Search results for: virtual physical model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22585

Search results for: virtual physical model

19015 Factors Influencing Consumer Adoption of Digital Banking Apps in the UK

Authors: Sevelina Ndlovu

Abstract:

Financial Technology (fintech) advancement is recognised as one of the most transformational innovations in the financial industry. Fintech has given rise to internet-only digital banking, a novel financial technology advancement, and innovation that allows banking services through internet applications with no need for physical branches. This technology is becoming a new banking normal among consumers for its ubiquitous and real-time access advantages. There is evident switching and migration from traditional banking towards these fintech facilities, which could possibly pose a systemic risk if not properly understood and monitored. Fintech advancement has also brought about the emergence and escalation of financial technology consumption themes such as trust, security, perceived risk, and sustainability within the banking industry, themes scarcely covered in existing theoretic literature. To that end, the objective of this research is to investigate factors that determine fintech adoption and propose an integrated adoption model. This study aims to establish what the significant drivers of adoption are and develop a conceptual model that integrates technological, behavioral, and environmental constructs by extending the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2). It proposes integrating constructs that influence financial consumption themes such as trust, perceived risk, security, financial incentives, micro-investing opportunities, and environmental consciousness to determine the impact of these factors on the adoption and intention to use digital banking apps. The main advantage of this conceptual model is the consolidation of a greater number of predictor variables that can provide a fuller explanation of the consumer's adoption of digital banking Apps. Moderating variables of age, gender, and income are incorporated. To the best of author’s knowledge, this study is the first that extends the UTAUT2 model with this combination of constructs to investigate user’s intention to adopt internet-only digital banking apps in the UK context. By investigating factors that are not included in the existing theories but are highly pertinent to the adoption of internet-only banking services, this research adds to existing knowledge and extends the generalisability of the UTAUT2 in a financial services adoption context. This is something that fills a gap in knowledge, as highlighted to needing further research on UTAUT2 after reviewing the theory in 2016 from its original version of 2003. To achieve the objectives of this study, this research assumes a quantitative research approach to empirically test the hypotheses derived from existing literature and pilot studies to give statistical support to generalise the research findings for further possible applications in theory and practice. This research is explanatory or casual in nature and uses cross-section primary data collected through a survey method. Convenient and purposive sampling using structured self-administered online questionnaires is used for data collection. The proposed model is tested using Structural Equation Modelling (SEM), and the analysis of primary data collected through an online survey is processed using Smart PLS software with a sample size of 386 digital bank users. The results are expected to establish if there are significant relationships between the dependent and independent variables and establish what the most influencing factors are.

Keywords: banking applications, digital banking, financial technology, technology adoption, UTAUT2

Procedia PDF Downloads 74
19014 Textile Based Physical Wearable Sensors for Healthcare Monitoring in Medical and Protective Garments

Authors: Sejuti Malakar

Abstract:

Textile sensors have gained a lot of interest in recent years as it is instrumental in monitoring physiological and environmental changes, for a better diagnosis that can be useful in various fields like medical textiles, sports textiles, protective textiles, agro textiles, and geo-textiles. Moreover, with the development of flexible textile-based wearable sensors, the functionality of smart clothing is augmented for a more improved user experience when it comes to technical textiles. In this context, conductive textiles using new composites and nanomaterials are being developed while considering its compatibility with the textile manufacturing processes. This review aims to provide a comprehensive and detailed overview of the contemporary advancements in textile-based wearable physical sensors, used in the field of medical, security, surveillance, and protection, from a global perspective. The methodology used is through analysing various examples of integration of wearable textile-based sensors with clothing for daily use, keeping in mind the technological advances in the same. By comparing various case studies, we come across various challenges textile sensors, in terms of stability, the comfort of movement, and reliable sensing components to enable accurate measurements, in spite of progress in the engineering of the wearable. Addressing such concerns is critical for the future success of wearable sensors.

Keywords: flexible textile-based wearable sensors, contemporary advancements, conductive textiles, body conformal design

Procedia PDF Downloads 188
19013 The Veil of Virtuality: Anonymity and Trust in the Metaverse's New Frontier

Authors: Cheng Xu, Rui Zhong

Abstract:

Utilizing a preregistered randomized experiment, this study explores the effects of anonymity and curated identity on trust within the Metaverse. Participants were randomly assigned to different conditions of anonymity and identity curation and engaged in a series of tasks designed to mirror the complexities of trust in real-world social interactions. Trust was measured using the classical trust game, allowing for a nuanced understanding of how these factors interact and influence trust. The findings reveal that higher levels of anonymity negatively impact trust, while identity curation can moderate this effect. Mechanism analysis uncovers how anonymity influences perceived reciprocity and group cohesion, and how curation can moderate these relationships. The results demonstrate a nuanced interaction between anonymity and trust, with variations across different curation levels. These insights provide a multifaceted understanding of trust within virtual environments, contributing valuable knowledge to the design, policy-making, and ethical considerations of the Metaverse

