Search results for: score prediction
551 Thermal Behaviour of a Low-Cost Passive Solar House in Somerset East, South Africa
Authors: Ochuko K. Overen, Golden Makaka, Edson L. Meyer, Sampson Mamphweli
Abstract:
Low-cost housing provided for people with small incomes in South Africa are characterized by poor thermal performance. This is due to inferior craftsmanship with no regard to energy efficient design during the building process. On average, South African households spend 14% of their total monthly income on energy needs, in particular space heating; which is higher than the international benchmark of 10% for energy poverty. Adopting energy efficient passive solar design strategies and superior thermal building materials can create a stable thermal comfort environment indoors. Thereby, reducing energy consumption for space heating. The aim of this study is to analyse the thermal behaviour of a low-cost house integrated with passive solar design features. A low-cost passive solar house with superstructure fly ash brick walls was designed and constructed in Somerset East, South Africa. Indoor and outdoor meteorological parameters of the house were monitored for a period of one year. The ASTM E741-11 Standard was adopted to perform ventilation test in the house. In summer, the house was found to be thermally comfortable for 66% of the period monitored, while for winter it was about 79%. The ventilation heat flow rate of the windows and doors were found to be 140 J/s and 68 J/s, respectively. Air leakage through cracks and openings in the building envelope was 0.16 m3/m2h with a corresponding ventilation heat flow rate of 24 J/s. The indoor carbon dioxide concentration monitored overnight was found to be 0.248%, which is less than the maximum range limit of 0.500%. The prediction percentage dissatisfaction of the house shows that 86% of the occupants will express the thermal satisfaction of the indoor environment. With a good operation of the house, it can create a well-ventilated, thermal comfortable and nature luminous indoor environment for the occupants. Incorporating passive solar design in low-cost housing can be one of the long and immediate solutions to the energy crisis facing South Africa.Keywords: energy efficiency, low-cost housing, passive solar design, rural development, thermal comfort
Procedia PDF Downloads 262550 Advances in Machine Learning and Deep Learning Techniques for Image Classification and Clustering
Authors: R. Nandhini, Gaurab Mudbhari
Abstract:
Ranging from the field of health care to self-driving cars, machine learning and deep learning algorithms have revolutionized the field with the proper utilization of images and visual-oriented data. Segmentation, regression, classification, clustering, dimensionality reduction, etc., are some of the Machine Learning tasks that helped Machine Learning and Deep Learning models to become state-of-the-art models for the field where images are key datasets. Among these tasks, classification and clustering are essential but difficult because of the intricate and high-dimensional characteristics of image data. This finding examines and assesses advanced techniques in supervised classification and unsupervised clustering for image datasets, emphasizing the relative efficiency of Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), Deep Embedded Clustering (DEC), and self-supervised learning approaches. Due to the distinctive structural attributes present in images, conventional methods often fail to effectively capture spatial patterns, resulting in the development of models that utilize more advanced architectures and attention mechanisms. In image classification, we investigated both CNNs and ViTs. One of the most promising models, which is very much known for its ability to detect spatial hierarchies, is CNN, and it serves as a core model in our study. On the other hand, ViT is another model that also serves as a core model, reflecting a modern classification method that uses a self-attention mechanism which makes them more robust as this self-attention mechanism allows them to lean global dependencies in images without relying on convolutional layers. This paper evaluates the performance of these two architectures based on accuracy, precision, recall, and F1-score across different image datasets, analyzing their appropriateness for various categories of images. In the domain of clustering, we assess DEC, Variational Autoencoders (VAEs), and conventional clustering techniques like k-means, which are used on embeddings derived from CNN models. DEC, a prominent model in the field of clustering, has gained the attention of many ML engineers because of its ability to combine feature learning and clustering into a single framework and its main goal is to improve clustering quality through better feature representation. VAEs, on the other hand, are pretty well known for using latent embeddings for grouping similar images without requiring for prior label by utilizing the probabilistic clustering method.Keywords: machine learning, deep learning, image classification, image clustering
Procedia PDF Downloads 17549 Food Intake Pattern and Nutritional Status of Preschool Children of Chakma Ethnic Community
Authors: Md Monoarul Haque
Abstract:
Nutritional status is a sensitive indicator of community health and nutrition among preschool children, especially the prevalence of undernutrition that affects all dimensions of human development and leads to growth faltering in early life. The present study is an attempt to assess the food intake pattern and nutritional status of pre-school Chakma tribe children. It was a cross-sectional community based study. The subjects were selected purposively. This study was conducted at Savar Upazilla of Rangamati. Rangamati is located in the Chittagong Division. Anthropometric data height and weight of the study subjects were collected by standard techniques. Nutritional status was measured using Z score according WHO classification. χ2 test, independent t-test, Pearson’s correlation, multiple regression and logistic regression was performed as P<0.05 level of significance. Statistical analyses were performed by appropriate univariate and multivariate techniques using SPSS windows 11.5. Moderate (-3SD to <-2SD) to severe underweight (<-3SD) were 23.8% and 76.2% study subjects had normal weight for their age. Moderate (-3SD to <-2SD) to severe (<-3SD) stunted children were only 25.6% and 74.4% children were normal and moderate to severe wasting were 14.7% whereas normal child was 85.3%. Significant association had been found between child nutritional status and monthly family income, mother education and occupation of father and mother. Age, sex and incomes of the family, education of mother and occupation of father were significantly associated with WAZ and HAZ of the study subjects (P=0.0001, P=0.025, P=0.001 and P=0.0001, P=0.003, P=0.031, P=0.092, P=0.008). Maximum study subjects took local small fish and some traditional tribal food like bashrool, jhijhipoka and pork very much popular food among tribal children. Energy, carbohydrate and fat intake was significantly associated with HAZ, WAZ, BAZ and MUACZ. This study demonstrates that malnutrition among tribal children in Bangladesh is much better than national scenario in Bangladesh. Significant association was found between child nutritional status and family monthly income, mother education and occupation of father and mother. Most of the study subjects took local small fish and some traditional tribal food. Significant association was also found between child nutritional status and dietary intake of energy, carbohydrate and fat.Keywords: food intake pattern, nutritional status, preschool children, Chakma ethnic community
Procedia PDF Downloads 506548 Modeling Biomass and Biodiversity across Environmental and Management Gradients in Temperate Grasslands with Deep Learning and Sentinel-1 and -2
Authors: Javier Muro, Anja Linstadter, Florian Manner, Lisa Schwarz, Stephan Wollauer, Paul Magdon, Gohar Ghazaryan, Olena Dubovyk
Abstract:
Monitoring the trade-off between biomass production and biodiversity in grasslands is critical to evaluate the effects of management practices across environmental gradients. New generations of remote sensing sensors and machine learning approaches can model grasslands’ characteristics with varying accuracies. However, studies often fail to cover a sufficiently broad range of environmental conditions, and evidence suggests that prediction models might be case specific. In this study, biomass production and biodiversity indices (species richness and Fishers’ α) are modeled in 150 grassland plots for three sites across Germany. These sites represent a North-South gradient and are characterized by distinct soil types, topographic properties, climatic conditions, and management intensities. Predictors used are derived from Sentinel-1 & 2 and a set of topoedaphic variables. The transferability of the models is tested by training and validating at different sites. The performance of feed-forward deep neural networks (DNN) is compared to a random forest algorithm. While biomass predictions across gradients and sites were acceptable (r2 0.5), predictions of biodiversity indices were poor (r2 0.14). DNN showed higher generalization capacity than random forest when predicting biomass across gradients and sites (relative root mean squared error of 0.5 for DNN vs. 0.85 for random forest). DNN also achieved high performance when using the Sentinel-2 surface reflectance data rather than different combinations of spectral indices, Sentinel-1 data, or topoedaphic variables, simplifying dimensionality. This study demonstrates the necessity of training biomass and biodiversity models using a broad range of environmental conditions and ensuring spatial independence to have realistic and transferable models where plot level information can be upscaled to landscape scale.Keywords: ecosystem services, grassland management, machine learning, remote sensing
