabilities.Keywords: disability policy, family policy, intellectual and developmental disabilities, Israel, households study, parents of children with disabilities
Procedia PDF Downloads 16224184 Active Contours for Image Segmentation Based on Complex Domain Approach
Authors: Sajid Hussain
Abstract:
The complex domain approach for image segmentation based on active contour has been designed, which deforms step by step to partition an image into numerous expedient regions. A novel region-based trigonometric complex pressure force function is proposed, which propagates around the region of interest using image forces. The signed trigonometric force function controls the propagation of the active contour and the active contour stops on the exact edges of the object accurately. The proposed model makes the level set function binary and uses Gaussian smoothing kernel to adjust and escape the re-initialization procedure. The working principle of the proposed model is as follows: The real image data is transformed into complex data by iota (i) times of image data and the average iota (i) times of horizontal and vertical components of the gradient of image data is inserted in the proposed model to catch complex gradient of the image data. A simple finite difference mathematical technique has been used to implement the proposed model. The efficiency and robustness of the proposed model have been verified and compared with other state-of-the-art models.Keywords: image segmentation, active contour, level set, Mumford and Shah model
Procedia PDF Downloads 11824183 Discerning Divergent Nodes in Social Networks
Authors: Mehran Asadi, Afrand Agah
Abstract:
In data mining, partitioning is used as a fundamental tool for classification. With the help of partitioning, we study the structure of data, which allows us to envision decision rules, which can be applied to classification trees. In this research, we used online social network dataset and all of its attributes (e.g., Node features, labels, etc.) to determine what constitutes an above average chance of being a divergent node. We used the R statistical computing language to conduct the analyses in this report. The data were found on the UC Irvine Machine Learning Repository. This research introduces the basic concepts of classification in online social networks. In this work, we utilize overfitting and describe different approaches for evaluation and performance comparison of different classification methods. In classification, the main objective is to categorize different items and assign them into different groups based on their properties and similarities. In data mining, recursive partitioning is being utilized to probe the structure of a data set, which allow us to envision decision rules and apply them to classify data into several groups. Estimating densities is hard, especially in high dimensions, with limited data. Of course, we do not know the densities, but we could estimate them using classical techniques. First, we calculated the correlation matrix of the dataset to see if any predictors are highly correlated with one another. By calculating the correlation coefficients for the predictor variables, we see that density is strongly correlated with transitivity. We initialized a data frame to easily compare the quality of the result classification methods and utilized decision trees (with k-fold cross validation to prune the tree). The method performed on this dataset is decision trees. Decision tree is a non-parametric classification method, which uses a set of rules to predict that each observation belongs to the most commonly occurring class label of the training data. Our method aggregates many decision trees to create an optimized model that is not susceptible to overfitting. When using a decision tree, however, it is important to use cross-validation to prune the tree in order to narrow it down to the most important variables.Keywords: online social networks, data mining, social cloud computing, interaction and collaboration
Procedia PDF Downloads 16424182 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network
Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.Keywords: big data, k-NN, machine learning, traffic speed prediction
Procedia PDF Downloads 36724181 Comparative Analysis of Classification Methods in Determining Non-Active Student Characteristics in Indonesia Open University
Authors: Dewi Juliah Ratnaningsih, Imas Sukaesih Sitanggang
Abstract:
Classification is one of data mining techniques that aims to discover a model from training data that distinguishes records into the appropriate category or class. Data mining classification methods can be applied in education, for example, to determine the classification of non-active students in Indonesia Open University. This paper presents a comparison of three methods of classification: Naïve Bayes, Bagging, and C.45. The criteria used to evaluate the performance of three methods of classification are stratified cross-validation, confusion matrix, the value of the area under the ROC Curve (AUC), Recall, Precision, and F-measure. The data used for this paper are from the non-active Indonesia Open University students in registration period of 2004.1 to 2012.2. Target analysis requires that non-active students were divided into 3 groups: C1, C2, and C3. Data analyzed are as many as 4173 students. Results of the study show: (1) Bagging method gave a high degree of classification accuracy than Naïve Bayes and C.45, (2) the Bagging classification accuracy rate is 82.99 %, while the Naïve Bayes and C.45 are 80.04 % and 82.74 % respectively, (3) the result of Bagging classification tree method has a large number of nodes, so it is quite difficult in decision making, (4) classification of non-active Indonesia Open University student characteristics uses algorithms C.45, (5) based on the algorithm C.45, there are 5 interesting rules which can describe the characteristics of non-active Indonesia Open University students.Keywords: comparative analysis, data mining, clasiffication, Bagging, Naïve Bayes, C.45, non-active students, Indonesia Open University