Keywords: metaverse, anonymity, curated identity, social behavior, trust

Procedia PDF Downloads 143
19012 Reliability of an Application for the System for Observing Play and Recreation in Communities in the Recreovia of Bucaramanga, Colombia

Authors: Erika Tatiana Paredes Prada, Diana Marina Camargo Lemos

Abstract:

Introduction: Recreovía as a public health strategy contributes to encourage the practice and adherence to physical activity (PA) recommendations, by temporarily closing the roads to motorized vehicles. The determination of the PA requires the evaluation of the reliability of the measurement instruments, in order to sustain the continuity and relevance of Recreovía as a community intervention. Objective: Establish the inter-rater reliability of the App for the System for Observing Play and Recreation in Communities (iSOPARC®) in the Recreovía of Bucaramanga, Colombia. Methods: Five trained observers at two observation points on the 2.3 km of the Recreovía (14th Street and 32nd Street) used the App (iSOPARC®), between 08:00 a.m. and 12:00 m. in periods of 20 minutes during a regular Sunday. Reliability analysis was performed using the Intraclass Correlation Coefficient (ICC 2.1). Results: A total of 2682 users were observed (43.6 % women) in 7 observations. ICC showed a range between 0.96 and 0.99 for the PA level and ICC between 0.95 and 0.99 for age group for the two observation points. Conclusion: The reliability found for the iSOPARC® guarantees the consecutive measurement of the PA level at the Recreovía, which will allow measuring it is effectiveness in the medium and long term, as a community intervention strategy.

Keywords: environment, observation, physical activity, recreation, reliability

Procedia PDF Downloads 329
19011 Assessment of Modern RANS Models for the C3X Vane Film Cooling Prediction

Authors: Mikhail Gritskevich, Sebastian Hohenstein

Abstract:

The paper presents the results of a detailed assessment of several modern Reynolds Averaged Navier-Stokes (RANS) turbulence models for prediction of C3X vane film cooling at various injection regimes. Three models are considered, namely the Shear Stress Transport (SST) model, the modification of the SST model accounting for the streamlines curvature (SST-CC), and the Explicit Algebraic Reynolds Stress Model (EARSM). It is shown that all the considered models face with a problem in prediction of the adiabatic effectiveness in the vicinity of the cooling holes; however, accounting for the Reynolds stress anisotropy within the EARSM model noticeably increases the solution accuracy. On the other hand, further downstream all the models provide a reasonable agreement with the experimental data for the adiabatic effectiveness and among the considered models the most accurate results are obtained with the use EARMS.

Keywords: discrete holes film cooling, Reynolds Averaged Navier-Stokes (RANS), Reynolds stress tensor anisotropy, turbulent heat transfer

Procedia PDF Downloads 422
19010 Structure-Guided Optimization of Sulphonamide as Gamma–Secretase Inhibitors for the Treatment of Alzheimer’s Disease

Authors: Vaishali Patil, Neeraj Masand

Abstract:

In older people, Alzheimer’s disease (AD) is turning out to be a lethal disease. According to the amyloid hypothesis, aggregation of the amyloid β–protein (Aβ), particularly its 42-residue variant (Aβ42), plays direct role in the pathogenesis of AD. Aβ is generated through sequential cleavage of amyloid precursor protein (APP) by β–secretase (BACE) and γ–secretase (GS). Thus in the treatment of AD, γ-secretase modulators (GSMs) are potential disease-modifying as they selectively lower pathogenic Aβ42 levels by shifting the enzyme cleavage sites without inhibiting γ–secretase activity. This possibly avoids known adverse effects observed with complete inhibition of the enzyme complex. Virtual screening, via drug-like ADMET filter, QSAR and molecular docking analyses, has been utilized to identify novel γ–secretase modulators with sulphonamide nucleus. Based on QSAR analyses and docking score, some novel analogs have been synthesized. The results obtained by in silico studies have been validated by performing in vivo analysis. In the first step, behavioral assessment has been carried out using Scopolamine induced amnesia methodology. Later the same series has been evaluated for neuroprotective potential against the oxidative stress induced by Scopolamine. Biochemical estimation was performed to evaluate the changes in biochemical markers of Alzheimer’s disease such as lipid peroxidation (LPO), Glutathione reductase (GSH), and Catalase. The Scopolamine induced amnesia model has shown increased Acetylcholinesterase (AChE) levels and the inhibitory effect of test compounds in the brain AChE levels have been evaluated. In all the studies Donapezil (Dose: 50µg/kg) has been used as reference drug. The reduced AChE activity is shown by compounds 3f, 3c, and 3e. In the later stage, the most potent compounds have been evaluated for Aβ42 inhibitory profile. It can be hypothesized that this series of alkyl-aryl sulphonamides exhibit anti-AD activity by inhibition of Acetylcholinesterase (AChE) enzyme as well as inhibition of plaque formation on prolong dosage along with neuroprotection from oxidative stress.

