Search results for: symmetrical components
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4135

Search results for: symmetrical components

535 Achieving Net Zero Energy Building in a Hot Climate Using Integrated Photovoltaic and Parabolic Trough Collectors

Authors: Adel A. Ghoneim

Abstract:

In most existing buildings in hot climate, cooling loads lead to high primary energy consumption and consequently high CO2 emissions. These can be substantially decreased with integrated renewable energy systems. Kuwait is characterized by its dry hot long summer and short warm winter. Kuwait receives annual total radiation more than 5280 MJ/m2 with approximately 3347 h of sunshine. Solar energy systems consist of PV modules and parabolic trough collectors are considered to satisfy electricity consumption, domestic water heating, and cooling loads of an existing building. This paper presents the results of an extensive program of energy conservation and energy generation using integrated photovoltaic (PV) modules and parabolic trough collectors (PTC). The program conducted on an existing institutional building intending to convert it into a Net-Zero Energy Building (NZEB) or near net Zero Energy Building (nNZEB). The program consists of two phases; the first phase is concerned with energy auditing and energy conservation measures at minimum cost and the second phase considers the installation of photovoltaic modules and parabolic trough collectors. The 2-storey building under consideration is the Applied Sciences Department at the College of Technological Studies, Kuwait. Single effect lithium bromide water absorption chillers are implemented to provide air conditioning load to the building. A numerical model is developed to evaluate the performance of parabolic trough collectors in Kuwait climate. Transient simulation program (TRNSYS) is adapted to simulate the performance of different solar system components. In addition, a numerical model is developed to assess the environmental impacts of building integrated renewable energy systems. Results indicate that efficient energy conservation can play an important role in converting the existing buildings into NZEBs as it saves a significant portion of annual energy consumption of the building. The first phase results in an energy conservation of about 28% of the building consumption. In the second phase, the integrated PV completely covers the lighting and equipment loads of the building. On the other hand, parabolic trough collectors of optimum area of 765 m2 can satisfy a significant portion of the cooling load, i.e about73% of the total building cooling load. The annual avoided CO2 emission is evaluated at the optimum conditions to assess the environmental impacts of renewable energy systems. The total annual avoided CO2 emission is about 680 metric ton/year which confirms the environmental impacts of these systems in Kuwait.

Keywords: building integrated renewable systems, Net-Zero energy building, solar fraction, avoided CO2 emission

Procedia PDF Downloads 611
534 Compressed Natural Gas (CNG) Injector Research for Dual Fuel Engine

Authors: Adam Majczak, Grzegorz Barański, Marcin Szlachetka

Abstract:

Environmental considerations necessitate the search for new energy sources. One of the available solutions is a partial replacement of diesel fuel by compressed natural gas (CNG) in the compression ignition engines. This type of the engines is used mainly in vans and trucks. These units are also gaining more and more popularity in the passenger car market. In Europe, this part of the market share reaches 50%. Diesel engines are also used in industry in such vehicles as ship or locomotives. Diesel engines have higher emissions of nitrogen oxides in comparison to spark ignition engines. This can be currently limited by optimizing the combustion process and the use of additional systems such as exhaust gas recirculation or AdBlue technology. As a result of the combustion process of diesel fuel also particulate matter (PM) that are harmful to the human health are emitted. Their emission is limited by the use of a particulate filter. One of the method for toxic components emission reduction may be the use of liquid gas fuel such as propane and butane (LPG) or compressed natural gas (CNG). In addition to the environmental aspects, there are also economic reasons for the use of gaseous fuels to power diesel engines. A total or partial replacement of diesel gas is possible. Depending on the used technology and the percentage of diesel fuel replacement, it is possible to reduce the content of nitrogen oxides in the exhaust gas even by 30%, particulate matter (PM) by 95 % carbon monoxide and by 20%, in relation to original diesel fuel. The research object is prototype gas injector designed for direct injection of compressed natural gas (CNG) in compression ignition engines. The construction of the injector allows for it positioning in the glow plug socket, so that the gas is injected directly into the combustion chamber. The cycle analysis of the four-cylinder Andoria ADCR engine with a capacity of 2.6 dm3 for different crankshaft rotational speeds allowed to determine the necessary time for fuel injection. Because of that, it was possible to determine the required mass flow rate of the injector, for replacing as much of the original fuel by gaseous fuel. To ensure a high value of flow inside the injector, supply pressure equal to 1 MPa was applied. High gas supply pressure requires high value of valve opening forces. For this purpose, an injector with hydraulic control system, using a liquid under pressure for the opening process was designed. On the basis of air pressure measurements in the flow line after the injector, the analysis of opening and closing of the valve was made. Measurements of outflow mass of the injector were also carried out. The results showed that the designed injector meets the requirements necessary to supply ADCR engine by the CNG fuel.

Keywords: CNG, diesel engine, gas flow, gas injector

Procedia PDF Downloads 493
533 The Features of the Synergistic Approach in Marketing Management to Regional Level

Authors: Evgeni Baratashvili, Anzor Abralava, Rusudan Kutateladze, Nino Pailodze, Irma Makharashvili, Larisa Takalandze

Abstract:

Sinergy as a neological term is reflected in modern sciences. It can be found in the various fields of science including the humanities and technical sciences. Among them are biology and medicine, philology, economy and etc. Synergy is the received surplus of marginal high total effect of the groups, consolidated by one common idea, received through endeavored applies of their combined tools, via obtained effect of the separate independent actions of the groups. In the conditions of market economy, according the terms of new communication terminology, synergy effects on management and marketing successfully as well as on purity defense of native language. The well-known scientist’s and public figure’s Academician I. Prangishvili’s works are especially valuable in this aspect. In our opinion the entropy research is linked to his name in our country. In modern economy, the current qualitative changes shows us that the most number of factors and issues have been regrouped. They have a great influence and even define the economic development. The declining abilities of traditional recourses of economic growth have been related on the use of their physical abilities and their moving closer to the edge. Also it is related on the reduced effectiveness, which at the same time increases the expenditures. This means that the leading must be the innovative process system of products and services in the economic growth model. In our opinion the above mentioned system is distinguished with the synergistic approach. It should be noted that the main components of the innovative system are technological, scientific and scientific-technical, social-organizational, managerial and cognitive changes. All of them are reflected on scientific works and inventions in the proper dosages, in know-how and material source. At any stage they create the reproduction cycle. The innovations are different from each other by technologies, origination, design, innovation and quality, subject-content structure, by the the spread of economic processes and the impact of the level of it’s distribution. We have presented a generalized statement of an innovative approach, which is not a single act of innovation but it is also targeted system of the development, implementation, reconciling-exploitation, production, diffusion and commercialization of news. The innovative approaches should be considered as the creation of news, in-depth process of creativity as an innovative alternative to the realization of innovative and entrepreneurial efforts and measures, in order to meet the requirements of the permanent process.

Keywords: economic development, leading process, neological term, synergy

Procedia PDF Downloads 201
532 Optimization of MAG Welding Process Parameters Using Taguchi Design Method on Dead Mild Steel

Authors: Tadele Tesfaw, Ajit Pal Singh, Abebaw Mekonnen Gezahegn

Abstract:

Welding is a basic manufacturing process for making components or assemblies. Recent welding economics research has focused on developing the reliable machinery database to ensure optimum production. Research on welding of materials like steel is still critical and ongoing. Welding input parameters play a very significant role in determining the quality of a weld joint. The metal active gas (MAG) welding parameters are the most important factors affecting the quality, productivity and cost of welding in many industrial operations. The aim of this study is to investigate the optimization process parameters for metal active gas welding for 60x60x5mm dead mild steel plate work-piece using Taguchi method to formulate the statistical experimental design using semi-automatic welding machine. An experimental study was conducted at Bishoftu Automotive Industry, Bishoftu, Ethiopia. This study presents the influence of four welding parameters (control factors) like welding voltage (volt), welding current (ampere), wire speed (m/min.), and gas (CO2) flow rate (lit./min.) with three different levels for variability in the welding hardness. The objective functions have been chosen in relation to parameters of MAG welding i.e., welding hardness in final products. Nine experimental runs based on an L9 orthogonal array Taguchi method were performed. An orthogonal array, signal-to-noise (S/N) ratio and analysis of variance (ANOVA) are employed to investigate the welding characteristics of dead mild steel plate and used in order to obtain optimum levels for every input parameter at 95% confidence level. The optimal parameters setting was found is welding voltage at 22 volts, welding current at 125 ampere, wire speed at 2.15 m/min and gas flow rate at 19 l/min by using the Taguchi experimental design method within the constraints of the production process. Finally, six conformations welding have been carried out to compare the existing values; the predicated values with the experimental values confirm its effectiveness in the analysis of welding hardness (quality) in final products. It is found that welding current has a major influence on the quality of welded joints. Experimental result for optimum setting gave a better hardness of welding condition than initial setting. This study is valuable for different material and thickness variation of welding plate for Ethiopian industries.

