Search results for: waste polymer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4049

Search results for: waste polymer

3719 Recycling Construction Waste Materials to Reduce the Environmental Pollutants

Authors: Mehrdad Abkenari, Alireza Rezaei, Naghmeh Pournayeb

Abstract:

There have recently been many studies and investments in developed and developing countries regarding the possibility of recycling construction waste, which are still ongoing. Since the term 'construction waste' covers a vast spectrum of materials in constructing buildings, roads and etc., many investigations are required to measure their technical performance in use as well as their time and place of use. Concrete is among the major and fundamental materials used in current construction industry. Along with the rise of population in developing countries, it is desperately required to meet the people's primary need in construction industry and on the other hand, dispose existing wastes for reducing the amount of environmental pollutants. Restrictions of natural resources and environmental pollution are the most important problems encountered by civil engineers. Reusing construction waste is an important and economic approach that not only assists the preservation of environment but also, provides us with primary raw materials. In line with consistent municipal development in disposal and reuse of construction waste, several approaches including, management of construction waste and materials, materials recycling and innovation and new inventions in materials have been predicted. This article has accordingly attempted to study the activities related to recycling of construction wastes and then, stated the economic, quantitative, qualitative and environmental results obtained.

Keywords: civil engineering, environment, recycling, construction waste

Procedia PDF Downloads 293
3718 Volatile Organic Compounds Detection by Surface Acoustic Wave Sensors with Nanoparticles Embedded in Polymer Sensitive Layers

Authors: Cristian Viespe, Dana Miu

Abstract:

Surface acoustic wave (SAW) sensors with nanoparticles (NPs) of various dimensions and concentrations embedded in different types of polymer sensing films for detecting volatile organic compounds (VOCs) were studied. The sensors were ‘delay line’ type with a center frequency of 69.4 MHz on ST-X quartz substrates. NPs with different diameters of 7 nm or 13 nm were obtained by laser ablation with lasers having 5 ns or 10 ps pulse durations, respectively. The influence of NPs dimensions and concentrations on sensor properties such as frequency shift, sensitivity, noise and response time were investigated. To the best of our knowledge, the influence of NP dimensions on SAW sensor properties with has not been investigated. The frequency shift and sensitivity increased with increasing NP concentration in the polymer for a given NP dimension and with decreasing NP diameter for a given concentration. The best performances were obtained for the smallest NPs used. The SAW sensor with NPs of 7 nm had a limit of detection (LOD) of 65 ppm (almost five times better than the sensor with polymer alone), and a response time of about 9 s for ethanol.

Keywords: surface acoustic wave sensor, nanoparticles, volatile organic compounds, laser ablation

Procedia PDF Downloads 143
3717 Modelling Affordable Waste Management Solutions for India

Authors: Pradip Baishya, D. K. Mahanta

Abstract:

Rapid and unplanned urbanisation in most cities of India has progressively increased the problem of managing municipal waste in the past few years. With insufficient infrastructure and funds, Municipalities in most cities are struggling to cope with the pace of waste generated. Open dumping is widely in practice as a cheaper option. Scientific disposal of waste in such a large scale with the elements of segregation, recycling, landfill, and incineration involves sophisticated and expensive plants. In an effort to finding affordable and simple solutions to address this burning issue of waste disposal, a semi-mechanized plant has been designed underlying the concept of a zero waste community. The fabrication work of the waste management unit is carried out by local skills from locally available materials. A resident colony in the city of Guwahati has been chosen, which is seen as a typical representative of most cities in India in terms of size and key issues surrounding waste management. Scientific management and disposal of waste on site is carried out on the principle of reduce, reuse and recycle from segregation to compositing. It is a local community participatory model, which involves all stakeholders in the process namely rag pickers, residents, municipality and local industry. Studies were conducted to testify the plant as revenue earning self-sustaining model in the long term. Current working efficiency of plant for segregation was found to be 1kg per minute. Identifying bottlenecks in the success of the model, data on efficiency of the plant, economics of its fabrication were part of the study. Similar satellite waste management plants could potentially be a solution to supplement the waste management system of municipalities of similar sized cities in India or South East Asia with similar issues surrounding waste disposal.

