Search results for: miRNA:mRNA target prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5088

Search results for: miRNA:mRNA target prediction

1488 Machine Learning Techniques for COVID-19 Detection: A Comparative Analysis

Authors: Abeer A. Aljohani

Abstract:

COVID-19 virus spread has been one of the extreme pandemics across the globe. It is also referred to as coronavirus, which is a contagious disease that continuously mutates into numerous variants. Currently, the B.1.1.529 variant labeled as omicron is detected in South Africa. The huge spread of COVID-19 disease has affected several lives and has surged exceptional pressure on the healthcare systems worldwide. Also, everyday life and the global economy have been at stake. This research aims to predict COVID-19 disease in its initial stage to reduce the death count. Machine learning (ML) is nowadays used in almost every area. Numerous COVID-19 cases have produced a huge burden on the hospitals as well as health workers. To reduce this burden, this paper predicts COVID-19 disease is based on the symptoms and medical history of the patient. This research presents a unique architecture for COVID-19 detection using ML techniques integrated with feature dimensionality reduction. This paper uses a standard UCI dataset for predicting COVID-19 disease. This dataset comprises symptoms of 5434 patients. This paper also compares several supervised ML techniques to the presented architecture. The architecture has also utilized 10-fold cross validation process for generalization and the principal component analysis (PCA) technique for feature reduction. Standard parameters are used to evaluate the proposed architecture including F1-Score, precision, accuracy, recall, receiver operating characteristic (ROC), and area under curve (AUC). The results depict that decision tree, random forest, and neural networks outperform all other state-of-the-art ML techniques. This achieved result can help effectively in identifying COVID-19 infection cases.

Keywords: supervised machine learning, COVID-19 prediction, healthcare analytics, random forest, neural network

Procedia PDF Downloads 94
1487 Links Between Maternal Trauma, Response to Distress, and Toddler Internalizing and Externalizing Behaviors: A Mediational Analysis

Authors: Zena Ebrahim, Susan Woodhouse

Abstract:

Previous research shows that mothers’ experiences of trauma are linked to their child’s later socioemotional functioning. However, the mechanisms involved are not well understood. One potential mediator is maternal insensitive responses to child distress. This study examined the link between maternal trauma, mothers’ responses to toddler distress, and toddlers’ socioemotional outcomes among a socioeconomically diverse sample of 110 mothers and their 12- to 35-month-old toddlers. It was hypothesized that a mother’s difficulty in responding sensitively to her child’s distress would mediate the relations between maternal trauma and child internalizing and externalizing behaviors. Two mediational models were tested to examine non-supportive responses to distress as a potential mediator of the relation between maternal trauma and toddler mental health outcomes; one model focused on predicting child internalizing symptoms and the other focused on predicting child externalizing symptoms. Measures included assessment of maternal trauma (Life Stressor Checklist-Revised), mothers’ responses to child distress (Coping with Toddlers’ Negative Emotions Scale), and toddler socioemotional functioning (Infant-Toddler Social and Emotional Assessment). Results revealed that the relations between maternal trauma and toddler symptoms (internalizing and externalizing symptoms) were mediated by maternal non-supportive response to child distress for both internalizing and externalizing domains of child mental health. Findings suggest the importance of early intervention for trauma-exposed mothers and target areas for parenting interventions.

Keywords: trauma, parenting, child mental health, transgenerational effects of trauma

Procedia PDF Downloads 157
1486 hsa-miR-1204 and hsa-miR-639 Prominent Role in Tamoxifen's Molecular Mechanisms on the EMT Phenomenon in Breast Cancer Patients

Authors: Mahsa Taghavi

Abstract:

In the treatment of breast cancer, tamoxifen is a regularly prescribed medication. The effect of tamoxifen on breast cancer patients' EMT pathways was studied. In this study to see if it had any effect on the cancer cells' resistance to tamoxifen and to look for specific miRNAs associated with EMT. In this work, we used continuous and integrated bioinformatics analysis to choose the optimal GEO datasets. Once we had sorted the gene expression profile, we looked at the mechanism of signaling, the ontology of genes, and the protein interaction of each gene. In the end, we used the GEPIA database to confirm the candidate genes. after that, I investigated critical miRNAs related to candidate genes. There were two gene expression profiles that were categorized into two distinct groups. Using the expression profile of genes that were lowered in the EMT pathway, the first group was examined. The second group represented the polar opposite of the first. A total of 253 genes from the first group and 302 genes from the second group were found to be common. Several genes in the first category were linked to cell death, focal adhesion, and cellular aging. Two genes in the second group were linked to cell death, focal adhesion, and cellular aging. distinct cell cycle stages were observed. Finally, proteins such as MYLK, SOCS3, and STAT5B from the first group and BIRC5, PLK1, and RAPGAP1 from the second group were selected as potential candidates linked to tamoxifen's influence on the EMT pathway. hsa-miR-1204 and hsa-miR-639 have a very close relationship with the candidates genes according to the node degrees and betweenness index. With this, the action of tamoxifen on the EMT pathway was better understood. It's important to learn more about how tamoxifen's target genes and proteins work so that we can better understand the drug.

Keywords: tamoxifen, breast cancer, bioinformatics analysis, EMT, miRNAs

Procedia PDF Downloads 129
1485 Biophysical Consideration in the Interaction of Biological Cell Membranes with Virus Nanofilaments

Authors: Samaneh Farokhirad, Fatemeh Ahmadpoor

Abstract:

Biological membranes are constantly in contact with various filamentous soft nanostructures that either reside on their surface or are being transported between the cell and its environment. In particular, viral infections are determined by the interaction of viruses (such as filovirus) with cell membranes, membrane protein organization (such as cytoskeletal proteins and actin filament bundles) has been proposed to influence the mechanical properties of lipid membranes, and the adhesion of filamentous nanoparticles influence their delivery yield into target cells or tissues. The goal of this research is to integrate the rapidly increasing but still fragmented experimental observations on the adhesion and self-assembly of nanofilaments (including filoviruses, actin filaments, as well as natural and synthetic nanofilaments) on cell membranes into a general, rigorous, and unified knowledge framework. The global outbreak of the coronavirus disease in 2020, which has persisted for over three years, highlights the crucial role that nanofilamentbased delivery systems play in human health. This work will unravel the role of a unique property of all cell membranes, namely flexoelectricity, and the significance of nanofilaments’ flexibility in the adhesion and self-assembly of nanofilaments on cell membranes. This will be achieved utilizing a set of continuum mechanics, statistical mechanics, and molecular dynamics and Monte Carlo simulations. The findings will help address the societal needs to understand biophysical principles that govern the attachment of filoviruses and flexible nanofilaments onto the living cells and provide guidance on the development of nanofilament-based vaccines for a range of diseases, including infectious diseases and cancer.