Keywords: Weld quality, metal active gas welding, dead mild steel plate, orthogonal array, analysis of variance, Taguchi method

Procedia PDF Downloads 482
531 The Significance of Islamic Concept of Good Faith to Cure Flaws in Public International Law

Authors: M. A. H. Barry

Abstract:

The concept of Good faith (husn al-niyyah) and fair-dealing (Nadl) are the fundamental guiding elements in all contracts and other agreements under Islamic law. The preaching of Al-Quran and Prophet Muhammad’s (Peace Be upon Him) firmly command people to act in good faith in all dealings. There are several Quran verses and the Prophet’s saying which stressed the significance of dealing honestly and fairly in all transactions. Under the English law, the good faith is not considered a fundamental requirement for the formation of a legal contract. However, the concept of Good Faith in private contracts is recognized by the civil law system and in Article 7(1) of the Convention on International Sale of Goods (CISG-Vienna Convention-1980). It took several centuries for the international trading community to recognize the significance of the concept of good faith for the international sale of goods transactions. Nevertheless, the recognition of good faith in Civil law is only confined for the commercial contracts. Subsequently to the CISG, this concept has made inroads into the private international law. There are submissions in favour of applying the good faith concept to public international law based on tacit recognition by the international conventions and International Tribunals. However, under public international law the concept of good faith is not recognized as a source of rights or obligations. This weakens the spirit of the good faith concept, particularly when determining the international disputes. This also creates a fundamental flaw because the absence of good faith application means the breaches tainted by bad faith are tolerated. The objective of this research is to evaluate, examine and analyze the application of the concept of good faith in the modern laws and identify its limitation, in comparison with Islamic concept of good faith. This paper also identifies the problems and issues connected with the non-application of this concept to public international law. This research consists of three key components (1) the preliminary inquiry (2) subject analysis and discovery of research results, and (3) examining the challenging problems, and concluding with proposals. The preliminary inquiry is based on both the primary and secondary sources. The same sources are used for the subject analysis. This research also has both inductive and deductive features. The Islamic concept of good faith covers all situations and circumstances where the bad faith causes unfairness to the affected parties, especially the weak parties. Under the Islamic law, the concept of good faith is a source of rights and obligations as Islam prohibits any person committing wrongful or delinquent acts in any dealing whether in a private or public life. This rule is applicable not only for individuals but also for institutions, states, and international organizations. This paper explains how the unfairness is caused by non-recognition of the good faith concept as a source of rights or obligations under public international law and provides legal and non-legal reasons to show why the Islamic formulation is important.

Keywords: good faith, the civil law system, the Islamic concept, public international law

Procedia PDF Downloads 149
530 Characterization of Herberine Hydrochloride Nanoparticles

Authors: Bao-Fang Wen, Meng-Na Dai, Gao-Pei Zhu, Chen-Xi Zhang, Jing Sun, Xun-Bao Yin, Yu-Han Zhao, Hong-Wei Sun, Wei-Fen Zhang

Abstract:

A drug-loaded nanoparticles containing berberine hydrochloride (BH/FA-CTS-NPs) was prepared. The physicochemical characterizations of BH/FA-CTS-NPs and the inhibitory effect on the HeLa cells were investigated. Folic acid-conjugated chitosan (FA-CTS) was prepared by amino reaction of folic acid active ester and chitosan molecules; BH/FA-CTS-NPs were prepared using ionic cross-linking technique with BH as a model drug. The morphology and particle size were determined by Transmission Electron Microscope (TEM). The average diameters and polydispersity index (PDI) were evaluated by Dynamic Light Scattering (DLS). The interaction between various components and the nanocomplex were characterized by Fourier Transform Infrared Spectroscopy (FT-IR). The entrapment efficiency (EE), drug-loading (DL) and in vitro release were studied by UV spectrophotometer. The effect of cell anti-migratory and anti-invasive actions of BH/FA-CTS-NPs were investigated using MTT assays, wound healing assays, Annexin-V-FITC single staining assays, and flow cytometry, respectively. HeLa nude mice subcutaneously transplanted tumor model was established and treated with different drugs to observe the effect of BH/FA-CTS-NPs in vivo on HeLa bearing tumor. The BH/FA-CTS-NPs prepared in this experiment have a regular shape, uniform particle size, and no aggregation phenomenon. The results of DLS showed that mean particle size, PDI and Zeta potential of BH/FA-CTS NPs were (249.2 ± 3.6) nm, 0.129 ± 0.09, 33.6 ± 2.09, respectively, and the average diameter and PDI were stable in 90 days. The results of FT-IR demonstrated that the characteristic peaks of FA-CTS and BH/FA-CTS-NPs confirmed that FA-CTS cross-linked successfully and BH was encapsulated in NPs. The EE and DL amount were (79.3 ± 3.12) % and (7.24 ± 1.41) %, respectively. The results of in vitro release study indicated that the cumulative release of BH/FA-CTS NPs was (89.48±2.81) % in phosphate-buffered saline (PBS, pH 7.4) within 48h; these results by MTT assays and wund healing assays indicated that BH/FA-CTS NPs not only inhibited the proliferation of HeLa cells in a concentration and time-dependent manner but can induce apoptosis as well. The subcutaneous xenograft tumor formation rate of human cervical cancer cell line HeLa in nude mice was 98% after inoculation for 2 weeks. Compared with BH group and BH/CTS-NPs group, the xenograft tumor growth of BH/FA-CTS-NPs group was obviously slower; the result indicated that BH/FA-CTS-NPs could significantly inhibit the growth of HeLa xenograft tumor. BH/FA-CTS NPs with the sustained release effect could be prepared successfully by the ionic crosslinking method. Considering these properties, block proliferation and impairing the migration of the HeLa cell line, BH/FA-CTS NPs could be an important compound for consideration in the treatment of cervical cancer.

Keywords: folic-acid, chitosan, berberine hydrochloride, nanoparticles, cervical cancer

Procedia PDF Downloads 122
529 Analyzing Bridge Response to Wind Loads and Optimizing Design for Wind Resistance and Stability

Authors: Abdul Haq

Abstract:

The goal of this research is to better understand how wind loads affect bridges and develop strategies for designing bridges that are more stable and resistant to wind. The effect of wind on bridges is essential to their safety and functionality, especially in areas that are prone to high wind speeds or violent wind conditions. The study looks at the aerodynamic forces and vibrations caused by wind and how they affect bridge construction. Part of the research method involves first understanding the underlying ideas influencing wind flow near bridges. Computational fluid dynamics (CFD) simulations are used to model and forecast the aerodynamic behaviour of bridges under different wind conditions. These models incorporate several factors, such as wind directionality, wind speed, turbulence intensity, and the influence of nearby structures or topography. The results provide significant new insights into the loads and pressures that wind places on different bridge elements, such as decks, pylons, and connections. Following the determination of the wind loads, the structural response of bridges is assessed. By simulating their dynamic behavior under wind-induced forces, Finite Element Analysis (FEA) is used to model the bridge's component parts. This work contributes to the understanding of which areas are at risk of experiencing excessive stresses, vibrations, or oscillations due to wind excitations. Because the bridge has inherent modes and frequencies, the study considers both static and dynamic responses. Various strategies are examined to maximize the design of bridges to withstand wind. It is possible to alter the bridge's geometry, add aerodynamic components, add dampers or tuned mass dampers to lessen vibrations, and boost structural rigidity. Through an analysis of several design modifications and their effectiveness, the study aims to offer guidelines and recommendations for wind-resistant bridge design. In addition to the numerical simulations and analyses, there are experimental studies. In order to assess the computational models and validate the practicality of proposed design strategies, scaled bridge models are tested in a wind tunnel. These investigations help to improve numerical models and prediction precision by providing valuable information on wind-induced forces, pressures, and flow patterns. Using a combination of numerical models, actual testing, and long-term performance evaluation, the project aims to offer practical insights and recommendations for building wind-resistant bridges that are secure, long-lasting, and comfortable for users.

Keywords: wind effects, aerodynamic forces, computational fluid dynamics, finite element analysis

Procedia PDF Downloads 67
528 Functional Surfaces and Edges for Cutting and Forming Tools Created Using Directed Energy Deposition

Authors: Michal Brazda, Miroslav Urbanek, Martina Koukolikova

Abstract:

This work focuses on the development of functional surfaces and edges for cutting and forming tools created through the Directed Energy Deposition (DED) technology. In the context of growing challenges in modern engineering, additive technologies, especially DED, present an innovative approach to manufacturing tools for forming and cutting. One of the key features of DED is its ability to precisely and efficiently deposit Fully dense metals from powder feedstock, enabling the creation of complex geometries and optimized designs. Gradually, it becomes an increasingly attractive choice for tool production due to its ability to achieve high precision while simultaneously minimizing waste and material costs. Tools created using DED technology gain significant durability through the utilization of high-performance materials such as nickel alloys and tool steels. For high-temperature applications, Nimonic 80A alloy is applied, while for cold applications, M2 tool steel is used. The addition of ceramic materials, such as tungsten carbide, can significantly increase the tool's resistance. The introduction of functionally graded materials is a significant contribution, opening up new possibilities for gradual changes in the mechanical properties of the tool and optimizing its performance in different sections according to specific requirements. In this work, you will find an overview of individual applications and their utilization in the industry. Microstructural analyses have been conducted, providing detailed insights into the structure of individual components alongside examinations of the mechanical properties and tool life. These analyses offer a deeper understanding of the efficiency and reliability of the created tools, which is a key element for successful development in the field of cutting and forming tools. The production of functional surfaces and edges using DED technology can result in financial savings, as the entire tool doesn't have to be manufactured from expensive special alloys. The tool can be made from common steel, onto which a functional surface from special materials can be applied. Additionally, it allows for tool repairs after wear and tear, eliminating the need for producing a new part and contributing to an overall cost while reducing the environmental footprint. Overall, the combination of DED technology, functionally graded materials, and verified technologies collectively set a new standard for innovative and efficient development of cutting and forming tools in the modern industrial environment.