Keywords: affordable, rag pickers, recycle, reduce, reuse, segregation, zero waste

Procedia PDF Downloads 300
3716 A Study of Food Waste Behaviours in Restaurants

Authors: Ching-Hsu Huang, Si-Qing Hong

Abstract:

The main purpose of this study is to understand the consumers’ perceptions and attitudes toward food waste in restaurants. The questionnaires were conducted as a research tool to collect data to understand consumers’ food waste behaviors and the most food wasted in terms of their preparation in the restaurant. The subjects were the consumers in the restaurants and asked to fill out the questionnaire, including social responsibility, attitude, behavioral intention and food waste behaviors. 89 questionnaires were collected and the data were analyzed by reliability, descriptive analysis, t-test and ANOVA. The five hypotheses were examined and the results showed there is a significant relationship between social responsibility and behavioral intention; social responsibility and attitude, attitude and behavioral intention. The suggestions and implications were addressed for restauranteurs and further research.

Keywords: food waste behaviors (FWB), social responsibility, consumer attitude, behavioral intention, restaurants

Procedia PDF Downloads 160
3715 Assessing Solid Waste Management Practices and Health Impacts in Port Harcourt City, Nigeria

Authors: Perpetual Onyejelem, Kenichi Matsui

Abstract:

Solid waste management has recently posed urgent challenges to environmental sustainability and public health in emerging Sub-Saharan urban centers. This paper examines solid waste management in Port Harcourt, the rapidly growing city in Nigeria, with a focus on current solid waste management practices and its health implications. To do so we analyzed past academic papers and official documents. The Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statement and its four-stage inclusion/exclusion criteria were utilized as part of a systematic literature review technique to identify papers related to solid waste management practices (Scopus and Google Scholar). In terms of policy documents, we focused on information about the implementation between 2014 and 2023. We found that the Rivers State Waste Management Policy and the National Policy on Solid Waste Management were the two most important documents to understand Port Harcourt’s practices. Past studies, however, highlighted that residents continued to dump waste in drainages as they were largely unaware of the policies that encourage them to sort waste. The studies tend to blame the city of its lack of political commitment to monitoring waste sites. Another study highlighted inefficient waste collection practices, the absence of community participation and poor resident awareness of 3R practices. Government documents and past studies tend to agree that an increase in disorderly waste management practices and the emergence of vector-borne diseases (e.g., malaria, lassa fever, cholera) co-incided in Port Harcourt. This led to increased spending for healthcare for locals, particularly low-income households. This study concludes by making some remedial recommendations.

Keywords: health effects, solid waste management practices, environmental pollution, Port Harcourt

Procedia PDF Downloads 13
3714 Quantification of Methane Emissions from Solid Waste in Oman Using IPCC Default Methodology

Authors: Wajeeha A. Qazi, Mohammed-Hasham Azam, Umais A. Mehmood, Ghithaa A. Al-Mufragi, Noor-Alhuda Alrawahi, Mohammed F. M. Abushammala

Abstract:

Municipal Solid Waste (MSW) disposed in landfill sites decompose under anaerobic conditions and produce gases which mainly contain carbon dioxide (CO₂) and methane (CH₄). Methane has the potential of causing global warming 25 times more than CO₂, and can potentially affect human life and environment. Thus, this research aims to determine MSW generation and the annual CH₄ emissions from the generated waste in Oman over the years 1971-2030. The estimation of total waste generation was performed using existing models, while the CH₄ emissions estimation was performed using the intergovernmental panel on climate change (IPCC) default method. It is found that total MSW generation in Oman might be reached 3,089 Gg in the year 2030, which approximately produced 85 Gg of CH₄ emissions in the year 2030.