Procedia PDF Downloads 31924180 National Digital Soil Mapping Initiatives in Europe: A Review and Some Examples
Authors: Dominique Arrouays, Songchao Chen, Anne C. Richer-De-Forges
Abstract:
Soils are at the crossing of many issues such as food and water security, sustainable energy, climate change mitigation and adaptation, biodiversity protection, human health and well-being. They deliver many ecosystem services that are essential to life on Earth. Therefore, there is a growing demand for soil information on a national and global scale. Unfortunately, many countries do not have detailed soil maps, and, when existing, these maps are generally based on more or less complex and often non-harmonized soil classifications. An estimate of their uncertainty is also often missing. Thus, there are not easy to understand and often not properly used by end-users. Therefore, there is an urgent need to provide end-users with spatially exhaustive grids of essential soil properties, together with an estimate of their uncertainty. One way to achieve this is digital soil mapping (DSM). The concept of DSM relies on the hypothesis that soils and their properties are not randomly distributed, but that they depend on the main soil-forming factors that are climate, organisms, relief, parent material, time (age), and position in space. All these forming factors can be approximated using several exhaustive spatial products such as climatic grids, remote sensing products or vegetation maps, digital elevation models, geological or lithological maps, spatial coordinates of soil information, etc. Thus, DSM generally relies on models calibrated with existing observed soil data (point observations or maps) and so-called “ancillary co-variates” that come from other available spatial products. Then the model is generalized on grids where soil parameters are unknown in order to predict them, and the prediction performances are validated using various methods. With the growing demand for soil information at a national and global scale and the increase of available spatial co-variates national and continental DSM initiatives are continuously increasing. This short review illustrates the main national and continental advances in Europe, the diversity of the approaches and the databases that are used, the validation techniques and the main scientific and other issues. Examples from several countries illustrate the variety of products that were delivered during the last ten years. The scientific production on this topic is continuously increasing and new models and approaches are developed at an incredible speed. Most of the digital soil mapping (DSM) products rely mainly on machine learning (ML) prediction models and/or the use or pedotransfer functions (PTF) in which calibration data come from soil analyses performed in labs or for existing conventional maps. However, some scientific issues remain to be solved and also political and legal ones related, for instance, to data sharing and to different laws in different countries. Other issues related to communication to end-users and education, especially on the use of uncertainty. Overall, the progress is very important and the willingness of institutes and countries to join their efforts is increasing. Harmonization issues are still remaining, mainly due to differences in classifications or in laboratory standards between countries. However numerous initiatives are ongoing at the EU level and also at the global level. All these progress are scientifically stimulating and also promissing to provide tools to improve and monitor soil quality in countries, EU and at the global level.Keywords: digital soil mapping, global soil mapping, national and European initiatives, global soil mapping products, mini-review
Procedia PDF Downloads 18824179 Real-Time Detection of Space Manipulator Self-Collision
Authors: Zhang Xiaodong, Tang Zixin, Liu Xin
Abstract:
In order to avoid self-collision of space manipulators during operation process, a real-time detection method is proposed in this paper. The manipulator is fitted into a cylinder enveloping surface, and then the detection algorithm of collision between cylinders is analyzed. The collision model of space manipulator self-links can be detected by using this algorithm in real-time detection during the operation process. To ensure security of the operation, a safety threshold is designed. The simulation and experiment results verify the effectiveness of the proposed algorithm for a 7-DOF space manipulator.Keywords: space manipulator, collision detection, self-collision, the real-time collision detection