Keywords: additive manufacturing, directed energy deposition, DED, laser, cutting tools, forming tools, steel, nickel alloy

Procedia PDF Downloads 51
527 How Consumers Perceive Health and Nutritional Information and How It Affects Their Purchasing Behavior: Comparative Study between Colombia and the Dominican Republic

Authors: Daniel Herrera Gonzalez, Maria Luisa Montas

Abstract:

There are some factors affecting consumer decision-making regarding the use of the front of package labels in order to find benefits to the well-being of the human being. Currently, there are several labels that help influence or change the purchase decision for food products. These labels communicate the impact that food has on human health; therefore, consumers are more critical and intelligent when buying and consuming food products. The research explores the association between front-of-pack labeling and food choice; the association between label content and purchasing decisions is complex and influenced by different factors, including the packaging itself. The main objective of this study was to examine the perception of health labels and nutritional declarations and their influence on buying decisions in the non-alcoholic beverages sector. This comparative study of two developing countries will show how consumers take nutritional labels into account when deciding to buy certain foods. This research applied a quantitative methodology with correlational scope. This study has a correlational approach in order to analyze the degree of association between variables. Likewise, the confirmatory factor analysis (CFA) method and structural equation modeling (SEM) as a powerful multivariate technique was used as statistical technique to find the relationships between observable and unobservable variables. The main findings of this research were the obtaining of three large groups and their perception and effects on nutritional and wellness labels. The first group is characterized by taking an attitude of high interest on the issue of the imposition of the nutritional information label on products and would agree that all products should be packaged given its importance to preventing illnesses in the consumer. Likewise, they almost always care about the brand, the size, the list of ingredients, and nutritional information of the food, and also the effect of these on health. The second group stands out for presenting some interest in the importance of the label on products as a purchase decision, in addition to almost always taking into account the characteristics of size, money, components, etc. of the products to decide on their consumption and almost always They are never interested in the effect of these products on their health or nutrition, and in group 3, it differs from the others by being more neutral regarding the issue of nutritional information labels, and being less interested in the purchase decision and characteristics of the product and also on the influence of these on health and nutrition. This new knowledge is essential for different companies that manufacture and market food products because they will have information to adapt or anticipate the new laws of developing countries as well as the new needs of health-conscious consumers when they buy food products.

Keywords: healthy labels, consumer behavior, nutritional information, healthy products

Procedia PDF Downloads 108
526 Miniaturization of Germanium Photo-Detectors by Using Micro-Disk Resonator

Authors: Haifeng Zhou, Tsungyang Liow, Xiaoguang Tu, Eujin Lim, Chao Li, Junfeng Song, Xianshu Luo, Ying Huang, Lianxi Jia, Lianwee Luo, Kim Dowon, Qing Fang, Mingbin Yu, Guoqiang Lo

Abstract:

Several Germanium photodetectors (PD) built on silicon micro-disks are fabricated on the standard Si photonics multiple project wafers (MPW) and demonstrated to exhibit very low dark current, satisfactory operation bandwidth and moderate responsivity. Among them, a vertical p-i-n Ge PD based on a 2.0 µm-radius micro-disk has a dark current of as low as 35 nA, compared to a conventional PD current of 1 µA with an area of 100 µm2. The operation bandwidth is around 15 GHz at a reverse bias of 1V. The responsivity is about 0.6 A/W. Microdisk is a striking planar structure in integrated optics to enhance light-matter interaction and construct various photonics devices. The disk geometries feature in strongly and circularly confining light into an ultra-small volume in the form of whispering gallery modes. A laser may benefit from a microdisk in which a single mode overlaps the gain materials both spatially and spectrally. Compared to microrings, micro-disk removes the inner boundaries to enable even better compactness, which also makes it very suitable for some scenarios that electrical connections are needed. For example, an ultra-low power (≈ fJ) athermal Si modulator has been demonstrated with a bit rate of 25Gbit/s by confining both photons and electrically-driven carriers into a microscale volume.In this work, we study Si-based PDs with Ge selectively grown on a microdisk with the radius of a few microns. The unique feature of using microdisk for Ge photodetector is that mode selection is not important. In the applications of laser or other passive optical components, microdisk must be designed very carefully to excite the fundamental mode in a microdisk in that essentially the microdisk usually supports many higher order modes in the radial directions. However, for detector applications, this is not an issue because the local light absorption is mode insensitive. Light power carried by all modes are expected to be converted into photo-current. Another benefit of using microdisk is that the power circulation inside avoids any introduction of the reflector. A complete simulation model with all involved materials taken into account is established to study the promise of microdisk structures for photodetector by using finite difference time domain (FDTD) method. By viewing from the current preliminary data, the directions to further improve the device performance are also discussed.

Keywords: integrated optical devices, silicon photonics, micro-resonator, photodetectors

Procedia PDF Downloads 408
525 Effect of Accelerated Aging on Antibacterial and Mechanical Properties of SEBS Compounds

Authors: Douglas N. Simoes, Michele Pittol, Vanda F. Ribeiro, Daiane Tomacheski, Ruth M. C. Santana

Abstract:

Thermoplastic elastomers (TPE) compounds are used in a wide range of applications, like home appliances, automotive components, medical devices, footwear, and others. These materials are susceptible to microbial attack, causing a crack in polymer chains compounds based on SEBS copolymers, poly (styrene-b-(ethylene-co-butylene)-b-styrene, are a class of TPE, largely used in domestic appliances like refrigerator seals (gaskets), bath mats and sink squeegee. Moisture present in some areas (such as shower area and sink) in addition to organic matter provides favorable conditions for microbial survival and proliferation, contributing to the spread of diseases besides the reduction of product life cycle due the biodegradation process. Zinc oxide (ZnO) has been studied as an alternative antibacterial additive due its biocidal effect. It is important to know the influence of these additives in the properties of the compounds, both at the beginning and during the life cycle. In that sense, the aim of this study was to evaluate the effect of accelerated aging in oven on antibacterial and mechanical properties of ZnO loaded SEBS based TPE compounds. Two different comercial zinc oxide, named as WR and Pe were used in proportion of 1%. A compound with no antimicrobial additive (standard) was also tested. The compounds were prepared using a co-rotating double screw extruder (L/D ratio of 40/1 and 16 mm screw diameter). The extrusion parameters were kept constant for all materials, screw rotation rate was set at 226 rpm, with a temperature profile from 150 to 190 ºC. Test specimens were prepared using the injection molding machine at 190 ºC. The Standard Test Method for Rubber Property—Effect of Liquids was applied in order to simulate the exposition of TPE samples to detergent ingredients during service. For this purpose, ZnO loaded TPE samples were immersed in a 3.0% w/v detergent (neutral) and accelerated aging in oven at 70°C for 7 days. Compounds were characterized by changes in mechanical (hardness and tension properties) and mass. The Japan Industrial Standard (JIS) Z 2801:2010 was applied to evaluate antibacterial properties against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The microbiological tests showed a reduction up to 42% in E. coli and up to 49% in S. aureus population in non-aged samples. There were observed variations in elongation and hardness values with the addition of zinc The changes in tensile at rupture and mass were not significant between non-aged and aged samples.

Keywords: antimicrobial, domestic appliance, sebs, zinc oxide

Procedia PDF Downloads 247
524 Disability Management and Occupational Health Enhancement Program in Hong Kong Hospital Settings

Authors: K. C. M. Wong, C. P. Y. Cheng, K. Y. Chan, G. S. C. Fung, T. F. O. Lau, K. F. C. Leung, J. P. C. Fok

Abstract:

Hospital Authority (HA) is the statutory body to manage all public hospitals in Hong Kong. Occupational Care Medicine Service (OMCS) is an in-house multi-disciplinary team responsible for injury management in HA. Hospital administrative services (AS) provides essential support in hospital daily operation to facilitate the provision of quality healthcare services. An occupational health enhancement program in Tai Po Hospital (TPH) domestic service supporting unit (DSSU) was piloted in 2013 with satisfactory outcome, the keys to success were staff engagement and management support. Riding on the success, the program was rolled out to another 5 AS departments of Alice Ho Miu Ling Nethersole Hospital (AHNH) and TPH in 2015. This paper highlights the indispensable components of disability management and occupational health enhancement program in hospital settings. Objectives: 1) Facilitate workplace to support staff with health affecting work problem, 2) Enhance staff’s occupational health. Methodology: Hospital Occupational Safety and Health (OSH) team and AS departments (catering, linen services, and DSSU) of AHNH and TPH worked closely with OMCS. Focus group meetings and worksite visits were conducted with frontline staff engagement. OSH hazards were identified with corresponding OSH improvement measures introduced, e.g., invention of high dusting device to minimize working at height; tailor-made linen cart to minimize back bending at work, etc. Specific MHO trainings were offered to each AS department. A disability management workshop was provided to supervisors in order to enhance their knowledge and skills in return-to-work (RTW) facilitation. Based on injured staff's health condition, OMCS would provide work recommendation, and RTW plan was formulated with engagement of staff and their supervisors. Genuine communication among stakeholders with expectation management paved the way for realistic goals setting and success in our program. Outcome: After implementation of the program, a significant drop of 26% in musculoskeletal disorders related sickness absence day was noted in 2016 as compared to the average of 2013-2015. The improvement was postulated by innovative OSH improvement measures, teamwork, staff engagement and management support. Staff and supervisors’ feedback were very encouraging that 90% respondents rated very satisfactory in program evaluation. This program exemplified good work sharing among departments to support staff in need.