Keywords: gamma-secretase inhibitors, Alzzheimer's disease, sulphonamides, QSAR

Procedia PDF Downloads 257
19009 Islamic Finance: What is the Outlook for Italy?

Authors: Paolo Pietro Biancone

Abstract:

The spread of Islamic financial instruments is an opportunity to offer integration for the immigrant population and to attract, through the specific products, the richness of sovereign funds from the "Arab" countries. However, it is important to consider the possibility of comparing a traditional finance model, which in recent times has given rise to many doubts, with an "alternative" finance model, where the ethical aspect arising from religious principles is very important.

Keywords: banks, Europe, Islamic finance, Italy

Procedia PDF Downloads 275
19008 The BL-5D Model: The Development of a Model of Instructional Design for Blended Learning Activities

Authors: Damian Gordon, Paul Doyle, Anna Becevel, Júlia Vilafranca Molero, Cinta Gascon, Arianna Vitiello, Tina Baloh

Abstract:

It has long been recognized that the creation of any teaching content can be enhanced if the development process follows a pre-defined approach, which is often referred to as an instructional design methodology. These methodologies typically define a number of stages, or phases, that an educator should undertake to help ensure the quality of the final teaching content that is developed. In this paper, we present an instructional design methodology that is focused specifically on the introduction of blended resources into a heretofore bricks-and-mortar course. To achieve this, research was undertaken concerning a range of models of instructional design, as well as literature covering some of the key challenges and “pain points” of blending. Following this, our model, the BL-5D model, is presented, which incorporates some key questions at each stage of this five-stage methodology to guide the development process. Finally, a discussion of some of the key themes and issues that have been uncovered in this work is presented, as well as a template for a blended learning case study that emerged from this approach.

Keywords: blended learning, challenges of blended learning, design methodologies, instructional design

Procedia PDF Downloads 125
19007 Numerical Simulation of a Three-Dimensional Framework under the Action of Two-Dimensional Moving Loads

Authors: Jia-Jang Wu

Abstract:

The objective of this research is to develop a general technique so that one may predict the dynamic behaviour of a three-dimensional scale crane model subjected to time-dependent moving point forces by means of conventional finite element computer packages. To this end, the whole scale crane model is divided into two parts: the stationary framework and the moving substructure. In such a case, the dynamic responses of a scale crane model can be predicted from the forced vibration responses of the stationary framework due to actions of the four time-dependent moving point forces induced by the moving substructure. Since the magnitudes and positions of the moving point forces are dependent on the relative positions between the trolley, moving substructure and the stationary framework, it can be found from the numerical results that the time histories for the moving speeds of the moving substructure and the trolley are the key factors affecting the dynamic responses of the scale crane model.

Keywords: moving load, moving substructure, dynamic responses, forced vibration responses

Procedia PDF Downloads 355
19006 Social Collaborative Learning Model Based on Proactive Involvement to Promote the Global Merit Principle in Cultivating Youths' Morality

Authors: Wera Supa, Panita Wannapiroon

Abstract:

This paper is a report on the designing of the social collaborative learning model based on proactive involvement to Promote the global merit principle in cultivating youths’ morality. The research procedures into two phases, the first phase is to design the social collaborative learning model based on proactive involvement to promote the global merit principle in cultivating youths’ morality, and the second is to evaluate the social collaborative learning model based on proactive involvement. The sample group in this study consists of 15 experts who are dominant in proactive participation, moral merit principle and youths’ morality cultivation from executive level, lecturers and the professionals in information and communication technology expertise selected using the purposive sampling method. Data analyzed by arithmetic mean and standard deviation. This study has explored that there are four significant factors in promoting the hands-on collaboration of global merit scheme in order to implant virtues to adolescences which are: 1) information and communication Technology Usage; 2) proactive involvement; 3) morality cultivation policy, and 4) global merit principle. The experts agree that the social collaborative learning model based on proactive involvement is highly appropriate.

Keywords: social collaborative learning, proactive involvement, global merit principle, morality

Procedia PDF Downloads 389
19005 Development of a Real-Time Brain-Computer Interface for Interactive Robot Therapy: An Exploration of EEG and EMG Features during Hypnosis

Authors: Maryam Alimardani, Kazuo Hiraki

Abstract:

This study presents a framework for development of a new generation of therapy robots that can interact with users by monitoring their physiological and mental states. Here, we focused on one of the controversial methods of therapy, hypnotherapy. Hypnosis has shown to be useful in treatment of many clinical conditions. But, even for healthy people, it can be used as an effective technique for relaxation or enhancement of memory and concentration. Our aim is to develop a robot that collects information about user’s mental and physical states using electroencephalogram (EEG) and electromyography (EMG) signals and performs costeffective hypnosis at the comfort of user’s house. The presented framework consists of three main steps: (1) Find the EEG-correlates of mind state before, during, and after hypnosis and establish a cognitive model for state changes, (2) Develop a system that can track the changes in EEG and EMG activities in real time and determines if the user is ready for suggestion, and (3) Implement our system in a humanoid robot that will talk and conduct hypnosis on users based on their mental states. This paper presents a pilot study in regard to the first stage, detection of EEG and EMG features during hypnosis.