Procedia PDF Downloads 219547 Constructing a Semi-Supervised Model for Network Intrusion Detection
Authors: Tigabu Dagne Akal
Abstract:
While advances in computer and communications technology have made the network ubiquitous, they have also rendered networked systems vulnerable to malicious attacks devised from a distance. These attacks or intrusions start with attackers infiltrating a network through a vulnerable host and then launching further attacks on the local network or Intranet. Nowadays, system administrators and network professionals can attempt to prevent such attacks by developing intrusion detection tools and systems using data mining technology. In this study, the experiments were conducted following the Knowledge Discovery in Database Process Model. The Knowledge Discovery in Database Process Model starts from selection of the datasets. The dataset used in this study has been taken from Massachusetts Institute of Technology Lincoln Laboratory. After taking the data, it has been pre-processed. The major pre-processing activities include fill in missed values, remove outliers; resolve inconsistencies, integration of data that contains both labelled and unlabelled datasets, dimensionality reduction, size reduction and data transformation activity like discretization tasks were done for this study. A total of 21,533 intrusion records are used for training the models. For validating the performance of the selected model a separate 3,397 records are used as a testing set. For building a predictive model for intrusion detection J48 decision tree and the Naïve Bayes algorithms have been tested as a classification approach for both with and without feature selection approaches. The model that was created using 10-fold cross validation using the J48 decision tree algorithm with the default parameter values showed the best classification accuracy. The model has a prediction accuracy of 96.11% on the training datasets and 93.2% on the test dataset to classify the new instances as normal, DOS, U2R, R2L and probe classes. The findings of this study have shown that the data mining methods generates interesting rules that are crucial for intrusion detection and prevention in the networking industry. Future research directions are forwarded to come up an applicable system in the area of the study.Keywords: intrusion detection, data mining, computer science, data mining
Procedia PDF Downloads 297546 The Study of the Correlation of Future-Oriented Thinking and Retirement Planning: The Analysis of Two Professions
Authors: Ya-Hui Lee, Ching-Yi Lu, Chien Hung, Hsieh
Abstract:
The purpose of this study is to explore the difference between state-owned-enterprise employees and the civil servants regarding their future-oriented thinking and retirement planning. The researchers investigated 687 middle age and older adults (345 state-owned-enterprise employees and 342 civil servants) through survey research, to understand the relevance between and the prediction of their future-oriented thinking and retirement planning. The findings of this study are: 1.There are significant differences between these two professions regarding future-oriented thinking but not retirement planning. The results of the future-oriented thinking of civil servants are overall higher than that of the state-owned-enterprise employees. 2. There are significant differences both in the aspects of future-oriented thinking and retirement planning among civil servants of different ages. The future-oriented thinking and retirement planning of ages 55 and above are more significant than those of ages 45 or under. For the state-owned-enterprise employees, however, there is no significance found in their future-oriented thinking, but in their retirement planning. Moreover, retirement planning is higher at ages 55 or above than at other ages. 3. With regard to education, there is no correlation to future-oriented thinking or retirement planning for civil servants. For state-owned-enterprise employees, however, their levels of education directly affect their future-oriented thinking. Those with a master degree or above have greater future-oriented thinking than those with other educational degrees. As for retirement planning, there is no correlation. 4. Self-assessment of economic status significantly affects the future-oriented thinking and retirement planning of both civil servants and state-owned-enterprise employees. Those who assess themselves more affluently are more inclined to future-oriented thinking and retirement planning. 5. For civil servants, there are significant differences between their monthly income and retirement planning, but none with future-oriented thinking. As for state-owned-enterprise employees, there are significant differences between their monthly income and retirement planning as well as future-oriented thinking. State-owned-enterprise employees who have significantly higher monthly incomes (1,960 euros and above) have more significant future-oriented thinking and retirement planning than those with lower monthly incomes (1,469 euros and below). 6. The middle age and older adults of both professions have positive correlations with future-oriented thinking and retirement planning. Through stepwise multiple regression analysis, the results indicate that future-oriented thinking and retirement planning have positive predictions. The authors then present the findings of this study for state-owned-enterprises, public authorities, and older adult educational program designs in Taiwan as references.Keywords: state-owned-enterprise employees, civil servants, future-oriented thinking, retirement planning
Procedia PDF Downloads 367545 Downregulation of Epidermal Growth Factor Receptor in Advanced Stage Laryngeal Squamous Cell Carcinoma
Authors: Sarocha Vivatvakin, Thanaporn Ratchataswan, Thiratest Leesutipornchai, Komkrit Ruangritchankul, Somboon Keelawat, Virachai Kerekhanjanarong, Patnarin Mahattanasakul, Saknan Bongsebandhu-Phubhakdi
Abstract:
In this globalization era, much attention has been drawn to various molecular biomarkers, which may have the potential to predict the progression of cancer. Epidermal growth factor receptor (EGFR) is the classic member of the ErbB family of membrane-associated intrinsic tyrosine kinase receptors. EGFR expression was found in several organs throughout the body as its roles involve in the regulation of cell proliferation, survival, and differentiation in normal physiologic conditions. However, anomalous expression, whether over- or under-expression is believed to be the underlying mechanism of pathologic conditions, including carcinogenesis. Even though numerous discussions regarding the EGFR as a prognostic tool in head and neck cancer have been established, the consensus has not yet been met. The aims of the present study are to assess the correlation between the level of EGFR expression and demographic data as well as clinicopathological features and to evaluate the ability of EGFR as a reliable prognostic marker. Furthermore, another aim of this study is to investigate the probable pathophysiology that explains the finding results. This retrospective study included 30 squamous cell laryngeal carcinoma patients treated at King Chulalongkorn Memorial Hospital from January 1, 2000, to December 31, 2004. EGFR expression level was observed to be significantly downregulated with the progression of the laryngeal cancer stage. (one way ANOVA, p = 0.001) A statistically significant lower EGFR expression in the late stage of the disease compared to the early stage was recorded. (unpaired t-test, p = 0.041) EGFR overexpression also showed the tendency to increase recurrence of cancer (unpaired t-test, p = 0.128). A significant downregulation of EGFR expression was documented in advanced stage laryngeal cancer. The results indicated that EGFR level correlates to prognosis in term of stage progression. Thus, EGFR expression might be used as a prevailing biomarker for laryngeal squamous cell carcinoma prognostic prediction.Keywords: downregulation, epidermal growth factor receptor, immunohistochemistry, laryngeal squamous cell carcinoma
Procedia PDF Downloads 111544 Development of a 3D Model of Real Estate Properties in Fort Bonifacio, Taguig City, Philippines Using Geographic Information Systems
Authors: Lyka Selene Magnayi, Marcos Vinas, Roseanne Ramos
Abstract:
As the real estate industry continually grows in the Philippines, Geographic Information Systems (GIS) provide advantages in generating spatial databases for efficient delivery of information and services. The real estate sector is not only providing qualitative data about real estate properties but also utilizes various spatial aspects of these properties for different applications such as hazard mapping and assessment. In this study, a three-dimensional (3D) model and a spatial database of real estate properties in Fort Bonifacio, Taguig City are developed using GIS and SketchUp. Spatial datasets include political boundaries, buildings, road network, digital terrain model (DTM) derived from Interferometric Synthetic Aperture Radar (IFSAR) image, Google Earth satellite imageries, and hazard maps. Multiple model layers were created based on property listings by a partner real estate company, including existing and future property buildings. Actual building dimensions, building facade, and building floorplans are incorporated in these 3D models for geovisualization. Hazard model layers are determined through spatial overlays, and different scenarios of hazards are also presented in the models. Animated maps and walkthrough videos were created for company presentation and evaluation. Model evaluation is conducted through client surveys requiring scores in terms of the appropriateness, information content, and design of the 3D models. Survey results show very satisfactory ratings, with the highest average evaluation score equivalent to 9.21 out of 10. The output maps and videos obtained passing rates based on the criteria and standards set by the intended users of the partner real estate company. The methodologies presented in this study were found useful and have remarkable advantages in the real estate industry. This work may be extended to automated mapping and creation of online spatial databases for better storage, access of real property listings and interactive platform using web-based GIS.Keywords: geovisualization, geographic information systems, GIS, real estate, spatial database, three-dimensional model
Procedia PDF Downloads 159543 Effects of Mental Skill Training Programme on Direct Free Kick of Grassroot Footballers in Lagos, Nigeria
Authors: Mayowa Adeyeye, Kehinde Adeyemo
Abstract:
The direct free kick is considered a great opportunity to score a goal but this is not always the case amidst Nigerian and other elite footballers. This study, therefore, examined the extent to which an 8 weeks mental skill training programme is effective for improving accuracy in direct free kick in football. Sixty (n-60) students of Pepsi Football Academy participated in the study. They were randomly distributed into two groups of positive self-talk group (intervention n-30) and control group (n-30). The instrument used in the collection of data include a standard football goal post while the research materials include a dummy soccer wall, a cord, an improvised vanishing spray, a clipboard, writing materials, a recording sheet, a self-talk log book, six standard 5 football, cones, an audiotape and a compact disc. The Weinberge and Gould (2011) mental skills training manual was used. The reliability coefficient of the apparatus following a pilot study stood at 0.72. Before the commencement of the mental skills training programme, the participants were asked to take six simulated direct free kick. At the end of each physical skills training session after the pre-test, the researcher spent at least 15 minutes with the groups exposing them to the intervention. The mental skills training programme alongside physical skills training took place in two different locations for the different groups under study, these included Agege Stadium Main bowl Football Pitch (Imagery Group), and Ogba Ijaye (Control Group). The mental skills training programme lasted for eight weeks. After the completion of the mental skills training programme, all the participants were asked to take another six simulated direct free kick attempts using the same field used for the pre-test to determine the efficacy of the treatments. The pre-test and post-test data were analysed using inferential statistics of t-test, while the alpha level was set at 0.05. The result revealed significant differences in t-test for positive self-talk and control group. Based on the findings, it is recommended that athletes should be exposed to positive self-talk alongside their normal physical skills training for quality delivery of accurate direct free kick during training and competition.Keywords: accuracy, direct free kick, pepsi football academy, positive self-talk
Procedia PDF Downloads 350542 Predictive Relationship between Motivation Strategies and Musical Creativity of Secondary School Music Students
Authors: Lucy Lugo Mawang
Abstract:
Educational Psychologists have highlighted the significance of creativity in education. Likewise, a fundamental objective of music education concern the development of students’ musical creativity potential. The purpose of this study was to determine the relationship between motivation strategies and musical creativity, and establish the prediction equation of musical creativity. The study used purposive sampling and census to select 201 fourth-form music students (139 females/ 62 males), mainly from public secondary schools in Kenya. The mean age of participants was 17.24 years (SD = .78). Framed upon self- determination theory and the dichotomous model of achievement motivation, the study adopted an ex post facto research design. A self-report measure, the Achievement Goal Questionnaire-Revised (AGQ-R) was used in data collection for the independent variable. Musical creativity was based on a creative music composition task and measured by the Consensual Musical Creativity Assessment Scale (CMCAS). Data collected in two separate sessions within an interval of one month. The questionnaire was administered in the first session, lasting approximately 20 minutes. The second session was for notation of participants’ creative composition. The results indicated a positive correlation r(199) = .39, p ˂ .01 between musical creativity and intrinsic music motivation. Conversely, negative correlation r(199) = -.19, p < .01 was observed between musical creativity and extrinsic music motivation. The equation for predicting musical creativity from music motivation strategies was significant F(2, 198) = 20.8, p < .01, with R2 = .17. Motivation strategies accounted for approximately (17%) of the variance in participants’ musical creativity. Intrinsic music motivation had the highest significant predictive value (β = .38, p ˂ .01) on musical creativity. In the exploratory analysis, a significant mean difference t(118) = 4.59, p ˂ .01 in musical creativity for intrinsic and extrinsic music motivation was observed in favour of intrinsically motivated participants. Further, a significant gender difference t(93.47) = 4.31, p ˂ .01 in musical creativity was observed, with male participants scoring higher than females. However, there was no significant difference in participants’ musical creativity based on age. The study recommended that music educators should strive to enhance intrinsic music motivation among students. Specifically, schools should create conducive environments and have interventions for the development of intrinsic music motivation since it is the most facilitative motivation strategy in predicting musical creativity.Keywords: extrinsic music motivation, intrinsic music motivation, musical creativity, music composition
Procedia PDF Downloads 155541 Physics-Based Earthquake Source Models for Seismic Engineering: Analysis and Validation for Dip-Slip Faults
Authors: Percy Galvez, Anatoly Petukhin, Paul Somerville, Ken Miyakoshi, Kojiro Irikura, Daniel Peter
Abstract:
Physics-based dynamic rupture modelling is necessary for estimating parameters such as rupture velocity and slip rate function that are important for ground motion simulation, but poorly resolved by observations, e.g. by seismic source inversion. In order to generate a large number of physically self-consistent rupture models, whose rupture process is consistent with the spatio-temporal heterogeneity of past earthquakes, we use multicycle simulations under the heterogeneous rate-and-state (RS) friction law for a 45deg dip-slip fault. We performed a parametrization study by fully dynamic rupture modeling, and then, a set of spontaneous source models was generated in a large magnitude range (Mw > 7.0). In order to validate rupture models, we compare the source scaling relations vs. seismic moment Mo for the modeled rupture area S, as well as average slip Dave and the slip asperity area Sa, with similar scaling relations from the source inversions. Ground motions were also computed from our models. Their peak ground velocities (PGV) agree well with the GMPE values. We obtained good agreement of the permanent surface offset values with empirical relations. From the heterogeneous rupture models, we analyzed parameters, which are critical for ground motion simulations, i.e. distributions of slip, slip rate, rupture initiation points, rupture velocities, and source time functions. We studied cross-correlations between them and with the friction weakening distance Dc value, the only initial heterogeneity parameter in our modeling. The main findings are: (1) high slip-rate areas coincide with or are located on an outer edge of the large slip areas, (2) ruptures have a tendency to initiate in small Dc areas, and (3) high slip-rate areas correlate with areas of small Dc, large rupture velocity and short rise-time.Keywords: earthquake dynamics, strong ground motion prediction, seismic engineering, source characterization