Procedia PDF Downloads 47424178 A Study of the Adaptive Reuse for School Land Use Strategy: An Application of the Analytic Network Process and Big Data
Authors: Wann-Ming Wey
Abstract:
In today's popularity and progress of information technology, the big data set and its analysis are no longer a major conundrum. Now, we could not only use the relevant big data to analysis and emulate the possible status of urban development in the near future, but also provide more comprehensive and reasonable policy implementation basis for government units or decision-makers via the analysis and emulation results as mentioned above. In this research, we set Taipei City as the research scope, and use the relevant big data variables (e.g., population, facility utilization and related social policy ratings) and Analytic Network Process (ANP) approach to implement in-depth research and discussion for the possible reduction of land use in primary and secondary schools of Taipei City. In addition to enhance the prosperous urban activities for the urban public facility utilization, the final results of this research could help improve the efficiency of urban land use in the future. Furthermore, the assessment model and research framework established in this research also provide a good reference for schools or other public facilities land use and adaptive reuse strategies in the future.Keywords: adaptive reuse, analytic network process, big data, land use strategy
Procedia PDF Downloads 20724177 Penguins Search Optimization Algorithm for Chaotic Synchronization System
Authors: Sofiane Bououden, Ilyes Boulkaibet
Abstract:
In terms of security of the information signal, the meta-heuristic Penguins Search Optimization Algorithm (PeSOA) is applied to synchronize chaotic encryption communications in the case of sensitive dependence on initial conditions in chaotic generator oscillator. The objective of this paper is the use of the PeSOA algorithm to exploring search space with random and iterative processes for synchronization of symmetric keys in both transmission and reception. Simulation results show the effectiveness of the PeSOA algorithm in generating symmetric keys of the encryption process and synchronizing.Keywords: meta-heuristic, PeSOA, chaotic systems, encryption, synchronization optimization
Procedia PDF Downloads 20124176 Generating Real-Time Visual Summaries from Located Sensor-Based Data with Chorems
Authors: Z. Bouattou, R. Laurini, H. Belbachir
Abstract:
This paper describes a new approach for the automatic generation of the visual summaries dealing with cartographic visualization methods and sensors real time data modeling. Hence, the concept of chorems seems an interesting candidate to visualize real time geographic database summaries. Chorems have been defined by Roger Brunet (1980) as schematized visual representations of territories. However, the time information is not yet handled in existing chorematic map approaches, issue has been discussed in this paper. Our approach is based on spatial analysis by interpolating the values recorded at the same time, by sensors available, so we have a number of distributed observations on study areas and used spatial interpolation methods to find the concentration fields, from these fields and by using some spatial data mining procedures on the fly, it is possible to extract important patterns as geographic rules. Then, those patterns are visualized as chorems.Keywords: geovisualization, spatial analytics, real-time, geographic data streams, sensors, chorems
Procedia PDF Downloads 40524175 An Online 3D Modeling Method Based on a Lossless Compression Algorithm
Authors: Jiankang Wang, Hongyang Yu
Abstract:
This paper proposes a portable online 3D modeling method. The method first utilizes a depth camera to collect data and compresses the depth data using a frame-by-frame lossless data compression method. The color image is encoded using the H.264 encoding format. After the cloud obtains the color image and depth image, a 3D modeling method based on bundlefusion is used to complete the 3D modeling. The results of this study indicate that this method has the characteristics of portability, online, and high efficiency and has a wide range of application prospects.Keywords: 3D reconstruction, bundlefusion, lossless compression, depth image
Procedia PDF Downloads 8524174 The Non-Motor Symptoms of Filipino Patients with Parkinson’s Disease
Authors: Cherrie Mae S. Sia, Noel J. Belonguel, Jarungchai Anton S. Vatanagul
Abstract:
Background: Parkinson’s disease (PD) is a chronic progressive, neurodegenerative disorder known for its motor symptoms such as bradykinesia, resting tremor, muscle rigidity, and postural instability. Patients with PD also experience non-motor symptoms (NMS) such as depression, fatigue, and sleep disturbances that are most of the time unrecognized by clinicians. This may be due to the lack of spontaneous reports from the patients or partly because of the lack of systematic questioning from the healthcare professional. There is limited data with regards to these NMS especially that of Filipino patients with PD. Objectives: This study aims to determine the non-motor symptoms of Filipino patients with Parkinson’s disease. Materials and Methods: This is a prospective, cohort study involving thirty-four patients of