Keywords: hypnosis, EEG, robotherapy, brain-computer interface (BCI)

Procedia PDF Downloads 261
19004 Two Concurrent Convolution Neural Networks TC*CNN Model for Face Recognition Using Edge

Authors: T. Alghamdi, G. Alaghband

Abstract:

In this paper we develop a model that couples Two Concurrent Convolution Neural Network with different filters (TC*CNN) for face recognition and compare its performance to an existing sequential CNN (base model). We also test and compare the quality and performance of the models on three datasets with various levels of complexity (easy, moderate, and difficult) and show that for the most complex datasets, edges will produce the most accurate and efficient results. We further show that in such cases while Support Vector Machine (SVM) models are fast, they do not produce accurate results.

Keywords: Convolution Neural Network, Edges, Face Recognition , Support Vector Machine.

Procedia PDF Downloads 157
19003 Monitoring the Production of Large Composite Structures Using Dielectric Tool Embedded Capacitors

Authors: Galatee Levadoux, Trevor Benson, Chris Worrall

Abstract:

With the rise of public awareness on climate change comes an increasing demand for renewable sources of energy. As a result, the wind power sector is striving to manufacture longer, more efficient and reliable wind turbine blades. Currently, one of the leading causes of blade failure in service is improper cure of the resin during manufacture. The infusion process creating the main part of the composite blade structure remains a critical step that is yet to be monitored in real time. This stage consists of a viscous resin being drawn into a mould under vacuum, then undergoing a curing reaction until solidification. Successful infusion assumes the resin fills all the voids and cures completely. Given that the electrical properties of the resin change significantly during its solidification, both the filling of the mould and the curing reaction are susceptible to be followed using dieletrometry. However, industrially available dielectrics sensors are currently too small to monitor the entire surface of a wind turbine blade. The aim of the present research project is to scale up the dielectric sensor technology and develop a device able to monitor the manufacturing process of large composite structures, assessing the conformity of the blade before it even comes out of the mould. An array of flat copper wires acting as electrodes are embedded in a polymer matrix fixed in an infusion mould. A multi-frequency analysis from 1 Hz to 10 kHz is performed during the filling of the mould with an epoxy resin and the hardening of the said resin. By following the variations of the complex admittance Y*, the filling of the mould and curing process are monitored. Results are compared to numerical simulations of the sensor in order to validate a virtual cure-monitoring system. The results obtained by drawing glycerol on top of the copper sensor displayed a linear relation between the wetted length of the sensor and the complex admittance measured. Drawing epoxy resin on top of the sensor and letting it cure at room temperature for 24 hours has provided characteristic curves obtained when conventional interdigitated sensor are used to follow the same reaction. The response from the developed sensor has shown the different stages of the polymerization of the resin, validating the geometry of the prototype. The model created and analysed using COMSOL has shown that the dielectric cure process can be simulated, so long as a sufficient time and temperature dependent material properties can be determined. The model can be used to help design larger sensors suitable for use with full-sized blades. The preliminary results obtained with the sensor prototype indicate that the infusion and curing process of an epoxy resin can be followed with the chosen configuration on a scale of several decimeters. Further work is to be devoted to studying the influence of the sensor geometry and the infusion parameters on the results obtained. Ultimately, the aim is to develop a larger scale sensor able to monitor the flow and cure of large composite panels industrially.

Keywords: composite manufacture, dieletrometry, epoxy, resin infusion, wind turbine blades

Procedia PDF Downloads 168
19002 Mathematical Modeling of the Water Bridge Formation in Porous Media: PEMFC Microchannels

Authors: N. Ibrahim-Rassoul, A. Kessi, E. K. Si-Ahmed, N. Djilali, J. Legrand

Abstract:

The static and dynamic formation of liquid water bridges is analyzed using a combination of visualization experiments in a microchannel with a mathematical model. This paper presents experimental and theoretical findings of water plug/capillary bridge formation in a 250 μm squared microchannel. The approach combines mathematical and numerical modeling with experimental visualization and measurements. The generality of the model is also illustrated for flow conditions encountered in manipulation of polymeric materials and formation of liquid bridges between patterned surfaces. The predictions of the model agree favorably the observations as well as with the experimental recordings.

Keywords: green energy, mathematical modeling, fuel cell, water plug, gas diffusion layer, surface of revolution

Procedia PDF Downloads 536
19001 Automatic Classification of Lung Diseases from CT Images

Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari

Abstract:

Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life of the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or Covidi-19 induced pneumonia. The early prediction and classification of such lung diseases help to reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans have pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publically available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.

Keywords: CT scan, Covid-19, deep learning, image processing, lung disease classification

Procedia PDF Downloads 160
19000 Supervised-Component-Based Generalised Linear Regression with Multiple Explanatory Blocks: THEME-SCGLR

Authors: Bry X., Trottier C., Mortier F., Cornu G., Verron T.