Keywords: virus nanofilaments, cell mechanics, computational biophysics, statistical mechanics

Procedia PDF Downloads 96
1484 Feature Selection of Personal Authentication Based on EEG Signal for K-Means Cluster Analysis Using Silhouettes Score

Authors: Jianfeng Hu

Abstract:

Personal authentication based on electroencephalography (EEG) signals is one of the important field for the biometric technology. More and more researchers have used EEG signals as data source for biometric. However, there are some disadvantages for biometrics based on EEG signals. The proposed method employs entropy measures for feature extraction from EEG signals. Four type of entropies measures, sample entropy (SE), fuzzy entropy (FE), approximate entropy (AE) and spectral entropy (PE), were deployed as feature set. In a silhouettes calculation, the distance from each data point in a cluster to all another point within the same cluster and to all other data points in the closest cluster are determined. Thus silhouettes provide a measure of how well a data point was classified when it was assigned to a cluster and the separation between them. This feature renders silhouettes potentially well suited for assessing cluster quality in personal authentication methods. In this study, “silhouettes scores” was used for assessing the cluster quality of k-means clustering algorithm is well suited for comparing the performance of each EEG dataset. The main goals of this study are: (1) to represent each target as a tuple of multiple feature sets, (2) to assign a suitable measure to each feature set, (3) to combine different feature sets, (4) to determine the optimal feature weighting. Using precision/recall evaluations, the effectiveness of feature weighting in clustering was analyzed. EEG data from 22 subjects were collected. Results showed that: (1) It is possible to use fewer electrodes (3-4) for personal authentication. (2) There was the difference between each electrode for personal authentication (p<0.01). (3) There is no significant difference for authentication performance among feature sets (except feature PE). Conclusion: The combination of k-means clustering algorithm and silhouette approach proved to be an accurate method for personal authentication based on EEG signals.

Keywords: personal authentication, K-mean clustering, electroencephalogram, EEG, silhouettes

Procedia PDF Downloads 285
1483 Fluvial Stage-Discharge Rating of a Selected Reach of Jamuna River

Authors: Makduma Zahan Badhan, M. Abdul Matin

Abstract:

A study has been undertaken to develop a fluvial stage-discharge rating curve for Jamuna River. Past Cross-sectional survey of Jamuna River reach within Sirajgonj and Tangail has been analyzed. The analysis includes the estimation of discharge carrying capacity, possible maximum scour depth and sediment transport capacity of the selected reaches. To predict the discharge and sediment carrying capacity, stream flow data which include cross-sectional area, top width, water surface slope and median diameter of the bed material of selected stations have been collected and some are calculated from reduced level data. A well-known resistance equation has been adopted and modified to a simple form in order to be used in the present analysis. The modified resistance equation has been used to calculate the mean velocity through the channel sections. In addition, a sediment transport equation has been applied for the prediction of transport capacity of the various sections. Results show that the existing drainage sections of Jamuna channel reach under study have adequate carrying capacity under existing bank-full conditions, but these reaches are subject to bed erosion even in low flow situations. Regarding sediment transport rate, it can be estimated that the channel flow has a relatively high range of bed material concentration. Finally, stage­ discharge curves for various sections have been developed. Based on stage-discharge rating data of various sections, water surface profile and sediment-rating curve of Jamuna River have been developed and also the flooding conditions have been analyzed from predicted water surface profile.

Keywords: discharge rating, flow profile, fluvial, sediment rating

Procedia PDF Downloads 185
1482 Prediction of Ionizing Radiation Doses in Irradiated red Pepper (Capsicum annuum) and Mint (Mentha piperita) by Gel Electrophoresis

Authors: Şeyma Özçirak Ergün, Ergün Şakalar, Emrah Yalazi̇, Nebahat Şahi̇n

Abstract:

Food irradiation is a usage of exposing food to ionising radiation (IR) such as gamma rays. IR has been used to decrease the number of harmful microorganisms in the food such as spices. Excessive usage of IR can cause damage to both food and people who consuming food. And also it causes to damages on food DNA. Generally, IR detection techniques were utilized in literature for spices are Electron Spin Resonance (ESR), Thermos Luminescence (TL). Storage creates negative effect on IR detection method then analyses of samples have been performed without storage in general. In the experimental part, red pepper (Capsicum annuum) and mint (Mentha piperita) as spices were exposed to 0, 0.272, 0.497, 1.06, 3.64, 8.82, and 17.42 kGy ionize radiation. ESR was applied to samples irradiated. DNA isolation from irradiated samples was performed using GIDAGEN Multi Fast DNA isolation kit. The DNA concentration was measured using a microplate reader spectrophotometer (Infinite® 200 PRO-Life Science–Tecan). The concentration of each DNA was adjusted to 50 ng/µL. Genomic DNA was imaged by UV transilluminator (Gel Doc XR System, Bio-Rad) for the estimation of genomic DNA bp-fragment size after IR. Thus, agarose gel profiles of irradiated spices were obtained to determine the change of band profiles. Besides, samples were examined at three different time periods (0, 3, 6 months storage) to show the feasibility of developed method. Results of gel electrophoresis showed especially degradation of DNA of irradiated samples. In conclusion, this study with gel electrophoresis can be used as a basis for the identification of the dose of irradiation by looking at degradation profiles at specific amounts of irradiation. Agarose gel results of irradiated samples were confirmed with ESR analysis. This method can be applied widely to not only food products but also all biological materials containing DNA to predict radiation-induced damage of DNA.