Keywords: disability management, occupational health, return to work, occupational medicine

Procedia PDF Downloads 213
523 Effect of Synbiotics on Rats' Intestinal Microbiota

Authors: Da Yoon Yu, Jeong A. Kim, In Sung Kim, Yeon Hee Hong, Jae Young Kim, Sang Suk Lee, Sung Chan Kim, So Hui Choe, In Soon Choi, Kwang Keun Cho

Abstract:

The present study was conducted to identify the effects of synbiotics composed of lactic acid (LA) bacteria (LAB) and sea tangle on rat’s intestinal microorganisms and anti-obesity effects. The experiment was conducted for six weeks using an 8-week old male rat as experiment animals and the experimental design was to use six treatments groups of 4 repetitions using three mice per repetition. The treatment groups were organized into a normal fat diet control (NFC), a high fat (HF) diet control (HFC), a prebiotic 0% treatment (HF+LA+sea tangle 0%, ST0), a prebiotic 5% treatment (HF+LA+sea tangle 5%, ST5), a prebiotic 10% treatment (HF+LA+sea tangle 10%, ST10), and a prebiotic 15% treatment group (HF+LA+sea tangle 15%, ST15) to conduct experiments with various levels of prebiotics. According to the results of the experiment, the NFC group showed the highest daily weight gain (22.34g) and the ST0 group showed the lowest daily weight gain (19.41g). However, weight gains during the entire experimental period were the highest in the HFC group (475.73g) and the lowest in the ST0 group (454.23g). Feed efficiency was the highest in the HFC group (0.20). Treatment with synbiotics composed of LAB and sea tangle suppressed weight increases due to HF diet and reduced feed efficiency. Intestinal microorganisms were identified through pyrosequncing and according to the results, Firmicutes phylum (approximately 60%) and Bacteroidetes phylum (approximately 30%) accounted for approximately 90% or more of intestinal microorganisms in all of the treatment groups indicating these bacteria are dominating in the intestines. Firmicutes that is related to weight increases accounted for 64.96% of microorganisms in the NFC group, 75.32% in the HFC group, 59.51% in the ST0 group, 61.29% in the ST5 group, 49.91% in the ST10 group, and 39.65% in the ST15 group. Therefore, Firmicutes showed the highest share the HFC group that showed high weight gains and the lowest share in the group treated with mixed synbiotics composed of LAB and sea tangle. Bacteroidetes that is related to weight gain inhibition accounted for 32.12% of microorganisms in the NFC group, and HFC group 21.57%, ST0 group 37.66%, ST5 group 34.92%, ST10 group 44.46%, and ST15 group 53.22%. Therefore, the share of Bacteroidetes was the lowest in the HFC group with no addition of synbiotics and increased along with the level of treatment with synbiotics. Changes in blood components were not significantly different among the groups and SCFA yields were shown to be higher in groups treated with synbiotics than in groups not added with synbiotics. Through the present study, it was shown that the supply of synbiotics composed of LAB and sea tangle increased feed intake but led to weight losses and that the intake of synbiotics composed of LAB and sea tangle had anti-obesity effects due to decreases in Firmicutes which are microorganisms related to weight gains and increases in Bacteroidetes which are microorganisms related to weight losses. Therefore, synbiotics composed of LAB and sea tangle are considered to have the effect to prevent metabolic disorders in the rat.

Keywords: bacteroidetes, firmicutes, intestinal microbiota, lactic acid, sea tangle, synbiotics

Procedia PDF Downloads 400
522 Evolution and Merging of Double-Diffusive Layers in a Vertically Stable Compositional Field

Authors: Ila Thakur, Atul Srivastava, Shyamprasad Karagadde

Abstract:

The phenomenon of double-diffusive convection is driven by density gradients created by two different components (e.g., temperature and concentration) having different molecular diffusivities. The evolution of horizontal double-diffusive layers (DDLs) is one of the outcomes of double-diffusive convection occurring in a laterally/vertically cooled rectangular cavity having a pre-existing vertically stable composition field. The present work mainly focuses on different characteristics of the formation and merging of double-diffusive layers by imposing lateral/vertical thermal gradients in a vertically stable compositional field. A CFD-based twodimensional fluent model has been developed for the investigation of the aforesaid phenomena. The configuration containing vertical thermal gradients shows the evolution and merging of DDLs, where, elements from the same horizontal plane move vertically and mix with surroundings, creating a horizontal layer. In the configuration of lateral thermal gradients, a specially oriented convective roll was found inside each DDL and each roll was driven by the competing density change due to the already existing composition field and imposed thermal field. When the thermal boundary layer near the vertical wall penetrates the salinity interface, it can disrupt the compositional interface and can lead to layer merging. Different analytical scales were quantified and compared for both configurations. Various combinations of solutal and thermal Rayleigh numbers were investigated to get three different regimes, namely; stagnant regime, layered regime and unicellular regime. For a particular solutal Rayleigh number, a layered structure can originate only for a range of thermal Rayleigh numbers. Lower thermal Rayleigh numbers correspond to a diffusion-dominated stagnant regime. Very high thermal Rayleigh corresponds to a unicellular regime with high convective mixing. Different plots identifying these three regimes, number, thickness and time of existence of DDLs have been studied and plotted. For a given solutal Rayleigh number, an increase in thermal Rayleigh number increases the width but decreases both the number and time of existence of DDLs in the fluid domain. Sudden peaks in the velocity and heat transfer coefficient have also been observed and discussed at the time of merging. The present study is expected to be useful in correlating the double-diffusive convection in many large-scale applications including oceanography, metallurgy, geology, etc. The model has also been developed for three-dimensional geometry, but the results were quite similar to that of 2-D simulations.

Keywords: double diffusive layers, natural convection, Rayleigh number, thermal gradients, compositional gradients

Procedia PDF Downloads 86
521 Effects of Learner-Content Interaction Activities on the Context of Verbal Learning Outcomes in Interactive Courses

Authors: Alper Tolga Kumtepe, Erdem Erdogdu, M. Recep Okur, Eda Kaypak, Ozlem Kaya, Serap Ugur, Deniz Dincer, Hakan Yildirim

Abstract:

Interaction is one of the most important components of open and distance learning. According to Moore, who proposed one of the keystones on interaction types, there are three basic types of interaction: learner-teacher, learner-content, and learner-learner. From these interaction types, learner-content interaction, without doubt, can be identified as the most fundamental one on which all education is based. Efficacy, efficiency, and attraction of open and distance learning systems can be achieved by the practice of effective learner-content interaction. With the development of new technologies, interactive e-learning materials have been commonly used as a resource in open and distance learning, along with the printed books. The intellectual engagement of the learners with the content that is course materials may also affect their satisfaction for the open and distance learning practices in general. Learner satisfaction holds an important place in open and distance learning since it will eventually contribute to the achievement of learning outcomes. Using the learner-content interaction activities in course materials, Anadolu University, by its Open Education system, tries to involve learners in deep and meaningful learning practices. Especially, during the e-learning material design and production processes, identifying appropriate learner-content interaction activities within the context of learning outcomes holds a big importance. Considering the lack of studies adopting this approach, as well as its being a study on the use of e-learning materials in Open Education system, this research holds a big value in open and distance learning literature. In this respect, the present study aimed to investigate a) which learner-content interaction activities included in interactive courses are the most effective in learners’ achievement of verbal information learning outcomes and b) to what extent distance learners are satisfied with these learner-content interaction activities. For this study, the quasi-experimental research design was adopted. The 120 participants of the study were from Anadolu University Open Education Faculty students living in Eskişehir. The students were divided into 6 groups randomly. While 5 of these groups received different learner-content interaction activities as a part of the experiment, the other group served as the control group. The data were collected mainly through two instruments: pre-test and post-test. In addition to those tests, learners’ perceived learning was assessed with an item at the end of the program. The data collected from pre-test and post-test were analyzed by ANOVA, and in the light of the findings of this approximately 24-month study, suggestions for the further design of e-learning materials within the context of learner-content interaction activities will be provided at the conference. The current study is planned to be an antecedent for the following studies that will examine the effects of activities on other learning domains.