Abstract:

We address component-based regularization of a Multivariate Generalized Linear Model (MGLM). A set of random responses Y is assumed to depend, through a GLM, on a set X of explanatory variables, as well as on a set T of additional covariates. X is partitioned into R conceptually homogeneous blocks X1, ... , XR , viewed as explanatory themes. Variables in each Xr are assumed many and redundant. Thus, Generalised Linear Regression (GLR) demands regularization with respect to each Xr. By contrast, variables in T are assumed selected so as to demand no regularization. Regularization is performed searching each Xr for an appropriate number of orthogonal components that both contribute to model Y and capture relevant structural information in Xr. We propose a very general criterion to measure structural relevance (SR) of a component in a block, and show how to take SR into account within a Fisher-scoring-type algorithm in order to estimate the model. We show how to deal with mixed-type explanatory variables. The method, named THEME-SCGLR, is tested on simulated data.

Keywords: Component-Model, Fisher Scoring Algorithm, GLM, PLS Regression, SCGLR, SEER, THEME

Procedia PDF Downloads 398
18999 A Model Towards Creating Positive Accounting Classroom Conditions That Supports Successful Learning at School

Authors: Vine Petzer, Mirna Nel

Abstract:

An explanatory mixed method design was used to investigate accounting classroom conditions in the Further Education and Training (FET) Phase in South Africa. A descriptive survey research study with a heterogeneous group of learners and teachers was conducted in the first phase. In the qualitative phase, semi-structured individual interviews with learners and teachers, as well as observations in the accounting classroom, were employed to gain more in depth understanding of the learning conditions in the accounting classroom. The findings of the empirical research informed the development of a model for teachers in accounting, supporting them to use more effective teaching methods and create positive learning conditions for all learners to experience successful learning. A model towards creating positive Accounting classroom conditions that support successful learning was developed and recommended for education policy and decision-makers for use as a classroom intervention capacity building tool. The model identifies and delineates classroom practices that exert significant effect on learner attainment of quality education.

Keywords: accounting classroom conditions, positive education, successful learning, teaching accounting

Procedia PDF Downloads 148
18998 Indoor Environment Quality and Occupant Resilience Toward Climate Change: A Case Study from Gold Coast, Australia

Authors: Soheil Roumi, Fan Zhang, Rodney Stewart

Abstract:

Indoor environmental quality (IEQ) indexes represented the suitability of a place to study, work, and live. Many indexes have been introduced based on the physical measurement or occupant surveys in commercial buildings. The earlier studies did not elaborate on the relationship between energy consumption and IEQ in office buildings. Such a relationship can provide a comprehensive overview of the building's performance. Also, it would find the potential of already constructed buildings under the upcoming climate change. A commercial building in southeast Queensland, Australia, was evaluated in this study. Physical measurements of IEQ and Energy areconducted, and their relationship will be determined using statistical analysis. The case study building is modelled in TRNSys software, and it will be validatedusingthe actual building's BMS data. Then, the modelled buildingwill be simulated by predicted weather data developed by the commonwealth scientific and industrial research organisation of Australia to investigate the occupant resilience and energy consumption. Finally, recommendations will be presented to consume less energy while providinga proper indoor environment for office occupants.

Keywords: IEQ, office buildings, thermal comfort, occupant resilience

Procedia PDF Downloads 113
18997 Resistance and Sub-Resistances of RC Beams Subjected to Multiple Failure Modes

Authors: F. Sangiorgio, J. Silfwerbrand, G. Mancini

Abstract:

Geometric and mechanical properties all influence the resistance of RC structures and may, in certain combination of property values, increase the risk of a brittle failure of the whole system. This paper presents a statistical and probabilistic investigation on the resistance of RC beams designed according to Eurocodes 2 and 8, and subjected to multiple failure modes, under both the natural variation of material properties and the uncertainty associated with cross-section and transverse reinforcement geometry. A full probabilistic model based on JCSS Probabilistic Model Code is derived. Different beams are studied through material nonlinear analysis via Monte Carlo simulations. The resistance model is consistent with Eurocode 2. Both a multivariate statistical evaluation and the data clustering analysis of outcomes are then performed. Results show that the ultimate load behaviour of RC beams subjected to flexural and shear failure modes seems to be mainly influenced by the combination of the mechanical properties of both longitudinal reinforcement and stirrups, and the tensile strength of concrete, of which the latter appears to affect the overall response of the system in a nonlinear way. The model uncertainty of the resistance model used in the analysis plays undoubtedly an important role in interpreting results.