Keywords: DNA, electrophoresis, gel electrophoresis, ionizeradiation

Procedia PDF Downloads 259
1481 The Fabrication of Stress Sensing Based on Artificial Antibodies to Cortisol by Molecular Imprinted Polymer

Authors: Supannika Klangphukhiew, Roongnapa Srichana, Rina Patramanon

Abstract:

Cortisol has been used as a well-known commercial stress biomarker. A homeostasis response to psychological stress is indicated by an increased level of cortisol produced in hypothalamus-pituitary-adrenal (HPA) axis. Chronic psychological stress contributing to the high level of cortisol relates to several health problems. In this study, the cortisol biosensor was fabricated that mimicked the natural receptors. The artificial antibodies were prepared using molecular imprinted polymer technique that can imitate the performance of natural anti-cortisol antibody with high stability. Cortisol-molecular imprinted polymer (cortisol-MIP) was obtained using the multi-step swelling and polymerization protocol with cortisol as a target molecule combining methacrylic acid:acrylamide (2:1) with bisacryloyl-1,2-dihydroxy-1,2-ethylenediamine and ethylenedioxy-N-methylamphetamine as cross-linkers. Cortisol-MIP was integrated to the sensor. It was coated on the disposable screen-printed carbon electrode (SPCE) for portable electrochemical analysis. The physical properties of Cortisol-MIP were characterized by means of electron microscope techniques. The binding characteristics were evaluated via covalent patterns changing in FTIR spectra which were related to voltammetry response. The performance of cortisol-MIP modified SPCE was investigated in terms of detection range, high selectivity with a detection limit of 1.28 ng/ml. The disposable cortisol biosensor represented an application of MIP technique to recognize steroids according to their structures with feasibility and cost-effectiveness that can be developed to use in point-of-care.

Keywords: stress biomarker, cortisol, molecular imprinted polymer, screen-printed carbon electrode

Procedia PDF Downloads 274
1480 Genre Hybridity and Postcolonialism in 'Chairil: The Voice of Indonesia's Decolonisation'

Authors: Jack Johnstone

Abstract:

This research presents postcolonial translation as an approach to eradicate traces of colonialism in former colonies. An example of demonstrating postcolonial translation in the Indonesian context is in Hasan Aspahani's Chairil, a biographical narrative and history book based on the personal life of a well-known Indonesian poet and writer, Chairil Anwar (1922-1949) in Dutch occupied Indonesia. This postcolonial translation approach has been applied in the first five chapters on his early years under Dutch colonization, in an attempt to show a postcolonialised TT. This approach aims to demonstrate the postcolonial refutation of the Dutch colonial language to convey the Indonesian setting to target readers. It is also designed to explicate the summary of the book as well as my attempt to apply postcolonial translation as a strategy to reject the Dutch colonial terms in this book. The data conveys 26 important examples of the ST and TT, in consideration of the chosen three factors of culture, forced-Europeanisation, and cross-genre between a biographical narrative and history under categories of Cultural Bound Objects, Politics and Place. However, the 10 selected examples will be analyzed in the Analysis Chapter, which are discussed at word, sentence, and paragraph level. As well, the translation strategies used, namely retention, substitution and specification on four main examples, on the methods utilized to achieve a postcolonialised translation that attempts to 1) examine the way the alteration of the TT can affect the message portrayed within the ST, 2) show the notion of disagreement between the Dutch colonizers and colonized Indonesians on their views on the way Indonesia should be governed and 3) present a translation that reverses the inequality between the superior colonials and inferior Indigenous Indonesians during the Dutch colonial era.

Keywords: Chairil, Dutch colonialism, Indonesia, postcolonial translation

Procedia PDF Downloads 168
1479 Features of the Functional and Spatial Organization of Railway Hubs as a Part of the Urban Nodal Area

Authors: Khayrullina Yulia Sergeevna, Tokareva Goulsine Shavkatovna

Abstract:

The article analyzes the modern major railway hubs as a main part of the Urban Nodal Area (UNA). The term was introduced into the theory of urban planning at the end of the XX century. Tokareva G.S. jointly with Gutnov A.E. investigated the structure-forming elements of the city. UNA is the basic unit, the "cell" of the city structure. Specialization is depending on the position in the frame or the fabric of the city. This is related to feature of its organization. Spatial and functional features of UNA proposed to investigate in this paper. The base object for researching are railway hubs as connective nodes of inner and extern-city communications. Research used a stratified sampling type with the selection of typical objects. Research is being conducted on the 14 railway hubs of the native and foreign experience of the largest cities with a population over 1 million people located in one and close to the Russian climate zones. Features of the organization identified in the complex research of functional and spatial characteristics based on the hypothesis of the existence of dual characteristics of the organization of urban nodes. According to the analysis, there is using the approximation method that enable general conclusions of a representative selection of the entire population of railway hubs and it development’s area. Results of the research show specific ratio of functional and spatial organization of UNA based on railway hubs. Based on it there proposed typology of spaces and urban nodal areas. Identification of spatial diversity and functional organization’s features of the greatest railway hubs and it development’s area gives an indication of the different evolutionary stages of formation approaches. It help to identify new patterns for the complex and effective design as a prediction of the native hub’s development direction.

Keywords: urban nodal area, railway hubs, features of structural, functional organization

Procedia PDF Downloads 390
1478 Comparison of Various Landfill Ground Improvement Techniques for Redevelopment of Closed Landfills to Cater Transport Infrastructure

Authors: Michael D. Vinod, Hadi Khabbaz

Abstract:

Construction of infrastructure above or adjacent to landfills is becoming more common to capitalize on the limited space available within urban areas. However, development above landfills is a challenging task due to large voids, the presence of organic matter, heterogeneous nature of waste and ambiguity surrounding landfill settlement prediction. Prior to construction of infrastructure above landfills, ground improvement techniques are being employed to improve the geotechnical properties of landfill material. Although the ground improvement techniques have little impact on long term biodegradation and creep related landfill settlement, they have shown some notable short term success with a variety of techniques, including methods for verifying the level of effectiveness of ground improvement techniques. This paper provides geotechnical and landfill engineers a guideline for selection of landfill ground improvement techniques and their suitability to project-specific sites. Ground improvement methods assessed and compared in this paper include concrete injected columns (CIC), dynamic compaction, rapid impact compaction (RIC), preloading, high energy impact compaction (HEIC), vibro compaction, vibro replacement, chemical stabilization and the inclusion of geosynthetics such as geocells. For each ground improvement technique a summary of the existing theory, benefits, limitations, suitable modern ground improvement monitoring methods, the applicability of ground improvement techniques for landfills and supporting case studies are provided. The authors highlight the importance of implementing cost-effective monitoring techniques to allow observation and necessary remediation of the subsidence effects associated with long term landfill settlement. These ground improvement techniques are primarily for the purpose of construction above closed landfills to cater for transport infrastructure loading.