Keywords: interaction, distance education, interactivity, online courses

Procedia PDF Downloads 194
520 Advantages of Computer Navigation in Knee Arthroplasty

Authors: Mohammad Ali Al Qatawneh, Bespalchuk Pavel Ivanovich

Abstract:

Computer navigation has been introduced in total knee arthroplasty to improve the accuracy of the procedure. Computer navigation improves the accuracy of bone resection in the coronal and sagittal planes. It was also noted that it normalizes the rotational alignment of the femoral component and fully assesses and balances the deformation of soft tissues in the coronal plane. The work is devoted to the advantages of using computer navigation technology in total knee arthroplasty in 62 patients (11 men and 51 women) suffering from gonarthrosis, aged 51 to 83 years, operated using a computer navigation system, followed up to 3 years from the moment of surgery. During the examination, the deformity variant was determined, and radiometric parameters of the knee joints were measured using the Knee Society Score (KSS), Functional Knee Society Score (FKSS), and Western Ontario and McMaster University Osteoarthritis Index (WOMAC) scales. Also, functional stress tests were performed to assess the stability of the knee joint in the frontal plane and functional indicators of the range of motion. After surgery, improvement was observed in all scales; firstly, the WOMAC values decreased by 5.90 times, and the median value to 11 points (p < 0.001), secondly KSS increased by 3.91 times and reached 86 points (p < 0.001), and the third one is that FKSS data increased by 2.08 times and reached 94 points (p < 0.001). After TKA, the axis deviation of the lower limbs of more than 3 degrees was observed in 4 patients at 6.5% and frontal instability of the knee joint just in 2 cases at 3.2%., The lower incidence of sagittal instability of the knee joint after the operation was 9.6%. The range of motion increased by 1.25 times; the volume of movement averaged 125 degrees (p < 0.001). Computer navigation increases the accuracy of the spatial orientation of the endoprosthesis components in all planes, reduces the variability of the axis of the lower limbs within ± 3 °, allows you to achieve the best results of surgical interventions, and can be used to solve most basic tasks, allowing you to achieve excellent and good outcomes of operations in 100% of cases according to the WOMAC scale. With diaphyseal deformities of the femur and/or tibia, as well as with obstruction of their medullary canal, the use of computer navigation is the method of choice. The use of computer navigation prevents the occurrence of flexion contracture and hyperextension of the knee joint during the distal sawing of the femur. Using the navigation system achieves high-precision implantation for the endoprosthesis; in addition, it achieves an adequate balance of the ligaments, which contributes to the stability of the joint, reduces pain, and allows for the achievement of a good functional result of the treatment.

Keywords: knee joint, arthroplasty, computer navigation, advantages

Procedia PDF Downloads 91
519 Tribological Behaviour of the Degradation Process of Additive Manufactured Stainless Steel 316L

Authors: Yunhan Zhang, Xiaopeng Li, Zhongxiao Peng

Abstract:

Additive manufacturing (AM) possesses several key characteristics, including high design freedom, energy-efficient manufacturing process, reduced material waste, high resolution of finished products, and excellent performance of finished products. These advantages have garnered widespread attention and fueled rapid development in recent decades. AM has significantly broadened the spectrum of available materials in the manufacturing industry and is gradually replacing some traditionally manufactured parts. Similar to components produced via traditional methods, products manufactured through AM are susceptible to degradation caused by wear during their service life. Given the prevalence of 316L stainless steel (SS) parts and the limited research on the tribological behavior of 316L SS samples or products fabricated using AM technology, this study aims to investigate the degradation process and wear mechanisms of 316L SS disks fabricated using AM technology. The wear mechanisms and tribological performance of these AM-manufactured samples are compared with commercial 316L SS samples made using conventional methods. Additionally, methods to enhance the tribological performance of additive-manufactured SS samples are explored. Four disk samples with a diameter of 75 mm and a thickness of 10 mm are prepared. Two of them (Group A) are prepared from a purchased SS bar using a milling method. The other two disks (Group B), with the same dimensions, are made of Gas Atomized 316L Stainless Steel (size range: 15-45 µm) purchased from Carpenter Additive and produced using Laser Powder Bed Fusion (LPBF). Pin-on-disk tests are conducted on these disks, which have similar surface roughness and hardness levels. Multiple tests are carried out under various operating conditions, including varying loads and/or speeds, and the friction coefficients are measured during these tests. In addition, the evolution of the surface degradation processes is monitored by creating moulds of the wear tracks and quantitatively analyzing the surface morphologies of the mould images. This analysis involves quantifying the depth and width of the wear tracks and analyzing the wear debris generated during the wear processes. The wear mechanisms and wear performance of these two groups of SS samples are compared. The effects of load and speed on the friction coefficient and wear rate are investigated. The ultimate goal is to gain a better understanding of the surface degradation of additive-manufactured SS samples. This knowledge is crucial for enhancing their anti-wear performance and extending their service life.

Keywords: degradation process, additive manufacturing, stainless steel, surface features

Procedia PDF Downloads 79
518 Effects of Cow Milk and Camel Milk on Improving Covered Distance in the 6-Minute Walk Test Performed by Obese Young Adults

Authors: Mo'ath F. Bataineh

Abstract:

Exercise is highly effective against obesity. Milk contains several components that support exercising and physical performance. However, there is a lack of published studies on the relationship between camel milk and ability to exercise. A pilot study was conducted with the purpose of comparing the impact of milk type (Cow vs Camel) compared with water on physical performance. Seven male obese participants (age: 20.3 ± 1.5 years; BMI: 35.7 ± 2.7 kg/m2; resting heart rate: 92.7 ± 4.7 beats per minute; training frequency: 4.4 ± 0.8 days/week) were recruited for this pilot study. In a randomized counterbalanced crossover design, participants took part in 3 trials that included ingesting 3 different pre workout drinks in a random order. The pre workout drinks were water (W), whole cow milk (CW), and whole camel milk (CM). On each trial day, participants were asked to report to the laboratory after an overnight fasting. Following a 15-minute short recovery period after their arrival to the laboratory, each participant was presented with a 500 ml of the assigned experimental drink and were asked to ingest it in one minute and at least 120 minutes prior to performing the 6-minute walk test. All drinks were presented at room temperature. Trials with different experimental drinks were performed on separate days. Participants were given at least 4 days of washout period between trials. The trial order was randomized to avoid bias due to learning effect. The 6-minute walk test was performed by all participants and immediately at the conclusion of the test, the covered distance in meters and the rating of perceived exertion (RPE) were recorded. All data were analysed using SPSS software (Version 29.0). The repeated measures ANOVA testing of collected data showed a significant main effect for treatment on covered distance in meters, F (2, 8) = 5.794, p=0.028 with a large effect size (partial eta squared (ηp2) =0.592). Also, LSD post hoc pairwise comparison analysis revealed that Camel milk and Cow milk were significantly (p = 0.044 and p = 0.020 respectively) superior to water in improving the covered distance during the test and that Camel milk tended to be better than Cow’s milk. The RPE values were not significantly different between experimental drinks (p>0.05). In conclusion, milk is superior to water as a pre workout drink, and camel milk is comparable to cow’s milk in enhancing ability to support a higher level of performance compared with water, therefore, camel milk could be used to replace cow’s milk as a suitable pre-exercise drink without expecting any negative consequences on physical performance. The fact that these positive results were obtained with obese individuals should encourage using camel milk without the fear of disturbing physical performance in other weight categories.

Keywords: camel milk, cow milk, obesity, physical performance, pre-workout drink

Procedia PDF Downloads 47
517 Analysis of Thermal Comfort in Educational Buildings Using Computer Simulation: A Case Study in Federal University of Parana, Brazil

Authors: Ana Julia C. Kfouri

Abstract:

A prerequisite of any building design is to provide security to the users, taking the climate and its physical and physical-geometrical variables into account. It is also important to highlight the relevance of the right material elements, which arise between the person and the agent, and must provide improved thermal comfort conditions and low environmental impact. Furthermore, technology is constantly advancing, as well as computational simulations for projects, and they should be used to develop sustainable building and to provide higher quality of life for its users. In relation to comfort, the more satisfied the building users are, the better their intellectual performance will be. Based on that, the study of thermal comfort in educational buildings is of relative relevance, since the thermal characteristics in these environments are of vital importance to all users. Moreover, educational buildings are large constructions and when they are poorly planned and executed they have negative impacts to the surrounding environment, as well as to the user satisfaction, throughout its whole life cycle. In this line of thought, to evaluate university classroom conditions, it was accomplished a detailed case study on the thermal comfort situation at Federal University of Parana (UFPR). The main goal of the study is to perform a thermal analysis in three classrooms at UFPR, in order to address the subjective and physical variables that influence thermal comfort inside the classroom. For the assessment of the subjective components, a questionnaire was applied in order to evaluate the reference for the local thermal conditions. Regarding the physical variables, it was carried out on-site measurements, which consist of performing measurements of air temperature and air humidity, both inside and outside the building, as well as meteorological variables, such as wind speed and direction, solar radiation and rainfall, collected from a weather station. Then, a computer simulation based on results from the EnergyPlus software to reproduce air temperature and air humidity values of the three classrooms studied was conducted. The EnergyPlus outputs were analyzed and compared with the on-site measurement results to be possible to come out with a conclusion related to the local thermal conditions. The methodological approach included in the study allowed a distinct perspective in an educational building to better understand the classroom thermal performance, as well as the reason of such behavior. Finally, the study induces a reflection about the importance of thermal comfort for educational buildings and propose thermal alternatives for future projects, as well as a discussion about the significant impact of using computer simulation on engineering solutions, in order to improve the thermal performance of UFPR’s buildings.