Keywords: modelling, Monte Carlo simulations, probabilistic models, data clustering, reinforced concrete members, structural design

Procedia PDF Downloads 474
18996 Soft Computing Employment to Optimize Safety Stock Levels in Supply Chain Dairy Product under Supply and Demand Uncertainty

Authors: Riyadh Jamegh, Alla Eldin Kassam, Sawsan Sabih

Abstract:

In order to overcome uncertainty conditions and inability to meet customers' requests due to these conditions, organizations tend to reserve a certain safety stock level (SSL). This level must be chosen carefully in order to avoid the increase in holding cost due to excess in SSL or shortage cost due to too low SSL. This paper used soft computing fuzzy logic to identify optimal SSL; this fuzzy model uses the dynamic concept to cope with high complexity environment status. The proposed model can deal with three input variables, i.e., demand stability level, raw material availability level, and on hand inventory level by using dynamic fuzzy logic to obtain the best SSL as an output. In this model, demand stability, raw material, and on hand inventory levels are described linguistically and then treated by inference rules of the fuzzy model to extract the best level of safety stock. The aim of this research is to provide dynamic approach which is used to identify safety stock level, and it can be implanted in different industries. Numerical case study in the dairy industry with Yogurt 200 gm cup product is explained to approve the validity of the proposed model. The obtained results are compared with the current level of safety stock which is calculated by using the traditional approach. The importance of the proposed model has been demonstrated by the significant reduction in safety stock level.

Keywords: inventory optimization, soft computing, safety stock optimization, dairy industries inventory optimization

Procedia PDF Downloads 127
18995 Computer-Aided Diagnosis of Eyelid Skin Tumors Using Machine Learning

Authors: Ofira Zloto, Ofir Fogel, Eyal Klang

Abstract:

Purpose: The aim is to develop an automated framework based on machine learning to diagnose malignant eyelid skin tumors. Methods: This study utilized eyelid lesion images from Sheba Medical Center, a large tertiary center in Israel. Before model training, we pre-trained our models on the ISIC 2019 dataset consisting of 25,332 images. The proprietary eyelid dataset was then used for fine-tuning. The dataset contained multiple images per patient, aiming to classify malignant lesions in comparison to benign counterparts. Results: The analyzed dataset consisted of images representing both benign and malignant eyelid lesions. For the benign category, a total of 373 images were sourced. In comparison, the malignant category has 186 images. Based on the accuracy values, the model with 3 epochs and a learning rate of 0.0001 exhibited the best performance, achieving an accuracy of 0.748 with a standard deviation of 0.034. At a sensitivity of 69%, the model has a corresponding specificity of 82%. To further understand the decision-making process of our model, we employed heatmap visualization techniques, specifically Gradient-weighted Class Activation Mapping. Discussion: This study introduces a dependable model-aided diagnostic technology for assessing eyelid skin lesions. The model demonstrated accuracy comparable to human evaluation, effectively determining whether a lesion raises a high suspicion of malignancy or is benign. Such a model has the potential to alleviate the burden on the healthcare system, particularly benefiting rural areas and enhancing the efficiency of clinicians and overall healthcare.

Keywords: machine learning;, eyelid skin tumors;, decision-making process;, heatmap visualization techniques

Procedia PDF Downloads 8
18994 Efficient Management through Predicting of Use E-Management within Higher Educational Institutions

Authors: S. Maddi Muhammed, Paul Davis, John Geraghty, Mabruk Derbesh

Abstract:

This study discusses the probability of using electronic management in higher education institutions in Libya. This could be as sampled by creating an electronic gate at the faculties of Engineering and Computing "Information Technology" at Zaytuna University or any other university in Libya. As we all know, the competitive advantage amongst universities is based on their ability to use information technology efficiently and broadly. Universities today value information technology as part of the quality control and assurance and a ranking criterion for a range of services including e-learning and e-Registration. This could be done by developing email systems, electronic or virtual libraries, electronic cards, and other services provided to all students, faculty or staff. This paper discusses a range of important topics that explain how to apply the gate "E" with the faculties at Zaytuna University, Bani Walid colleges in Libya.

Keywords: e-management, educational institutions (EI), Libya, Zaytuna, information technology

Procedia PDF Downloads 458
18993 Performance Evaluation of Routing Protocols for Video Conference over MPLS VPN Network

Authors: Abdullah Al Mamun, Tarek R. Sheltami

Abstract:

Video conferencing is a highly demanding facility now a days in order to its real time characteristics, but faster communication is the prior requirement of this technology. Multi Protocol Label Switching (MPLS) IP Virtual Private Network (VPN) address this problem and it is able to make a communication faster than others techniques. However, this paper studies the performance comparison of video traffic between two routing protocols namely the Enhanced Interior Gateway Protocol(EIGRP) and Open Shortest Path First (OSPF). The combination of traditional routing and MPLS improve the forwarding mechanism, scalability and overall network performance. We will use GNS3 and OPNET Modeler 14.5 to simulate many different scenarios and metrics such as delay, jitter and mean opinion score (MOS) value are measured. The simulation result will show that OSPF and BGP-MPLS VPN offers best performance for video conferencing application.