Keywords: closed landfills, ground improvement, monitoring, settlement, transport infrastructure

Procedia PDF Downloads 226
1477 Determining the Prevalence and Correlates of Depression among Transgenders of a Developing Country

Authors: Usama Bin Zubair, Muhammad Azeem

Abstract:

Introduction: Depression has been one of the most commonly diagnosed mental health disorders in Pakistan. A Census conducted by the government of Pakistan in 2017 showed that more than 10000 trans-genders live in Pakistan. HIV, illicit substance use and mental health issues, including depression, have been the main health problems faced by them. Trans-gender population has been suffering from depressive illness more than normal population all over the world. Aim: To assess the prevalence of depression among the transgender population and analyze the relationship of socio-demographic factors with depression. Subjects and Methods: The sample population comprised of one hundred and forty-two transgender people of Rawalpindi and Islamabad. Beck depressive inventory II (BDI-II) was used to record the presence and severity of the depressive symptoms. Depressive symptoms were categorized as mild, moderate and severe. Relationship of the age, smoking, family income, illicit substance use and education were studied with the presence of depressive symptoms among these transgender people of twin cities of Pakistan. Results: A total of 142 transgender people were included in the final analysis. The mean age of the study participants was 39.55 ± 6.18. Out of these, 45.1% had no depressive symptoms while 31.7% had mild, 12.7% had moderate and 10.6% had severe depressive symptomatology. After applying the binary logistic regression, we found that the presence of depressive symptoms had a significant association with illicit substance use among the target population. Conclusion: This study showed a high prevalence of depressive symptoms among the transgender population in the twin cities of Pakistan. Use of illicit substances like tobacco, cannabis, opiates, and alcohol should be discouraged to prevent mental health problems.

Keywords: depression, transgender, prevalence, sociodemographic factors

Procedia PDF Downloads 122
1476 Towards Renewable Energy: A Qualitative Study of Biofuel Development Policy in Indonesia

Authors: Arie Yanwar Kapriadi

Abstract:

This research is aiming to develop deeper understanding of the scale of power that shaped the biofuel policy. This research is important for the following reasons. Firstly, this research will enrich the body of literature within the field of political ecology, scale and environmental governance. Secondly, by focussing on energy transition policies, this research offers a critical perspective on how government policy, aimed at delivering low carbon sustainable energy systems, being scaled and implemented through multi variate stakeholders. Finally, the research could help the government of Indonesia as a policy evaluation on delivering low carbon sustainable energy systems at the macro level that (possibility) being unable to be delivered at different scale and instead being perceived differently by different stakeholders. Qualitative method is applied particularly an in depth interview with government officials as well as policy stakeholders outside of government and people in positions of responsibility with regards to policy delivery. There are 4 field study location where interview took place as well as sites visit to some biofuel refining facilities. There are some major companies which involve on the production and distribution of biofuel and its relation with biofuel feedstock industry as the source of data. The research investigates how the government biofuel policies correlated with other policy issues such as land reclassification and carbon emission reduction which also influenced plantations expansion as well as its impact on the local people. The preliminary result shows tension of power between governing authorities caused the Indonesian biofuel policy being unfocused which led to failing to meet its mandatory blending target despite the abundance of its feedstock.

Keywords: biofuel, energy transition, renewable energy, political ecology

Procedia PDF Downloads 199
1475 Relationship Between In-Service Training and Employees’ Feeling of Psychological Ownership

Authors: Mahsa Kallhor Mohammadi, Hamideh Reshadatjoo

Abstract:

This study verified the relationship between in-service training and employees’ feeling of psychological ownership. This research applied a descriptive survey that investigated a correlation between variables. The target population was 140 employees of a Drilling Fluid and Waste Management Service Company, and the sample was 123 employees who were selected randomly and encouraged to complete an electronic questionnaire which was designed based on standard questionnaires for research variables covering 62 questions. The face validity of the questionnaire was supported by an experimental test, and its content validity was approved by the thesis supervisor and consulting advisor. For the descriptive statistics frequency tables and diagrams, measures of central tendency such as mode, median, and mean and measures of variability such as variance, standards deviation, and quartile deviation were used. In the inferential statistics section, the Pearson correlation coefficient was used to verify the relationship between the variables of the research. According to the results, all of the research hypotheses were supported. According to hypothesis 1, there was a positive and significant relationship between training policy-making and employees’ psychological ownership (r=0/408, α=0/05). According to hypothesis 2, there was a positive and significant relationship between training planning and employees’ psychological ownership (r=0/446, α=0/05). According to hypothesis 3, there was a positive and significant relationship between providing the training and employees’ psychological ownership (r=0/512, α=0/05). According to hypothesis 4, there was a positive and significant relationship between training performance management and employees’ psychological ownership (r=0/462, α=0/05). According to hypothesis 5, there was a positive and significant relationship between employees’ motivation and psychological ownership (r=0/694, α=0/05). Therefore, through systematic in-service training, which is in the same line with the strategic goals of an organization and is based on scientific needs analysis, design, implementation, and evaluation, it is possible to improve employees’ sense of psychological ownership toward an organization.

Keywords: in-service training, motivation, organizational behavior, psychological ownership

Procedia PDF Downloads 63
1474 Investigations of Bergy Bits and Ship Interactions in Extreme Waves Using Smoothed Particle Hydrodynamics

Authors: Mohammed Islam, Jungyong Wang, Dong Cheol Seo

Abstract:

The Smoothed Particle Hydrodynamics (SPH) method is a novel, meshless, and Lagrangian technique based numerical method that has shown promises to accurately predict the hydrodynamics of water and structure interactions in violent flow conditions. The main goal of this study is to build confidence on the versatility of the Smoothed Particle Hydrodynamics (SPH) based tool, to use it as a complementary tool to the physical model testing capabilities and support research need for the performance evaluation of ships and offshore platforms exposed to an extreme and harsh environment. In the current endeavor, an open-sourced SPH-based tool was used and validated for modeling and predictions of the hydrodynamic interactions of a 6-DOF ship and bergy bits. The study involved the modeling of a modern generic drillship and simplified bergy bits in floating and towing scenarios and in regular and irregular wave conditions. The predictions were validated using the model-scale measurements on a moored ship towed at multiple oblique angles approaching a floating bergy bit in waves. Overall, this study results in a thorough comparison between the model scale measurements and the prediction outcomes from the SPH tool for performance and accuracy. The SPH predicted ship motions and forces were primarily within ±5% of the measurements. The velocity and pressure distribution and wave characteristics over the free surface depicts realistic interactions of the wave, ship, and the bergy bit. This work identifies and presents several challenges in preparing the input file, particularly while defining the mass properties of complex geometry, the computational requirements, and the post-processing of the outcomes.