Keywords: computer simulation, educational buildings, EnergyPlus, humidity, temperature, thermal comfort

Procedia PDF Downloads 388
516 Links between Inflammation and Insulin Resistance in Children with Morbid Obesity and Metabolic Syndrome

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Obesity is a clinical state associated with low-grade inflammation. It is also a major risk factor for insulin resistance (IR). In its advanced stages, metabolic syndrome (MetS), a much more complicated disease which may lead to life-threatening problems, may develop. Obesity-mediated IR seems to correlate with the inflammation. Human studies performed particularly on pediatric population are scarce. The aim of this study is to detect possible associations between inflammation and IR in terms of some related ratios. 549 children were grouped according to their age- and sex-based body mass index (BMI) percentile tables of WHO. MetS components were determined. Informed consent and approval from the Ethics Committee for Clinical Investigations were obtained. The principles of the Declaration of Helsinki were followed. The exclusion criteria were infection, inflammation, chronic diseases and those under drug treatment. Anthropometric measurements were obtained. Complete blood cell, fasting blood glucose, insulin, and C-reactive protein (CRP) analyses were performed. Homeostasis model assessment of insulin resistance (HOMA-IR), systemic immune inflammation (SII) index, tense index, alanine aminotransferase to aspartate aminotransferase ratio (ALT/AST), neutrophils to lymphocyte (NLR), platelet to lymphocyte, and lymphocyte to monocyte ratios were calculated. Data were evaluated by statistical analyses. The degree for statistical significance was 0.05. Statistically significant differences were found among the BMI values of the groups (p < 0.001). Strong correlations were detected between the BMI and waist circumference (WC) values in all groups. Tense index values were also correlated with both BMI and WC values in all groups except overweight (OW) children. SII index values of children with normal BMI were significantly different from the values obtained in OW, obese, morbid obese and MetS groups. Among all the other lymphocyte ratios, NLR exhibited a similar profile. Both HOMA-IR and ALT/AST values displayed an increasing profile from N towards MetS3 group. BMI and WC values were correlated with HOMA-IR and ALT/AST. Both in morbid obese and MetS groups, significant correlations between CRP versus SII index as well as HOMA-IR versus ALT/AST were found. ALT/AST and HOMA-IR values were correlated with NLR in morbid obese group and with SII index in MetS group, (p < 0.05), respectively. In conclusion, these findings showed that some parameters may exhibit informative differences between the early and late stages of obesity. Important associations among HOMA-IR, ALT/AST, NLR and SII index have come to light in the morbid obese and MetS groups. This study introduced the SII index and NLR as important inflammatory markers for the discrimination of normal and obese children. Interesting links were observed between inflammation and IR in morbid obese children and those with MetS, both being late stages of obesity.

Keywords: children, inflammation, insulin resistance, metabolic syndrome, obesity

Procedia PDF Downloads 137
515 Nuclear Materials and Nuclear Security in India: A Brief Overview

Authors: Debalina Ghoshal

Abstract:

Nuclear security is the ‘prevention and detection of, and response to unauthorised removal, sabotage, unauthorised access, illegal transfer or other malicious acts involving nuclear or radiological material or their associated facilities.’ Ever since the end of Cold War, nuclear materials security has remained a concern for global security. However, with the increase in terrorist attacks not just in India especially, security of nuclear materials remains a priority. Therefore, India has made continued efforts to tighten its security on nuclear materials to prevent nuclear theft and radiological terrorism. Nuclear security is different from nuclear safety. Physical security is also a serious concern and India had been careful of the physical security of its nuclear materials. This is more so important since India is expanding its nuclear power capability to generate electricity for economic development. As India targets 60,000 MW of electricity production by 2030, it has a range of reactors to help it achieve its goal. These include indigenous Pressurised Heavy Water Reactors, now standardized at 700 MW per reactor Light Water Reactors, and the indigenous Fast Breeder Reactors that can generate more fuel for the future and enable the country to utilise its abundant thorium resource. Nuclear materials security can be enhanced through two important ways. One is through proliferation resistant technologies and diplomatic efforts to take non proliferation initiatives. The other is by developing technical means to prevent any leakage in nuclear materials in the hands of asymmetric organisations. New Delhi has already implemented IAEA Safeguards on their civilian nuclear installations. Moreover, the IAEA Additional Protocol has also been ratified by India in order to enhance its transparency of nuclear material and strengthen nuclear security. India is a party to the IAEA Conventions on Nuclear Safety and Security, and in particular the 1980 Convention on the Physical Protection of Nuclear Material and its amendment in 2005, Code of Conduct in Safety and Security of Radioactive Sources, 2006 which enables the country to provide for the highest international standards on nuclear and radiological safety and security. India's nuclear security approach is driven by five key components: Governance, Nuclear Security Practice and Culture, Institutions, Technology and International Cooperation. However, there is still scope for further improvements to strengthen nuclear materials and nuclear security. The NTI Report, ‘India’s improvement reflects its first contribution to the IAEA Nuclear Security Fund etc. in the future, India’s nuclear materials security conditions could be further improved by strengthening its laws and regulations for security and control of materials, particularly for control and accounting of materials, mitigating the insider threat, and for the physical security of materials during transport. India’s nuclear materials security conditions also remain adversely affected due to its continued increase in its quantities of nuclear material, and high levels of corruption among public officials.’ This paper would study briefly the progress made by India in nuclear and nuclear material security and the step ahead for India to further strengthen this.

Keywords: India, nuclear security, nuclear materials, non proliferation

Procedia PDF Downloads 353
514 Developing Pedagogy for Argumentation and Teacher Agency: An Educational Design Study in the UK

Authors: Zeynep Guler

Abstract:

Argumentation and the production of scientific arguments are essential components that are necessary for helping students become scientifically literate through engaging them in constructing and critiquing ideas. Incorporating argumentation into science classrooms is challenging and can be a long-term process for both students and teachers. Students have difficulty in engaging tasks that require them to craft arguments, evaluate them to seek weaknesses, and revise them. Teachers also struggle with facilitating argumentation when they have underdeveloped science practices, underdeveloped pedagogical knowledge for argumentation science teaching, or underdeveloped teaching practice with argumentation (or a combination of all three). Thus, there is a need to support teachers in developing pedagogy for science teaching as argumentation, planning and implementing teaching practice for facilitating argumentation and also in becoming more agentic in this regards. Looking specifically at the experience of agency within education, it is arguable that agency is necessary for teachers’ renegotiation of professional purposes and practices in the light of changing educational practices. This study investigated how science teachers develop pedagogy for argumentation both individually and with their colleagues and also how teachers become more agentic (or not) through the active engagement of their contexts-for-action that refer to this as an ecological understanding of agency in order to positively influence or change their practice and their students' engagement with argumentation over two academic years. Through educational design study, this study conducted with three secondary science teachers (key stage 3-year 7 students aged 11-12) in the UK to find out if similar or different patterns of developing pedagogy for argumentation and of becoming more agentic emerge as they engage in planning and implementing a cycle of activities during the practice of teaching science with argumentation. Data from video and audio-recording of classroom practice and open-ended interviews with the science teachers were analysed using content analysis. The findings indicated that all the science teachers perceived strong agency in their opportunities to develop and apply pedagogical practices within the classroom. The teachers were pro-actively shaping their practices and classroom contexts in ways that were over and above the amendments to their pedagogy. They demonstrated some outcomes in developing pedagogy for argumentation and becoming more agentic in their teaching in this regards as a result of the collaboration with their colleagues and researcher; some appeared more agentic than others. The role of the collaboration between their colleagues was seen crucial for the teachers’ practice in the schools: close collaboration and support from other teachers in planning and implementing new educational innovations were seen as crucial for the development of pedagogy and becoming more agentic in practice. They needed to understand the importance of scientific argumentation but also understand how it can be planned and integrated into classroom practice. They also perceived constraint emerged from their lack of competence and knowledge in posing appropriate questions to help the students engage in argumentation, providing support for the students' construction of oral and written arguments.

Keywords: argumentation, teacher professional development, teacher agency, students' construction of argument

Procedia PDF Downloads 134
513 Cross-Validation of the Data Obtained for ω-6 Linoleic and ω-3 α-Linolenic Acids Concentration of Hemp Oil Using Jackknife and Bootstrap Resampling

Authors: Vibha Devi, Shabina Khanam

Abstract:

Hemp (Cannabis sativa) possesses a rich content of ω-6 linoleic and ω-3 linolenic essential fatty acid in the ratio of 3:1, which is a rare and most desired ratio that enhances the quality of hemp oil. These components are beneficial for the development of cell and body growth, strengthen the immune system, possess anti-inflammatory action, lowering the risk of heart problem owing to its anti-clotting property and a remedy for arthritis and various disorders. The present study employs supercritical fluid extraction (SFE) approach on hemp seed at various conditions of parameters; temperature (40 - 80) °C, pressure (200 - 350) bar, flow rate (5 - 15) g/min, particle size (0.430 - 1.015) mm and amount of co-solvent (0 - 10) % of solvent flow rate through central composite design (CCD). CCD suggested 32 sets of experiments, which was carried out. As SFE process includes large number of variables, the present study recommends the application of resampling techniques for cross-validation of the obtained data. Cross-validation refits the model on each data to achieve the information regarding the error, variability, deviation etc. Bootstrap and jackknife are the most popular resampling techniques, which create a large number of data through resampling from the original dataset and analyze these data to check the validity of the obtained data. Jackknife resampling is based on the eliminating one observation from the original sample of size N without replacement. For jackknife resampling, the sample size is 31 (eliminating one observation), which is repeated by 32 times. Bootstrap is the frequently used statistical approach for estimating the sampling distribution of an estimator by resampling with replacement from the original sample. For bootstrap resampling, the sample size is 32, which was repeated by 100 times. Estimands for these resampling techniques are considered as mean, standard deviation, variation coefficient and standard error of the mean. For ω-6 linoleic acid concentration, mean value was approx. 58.5 for both resampling methods, which is the average (central value) of the sample mean of all data points. Similarly, for ω-3 linoleic acid concentration, mean was observed as 22.5 through both resampling. Variance exhibits the spread out of the data from its mean. Greater value of variance exhibits the large range of output data, which is 18 for ω-6 linoleic acid (ranging from 48.85 to 63.66 %) and 6 for ω-3 linoleic acid (ranging from 16.71 to 26.2 %). Further, low value of standard deviation (approx. 1 %), low standard error of the mean (< 0.8) and low variance coefficient (< 0.2) reflect the accuracy of the sample for prediction. All the estimator value of variance coefficients, standard deviation and standard error of the mean are found within the 95 % of confidence interval.