Keywords: OSPF, BGP, EIGRP, MPLS, Video conference, Provider router, edge router, layer3 VPN

Procedia PDF Downloads 331
18992 Development and Testing of Health Literacy Scales for Chinese Primary and Secondary School Students

Authors: Jiayue Guo, Lili You

Abstract:

Background: Children and adolescent health are crucial for both personal well-being and the nation's future health landscape. Health Literacy (HL) is important in enabling adolescents to self-manage their health, a fundamental step towards health empowerment. However, there are limited tools for assessing HL among elementary and junior high school students. This study aims to construct and validate a test-based HL scale for Chinese students, offering a scientific reference for cross-cultural HL tool development. Methods: We conducted a cross-sectional online survey. Participants were recruited from a stratified cluster random sampling method, a total of 4189 Chinese in-school primary and secondary students. The development of the scale was completed by defining the concept of HL, establishing the item indicator system, screening items (7 health content dimensions), and evaluating reliability and validity. Delphi method expert consultation was used to screen items, the Rasch model was conducted for quality analysis, and Cronbach’s alpha coefficient was used to examine the internal consistency. Results: We developed four versions of the HL scale, each with a total score of 100, encompassing seven key health areas: hygiene, nutrition, physical activity, mental health, disease prevention, safety awareness, and digital health literacy. Each version measures four dimensions of health competencies: knowledge, skills, motivation, and behavior. After the second round of expert consultation, the average importance score of each item by experts is 4.5–5.0, and the coefficient of variation is 0.000–0.174. The knowledge and skills dimensions are judgment-based and multiple-choice questions, with the Rasch model confirming unidimensionality at a 5.7% residual variance. The behavioral and motivational dimensions, measured with scale-type items, demonstrated internal consistency via Cronbach's alpha and strong inter-item correlation with KMO values of 0.924 and 0.787, respectively. Bartlett's test of sphericity, with p-values <0.001, further substantiates the scale's reliability. Conclusions: The new test-based scale, designed to evaluate competencies within a multifaceted framework, aligns with current international adolescent literacy theories and China's health education policies, focusing not only on knowledge acquisition but also on the application of health-related thinking and behaviors. The scale can be used as a comprehensive tool for HL evaluation and a reference for other countries.

Keywords: adolescent health, Chinese, health literacy, rasch model, scale development

Procedia PDF Downloads 31
18991 Learning Algorithms for Fuzzy Inference Systems Composed of Double- and Single-Input Rule Modules

Authors: Hirofumi Miyajima, Kazuya Kishida, Noritaka Shigei, Hiromi Miyajima

Abstract:

Most of self-tuning fuzzy systems, which are automatically constructed from learning data, are based on the steepest descent method (SDM). However, this approach often requires a large convergence time and gets stuck into a shallow local minimum. One of its solutions is to use fuzzy rule modules with a small number of inputs such as DIRMs (Double-Input Rule Modules) and SIRMs (Single-Input Rule Modules). In this paper, we consider a (generalized) DIRMs model composed of double and single-input rule modules. Further, in order to reduce the redundant modules for the (generalized) DIRMs model, pruning and generative learning algorithms for the model are suggested. In order to show the effectiveness of them, numerical simulations for function approximation, Box-Jenkins and obstacle avoidance problems are performed.

Keywords: Box-Jenkins's problem, double-input rule module, fuzzy inference model, obstacle avoidance, single-input rule module

Procedia PDF Downloads 353
18990 Improving Reading Comprehension Skills of Elementary School Students through Cooperative Integrated Reading and Composition Model Using Padlet

Authors: Neneng Hayatul Milah

Abstract:

The most important reading skill for students is comprehension. Understanding the reading text will have an impact on learning outcomes. However, reading comprehension instruction in Indonesian elementary schools is lacking. A more effective learning model is needed to enhance students' reading comprehension. This study aimed to evaluate the effectiveness of the CIRC (Cooperative Integrated Reading and Composition) model with Padlet integration in improving the reading comprehension skills of grade IV students in elementary schools in Cimahi City, Indonesia. This research methodology was quantitative with a pre-experiment research type and one group pretest-posttest research design. The sample of this study consisted of 30 students. The results of statistical analysis showed that there was a significant effect of using the CIRC learning model using Padlet on improving students' reading comprehension skills of narrative text. The mean score of students' pretest was 67.41, while the mean score of the posttest increased to 84.82. The paired sample t-test resulted in a t-count score of -13.706 with a significance score of <0.001, which is smaller than α = 0.05. This research is expected to provide useful insights for educational practitioners on how the use of the CIRC model using Padlet can improve the reading comprehension skills of elementary school students.