Keywords: SPH, ship and bergy bit, hydrodynamic interactions, model validation, physical model testing

Procedia PDF Downloads 133
1473 Analysis of Travel Behavior Patterns of Frequent Passengers after the Section Shutdown of Urban Rail Transit - Taking the Huaqiao Section of Shanghai Metro Line 11 Shutdown During the COVID-19 Epidemic as an Example

Authors: Hongyun Li, Zhibin Jiang

Abstract:

The travel of passengers in the urban rail transit network is influenced by changes in network structure and operational status, and the response of individual travel preferences to these changes also varies. Firstly, the influence of the suspension of urban rail transit line sections on passenger travel along the line is analyzed. Secondly, passenger travel trajectories containing multi-dimensional semantics are described based on network UD data. Next, passenger panel data based on spatio-temporal sequences is constructed to achieve frequent passenger clustering. Then, the Graph Convolutional Network (GCN) is used to model and identify the changes in travel modes of different types of frequent passengers. Finally, taking Shanghai Metro Line 11 as an example, the travel behavior patterns of frequent passengers after the Huaqiao section shutdown during the COVID-19 epidemic are analyzed. The results showed that after the section shutdown, most passengers would transfer to the nearest Anting station for boarding, while some passengers would transfer to other stations for boarding or cancel their travels directly. Among the passengers who transferred to Anting station for boarding, most of passengers maintained the original normalized travel mode, a small number of passengers waited for a few days before transferring to Anting station for boarding, and only a few number of passengers stopped traveling at Anting station or transferred to other stations after a few days of boarding on Anting station. The results can provide a basis for understanding urban rail transit passenger travel patterns and improving the accuracy of passenger flow prediction in abnormal operation scenarios.

Keywords: urban rail transit, section shutdown, frequent passenger, travel behavior pattern

Procedia PDF Downloads 86
1472 An Exponential Field Path Planning Method for Mobile Robots Integrated with Visual Perception

Authors: Magdy Roman, Mostafa Shoeib, Mostafa Rostom

Abstract:

Global vision, whether provided by overhead fixed cameras, on-board aerial vehicle cameras, or satellite images can always provide detailed information on the environment around mobile robots. In this paper, an intelligent vision-based method of path planning and obstacle avoidance for mobile robots is presented. The method integrates visual perception with a new proposed field-based path-planning method to overcome common path-planning problems such as local minima, unreachable destination and unnecessary lengthy paths around obstacles. The method proposes an exponential angle deviation field around each obstacle that affects the orientation of a close robot. As the robot directs toward, the goal point obstacles are classified into right and left groups, and a deviation angle is exponentially added or subtracted to the orientation of the robot. Exponential field parameters are chosen based on Lyapunov stability criterion to guarantee robot convergence to the destination. The proposed method uses obstacles' shape and location, extracted from global vision system, through a collision prediction mechanism to decide whether to activate or deactivate obstacles field. In addition, a search mechanism is developed in case of robot or goal point is trapped among obstacles to find suitable exit or entrance. The proposed algorithm is validated both in simulation and through experiments. The algorithm shows effectiveness in obstacles' avoidance and destination convergence, overcoming common path planning problems found in classical methods.

Keywords: path planning, collision avoidance, convergence, computer vision, mobile robots

Procedia PDF Downloads 196
1471 Impure CO₂ Solubility Trapping in Deep Saline Aquifers: Role of Operating Conditions

Authors: Seyed Mostafa Jafari Raad, Hassan Hassanzadeh

Abstract:

Injection of impurities along with CO₂ into saline aquifers provides an exceptional prospect for low-cost carbon capture and storage technologies and can potentially accelerate large-scale implementation of geological storage of CO₂. We have conducted linear stability analyses and numerical simulations to investigate the effects of permitted impurities in CO₂ streams on the onset of natural convection and dynamics of subsequent convective mixing. We have shown that the rate of dissolution of an impure CO₂ stream with H₂S highly depends on the operating conditions such as temperature, pressure, and composition of impurity. Contrary to findings of previous studies, our results show that an impurity such as H₂S can potentially reduce the onset time of natural convection and can accelerate the subsequent convective mixing. However, at the later times, the rate of convective dissolution is adversely affected by the impurities. Therefore, the injection of an impure CO₂ stream can be engineered to improve the rate of dissolution of CO₂, which leads to higher storage security and efficiency. Accordingly, we have identified the most favorable CO₂ stream compositions based on the geophysical properties of target aquifers. Information related to the onset of natural convection such as the scaling relations and the most favorable operating conditions for CO₂ storage developed in this study are important in proper design, site screening, characterization and safety of geological storage. This information can be used to either identify future geological candidates for acid gas disposal or reviewing the current operating conditions of licensed injection sites.

Keywords: CO₂ storage, solubility trapping, convective dissolution, storage efficiency

Procedia PDF Downloads 206
1470 Assessment of Isatin as Surface Recognition Group: Design, Synthesis and Anticancer Evaluation of Hydroxamates as Novel Histone Deacetylase Inhibitors

Authors: Harish Rajak, Kamlesh Raghuwanshi

Abstract:

Histone deacetylase (HDAC) are promising target for cancer treatment. The panobinostat (Farydak; Novartis; approved by USFDA in 2015) and chidamide (Epidaza; Chipscreen Biosciences; approved by China FDA in 2014) are the novel HDAC inhibitors ratified for the treatment of patients with multiple myeloma and peripheral T cell lymphoma, respectively. On the other hand, two other HDAC inhibitors, Vorinostat (SAHA; approved by USFDA in 2006) and Romidepsin (FK228; approved by USFDA in 2009) are already in market for the treatment of cutaneous T-cell lymphoma. Several hydroxamic acid based HDAC inhibitors i.e., belinostat, givinostat, PCI24781 and JNJ26481585 are in clinical trials. HDAC inhibitors consist of three pharmacophoric features - an aromatic cap group, zinc binding group (ZBG) and a linker chain connecting cap group to ZBG. Herein, we report synthesis, characterization and biological evaluation of HDAC inhibitors possessing substituted isatin moiety as cap group which recognize the surface of active enzyme pocket and thiosemicarbazide moiety incorporated as linker group responsible for connecting cap group to ZBG (hydroxamic acid). Several analogues were found to inhibit HDAC and cellular proliferation of Hela cervical cancer cells with GI50 values in the micro molar range. Some of the compounds exhibited promising results in vitro antiproliferative studies. Attempts were also made to establish the structure activity relationship among synthesized HDAC inhibitors.