Procedia PDF Downloads 144540 Development of Chronic Obstructive Pulmonary Disease (COPD) Proforma (E-ICP) to Improve Guideline Adherence in Emergency Department: Modified Delphi Study
Authors: Hancy Issac, Gerben Keijzers, Ian Yang, Clint Moloney, Jackie Lea, Melissa Taylor
Abstract:
Introduction: Chronic obstructive pulmonary disease guideline non-adherence is associated with a reduction in health-related quality of life in patients (HRQoL). Improving guideline adherence has the potential to mitigate fragmented care thereby sustaining pulmonary function, preventing acute exacerbations, reducing economic health burdens, and enhancing HRQoL. The development of an electronic proforma stemming from expert consensus, including digital guideline resources and direct interdisciplinary referrals is hypothesised to improve guideline adherence and patient outcomes for emergency department (ED) patients with COPD. Aim: The aim of this study was to develop consensus among ED and respiratory staff for the correct composition of a COPD electronic proforma that aids in guideline adherence and management in the ED. Methods: This study adopted a mixed-method design to develop the most important indicators of care in the ED. The study involved three phases: (1) a systematic literature review and qualitative interdisciplinary staff interviews to assess barriers and solutions for guideline adherence and qualitative interdisciplinary staff interviews, (2) a modified Delphi panel to select interventions for the proforma, and (3) a consensus process through three rounds of scoring through a quantitative survey (ED and Respiratory consensus) and qualitative thematic analysis on each indicator. Results: The electronic proforma achieved acceptable and good internal consistency through all iterations from national emergency department and respiratory department interdisciplinary experts. Cronbach’s alpha score for internal consistency (α) in iteration 1 emergency department cohort (EDC) (α = 0.80 [CI = 0.89%]), respiratory department cohort (RDC) (α = 0.95 [CI = 0.98%]). Iteration 2 reported EDC (α = 0.85 [CI = 0.97%]) and RDC (α = 0.86 [CI = 0.97%]). Iteration 3 revealed EDC (α = 0.73 [CI = 0.91%]) and RDC (α = 0.86 [CI = 0.95%]), respectively. Conclusion: Electronic proformas have the potential to facilitate direct referrals from the ED leading to reduced hospital admissions, reduced length of hospital stays, holistic care, improved health care and quality of life and improved interdisciplinary guideline adherence.Keywords: COPD, electronic proforma, modified delphi study, interdisciplinary, guideline adherence, COPD-X plan
Procedia PDF Downloads 63539 Assessing the Social Impacts of a Circular Economy in the Global South
Authors: Dolores Sucozhañay, Gustavo Pacheco, Paul Vanegas
Abstract:
In the context of sustainable development and the transition towards a sustainable circular economy (CE), evaluating the social dimension remains a challenge. Therefore, developing a respective methodology is highly important. First, the change of the economic model may cause significant social effects, which today remain unaddressed. Second, following the current level of globalization, CE implementation requires targeting global material cycles and causes social impacts on potentially vulnerable social groups. A promising methodology is the Social Life Cycle Assessment (SLCA), which embraces the philosophy of life cycle thinking and provides complementary information to environmental and economic assessments. In this context, the present work uses the updated Social Life Cycle Assessment (SLCA) Guidelines 2020 to assess the social performance of the recycling system of Cuenca, Ecuador, to exemplify a social assessment method. Like many other developing countries, Ecuador heavily depends on the work of informal waste pickers (recyclers), who, even contributing to a CE, face harsh socio-economic circumstances, including inappropriate working conditions, social exclusion, exploitation, etc. Under a Reference Scale approach (Type 1), 12 impact subcategories were assessed through 73 site-specific inventory indicators, using an ascending reference scale ranging from -2 to +2. Findings reveal a social performance below compliance levels with local and international laws, basic societal expectations, and practices in the recycling sector; only eight and five indicators present a positive score. In addition, a social hotspot analysis depicts collection as the most time-consuming lifecycle stage and the one with the most hotspots, mainly related to working hours and health and safety aspects. This study provides an integrated view of the recyclers’ contributions, challenges, and opportunities within the recycling system while highlighting the relevance of assessing the social dimension of CE practices. It also fosters an understanding of the social impact of CE operations in developing countries, highlights the need for a close north-south relationship in CE, and enables the connection among the environmental, economic, and social dimensions.Keywords: SLCA, circular economy, recycling, social impact assessment
Procedia PDF Downloads 153538 Predictive Analysis of the Stock Price Market Trends with Deep Learning
Authors: Suraj Mehrotra
Abstract:
The stock market is a volatile, bustling marketplace that is a cornerstone of economics. It defines whether companies are successful or in spiral. A thorough understanding of it is important - many companies have whole divisions dedicated to analysis of both their stock and of rivaling companies. Linking the world of finance and artificial intelligence (AI), especially the stock market, has been a relatively recent development. Predicting how stocks will do considering all external factors and previous data has always been a human task. With the help of AI, however, machine learning models can help us make more complete predictions in financial trends. Taking a look at the stock market specifically, predicting the open, closing, high, and low prices for the next day is very hard to do. Machine learning makes this task a lot easier. A model that builds upon itself that takes in external factors as weights can predict trends far into the future. When used effectively, new doors can be opened up in the business and finance world, and companies can make better and more complete decisions. This paper explores the various techniques used in the prediction of stock prices, from traditional statistical methods to deep learning and neural networks based approaches, among other methods. It provides a detailed analysis of the techniques and also explores the challenges in predictive analysis. For the accuracy of the testing set, taking a look at four different models - linear regression, neural network, decision tree, and naïve Bayes - on the different stocks, Apple, Google, Tesla, Amazon, United Healthcare, Exxon Mobil, J.P. Morgan & Chase, and Johnson & Johnson, the naïve Bayes model and linear regression models worked best. For the testing set, the naïve Bayes model had the highest accuracy along with the linear regression model, followed by the neural network model and then the decision tree model. The training set had similar results except for the fact that the decision tree model was perfect with complete accuracy in its predictions, which makes sense. This means that the decision tree model likely overfitted the training set when used for the testing set.Keywords: machine learning, testing set, artificial intelligence, stock analysis
Procedia PDF Downloads 96537 Streamflow Modeling Using the PyTOPKAPI Model with Remotely Sensed Rainfall Data: A Case Study of Gilgel Ghibe Catchment, Ethiopia
Authors: Zeinu Ahmed Rabba, Derek D Stretch
Abstract:
Remote sensing contributes valuable information to streamflow estimates. Usually, stream flow is directly measured through ground-based hydrological monitoring station. However, in many developing countries like Ethiopia, ground-based hydrological monitoring networks are either sparse or nonexistent, which limits the manage water resources and hampers early flood-warning systems. In such cases, satellite remote sensing is an alternative means to acquire such information. This paper discusses the application of remotely sensed rainfall data for streamflow modeling in Gilgel Ghibe basin in Ethiopia. Ten years (2001-2010) of two satellite-based precipitation products (SBPP), TRMM and WaterBase, were used. These products were combined with the PyTOPKAPI hydrological model to generate daily stream flows. The results were compared with streamflow observations at Gilgel Ghibe Nr, Assendabo gauging station using four statistical tools (Bias, R², NS and RMSE). The statistical analysis indicates that the bias-adjusted SBPPs agree well with gauged rainfall compared to bias-unadjusted ones. The SBPPs with no bias-adjustment tend to overestimate (high Bias and high RMSE) the extreme precipitation events and the corresponding simulated streamflow outputs, particularly during wet months (June-September) and underestimate the streamflow prediction over few dry months (January and February). This shows that bias-adjustment can be important for improving the performance of the SBPPs in streamflow forecasting. We further conclude that the general streamflow patterns were well captured at daily time scales when using SBPPs after bias adjustment. However, the overall results demonstrate that the simulated streamflow using the gauged rainfall is superior to those obtained from remotely sensed rainfall products including bias-adjusted ones.Keywords: Ethiopia, PyTOPKAPI model, remote sensing, streamflow, Tropical Rainfall Measuring Mission (TRMM), waterBase