Filipino-descent diagnosed with PD in three out-patient clinics in Cebu City from April to September 2014. Each patient was interviewed using the Non-Motor Symptom Scale (NMSS). A Cebuano version of the NMSS was also provided for the non-English speaking patients. Interview time was approximately ten to fifteen minutes for each respondent. Results: Of the thirty-four patients with Parkinson’s disease, majority was noted to be males (N=19) and the disease was noted to be more prevalent in patients with a mean age of 62 (SD±9) years old. Hypertension (59%) and diabetes mellitus (29%) were the common co-morbidities in the study population. All patients presented more than one NMS, with insomnia (41.2%), poor memory (23.5%) and depression (14.7%) being the first non-motor symptoms to occur. Symptoms involving mood/cognition (mean=2.21), and attention/memory (mean=2.05) were noted to be the most frequent and of moderate severity. Based on the NMSS, the symptoms that were noted to be mild and often to occur were those that involved the mood/cognition (score=3.84), attention/memory (score=3.50), and sleep/fatigue (score=3.00) domains. Levodopa-Carbidopa, Ropinirole, and Pramipexole were the most frequently used medications in the study population. Conclusion: Non-motor symptoms (NMS) are common in patients with Parkinson’s disease (PD). They appear at the time of diagnosis of PD or even before the motor symptoms manifest. The earliest non-motor symptoms to occur are insomnia, poor memory, and depression. Those pertaining to mood/cognition and attention/memory are the most frequent NMS and they are of moderate severity. Identifying these NMS by doing a questionnaire-guided interview such as the Non-Motor Symptom Scale (NMSS) before they can become more severe and affect the patient’s quality of life is a must for every clinician caring for a PD patient. Early treatment and control of these NMS can then be given, hence, improving the patient’s outcome and prognosis.Keywords: non motor symptoms, Parkinson's Disease, insomnia, depression
Procedia PDF Downloads 45024173 H∞ Sampled-Data Control for Linear Systems Time-Varying Delays: Application to Power System
Authors: Chang-Ho Lee, Seung-Hoon Lee, Myeong-Jin Park, Oh-Min Kwon
Abstract:
This paper investigates improved stability criteria for sampled-data control of linear systems with disturbances and time-varying delays. Based on Lyapunov-Krasovskii stability theory, delay-dependent conditions sufficient to ensure H∞ stability for the system are derived in the form of linear matrix inequalities(LMI). The effectiveness of the proposed method will be shown in numerical examples.Keywords: sampled-data control system, Lyapunov-Krasovskii functional, time delay-dependent, LMI, H∞ control
Procedia PDF Downloads 32324172 Logistics Information Systems in the Distribution of Flour in Nigeria
Authors: Cornelius Femi Popoola
Abstract:
This study investigated logistics information systems in the distribution of flour in Nigeria. A case study design was used and 50 staff of Honeywell Flour Mill was sampled for the study. Data generated through a questionnaire were analysed using correlation and regression analysis. The findings of the study revealed that logistic information systems such as e-commerce, interactive telephone systems and electronic data interchange positively correlated with the distribution of flour in Honeywell Flour Mill. Finding also deduced that e-commerce, interactive telephone systems and electronic data interchange jointly and positively contribute to the distribution of flour in Honeywell Flour Mill in Nigeria (R = .935; Adj. R2 = .642; F (3,47) = 14.739; p < .05). The study therefore recommended that Honeywell Flour Mill should upgrade their logistic information systems to computer-to-computer communication of business transactions and documents, as well adopt new technology such as, tracking-and-tracing systems (barcode scanning for packages and palettes), tracking vehicles with Global Positioning System (GPS), measuring vehicle performance with ‘black boxes’ (containing logistic data), and Automatic Equipment Identification (AEI) into their systems.Keywords: e-commerce, electronic data interchange, flour distribution, information system, interactive telephone systems
Procedia PDF Downloads 55824171 Cascaded Neural Network for Internal Temperature Forecasting in Induction Motor
Authors: Hidir S. Nogay
Abstract:
In this study, two systems were created to predict interior temperature in induction motor. One of them consisted of a simple ANN model which has two layers, ten input parameters and one output parameter. The other one consisted of eight ANN models connected each other as cascaded. Cascaded ANN system has 17 inputs. Main reason of cascaded system being used in this study is to accomplish more accurate estimation by increasing inputs in the ANN system. Cascaded ANN system is compared with simple conventional ANN model to prove mentioned advantages. Dataset was obtained from experimental applications. Small part of the dataset was used to obtain more understandable graphs. Number of data is 329. 30% of the data was used for testing and validation. Test data and validation data were determined for each ANN model separately and reliability of each model was tested. As a result of this study, it has been understood that the cascaded ANN system produced more accurate estimates than conventional ANN model.Keywords: cascaded neural network, internal temperature, inverter, three-phase induction motor