Keywords: HDAC inhibitors, hydroxamic acid derivatives, isatin derivatives, antiproliferative activity, docking

Procedia PDF Downloads 310
1469 Microwave Synthesis and Molecular Docking Studies of Azetidinone Analogous Bearing Diphenyl Ether Nucleus as a Potent Antimycobacterial and Antiprotozoal Agent

Authors: Vatsal M. Patel, Navin B. Patel

Abstract:

The present studies deal with the developing a series bearing a diphenyl ethers nucleus using structure-based drug design concept. A newer series of diphenyl ether based azetidinone namely N-(3-chloro-2-oxo-4-(3-phenoxyphenyl)azetidin-1-yl)-2-(substituted amino)acetamide (2a-j) have been synthesized by condensation of m-phenoxybenzaldehyde with 2-(substituted-phenylamino)acetohydrazide followed by the cyclisation of resulting Schiff base (1a-j) by conventional method as well as microwave heating approach as a part of an environmentally benign synthetic protocol. All the synthesized compounds were characterized by spectral analysis and were screened for in vitro antimicrobial, antitubercular and antiprotozoal activity. The compound 2f was found to be most active M. tuberculosis (6.25 µM) MIC value in the primary screening as well as this same derivative has been found potency against L. mexicana and T. cruzi with MIC value 2.09 and 6.69 µM comparable to the reference drug Miltefosina and Nifurtimox. To provide understandable evidence to predict binding mode and approximate binding energy of a compound to a target in the terms of ligand-protein interaction, all synthesized compounds were docked against an enoyl-[acyl-carrier-protein] reductase of M. tuberculosis (PDB ID: 4u0j). The computational studies revealed that azetidinone derivatives have a high affinity for the active site of enzyme which provides a strong platform for new structure-based design efforts. The Lipinski’s parameters showed good drug-like properties and can be developed as an oral drug candidate.

Keywords: antimycobacterial, antiprotozoal, azetidinone, diphenylether, docking, microwave

Procedia PDF Downloads 162
1468 Performance Analysis of New Types of Reference Targets Based on Spaceborne and Airborne SAR Data

Authors: Y. S. Zhou, C. R. Li, L. L. Tang, C. X. Gao, D. J. Wang, Y. Y. Guo

Abstract:

Triangular trihedral corner reflector (CR) has been widely used as point target for synthetic aperture radar (SAR) calibration and image quality assessment. The additional “tip” of the triangular plate does not contribute to the reflector’s theoretical RCS and if it interacts with a perfectly reflecting ground plane, it will yield an increase of RCS at the radar bore-sight and decrease the accuracy of SAR calibration and image quality assessment. Regarding this problem, two types of CRs were manufactured. One was the hexagonal trihedral CR. It is a self-illuminating CR with relatively small plate edge length, while large edge length usually introduces unexpected edge diffraction error. The other was the triangular trihedral CR with extended bottom plate which considers the effect of ‘tip’ into the total RCS. In order to assess the performance of the two types of new CRs, flight campaign over the National Calibration and Validation Site for High Resolution Remote Sensors was carried out. Six hexagonal trihedral CRs and two bottom-extended trihedral CRs, as well as several traditional triangular trihedral CRs, were deployed. KOMPSAT-5 X-band SAR image was acquired for the performance analysis of the hexagonal trihedral CRs. C-band airborne SAR images were acquired for the performance analysis of the bottom-extended trihedral CRs. The analysis results showed that the impulse response function of both the hexagonal trihedral CRs and bottom-extended trihedral CRs were much closer to the ideal sinc-function than the traditional triangular trihedral CRs. The flight campaign results validated the advantages of new types of CRs and they might be useful in the future SAR calibration mission.

Keywords: synthetic aperture radar, calibration, corner reflector, KOMPSAT-5

Procedia PDF Downloads 276
1467 Managing Data from One Hundred Thousand Internet of Things Devices Globally for Mining Insights

Authors: Julian Wise

Abstract:

Newcrest Mining is one of the world’s top five gold and rare earth mining organizations by production, reserves and market capitalization in the world. This paper elaborates on the data acquisition processes employed by Newcrest in collaboration with Fortune 500 listed organization, Insight Enterprises, to standardize machine learning solutions which process data from over a hundred thousand distributed Internet of Things (IoT) devices located at mine sites globally. Through the utilization of software architecture cloud technologies and edge computing, the technological developments enable for standardized processes of machine learning applications to influence the strategic optimization of mineral processing. Target objectives of the machine learning optimizations include time savings on mineral processing, production efficiencies, risk identification, and increased production throughput. The data acquired and utilized for predictive modelling is processed through edge computing by resources collectively stored within a data lake. Being involved in the digital transformation has necessitated the standardization software architecture to manage the machine learning models submitted by vendors, to ensure effective automation and continuous improvements to the mineral process models. Operating at scale, the system processes hundreds of gigabytes of data per day from distributed mine sites across the globe, for the purposes of increased improved worker safety, and production efficiency through big data applications.

Keywords: mineral technology, big data, machine learning operations, data lake

Procedia PDF Downloads 112
1466 Analysis of the Cutting Force with Ultrasonic Assisted Manufacturing of Steel (S235JR)

Authors: Philipp Zopf, Franz Haas

Abstract:

Manufacturing of very hard and refractory materials like ceramics, glass or carbide poses particular challenges on tools and machines. The company Sauer GmbH developed especially for this application area ultrasonic tool holders working in a frequency range from 15 to 60 kHz and superimpose the common tool movement in the vertical axis. This technique causes a structural weakening in the contact area and facilitates the machining. The possibility of the force reduction for these special materials especially in drilling of carbide with diamond tools up to 30 percent made the authors try to expand the application range of this method. To make the results evaluable, the authors decide to start with existing processes in which the positive influence of the ultrasonic assistance is proven to understand the mechanism. The comparison of a grinding process the Institute use to machine materials mentioned in the beginning and steel could not be more different. In the first case, the authors use tools with geometrically undefined edges. In the second case, the edges are geometrically defined. To get valid results of the tests, the authors decide to investigate two manufacturing methods, drilling and milling. The main target of the investigation is to reduce the cutting force measured with a force measurement platform underneath the workpiece. Concerning to the direction of the ultrasonic assistance, the authors expect lower cutting forces and longer endurance of the tool in the drilling process. To verify the frequencies and the amplitudes an FFT-analysis is performed. It shows the increasing damping depending on the infeed rate of the tool. The reducing of amplitude of the cutting force comes along.