Procedia PDF Downloads 287536 Study on Control Techniques for Adaptive Impact Mitigation
Authors: Rami Faraj, Cezary Graczykowski, Błażej Popławski, Grzegorz Mikułowski, Rafał Wiszowaty
Abstract:
Progress in the field of sensors, electronics and computing results in more and more often applications of adaptive techniques for dynamic response mitigation. When it comes to systems excited with mechanical impacts, the control system has to take into account the significant limitations of actuators responsible for system adaptation. The paper provides a comprehensive discussion of the problem of appropriate design and implementation of adaptation techniques and mechanisms. Two case studies are presented in order to compare completely different adaptation schemes. The first example concerns a double-chamber pneumatic shock absorber with a fast piezo-electric valve and parameters corresponding to the suspension of a small unmanned aerial vehicle, whereas the second considered system is a safety air cushion applied for evacuation of people from heights during a fire. For both systems, it is possible to ensure adaptive performance, but a realization of the system’s adaptation is completely different. The reason for this is technical limitations corresponding to specific types of shock-absorbing devices and their parameters. Impact mitigation using a pneumatic shock absorber corresponds to much higher pressures and small mass flow rates, which can be achieved with minimal change of valve opening. In turn, mass flow rates in safety air cushions relate to gas release areas counted in thousands of sq. cm. Because of these facts, both shock-absorbing systems are controlled based on completely different approaches. Pneumatic shock-absorber takes advantage of real-time control with valve opening recalculated at least every millisecond. In contrast, safety air cushion is controlled using the semi-passive technique, where adaptation is provided using prediction of the entire impact mitigation process. Similarities of both approaches, including applied models, algorithms and equipment, are discussed. The entire study is supported by numerical simulations and experimental tests, which prove the effectiveness of both adaptive impact mitigation techniques.Keywords: adaptive control, adaptive system, impact mitigation, pneumatic system, shock-absorber
Procedia PDF Downloads 91535 Detection of Abnormal Process Behavior in Copper Solvent Extraction by Principal Component Analysis
Authors: Kirill Filianin, Satu-Pia Reinikainen, Tuomo Sainio
Abstract:
Frequent measurements of product steam quality create a data overload that becomes more and more difficult to handle. In the current study, plant history data with multiple variables was successfully treated by principal component analysis to detect abnormal process behavior, particularly, in copper solvent extraction. The multivariate model is based on the concentration levels of main process metals recorded by the industrial on-stream x-ray fluorescence analyzer. After mean-centering and normalization of concentration data set, two-dimensional multivariate model under principal component analysis algorithm was constructed. Normal operating conditions were defined through control limits that were assigned to squared score values on x-axis and to residual values on y-axis. 80 percent of the data set were taken as the training set and the multivariate model was tested with the remaining 20 percent of data. Model testing showed successful application of control limits to detect abnormal behavior of copper solvent extraction process as early warnings. Compared to the conventional techniques of analyzing one variable at a time, the proposed model allows to detect on-line a process failure using information from all process variables simultaneously. Complex industrial equipment combined with advanced mathematical tools may be used for on-line monitoring both of process streams’ composition and final product quality. Defining normal operating conditions of the process supports reliable decision making in a process control room. Thus, industrial x-ray fluorescence analyzers equipped with integrated data processing toolbox allows more flexibility in copper plant operation. The additional multivariate process control and monitoring procedures are recommended to apply separately for the major components and for the impurities. Principal component analysis may be utilized not only in control of major elements’ content in process streams, but also for continuous monitoring of plant feed. The proposed approach has a potential in on-line instrumentation providing fast, robust and cheap application with automation abilities.Keywords: abnormal process behavior, failure detection, principal component analysis, solvent extraction
Procedia PDF Downloads 310534 Arterial Compliance Measurement Using Split Cylinder Sensor/Actuator
Authors: Swati Swati, Yuhang Chen, Robert Reuben
Abstract:
Coronary stents are devices resembling the shape of a tube which are placed in coronary arteries, to keep the arteries open in the treatment of coronary arterial diseases. Coronary stents are routinely deployed to clear atheromatous plaque. The stent essentially applies an internal pressure to the artery because its structure is cylindrically symmetrical and this may introduce some abnormalities in final arterial shape. The goal of the project is to develop segmented circumferential arterial compliance measuring devices which can be deployed (eventually) in vivo. The segmentation of the device will allow the mechanical asymmetry of any stenosis to be assessed. The purpose will be to assess the quality of arterial tissue for applications in tailored stents and in the assessment of aortic aneurism. Arterial distensibility measurement is of utmost importance to diagnose cardiovascular diseases and for prediction of future cardiac events or coronary artery diseases. In order to arrive at some generic outcomes, a preliminary experimental set-up has been devised to establish the measurement principles for the device at macro-scale. The measurement methodology consists of a strain gauge system monitored by LABVIEW software in a real-time fashion. This virtual instrument employs a balloon within a gelatine model contained in a split cylinder with strain gauges fixed on it. The instrument allows automated measurement of the effect of air-pressure on gelatine and measurement of strain with respect to time and pressure during inflation. Compliance simple creep model has been applied to the results for the purpose of extracting some measures of arterial compliance. The results obtained from the experiments have been used to study the effect of air pressure on strain at varying time intervals. The results clearly demonstrate that with decrease in arterial volume and increase in arterial pressure, arterial strain increases thereby decreasing the arterial compliance. The measurement system could lead to development of portable, inexpensive and small equipment and could prove to be an efficient automated compliance measurement device.Keywords: arterial compliance, atheromatous plaque, mechanical symmetry, strain measurement
Procedia PDF Downloads 279533 Derivation of Bathymetry from High-Resolution Satellite Images: Comparison of Empirical Methods through Geographical Error Analysis
Authors: Anusha P. Wijesundara, Dulap I. Rathnayake, Nihal D. Perera
Abstract:
Bathymetric information is fundamental importance to coastal and marine planning and management, nautical navigation, and scientific studies of marine environments. Satellite-derived bathymetry data provide detailed information in areas where conventional sounding data is lacking and conventional surveys are inaccessible. The two empirical approaches of log-linear bathymetric inversion model and non-linear bathymetric inversion model are applied for deriving bathymetry from high-resolution multispectral satellite imagery. This study compares these two approaches by means of geographical error analysis for the site Kankesanturai using WorldView-2 satellite imagery. Based on the Levenberg-Marquardt method calibrated the parameters of non-linear inversion model and the multiple-linear regression model was applied to calibrate the log-linear inversion model. In order to calibrate both models, Single Beam Echo Sounding (SBES) data in this study area were used as reference points. Residuals were calculated as the difference between the derived depth values and the validation echo sounder bathymetry data and the geographical distribution of model residuals was mapped. The spatial autocorrelation was calculated by comparing the performance of the bathymetric models and the results showing the geographic errors for both models. A spatial error model was constructed from the initial bathymetry estimates and the estimates of autocorrelation. This spatial error model is used to generate more reliable estimates of bathymetry by quantifying autocorrelation of model error and incorporating this into an improved regression model. Log-linear model (R²=0.846) performs better than the non- linear model (R²=0.692). Finally, the spatial error models improved bathymetric estimates derived from linear and non-linear models up to R²=0.854 and R²=0.704 respectively. The Root Mean Square Error (RMSE) was calculated for all reference points in various depth ranges. The magnitude of the prediction error increases with depth for both the log-linear and the non-linear inversion models. Overall RMSE for log-linear and the non-linear inversion models were ±1.532 m and ±2.089 m, respectively.Keywords: log-linear model, multi spectral, residuals, spatial error model