Procedia PDF Downloads 34724170 Spatial Variability of Brahmaputra River Flow Characteristics
Authors: Hemant Kumar
Abstract:
Brahmaputra River is known according to the Hindu mythology the son of the Lord Brahma. According to this name, the river Brahmaputra creates mass destruction during the monsoon season in Assam, India. It is a state situated in North-East part of India. This is one of the essential states out of the seven countries of eastern India, where almost all entire Brahmaputra flow carried out. The other states carry their tributaries. In the present case study, the spatial analysis performed in this specific case the number of MODIS data are acquired. In the method of detecting the change, the spray content was found during heavy rainfall and in the flooded monsoon season. By this method, particularly the analysis over the Brahmaputra outflow determines the flooded season. The charged particle-associated in aerosol content genuinely verifies the heavy water content below the ground surface, which is validated by trend analysis through rainfall spectrum data. This is confirmed by in-situ sampled view data from a different position of Brahmaputra River. Further, a Hyperion Hyperspectral 30 m resolution data were used to scan the sediment deposits, which is also confirmed by in-situ sampled view data from a different position.Keywords: aerosol, change detection, spatial analysis, trend analysis
Procedia PDF Downloads 14924169 Optimal Configuration for Polarimetric Surface Plasmon Resonance Sensors
Authors: Ibrahim Watad, Ibrahim Abdulhalim
Abstract:
Conventional spectroscopic surface plasmon resonance (SPR) sensors are widely used, both in fundamental research and environmental monitoring as well as healthcare diagnostics. However, they still lack the low limit of detection (LOD) and there still a place for improvement. SPR conventional sensors are based on the detection of a dip in the reflectivity spectrum which is relatively wide. To improve the performance of these sensors, many techniques and methods proposed either to reduce the width of the dip or to increase the sensitivity. Together with that, profiting from the sharp jump in the phase spectrum under SPR, several works suggested the extraction of the phase of the reflected wave. However, existing phase measurement setups are in general more complicated compared to the conventional setups, require more stability and are very sensitive to external vibrations and noises. In this study, a simple polarimetric technique for phase extraction under SPR is presented, followed by a theoretical error analysis and an experimental verification. The advantages of the proposed technique upon existing techniques will be elaborated, together with conclusions regarding the best polarimetric function, and its corresponding optimal metal layer range of thicknesses to use under the conventional Kretschmann-Raether configuration.Keywords: plasmonics, polarimetry, thin films, optical sensors
Procedia PDF Downloads 40824168 Revisiting the Donning and Doffing Procedure: Ensuring a Coordinated Practice
Authors: Deanna Ruano-Meas, Laura Shenkman
Abstract:
Variances are seen in the way healthcare personnel (HCP) don and doff PPE risking contamination to self and others. By standardizing practice, variances in technique decrease, and so does the risk of contamination. To implement this change, the Model for Improvement will be used. A system change will be developed that will outline the role of the organizational leader’s support of HCP in the proper donning and doffing of PPE. Interventions will include environmental surveys to assess the safety and work situation ensuring a permissible environment, plan audits to confirm consistency, and the assessment of PPE wear for standardization. The change will also include an educational plan that will involve instruction of the current guidelines recommended by the Centers for Disease Control and Prevention (CDC) to all pertinent HCP, and the incorporation of PPE education in yearly educational training. The goal is a standardized practice and a reduced risk of contamination through education and organizational support. Personal protective equipment has had recent attention with the coming of the SARS-CoV-2. The realization that proper technique is important to decreasing contamination of pathogens has led to the revising of current processes.Keywords: donning and doffing, HAI, infection control, PPE
Procedia PDF Downloads 20724167 Clinical Risk Score for Mortality and Predictors of Severe Disease in Adult Patients with Dengue
Authors: Siddharth Jain, Abhenil Mittal, Surendra Kumar Sharma
Abstract:
Background: With its recent emergence and re-emergence, dengue has become a major international public health concern, imposing significant financial burden especially in developing countries. Despite aggressive control measures in place, India experienced one of its largest outbreaks in 2015 with Delhi being most severely affected. There is a lack of reliable predictors of disease severity and mortality in dengue. The present study was carried out to identify these predictors during the 2015 outbreak. Methods: This prospective observational study conducted at an apex tertiary care center in Delhi, India included confirmed adult dengue patients admitted between August-November 2015. Patient demographics, clinical details, and laboratory findings were recorded in a predesigned proforma. Appropriate statistical tests were used to summarize and compare the clinical and laboratory characteristics and derive predictors of mortality and severe disease, while developing a clinical risk score for mortality. Serotype analysis was also done for 75 representative samples to identify the dominant serotypes. Results: Data of 369 patients were analyzed (mean age 30.9 years; 67% males). Of these, 198 (54%) patients had dengue fever, 125 (34%) had dengue hemorrhagic fever (DHF Grade 1,2)and 46 (12%) developed dengue shock syndrome (DSS). Twenty two (6%) patients died. Late presentation to the hospital (≥5 days after onset) and dyspnoea at rest were identified as independent predictors of severe disease. Age ≥ 24 years, dyspnoea at rest and altered sensorium were identified as independent predictors of mortality. A clinical risk score was developed (12*age + 14*sensorium + 10*dyspnoea) which, if ≥ 22, predicted mortality with a high sensitivity (81.8%) and specificity (79.2%). The predominant serotypes in Delhi (2015) were DENV-2 and DENV-4. Conclusion: Age ≥ 24 years, dyspnoea at rest and altered sensorium were identified as independent predictors of mortality. Platelet counts did not determine the outcome in dengue patients. Timely referral/access to health care is important. Development and use of validated predictors of disease severity and simple clinical risk scores, which can be applied in all healthcare settings, can help minimize mortality and morbidity, especially in resource limited settings.Keywords: dengue, mortality, predictors, severity
Procedia PDF Downloads 31024166 Data Mining Model for Predicting the Status of HIV Patients during Drug Regimen Change
Authors: Ermias A. Tegegn, Million Meshesha
Abstract:
Human Immunodeficiency Virus and Acquired Immunodeficiency Syndrome (HIV/AIDS) is a major cause of death for most African countries. Ethiopia is one of the seriously affected countries in sub Saharan Africa. Previously in Ethiopia, having HIV/AIDS was almost equivalent to a death sentence. With the introduction of Antiretroviral Therapy (ART), HIV/AIDS has become chronic, but manageable disease. The study focused on a data mining technique to predict future living status of HIV/AIDS patients at the time of drug regimen change when the patients become toxic to the currently taking ART drug combination. The data is taken from University of Gondar Hospital ART program database. Hybrid methodology is followed to explore the application of data mining on ART program dataset. Data cleaning, handling missing values and data transformation were used for preprocessing the data. WEKA 3.7.9 data mining tools, classification algorithms, and expertise are utilized as means to address the research problem. By using four different classification algorithms, (i.e., J48 Classifier, PART rule induction, Naïve Bayes and Neural network) and by adjusting their parameters thirty-two models were built on the pre-processed University of Gondar ART program dataset. The performances of the models were evaluated using the standard metrics of accuracy, precision, recall, and F-measure. The most effective model to predict the status of HIV patients with drug regimen substitution is pruned J48 decision tree with a classification accuracy of 98.01%. This study extracts interesting attributes such as Ever taking Cotrim, Ever taking TbRx, CD4 count, Age, Weight, and Gender so as to predict the status of drug regimen substitution. The outcome of this study can be used as an assistant tool for the clinician to help them make more appropriate drug regimen substitution. Future research directions are forwarded to come up with an applicable system in the area of the study.Keywords: HIV drug regimen, data mining, hybrid methodology, predictive model
Procedia PDF Downloads 14324165 Introducing Design Principles for Clinical Decision Support Systems
Authors: Luca Martignoni
Abstract:
The increasing usage of clinical decision support systems in healthcare and the demand for software that enables doctors to take informed decisions is changing everyday clinical practice. However, as technology advances not only are the benefits of technology growing, but so are the potential risks. A growing danger is the doctors’ over-reliance on the proposed decision of the clinical decision support system, leading towards deskilling and rash decisions by doctors. In that regard, identifying doctors' requirements for software and developing approaches to prevent technological over-reliance is of utmost importance. In this paper, we report the results of a design science research study, focusing on the requirements and design principles of ultrasound software. We conducted a total of 15 interviews with experts about poten-tial ultrasound software functions. Subsequently, we developed meta-requirements and design principles to design future clinical decision support systems efficiently and as free from the occur-rence of technological over-reliance as possible.Keywords: clinical decision support systems, technological over-reliance, design principles, design science research
Procedia PDF Downloads 105