Keywords: drilling, machining, milling, ultrasonic

Procedia PDF Downloads 274
1465 African Swine Fewer Situation and Diagnostic Methods in Lithuania

Authors: Simona Pileviciene

Abstract:

On 24th January 2014, Lithuania notified two primary cases of African swine fever (ASF) in wild boars. The animals were tested positive for ASF virus (ASFV) genome by real-time PCR at the National Reference Laboratory for ASF in Lithuania (NRL), results were confirmed by the European Union Reference Laboratory for African swine fever (CISA-INIA). Intensive wild and domestic animal monitoring program was started. During the period of 2014-2017 ASF was confirmed in two large commercial pig holding with the highest biosecurity. Pigs were killed and destroyed. Since 2014 ASF outbreak territory from east and south has expanded to the middle of Lithuania. Diagnosis by PCR is one of the highly recommended diagnostic methods by World Organization for Animal Health (OIE) for diagnosis of ASF. The aim of the present study was to compare singleplex real-time PCR assays to a duplex assay allowing the identification of ASF and internal control in a single PCR tube and to compare primers, that target the p72 gene (ASF 250 bp and ASF 75 bp) effectivity. Multiplex real-time PCR assays prove to be less time consuming and cost-efficient and therefore have a high potential to be applied in the routine analysis. It is important to have effective and fast method that allows virus detection at the beginning of disease for wild boar population and in outbreaks for domestic pigs. For experiments, we used reference samples (INIA, Spain), and positive samples from infected animals in Lithuania. Results show 100% sensitivity and specificity.

Keywords: African swine fewer, real-time PCR, wild boar, domestic pig

Procedia PDF Downloads 167
1464 Detection of Transgenes in Cotton (Gossypium hirsutum L.) by using Biotechnology/Molecular Biological Techniques

Authors: Ahmad Ali Shahid, M Shakil Shaukat

Abstract:

Agriculture is the backbone of economy of Pakistan and Cotton is the major agricultural export and supreme source of raw fiber for our textile industry. To combat against the developing resistance in the target insects and combating these challenges wholesomely, a novel combination of pyramided/stacked genes was conceptualized and later realized, through the means of biotechnology i.e., transformation of three genes namely, Cry1Ac, Cry2A, and EPSP synthase (glyphosate tolerant) genes in the locally cultivated cotton variety. The progenies of the transformed plants were successfully raised and screened under the tunnel conditions for two generations and the present study focused on the screening of plants which were confirmed for containing all of these three genes and their expressions. Initially, the screening was done through glyphosate spray assay and the plants which were healthy and showed no damage on leaves were selected after 07 days of spray. In the laboratory, the DNA of these plants were isolated and subjected to amplification of the three genes. Thus, seventeen out of twenty were confirmed positive for Cry1Ac gene and ten out of twenty were positive for Cry2A gene and all twenty were positive for presence of EPSP synthase gene. Then, the ten plant samples which were confirmed with presence of all three genes were subjected to expression analysis of these proteins through ELISA. The results showed that eight out of ten plants were actively expressing the three transgenes. Real-time PCR was also done to quantify the expression levels of the EPSP synthase gene. Finally, eight plants were confirmed for the presence and active expression of all three genes in T3 generation of the triple gene transformed cotton. These plants may be subjected to T4 generation to develop a new stable variety in due course of time.

Keywords: agriculture, cotton, transformation, cry genes, ELISA, PCR

Procedia PDF Downloads 396
1463 Analysing the Interactive Effects of Factors Influencing Sand Production on Drawdown Time in High Viscosity Reservoirs

Authors: Gerald Gwamba, Bo Zhou, Yajun Song, Dong Changyin

Abstract:

The challenges that sand production presents to the oil and gas industry, particularly while working in poorly consolidated reservoirs, cannot be overstated. From restricting production to blocking production tubing, sand production increases the costs associated with production as it elevates the cost of servicing production equipment over time. Production in reservoirs that present with high viscosities, flow rate, cementation, clay content as well as fine sand contents is even more complex and challenging. As opposed to the one-factor at a-time testing, investigating the interactive effects arising from a combination of several factors offers increased reliability of results as well as representation of actual field conditions. It is thus paramount to investigate the conditions leading to the onset of sanding during production to ensure the future sustainability of hydrocarbon production operations under viscous conditions. We adopt the Design of Experiments (DOE) to analyse, using Taguchi factorial designs, the most significant interactive effects of sanding. We propose an optimized regression model to predict the drawdown time at sand production. The results obtained underscore that reservoirs characterized by varying (high and low) levels of viscosity, flow rate, cementation, clay, and fine sand content have a resulting impact on sand production. The only significant interactive effect recorded arises from the interaction between BD (fine sand content and flow rate), while the main effects included fluid viscosity and cementation, with percentage significances recorded as 31.3%, 37.76%, and 30.94%, respectively. The drawdown time model presented could be useful for predicting the time to reach the maximum drawdown pressure under viscous conditions during the onset of sand production.