Keywords: reading comprehension skills, CIRC, Padlet, narrative text

Procedia PDF Downloads 40
18989 Association of Work Pattern with the Well-Being and Happiness: Evidence from Married Women Working in Delhi, India

Authors: Kanchan Negi

Abstract:

Background: Modern work culture has driven demands for people to work long hours and weekends and take work to home at times. Research on the health effects of these exhaustive temporal work patterns is scant or contradictory. This study examines the relationship between work patterns and well-being (including happiness) in a sample of working women. Method: Primary data of 360 currently married women working in the education, health, banking and IT sector in Delhi, India, were analysed. Logistic regression was used to estimate physical and psychological well-being and happiness across work characteristics. Results: Relative to 35–40 hours/week, working longer related to poor well-being (ß=0.75, 95% CI 0.12 to 1.39). Compared with not working weekends, working most or all weekends is related to poor physical (ß=0.34, 95% CI 0.08 to 0.61) and psychological well-being (ß=0.50, 95% CI 0.20 to 0.79). Rigid work patterns (ß=0.17, 95% CI −0.09 to 0.42) are also related to poor well-being. Conclusion: Decreased well-being and unhappiness are significantly linked to strenuous and rigid work patterns, suggesting that modern work culture may contribute to poor well-being. Flexible timings, compensatory holidays, work-from-home, and daycare facilities for young ones must be welcomed by companies to ease the dual burden of homemakers and career makers.

Keywords: happiness, well-being, work pattern, working women

Procedia PDF Downloads 185
18988 Multi-Objective Multi-Period Allocation of Temporary Earthquake Disaster Response Facilities with Multi-Commodities

Authors: Abolghasem Yousefi-Babadi, Ali Bozorgi-Amiri, Aida Kazempour, Reza Tavakkoli-Moghaddam, Maryam Irani

Abstract:

All over the world, natural disasters (e.g., earthquakes, floods, volcanoes and hurricanes) causes a lot of deaths. Earthquakes are introduced as catastrophic events, which is accident by unusual phenomena leading to much loss around the world. Such could be replaced by disasters or any other synonyms strongly demand great long-term help and relief, which can be hard to be managed. Supplies and facilities are very important challenges after any earthquake which should be prepared for the disaster regions to satisfy the people's demands who are suffering from earthquake. This paper proposed disaster response facility allocation problem for disaster relief operations as a mathematical programming model. Not only damaged people in the earthquake victims, need the consumable commodities (e.g., food and water), but also they need non-consumable commodities (e.g., clothes) to protect themselves. Therefore, it is concluded that paying attention to disaster points and people's demands are very necessary. To deal with this objective, both commodities including consumable and need non-consumable commodities are considered in the presented model. This paper presented the multi-objective multi-period mathematical programming model regarding the minimizing the average of the weighted response times and minimizing the total operational cost and penalty costs of unmet demand and unused commodities simultaneously. Furthermore, a Chebycheff multi-objective solution procedure as a powerful solution algorithm is applied to solve the proposed model. Finally, to illustrate the model applicability, a case study of the Tehran earthquake is studied, also to show model validation a sensitivity analysis is carried out.

Keywords: facility location, multi-objective model, disaster response, commodity

Procedia PDF Downloads 259
18987 Source Identification Model Based on Label Propagation and Graph Ordinary Differential Equations

Authors: Fuyuan Ma, Yuhan Wang, Junhe Zhang, Ying Wang

Abstract:

Identifying the sources of information dissemination is a pivotal task in the study of collective behaviors in networks, enabling us to discern and intercept the critical pathways through which information propagates from its origins. This allows for the control of the information’s dissemination impact in its early stages. Numerous methods for source detection rely on pre-existing, underlying propagation models as prior knowledge. Current models that eschew prior knowledge attempt to harness label propagation algorithms to model the statistical characteristics of propagation states or employ Graph Neural Networks (GNNs) for deep reverse modeling of the diffusion process. These approaches are either deficient in modeling the propagation patterns of information or are constrained by the over-smoothing problem inherent in GNNs, which limits the stacking of sufficient model depth to excavate global propagation patterns. Consequently, we introduce the ODESI model. Initially, the model employs a label propagation algorithm to delineate the distribution density of infected states within a graph structure and extends the representation of infected states from integers to state vectors, which serve as the initial states of nodes. Subsequently, the model constructs a deep architecture based on GNNs-coupled Ordinary Differential Equations (ODEs) to model the global propagation patterns of continuous propagation processes. Addressing the challenges associated with solving ODEs on graphs, we approximate the analytical solutions to reduce computational costs. Finally, we conduct simulation experiments on two real-world social network datasets, and the results affirm the efficacy of our proposed ODESI model in source identification tasks.

Keywords: source identification, ordinary differential equations, label propagation, complex networks

Procedia PDF Downloads 23
18986 The Value of Store Choice Criteria on Perceived Patronage Intentions

Authors: Susana Marques

Abstract:

Research on how store environment cues influence consumers’ store choice decision criteria, such as store operations, product quality, monetary price, store image and sales promotion, is sparse. Especially absent research on the simultaneous impact of multiple store environment cues. The authors propose a comprehensive store choice model that includes: three types of store environment cues as exogenous constructs; various store choice criteria as possible mediating constructs, and store patronage intentions as an endogenous construct. On the basis of testing with a sample of 561 customers of hypermarkets, the model is partially supported. This study used structural equation modelling to test the proposed model.

Keywords: store choice, store patronage, structural equation modelling, retailing

Procedia PDF Downloads 276