Keywords: resampling, supercritical fluid extraction, hemp oil, cross-validation

Procedia PDF Downloads 141
512 Forecasting Residential Water Consumption in Hamilton, New Zealand

Authors: Farnaz Farhangi

Abstract:

Many people in New Zealand believe that the access to water is inexhaustible, and it comes from a history of virtually unrestricted access to it. For the region like Hamilton which is one of New Zealand’s fastest growing cities, it is crucial for policy makers to know about the future water consumption and implementation of rules and regulation such as universal water metering. Hamilton residents use water freely and they do not have any idea about how much water they use. Hence, one of proposed objectives of this research is focusing on forecasting water consumption using different methods. Residential water consumption time series exhibits seasonal and trend variations. Seasonality is the pattern caused by repeating events such as weather conditions in summer and winter, public holidays, etc. The problem with this seasonal fluctuation is that, it dominates other time series components and makes difficulties in determining other variations (such as educational campaign’s effect, regulation, etc.) in time series. Apart from seasonality, a stochastic trend is also combined with seasonality and makes different effects on results of forecasting. According to the forecasting literature, preprocessing (de-trending and de-seasonalization) is essential to have more performed forecasting results, while some other researchers mention that seasonally non-adjusted data should be used. Hence, I answer the question that is pre-processing essential? A wide range of forecasting methods exists with different pros and cons. In this research, I apply double seasonal ARIMA and Artificial Neural Network (ANN), considering diverse elements such as seasonality and calendar effects (public and school holidays) and combine their results to find the best predicted values. My hypothesis is the examination the results of combined method (hybrid model) and individual methods and comparing the accuracy and robustness. In order to use ARIMA, the data should be stationary. Also, ANN has successful forecasting applications in terms of forecasting seasonal and trend time series. Using a hybrid model is a way to improve the accuracy of the methods. Due to the fact that water demand is dominated by different seasonality, in order to find their sensitivity to weather conditions or calendar effects or other seasonal patterns, I combine different methods. The advantage of this combination is reduction of errors by averaging of each individual model. It is also useful when we are not sure about the accuracy of each forecasting model and it can ease the problem of model selection. Using daily residential water consumption data from January 2000 to July 2015 in Hamilton, I indicate how prediction by different methods varies. ANN has more accurate forecasting results than other method and preprocessing is essential when we use seasonal time series. Using hybrid model reduces forecasting average errors and increases the performance.

Keywords: artificial neural network (ANN), double seasonal ARIMA, forecasting, hybrid model

Procedia PDF Downloads 339
511 Ecofriendly Synthesis of Au-Ag@AgCl Nanocomposites and Their Catalytic Activity on Multicomponent Domino Annulation-Aromatization for Quinoline Synthesis

Authors: Kanti Sapkota, Do Hyun Lee, Sung Soo Han

Abstract:

Nanocomposites have been widely used in various fields such as electronics, catalysis, and in chemical, biological, biomedical and optical fields. They display broad biomedical properties like antidiabetic, anticancer, antioxidant, antimicrobial and antibacterial activities. Moreover, nanomaterials have been used for wastewater treatment. Particularly, bimetallic hybrid nanocomposites exhibit unique features as compared to their monometallic components. Hybrid nanomaterials not only afford the multifunctionality endowed by their constituents but can also show synergistic properties. In addition, these hybrid nanomaterials have noteworthy catalytic and optical properties. Notably, Au−Ag based nanoparticles can be employed in sensor and catalysis due to their characteristic composition-tunable plasmonic properties. Due to their importance and usefulness, various efforts were developed for their preparation. Generally, chemical methods have been described to synthesize such bimetallic nanocomposites. In such chemical synthesis, harmful and hazardous chemicals cause environmental contamination and increase toxicity levels. Therefore, ecologically benevolent processes for the synthesis of nanomaterials are highly desirable to diminish such environmental and safety concerns. In this regard, here we disclose a simple, cost-effective, external additive free and eco-friendly method for the synthesis of Au-Ag@AgCl nanocomposites using Nephrolepis cordifolia root extract. Au-Ag@AgCl NCs were obtained by the simultaneous reduction of cationic Ag and Au into AgCl in the presence of plant extract. The particle size of 10 to 50 nm was observed with the average diameter of 30 nm. The synthesized nanocomposite was characterized by various modern characterization techniques. For example, UV−visible spectroscopy was used to determine the optical activity of the synthesized NCs, and Fourier transform infrared (FT-IR) spectroscopy was employed to investigate the functional groups present in the biomolecules that were responsible for both reducing and capping agents during the formation of nanocomposites. Similarly, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and energy-dispersive X-ray (EDX) spectroscopy were used to determine crystallinity, size, oxidation states, thermal stability and weight loss of the synthesized nanocomposites. As a synthetic application, the synthesized nanocomposite exhibited excellent catalytic activity for the multicomponent synthesis of biologically interesting quinoline molecules via domino annulation-aromatization reaction of aniline, arylaldehyde, and phenyl acetylene derivatives. Interestingly, the nanocatalyst was efficiently recycled for five times without substantial loss of catalytic properties.

Keywords: nanoparticles, catalysis, multicomponent, quinoline

Procedia PDF Downloads 128
510 The Effects of Qigong Exercise Intervention on the Cognitive Function in Aging Adults

Authors: D. Y. Fong, C. Y. Kuo, Y. T. Chiang, W. C. Lin

Abstract:

Objectives: Qigong is an ancient Chinese practice in pursuit of a healthier body and a more peaceful mindset. It emphasizes on the restoration of vital energy (Qi) in body, mind, and spirit. The practice is the combination of gentle movements and mild breathing which help the doers reach the condition of tranquility. On account of the features of Qigong, first, we use cross-sectional methodology to compare the differences among the varied levels of Qigong practitioners on cognitive function with event-related potential (ERP) and electroencephalography (EEG). Second, we use the longitudinal methodology to explore the effects on the Qigong trainees for pretest and posttest on ERP and EEG. Current study adopts Attentional Network Test (ANT) task to examine the participants’ cognitive function, and aging-related researches demonstrated a declined tread on the cognition in older adults and exercise might ameliorate the deterioration. Qigong exercise integrates physical posture (muscle strength), breathing technique (aerobic ability) and focused intention (attention) that researchers hypothesize it might improve the cognitive function in aging adults. Method: Sixty participants were involved in this study, including 20 young adults (21.65±2.41 y) with normal physical activity (YA), 20 Qigong experts (60.69 ± 12.42 y) with over 7 years Qigong practice experience (QE), and 20 normal and healthy adults (52.90±12.37 y) with no Qigong practice experience as experimental group (EG). The EG participants took Qigong classes 2 times a week and 2 hours per time for 24 weeks with the purpose of examining the effect of Qigong intervention on cognitive function. ANT tasks (alert network, orient network, and executive control) were adopted to evaluate participants’ cognitive function via ERP’s P300 components and P300 amplitude topography. Results: Behavioral data: 1.The reaction time (RT) of YA is faster than the other two groups, and EG was faster than QE in the cue and flanker conditions of ANT task. 2. The RT of posttest was faster than pretest in EG in the cue and flanker conditions. 3. No difference among the three groups on orient, alert, and execute control networks. ERP data: 1. P300 amplitude detection in QE was larger than EG at Fz electrode in orient, alert, and execute control networks. 2. P300 amplitude in EG was larger at pretest than posttest on the orient network. 3. P300 Latency revealed no difference among the three groups in the three networks. Conclusion: Taken together these findings, they provide neuro-electrical evidence that older adults involved in Qigong practice may develop a more overall compensatory mechanism and also benefit the performance of behavior.

Keywords: Qigong, cognitive function, aging, event-related potential (ERP)

Procedia PDF Downloads 394
509 Encouraging the Uptake of Entrepreneurship by Graduates of Higher Education Institutions in South Africa

Authors: Chux Gervase Iwu, Simon Nsengimane

Abstract:

Entrepreneurship stimulates socio-economic development in many countries, if not all. It creates jobs and decreases unemployment and inequality. There are other benefits that are accruable from entrepreneurship, namely the empowerment of women and the promotion of better livelihoods. Innovation has become a weapon for business competition, growth, and sustainability. Paradoxically, it is a threat to businesses because products can be duplicated; new products may decrease the market share of existing ones or delete them from the market. This creates a constant competitive environment that calls for updates, innovation, and the invention of new products and services. Thus, the importance of higher education in instilling a good entrepreneurial mindset in students has become even more critical. It can be argued that the business environment is under enormous pressure from several factors, including the fourth industrial revolution, which calls for the adoption and use of information and communication technology, which is the catalyst for many innovations and organisational changes. Therefore, it is crucial that higher education students are equipped with relevant knowledge and skills to respond effectively to the needs of the business environment and create a vibrant entrepreneurship ecosystem. In South Africa, entrepreneurship education or some form of it has been a privilege for economic and management fields of study, leaving behind other fields. Entrepreneurship should not be limited to business faculties but rather extended to other fields of study. This is perhaps the reason for low levels of entrepreneurship uptake among South African graduates if they are compared with the graduates in other countries. There may be other reasons for the low entrepreneurship uptake. Some of these have been documented in extant literature to include (1) not enough time was spent teaching entrepreneurship in the business faculties, (2) the skills components in the curricula are insufficient, and (3) the overall attitudes/mindsets necessary to establish and run sustainable enterprises seem absent. Therefore, four important areas are recognised as crucial for the effective implementation of entrepreneurship education: policy, private sector engagement, curriculum development, and teacher development. The purpose of this research is to better comprehend the views, aspirations, and expectations of students and faculty members to design an entrepreneurial teaching model for higher education institutions. A qualitative method will be used to conduct a purposive interview with undergraduate and graduate students in select higher institutions. Members of faculty will also be included in the sample as well as, where possible, two or more government personnel responsible for higher education policy development. At present, interpretative analysis is proposed for the analysis of the interviews with the support of Atlas Ti. It is hoped that an entrepreneurship education model in the South African context is realised through this study.