Keywords: factorial designs, DOE optimization, sand production prediction, drawdown time, regression model

Procedia PDF Downloads 153
1462 Network Conditioning and Transfer Learning for Peripheral Nerve Segmentation in Ultrasound Images

Authors: Harold Mauricio Díaz-Vargas, Cristian Alfonso Jimenez-Castaño, David Augusto Cárdenas-Peña, Guillermo Alberto Ortiz-Gómez, Alvaro Angel Orozco-Gutierrez

Abstract:

Precise identification of the nerves is a crucial task performed by anesthesiologists for an effective Peripheral Nerve Blocking (PNB). Now, anesthesiologists use ultrasound imaging equipment to guide the PNB and detect nervous structures. However, visual identification of the nerves from ultrasound images is difficult, even for trained specialists, due to artifacts and low contrast. The recent advances in deep learning make neural networks a potential tool for accurate nerve segmentation systems, so addressing the above issues from raw data. The most widely spread U-Net network yields pixel-by-pixel segmentation by encoding the input image and decoding the attained feature vector into a semantic image. This work proposes a conditioning approach and encoder pre-training to enhance the nerve segmentation of traditional U-Nets. Conditioning is achieved by the one-hot encoding of the kind of target nerve a the network input, while the pre-training considers five well-known deep networks for image classification. The proposed approach is tested in a collection of 619 US images, where the best C-UNet architecture yields an 81% Dice coefficient, outperforming the 74% of the best traditional U-Net. Results prove that pre-trained models with the conditional approach outperform their equivalent baseline by supporting learning new features and enriching the discriminant capability of the tested networks.

Keywords: nerve segmentation, U-Net, deep learning, ultrasound imaging, peripheral nerve blocking

Procedia PDF Downloads 109
1461 Cannabidiol (CBD) Resistant Salmonella Strains Are Susceptible to Epsilon 34 Phage Tailspike Protein

Authors: Ibrahim Iddrisu, Joseph Ayariga, Junhuan Xu, Ayomide Adebanjo, Boakai K. Robertson, Michelle Samuel-Foo, Olufemi Ajayi

Abstract:

The rise of antimicrobial resistance is a global public health crisis that threatens the effective control and prevention of infections. Due to the emergence of pan drug-resistant bacteria, most antibiotics have lost their efficacy. Bacteriophages or their components are known to target bacterial cell walls, cell membranes, and lipopolysaccharides (LPS) and hydrolyze them. Bacteriophages, being the natural predators of pathogenic bacteria, are inevitably categorized as ‘human friends’, thus fulfilling the adage that ‘the enemy of my enemy is my friend’. Leveraging on their lethal capabilities against pathogenic bacteria, researchers are searching for more ways to overcome the current antibiotic resistance challenge. In this study, we expressed and purified epsilon 34 phage tail spike protein (E34 TSP) from the E34 TSP gene, then assessed the ability of this bacteriophage protein in the killing of two CBD-resistant strains of Salmonella spp. We also assessed the ability of the tail spike protein to cause bacteria membrane disruption and dehydrogenase depletion. We observed that the combined treatment of CBD-resistant strains of Salmonella with CBD and E34 TSP showed poor killing ability, whereas the mono treatment with E34 TSP showed considerably higher killing efficiency. This study demonstrates that the inhibition of the bacteria by E34 TSP was due in part to membrane disruption and dehydrogenase inactivation by the protein. The results of this work provide an interesting background to highlight the crucial role phage proteins such as E34 TSP could play in pathogenic bacterial control.

Keywords: cannabidiol, resistance, Salmonella, antimicrobials, phages

Procedia PDF Downloads 71
1460 Implications of Optimisation Algorithm on the Forecast Performance of Artificial Neural Network for Streamflow Modelling

Authors: Martins Y. Otache, John J. Musa, Abayomi I. Kuti, Mustapha Mohammed

Abstract:

The performance of an artificial neural network (ANN) is contingent on a host of factors, for instance, the network optimisation scheme. In view of this, the study examined the general implications of the ANN training optimisation algorithm on its forecast performance. To this end, the Bayesian regularisation (Br), Levenberg-Marquardt (LM), and the adaptive learning gradient descent: GDM (with momentum) algorithms were employed under different ANN structural configurations: (1) single-hidden layer, and (2) double-hidden layer feedforward back propagation network. Results obtained revealed generally that the gradient descent with momentum (GDM) optimisation algorithm, with its adaptive learning capability, used a relatively shorter time in both training and validation phases as compared to the Levenberg- Marquardt (LM) and Bayesian Regularisation (Br) algorithms though learning may not be consummated; i.e., in all instances considering also the prediction of extreme flow conditions for 1-day and 5-day ahead, respectively especially using the ANN model. In specific statistical terms on the average, model performance efficiency using the coefficient of efficiency (CE) statistic were Br: 98%, 94%; LM: 98 %, 95 %, and GDM: 96 %, 96% respectively for training and validation phases. However, on the basis of relative error distribution statistics (MAE, MAPE, and MSRE), GDM performed better than the others overall. Based on the findings, it is imperative to state that the adoption of ANN for real-time forecasting should employ training algorithms that do not have computational overhead like the case of LM that requires the computation of the Hessian matrix, protracted time, and sensitivity to initial conditions; to this end, Br and other forms of the gradient descent with momentum should be adopted considering overall time expenditure and quality of the forecast as well as mitigation of network overfitting. On the whole, it is recommended that evaluation should consider implications of (i) data quality and quantity and (ii) transfer functions on the overall network forecast performance.

Keywords: streamflow, neural network, optimisation, algorithm

Procedia PDF Downloads 154
1459 A Novel Heuristic for Analysis of Large Datasets by Selecting Wrapper-Based Features

Authors: Bushra Zafar, Usman Qamar

Abstract:

Large data sample size and dimensions render the effectiveness of conventional data mining methodologies. A data mining technique are important tools for collection of knowledgeable information from variety of databases and provides supervised learning in the form of classification to design models to describe vital data classes while structure of the classifier is based on class attribute. Classification efficiency and accuracy are often influenced to great extent by noisy and undesirable features in real application data sets. The inherent natures of data set greatly masks its quality analysis and leave us with quite few practical approaches to use. To our knowledge first time, we present a new approach for investigation of structure and quality of datasets by providing a targeted analysis of localization of noisy and irrelevant features of data sets. Machine learning is based primarily on feature selection as pre-processing step which offers us to select few features from number of features as a subset by reducing the space according to certain evaluation criterion. The primary objective of this study is to trim down the scope of the given data sample by searching a small set of important features which may results into good classification performance. For this purpose, a heuristic for wrapper-based feature selection using genetic algorithm and for discriminative feature selection an external classifier are used. Selection of feature based on its number of occurrence in the chosen chromosomes. Sample dataset has been used to demonstrate proposed idea effectively. A proposed method has improved average accuracy of different datasets is about 95%. Experimental results illustrate that proposed algorithm increases the accuracy of prediction of different diseases.

Keywords: data mining, generic algorithm, KNN algorithms, wrapper based feature selection

Procedia PDF Downloads 318