Procedia PDF Downloads 298532 Nurses' Knowledge and Practice Regarding Care of Patients Connected to Intra-Aortic Balloon Pump at Cairo University Hospitals
Authors: Tharwat Ibrahim Rushdy, Warda Youssef Mohammed Morsy, Hanaa Ali Ahmed Elfeky
Abstract:
Background: Intra-aortic balloon pump (IABP) is the first and the most commonly used mechanical circulatory support for patients with acute coronary syndromes and cardiogenic shock. Therefore, critical care nurses not only have to know how to monitor and operate the IABP, but also to provide interventions for preventing possible complications. Aim of the study: To assess nurses' knowledge and practices regarding care of patients connected to IABP at the ICUs of Cairo University Hospitals. Research design: A descriptive exploratory design was utilized. Sample: Convenience samples of 40 nurses were included in the current study. Setting: This study was carried out at the Intensive Care Units of Cairo University Hospitals. Tools of data collection: Three tools were developed, tested for clarity, and feasibility: a- Nurses' personal background sheet, b- IABP nurses' knowledge self-administered questionnaire, and c- IABP Nurses' practice observational checklist. Results: The majority of the studied sample had unsatisfactory knowledge and practice level (88% & 95%) respectively with a mean of 9.45+2.94 and 30.5+8.7, respectively. Unsatisfactory knowledge was found regarding description and physiological effects, nursing care, indications, contraindications, complications, weaning, and removal of IABP in percentage of 95%, 90%, 72.5%, and 57.5%, respectively, with a mean total knowledge score of 9.45 +2.94. In addition, unsatisfactory practice was found regarding about preparation and initiation of IABP therapy, nursing practice during therapy, weaning, and removal of IABP in percentages of (97.5%, 97.5%, and 90%), respectively. Finally, knowledge level was found to differ significantly in relation to gender (t = 2.46 at P ≤ 0.018). However, gender didn't play a role in relation to practice (t = 0.086 at P≤ 0.932). Conclusion: In spite of having vital role in assessment and management of critically ill patients, critical care nurses in the current study had in general unsatisfactory knowledge and practice regarding care of patients connected to IABP. Recommendation: updating knowledge and practice of ICU nurses through carrying out continuing educational programs about IABP; strict observation of nurses' practice when caring for patients connected to IABP and provision of guidance to correct of poor practices and replication of this study on larger probability sample selected from different geographical locations.Keywords: knowledge, practice, intra-aortic balloon pump (IABP), ICU nurses, intensive care unit (ICU), introduction
Procedia PDF Downloads 502531 Validation of a Placebo Method with Potential for Blinding in Ultrasound-Guided Dry Needling
Authors: Johnson C. Y. Pang, Bo Peng, Kara K. L. Reeves, Allan C. L. Fud
Abstract:
Objective: Dry needling (DN) has long been used as a treatment method for various musculoskeletal pain conditions. However, the evidence level of the studies was low due to the limitations of the methodology. Lack of randomization and inappropriate blinding is potentially the main sources of bias. A method that can differentiate clinical results due to the targeted experimental procedure from its placebo effect is needed to enhance the validity of the trial. Therefore, this study aimed to validate the method as a placebo ultrasound(US)-guided DN for patients with knee osteoarthritis (KOA). Design: This is a randomized controlled trial (RCT). Ninety subjects (25 males and 65 females) aged between 51 and 80 (61.26 ± 5.57) with radiological KOA were recruited and randomly assigned into three groups with a computer program. Group 1 (G1) received real US-guided DN, Group 2 (G2) received placebo US-guided DN, and Group 3 (G3) was the control group. Both G1 and G2 subjects received the same procedure of US-guided DN, except the US monitor was turned off in G2, blinding the G2 subjects to the incorporation of faux US guidance. This arrangement created the placebo effect intended to permit comparison of their results to those who received actual US-guided DN. Outcome measures, including the visual analog scale (VAS) and Knee injury and Osteoarthritis Outcome Score (KOOS) subscales of pain, symptoms, and quality of life (QOL), were analyzed by repeated measures analysis of covariance (ANCOVA) for time effects and group effects. The data regarding the perception of receiving real US-guided DN or placebo US-guided DN were analyzed by the chi-squared test. The missing data were analyzed with the intention-to-treat (ITT) approach if more than 5% of the data were missing. Results: The placebo US-guided DN (G2) subjects had the same perceptions as the use of real US guidance in the advancement of DN (p<0.128). G1 had significantly higher pain reduction (VAS and KOOS-pain) than G2 and G3 at 8 weeks (both p<0.05) only. There was no significant difference between G2 and G3 at 8 weeks (both p>0.05). Conclusion: The method with the US monitor turned off during the application of DN is credible for blinding the participants and allowing researchers to incorporate faux US guidance. The validated placebo US-guided DN technique can aid in investigations of the effects of US-guided DN with short-term effects of pain reduction for patients with KOA. Acknowledgment: This work was supported by the Caritas Institute of Higher Education [grant number IDG200101].Keywords: ultrasound-guided dry needling, dry needling, knee osteoarthritis, physiotheraphy
Procedia PDF Downloads 120530 Barriers of the Development and Implementation of Health Information Systems in Iran
Authors: Abbas Sheikhtaheri, Nasim Hashemi
Abstract:
Health information systems have great benefits for clinical and managerial processes of health care organizations. However, identifying and removing constraints and barriers of implementing and using health information systems before any implementation is essential. Physicians are one of the main users of health information systems, therefore, identifying the causes of their resistance and concerns about the barriers of the implementation of these systems is very important. So the purpose of this study was to determine the barriers of the development and implementation of health information systems in terms of the Iranian physicians’ perspectives. In this study conducted in 8 selected hospitals affiliated to Tehran and Iran Universities of Medical Sciences, Tehran, Iran in 2014, physicians (GPs, residents, interns, specialists) in these hospitals were surveyed. In order to collect data, a research made questionnaire was used (Cronbach’s α = 0.95). The instrument included 25 about organizational (9), personal (4), moral and legal (3) and technical barriers (9). Participants were asked to answer the questions using 5 point scale Likert (completely disagree=1 to completely agree=5). By using a simple random sampling method, 200 physicians (from 600) were invited to study that eventually 163 questionnaires were returned. We used mean score and t-test and ANOVA to analyze the data using SPSS software version 17. 52.1% of respondents were female. The mean age was 30.18 ± 7.29. The work experience years for most of them were between 1 to 5 years (80.4 percent). The most important barriers were organizational ones (3.4 ± 0.89), followed by ethical (3.18 ± 0.98), technical (3.06 ± 0.8) and personal (3.04 ± 1.2). Lack of easy access to a fast Internet (3.67±1.91) and the lack of exchanging information (3.61±1.2) were the most important technical barriers. Among organizational barriers, the lack of efficient planning for the development and implementation systems (3.56±1.32) and was the most important ones. Lack of awareness and knowledge of health care providers about the health information systems features (3.33±1.28) and the lack of physician participation in planning phase (3.27±1.2) as well as concerns regarding the security and confidentiality of health information (3.15 ± 1.31) were the most important personal and ethical barriers, respectively. Women (P = 0.02) and those with less experience (P = 0.002) were more concerned about personal barriers. GPs also were more concerned about technical barriers (P = 0.02). According to the study, technical and ethics barriers were considered as the most important barriers however, lack of awareness in target population is also considered as one of the main barriers. Ignoring issues such as personal and ethical barriers, even if the necessary infrastructure and technical requirements were provided, may result in failure. Therefore, along with the creating infrastructure and resolving organizational barriers, special attention to education and awareness of physicians and providing solution for ethics concerns are necessary.Keywords: barriers, development health information systems, implementation, physicians