Keywords: entrepreneurship education, higher education institution, graduate unemployment, curriculum development

Procedia PDF Downloads 79
508 Raman Tweezers Spectroscopy Study of Size Dependent Silver Nanoparticles Toxicity on Erythrocytes

Authors: Surekha Barkur, Aseefhali Bankapur, Santhosh Chidangil

Abstract:

Raman Tweezers technique has become prevalent in single cell studies. This technique combines Raman spectroscopy which gives information about molecular vibrations, with optical tweezers which use a tightly focused laser beam for trapping the single cells. Thus Raman Tweezers enabled researchers analyze single cells and explore different applications. The applications of Raman Tweezers include studying blood cells, monitoring blood-related disorders, silver nanoparticle-induced stress, etc. There is increased interest in the toxic effect of nanoparticles with an increase in the various applications of nanoparticles. The interaction of these nanoparticles with the cells may vary with their size. We have studied the effect of silver nanoparticles of sizes 10nm, 40nm, and 100nm on erythrocytes using Raman Tweezers technique. Our aim was to investigate the size dependence of the nanoparticle effect on RBCs. We used 785nm laser (Starbright Diode Laser, Torsana Laser Tech, Denmark) for both trapping and Raman spectroscopic studies. 100 x oil immersion objectives with high numerical aperture (NA 1.3) is used to focus the laser beam into a sample cell. The back-scattered light is collected using the same microscope objective and focused into the spectrometer (Horiba Jobin Vyon iHR320 with 1200grooves/mm grating blazed at 750nm). Liquid nitrogen cooled CCD (Symphony CCD-1024x256-OPEN-1LS) was used for signal detection. Blood was drawn from healthy volunteers in vacutainer tubes and centrifuged to separate the blood components. 1.5 ml of silver nanoparticles was washed twice with distilled water leaving 0.1 ml silver nanoparticles in the bottom of the vial. The concentration of silver nanoparticles is 0.02mg/ml so the 0.03mg of nanoparticles will be present in the 0.1 ml nanoparticles obtained. The 25 ul of RBCs were diluted in 2 ml of PBS solution and then treated with 50 ul (0.015mg) of nanoparticles and incubated in CO2 incubator. Raman spectroscopic measurements were done after 24 hours and 48 hours of incubation. All the spectra were recorded with 10mW laser power (785nm diode laser), 60s of accumulation time and 2 accumulations. Major changes were observed in the peaks 565 cm-1, 1211 cm-1, 1224 cm-1, 1371 cm-1, 1638 cm-1. A decrease in intensity of 565 cm-1, increase in 1211 cm-1 with a reduction in 1224 cm-1, increase in intensity of 1371 cm-1 also peak disappearing at 1635 cm-1 indicates deoxygenation of hemoglobin. Nanoparticles with higher size were showing maximum spectral changes. Lesser changes observed in case of 10nm nanoparticle-treated erythrocyte spectra.

Keywords: erythrocytes, nanoparticle-induced toxicity, Raman tweezers, silver nanoparticles

Procedia PDF Downloads 293
507 Carbon Capture and Storage Using Porous-Based Aerogel Materials

Authors: Rima Alfaraj, Abeer Alarawi, Murtadha AlTammar

Abstract:

The global energy landscape heavily relies on the oil and gas industry, which faces the critical challenge of reducing its carbon footprint. To address this issue, the integration of advanced materials like aerogels has emerged as a promising solution to enhance sustainability and environmental performance within the industry. This study thoroughly examines the application of aerogel-based technologies in the oil and gas sector, focusing particularly on their role in carbon capture and storage (CCS) initiatives. Aerogels, known for their exceptional properties, such as high surface area, low density, and customizable pore structure, have garnered attention for their potential in various CCS strategies. The review delves into various fabrication techniques utilized in producing aerogel materials, including sol-gel, supercritical drying, and freeze-drying methods, to assess their suitability for specific industry applications. Beyond fabrication, the practicality of aerogel materials in critical areas such as flow assurance, enhanced oil recovery, and thermal insulation is explored. The analysis spans a wide range of applications, from potential use in pipelines and equipment to subsea installations, offering valuable insights into the real-world implementation of aerogels in the oil and gas sector. The paper also investigates the adsorption and storage capabilities of aerogel-based sorbents, showcasing their effectiveness in capturing and storing carbon dioxide (CO₂) molecules. Optimization of pore size distribution and surface chemistry is examined to enhance the affinity and selectivity of aerogels towards CO₂, thereby improving the efficiency and capacity of CCS systems. Additionally, the study explores the potential of aerogel-based membranes for separating and purifying CO₂ from oil and gas streams, emphasizing their role in the carbon capture and utilization (CCU) value chain in the industry. Emerging trends and future perspectives in integrating aerogel-based technologies within the oil and gas sector are also discussed, including the development of hybrid aerogel composites and advanced functional components to further enhance material performance and versatility. By synthesizing the latest advancements and future directions in aerogel used for CCS applications in the oil and gas industry, this review offers a comprehensive understanding of how these innovative materials can aid in transitioning towards a more sustainable and environmentally conscious energy landscape. The insights provided can assist in strategic decision-making, drive technology development, and foster collaborations among academia, industry, and policymakers to promote the widespread adoption of aerogel-based solutions in the oil and gas sector.

Keywords: CCS, porous, carbon capture, oil and gas, sustainability

Procedia PDF Downloads 45
506 Approach to Honey Volatiles' Profiling by Gas Chromatography and Mass Spectrometry

Authors: Igor Jerkovic

Abstract:

Biodiversity of flora provides many different nectar sources for the bees. Unifloral honeys possess distinctive flavours, mainly derived from their nectar sources (characteristic volatile organic components (VOCs)). Specific or nonspecific VOCs (chemical markers) could be used for unifloral honey characterisation as addition to the melissopalynologycal analysis. The main honey volatiles belong, in general, to three principal categories: terpenes, norisoprenoids, and benzene derivatives. Some of these substances have been described as characteristics of the floral source, and other compounds, like several alcohols, branched aldehydes, and furan derivatives, may be related to the microbial purity of honey processing and storage conditions. Selection of the extraction method for the honey volatiles profiling should consider that heating of the honey produce different artefacts and therefore conventional methods of VOCs isolation (such as hydrodistillation) cannot be applied for the honey. Two-way approach for the isolation of the honey VOCs was applied using headspace solid-phase microextraction (HS-SPME) and ultrasonic solvent extraction (USE). The extracts were analysed by gas chromatography and mass spectrometry (GC-MS). HS-SPME (with the fibers of different polarity such as polydimethylsiloxane/ divinylbenzene (PDMS/DVB) or divinylbenzene/carboxene/ polydimethylsiloxane (DVB/CAR/PDMS)) enabled isolation of high volatile headspace VOCs of the honey samples. Among them, some characteristic or specific compounds can be found such as 3,4-dihydro-3-oxoedulan (in Centaurea cyanus L. honey) or 1H-indole, methyl anthranilate, and cis-jasmone (in Citrus unshiu Marc. honey). USE with different solvents (mainly dichloromethane or the mixture pentane : diethyl ether 1 : 2 v/v) enabled isolation of less volatile and semi-volatile VOCs of the honey samples. Characteristic compounds from C. unshiu honey extracts were caffeine, 1H-indole, 1,3-dihydro-2H-indol-2-one, methyl anthranilate, and phenylacetonitrile. Sometimes, the selection of solvent sequence was useful for more complete profiling such as sequence I: pentane → diethyl ether or sequence II: pentane → pentane/diethyl ether (1:2, v/v) → dichloromethane). The extracts with diethyl ether contained hydroquinone and 4-hydroxybenzoic acid as the major compounds, while (E)-4-(r-1’,t-2’,c-4’-trihydroxy-2’,6’,6’-trimethylcyclo-hexyl)but-3-en-2-one predominated in dichloromethane extracts of Allium ursinum L. honey. With this two-way approach, it was possible to obtain a more detailed insight into the honey volatile and semi-volatile compounds and to minimize the risks of compound discrimination due to their partial extraction that is of significant importance for the complete honey profiling and identification of the chemical biomarkers that can complement the pollen analysis.

Keywords: honey chemical biomarkers, honey volatile compounds profiling, headspace solid-phase microextraction (HS-SPME), ultrasonic solvent extraction (USE)

Procedia PDF Downloads 203