Procedia PDF Downloads 346529 Factors Impacting Geostatistical Modeling Accuracy and Modeling Strategy of Fluvial Facies Models
Authors: Benbiao Song, Yan Gao, Zhuo Liu
Abstract:
Geostatistical modeling is the key technic for reservoir characterization, the quality of geological models will influence the prediction of reservoir performance greatly, but few studies have been done to quantify the factors impacting geostatistical reservoir modeling accuracy. In this study, 16 fluvial prototype models have been established to represent different geological complexity, 6 cases range from 16 to 361 wells were defined to reproduce all those 16 prototype models by different methodologies including SIS, object-based and MPFS algorithms accompany with different constraint parameters. Modeling accuracy ratio was defined to quantify the influence of each factor, and ten realizations were averaged to represent each accuracy ratio under the same modeling condition and parameters association. Totally 5760 simulations were done to quantify the relative contribution of each factor to the simulation accuracy, and the results can be used as strategy guide for facies modeling in the similar condition. It is founded that data density, geological trend and geological complexity have great impact on modeling accuracy. Modeling accuracy may up to 90% when channel sand width reaches up to 1.5 times of well space under whatever condition by SIS and MPFS methods. When well density is low, the contribution of geological trend may increase the modeling accuracy from 40% to 70%, while the use of proper variogram may have very limited contribution for SIS method. It can be implied that when well data are dense enough to cover simple geobodies, few efforts were needed to construct an acceptable model, when geobodies are complex with insufficient data group, it is better to construct a set of robust geological trend than rely on a reliable variogram function. For object-based method, the modeling accuracy does not increase obviously as SIS method by the increase of data density, but kept rational appearance when data density is low. MPFS methods have the similar trend with SIS method, but the use of proper geological trend accompany with rational variogram may have better modeling accuracy than MPFS method. It implies that the geological modeling strategy for a real reservoir case needs to be optimized by evaluation of dataset, geological complexity, geological constraint information and the modeling objective.Keywords: fluvial facies, geostatistics, geological trend, modeling strategy, modeling accuracy, variogram
Procedia PDF Downloads 264528 Experimental Study of Sand-Silt Mixtures with Torsional and Flexural Resonant Column Tests
Authors: Meghdad Payan, Kostas Senetakis, Arman Khoshghalb, Nasser Khalili
Abstract:
Dynamic properties of soils, especially at the range of very small strains, are of particular interest in geotechnical engineering practice for characterization of the behavior of geo-structures subjected to a variety of stress states. This study reports on the small-strain dynamic properties of sand-silt mixtures with particular emphasis on the effect of non-plastic fines content on the small strain shear modulus (Gmax), Young’s Modulus (Emax), material damping (Ds,min) and Poisson’s Ratio (v). Several clean sands with a wide range of grain size characteristics and particle shape are mixed with variable percentages of a silica non-plastic silt as fines content. Prepared specimens of sand-silt mixtures at different initial void ratios are subjected to sequential torsional and flexural resonant column tests with elastic dynamic properties measured along an isotropic stress path up to 800 kPa. It is shown that while at low percentages of fines content, there is a significant difference between the dynamic properties of the various samples due to the different characteristics of the sand portion of the mixtures, this variance diminishes as the fines content increases and the soil behavior becomes mainly silt-dominant, rendering no significant influence of sand properties on the elastic dynamic parameters. Indeed, beyond a specific portion of fines content, around 20% to 30% typically denoted as threshold fines content, silt is controlling the behavior of the mixture. Using the experimental results, new expressions for the prediction of small-strain dynamic properties of sand-silt mixtures are developed accounting for the percentage of silt and the characteristics of the sand portion. These expressions are general in nature and are capable of evaluating the elastic dynamic properties of sand-silt mixtures with any types of parent sand in the whole range of silt percentage. The inefficiency of skeleton void ratio concept in the estimation of small-strain stiffness of sand-silt mixtures is also illustrated.Keywords: damping ratio, Poisson’s ratio, resonant column, sand-silt mixture, shear modulus, Young’s modulus
Procedia PDF Downloads 250527 Efficacy of Yoga and Meditation Based Lifestyle Intervention on Inflammatory Markers in Patients with Rheumatoid Arthritis
Authors: Surabhi Gautam, Uma Kumar, Rima Dada
Abstract:
A sustained acute-phase response in Rheumatoid Arthritis (RA) is associated with increased joint damage and inflammation leading to progressive disability. It is induced continuously by consecutive stimuli of proinflammatory cytokines, following a wide range of pathophysiological reactions, leading to increased synthesis of acute phase proteins like C - reactive protein (CRP) and dysregulation in levels of immunomodulatory soluble Human Leukocyte Antigen-G (HLA-G) molecule. This study was designed to explore the effect of yoga and meditation based lifestyle intervention (YMLI) on inflammatory markers in RA patients. Blood samples of 50 patients were collected at baseline (day 0) and after 30 days of YMLI. Patients underwent a pretested YMLI under the supervision of a certified yoga instructor for 30 days including different Asanas (physical postures), Pranayama (breathing exercises), and Dhayna (meditation). Levels of CRP, IL-6, IL-17A, soluble HLA-G and erythrocyte sedimentation rate (ESR) were measured at day 0 and 30 interval. Parameters of disease activity, disability quotient, pain acuity and quality of life were also assessed by disease activity score (DAS28), health assessment questionnaire (HAQ), visual analogue scale (VAS), and World Health Organization Quality of Life (WHOQOL-BREF) respectively. There was reduction in mean levels of CRP (p < 0.05), IL-6 (interleukin-6) (p < 0.05), IL-17A (interleukin-17A) (p < 0.05) and ESR (p < 0.05) and elevation in soluble HLA-G (p < 0.05) at 30 days compared to baseline level (day 0). There was reduction seen in DAS28-ESR (p < 0.05), VAS (p < 0.05) and HAQ (p < 0.05) after 30 days with respect to the base line levels (day 0) and significant increase in WHOQOL-BREF scale (p < 0.05) in all 4 domains of physical health, psychological health, social relationships, and environmental health. The present study has demonstrated that yoga practices are associated with regression of inflammatory processes by reducing inflammatory parameters and regulating the levels of soluble HLA-G significantly in active RA patients. Short term YMLI has significantly improved pain perception, disability quotient, disease activity and quality of life. Thus this simple life style intervention can reduce disease severity and dose of drugs used in the treatment of RA.Keywords: inflammation, quality of life, rheumatoid arthritis, yoga and meditation
Procedia PDF Downloads 167526 Hydrotherapy with Dual Sensory Impairment (Dsi)-Deaf and Blind
Authors: M. Warburton
Abstract:
Background: Case study examining hydrotherapy for a person with DSI. A 46 year-old lady completely deaf and blind post congenital rubella syndrome. Touch becomes the primary information gathering sense to optimise function in life. Communication is achieved via tactile finger spelling and signals onto her hand and skin. Hydrotherapy may provide a suitable mobility environment and somato-sensory input to people, and especially DSI persons. Buoyancy, warmth, hydrostatic pressure, viscosity and turbulence are elements of hydrotherapy that may offer a DSI person somato-sensory input to stimulate the mechanoreceptors, thermoreceptors and proprioceptors and offer a unique hydro-therapeutic environment. Purpose: The purpose of this case study was to establish what measurable benefits could be achieved from hydrotherapy with a DSI person. Methods: Hydrotherapy was provided for 8-weeks, 2 x week, 35-minute session duration. Pool temperature 32.5 degrees centigrade. Pool length 25-metres. Each session consisted of mobility encouragement and supervision, and activities to stimulate the somato-sensory system utilising aquatic properties of buoyancy, turbulence, viscosity, warmth and hydrostatic pressure. Somato-sensory activities focused on stimulating touch and tactile exploration including objects of various shape, size, weight, contour, texture, elasticity, pliability, softness and hardness. Outcomes were measured by the Goal Attainment Scale (GAS) and included mobility distance, attendance, and timed tactile responsiveness to varying objects. Results: Mobility distance and attendance exceeded baseline expectations. Timed tactile responsiveness to varying objects also changed positively from baseline. Average scale scores were 1.00 with an overall GAS t-score of 63.69. Conclusions: Hydrotherapy can be a quantifiable physio-therapeutic option for persons with DSI. It provides a relatively safe environment for mobility and allows the somato-sensory system to be fully engaged - important for the DSI population. Implications: Hydrotherapy can be a measurable therapeutic option for a DSI person. Physiotherapists should consider hydrotherapy for DSI people. Hydrotherapy can offer unique physical properties for the DSI population not available on land.Keywords: chronic, disability, disease, rehabilitation
Procedia PDF Downloads 359525 A Risk Assessment Tool for the Contamination of Aflatoxins on Dried Figs Based on Machine Learning Algorithms
Authors: Kottaridi Klimentia, Demopoulos Vasilis, Sidiropoulos Anastasios, Ihara Diego, Nikolaidis Vasileios, Antonopoulos Dimitrios
Abstract:
Aflatoxins are highly poisonous and carcinogenic compounds produced by species of the genus Aspergillus spp. that can infect a variety of agricultural foods, including dried figs. Biological and environmental factors, such as population, pathogenicity, and aflatoxinogenic capacity of the strains, topography, soil, and climate parameters of the fig orchards, are believed to have a strong effect on aflatoxin levels. Existing methods for aflatoxin detection and measurement, such as high performance liquid chromatography (HPLC), and enzyme-linked immunosorbent assay (ELISA), can provide accurate results, but the procedures are usually time-consuming, sample-destructive, and expensive. Predicting aflatoxin levels prior to crop harvest is useful for minimizing the health and financial impact of a contaminated crop. Consequently, there is interest in developing a tool that predicts aflatoxin levels based on topography and soil analysis data of fig orchards. This paper describes the development of a risk assessment tool for the contamination of aflatoxin on dried figs, based on the location and altitude of the fig orchards, the population of the fungus Aspergillus spp. in the soil, and soil parameters such as pH, saturation percentage (SP), electrical conductivity (EC), organic matter, particle size analysis (sand, silt, clay), the concentration of the exchangeable cations (Ca, Mg, K, Na), extractable P, and trace of elements (B, Fe, Mn, Zn and Cu), by employing machine learning methods. In particular, our proposed method integrates three machine learning techniques, i.e., dimensionality reduction on the original dataset (principal component analysis), metric learning (Mahalanobis metric for clustering), and k-nearest neighbors learning algorithm (KNN), into an enhanced model, with mean performance equal to 85% by terms of the Pearson correlation coefficient (PCC) between observed and predicted values.Keywords: aflatoxins, Aspergillus spp., dried figs, k-nearest neighbors, machine learning, prediction
Procedia PDF Downloads 184524 New Advanced Medical Software Technology Challenges and Evolution of the Regulatory Framework in Expert Software, Artificial Intelligence, and Machine Learning
Authors: Umamaheswari Shanmugam, Silvia Ronchi
Abstract:
Software, artificial intelligence, and machine learning can improve healthcare through innovative and advanced technologies that can use the large amount and variety of data generated during healthcare services every day; one of the significant advantages of these new technologies is the ability to get experience and knowledge from real-world use and to improve their performance continuously. Healthcare systems and institutions can significantly benefit because the use of advanced technologies improves the efficiency and efficacy of healthcare. Software-defined as a medical device, is stand-alone software that is intended to be used for patients for one or more of these specific medical intended uses: - diagnosis, prevention, monitoring, prediction, prognosis, treatment or alleviation of a disease, any other health conditions, replacing or modifying any part of a physiological or pathological process–manage the received information from in vitro specimens derived from the human samples (body) and without principal main action of its principal intended use by pharmacological, immunological or metabolic definition. Software qualified as medical devices must comply with the general safety and performance requirements applicable to medical devices. These requirements are necessary to ensure high performance and quality and protect patients' safety. The evolution and the continuous improvement of software used in healthcare must consider the increase in regulatory requirements, which are becoming more complex in each market. The gap between these advanced technologies and the new regulations is the biggest challenge for medical device manufacturers. Regulatory requirements can be considered a market barrier, as they can delay or obstacle the device's approval. Still, they are necessary to ensure performance, quality, and safety. At the same time, they can be a business opportunity if the manufacturer can define the appropriate regulatory strategy in advance. The abstract will provide an overview of the current regulatory framework, the evolution of the international requirements, and the standards applicable to medical device software in the potential market all over the world.Keywords: artificial intelligence, machine learning, SaMD, regulatory, clinical evaluation, classification, international requirements, MDR, 510k, PMA, IMDRF, cyber security, health care systems
Procedia PDF Downloads 89523 Biflavonoids from Selaginellaceae as Epidermal Growth Factor Receptor Inhibitors and Their Anticancer Properties
Authors: Adebisi Adunola Demehin, Wanlaya Thamnarak, Jaruwan Chatwichien, Chatchakorn Eurtivong, Kiattawee Choowongkomon, Somsak Ruchirawat, Nopporn Thasana
Abstract:
The epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein involved in cellular signalling processes and, its aberrant activity is crucial in the development of many cancers such as lung cancer. Selaginellaceae are fern allies that have long been used in Chinese traditional medicine to treat various cancer types, especially lung cancer. Biflavonoids, the major secondary metabolites in Selaginellaceae, have numerous pharmacological activities, including anti-cancer and anti-inflammatory. For instance, amentoflavone induces a cytotoxic effect in the human NSCLC cell line via the inhibition of PARP-1. However, to the best of our knowledge, there are no studies on biflavonoids as EGFR inhibitors. Thus, this study aims to investigate the EGFR inhibitory activities of biflavonoids isolated from Selaginella siamensis and Selaginella bryopteris. Amentoflavone, tetrahydroamentoflavone, sciadopitysin, robustaflavone, robustaflavone-4-methylether, delicaflavone, and chrysocauloflavone were isolated from the ethyl-acetate extract of the whole plants. The structures were determined using NMR spectroscopy and mass spectrometry. In vitro study was conducted to evaluate their cytotoxicity against A549, HEPG2, and T47D human cancer cell lines using the MTT assay. In addition, a target-based assay was performed to investigate their EGFR inhibitory activity using the kinase inhibition assay. Finally, a molecular docking study was conducted to predict the binding modes of the compounds. Robustaflavone-4-methylether and delicaflavone showed the best cytotoxic activity on all the cell lines with IC50 (µM) values of 18.9 ± 2.1 and 22.7 ± 3.3 on A549, respectively. Of these biflavonoids, delicaflavone showed the most potent EGFR inhibitory activity with an 84% relative inhibition at 0.02 nM using erlotinib as a positive control. Robustaflavone-4-methylether showed a 78% inhibition at 0.15 nM. The docking scores obtained from the molecular docking study correlated with the kinase inhibition assay. Robustaflavone-4-methylether and delicaflavone had a docking score of 72.0 and 86.5, respectively. The inhibitory activity of delicaflavone seemed to be linked with the C2”=C3” and 3-O-4”’ linkage pattern. Thus, this study suggests that the structural features of these compounds could serve as a basis for developing new EGFR-TK inhibitors.Keywords: anticancer, biflavonoids, EGFR, molecular docking, Selaginellaceae
Procedia PDF Downloads 198522 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation
Authors: Jonathan Gong
Abstract:
Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning
Procedia PDF Downloads 131