Keywords: methane, emissions, landfills, solid waste

Procedia PDF Downloads 498
3713 Thermo-Elastic and Self-Healing Polyacrylamide: 2D Polymer Composite Hydrogels for Water Shutoff Treatment

Authors: Edreese H. Alsharaeh, Feven Mattews Michael, Ayman Almohsin

Abstract:

Self-healing hydrogels have many advantages since they can resist various types of stresses, including tension, compression, and shear, making them attractive for various applications. In this study, thermo-elastic and self-healing polymer composite hydrogels were prepared from polyacrylamide (PAM) and 2D fillers using in-situ method. In addition, the PAM and fillers were prepared in presence of organic crosslinkers, i.e., hydroquinone (HQ) and hexamethylenediamine (HMT). The swelling behavior of the prepared hydrogels was studied by hydrating the dried hydrogels. The thermal and rheological properties of the prepared hydrogels were evaluated before and after swelling study using thermogravimetric analysis, differential scanning calorimetric technique and dynamic mechanical analysis. From the results obtained, incorporating fillers into the PAM matrix enhanced the swelling degree of the hydrogels with satisfactory mechanical properties, attaining up to 77% self-healing efficiency compared to the neat-PAM (i.e., 29%). This, in turn, indicates addition of 2D fillers improved self-healing properties of the polymer hydrogel, thus, making the prepared hydrogels applicable for water shutoff treatments under high temperature.

Keywords: polymer hydrogels, 2D fillers, elastic self-healing hydrogels, water shutoff, swelling properties

Procedia PDF Downloads 129
3712 Biogas Production from Pistachio (Pistacia vera L.) Processing Waste

Authors: İ. Çelik, Goksel Demirer

Abstract:

Turkey is the third largest producer of pistachio (Pistacia vera L.) after Iran and United States. Harvested pistachio nuts are covered with organic hull which is removed by de-hulling process. Most of the pistachio by-products which are produced during de-hulling process are considered as agricultural waste and often mixed with soil, to a lesser extent are used as feedstuff by local livestock farmers and a small portion is used as herbal medicine. Due to its high organic and phenolic content as well as high solids concentration, pistachio processing wastes create significant waste management problems unless they are properly managed. However, there is not a well-established waste management method compensating the waste generated during the processing of pistachios. This study investigated the anaerobic treatability and biogas generation potential of pistachio hull waste. The effect of pre-treatment on biogas generation potential was investigated. For this purpose, Biochemical Methane Potential (BMP) Assays were conducted for two Chemical Oxygen Demand (COD) concentrations of 22 and 33 g tCOD l-1 at the absence and presence of chemical and thermal pre-treatment methods. The results revealed anaerobic digestion of the pistachio de-hulling wastes and subsequent biogas production as a renewable energy source are possible. The observed percent COD removal and methane yield values of the pre-treated pistachio de-hulling waste samples were significantly higher than the raw pistachio de-hulling waste. The highest methane yield was observed as 213.4 ml CH4/g COD.

Keywords: pistachio de-hulling waste, biogas, renewable energy, pre-treatment

Procedia PDF Downloads 200
3711 Effect of Cryogenic Treatment on Hybrid Natural Fiber Reinforced Polymer Composites

Authors: B. Vinod, L. J. Sudev

Abstract:

Natural fibers as reinforcement in polymer matrix material are gaining lot of attention in recent years. Natural fibers like jute, sisal, coir, hemp, banana etc. have attracted substantial importance as a potential structural material because of its attractive features along with its good mechanical properties. Cryogenic applications of natural fiber reinforced polymer composites are gaining importance. These materials need to possess good mechanical and physical properties at cryogenic temperatures to meet the high requirements by the cryogenic engineering applications. The objective of this work is to investigate the mechanical behavior of hybrid hemp/jute fibers reinforced epoxy composite material at liquid nitrogen temperature. Hybrid hemp/jute fibers reinforced polymer composite is prepared by hand lay-up method and test specimens are cut according to ASTM standards. These test specimens are dipped in liquid nitrogen for different time durations. The tensile properties, flexural properties and impact strength of the specimen are tested immediately after the specimens are removed from liquid nitrogen container. The experimental results indicate that the cryogenic treatment of the polymer composite has a significant effect on the mechanical properties of this material. The tensile properties and flexural properties of the hybrid hemp/jute fibers epoxy composite at liquid nitrogen temperature is higher than at room temperature. The impact strength of the material decreased after subjecting it to liquid nitrogen temperature.

Keywords: liquid nitrogen temperature, polymer composite, tensile properties, flexural properties

Procedia PDF Downloads 386
3710 Production of Clean Reusable Distillery Waste Water Using Activated Carbon Prepared from Waste Orange Peels

Authors: Joseph Govha, Sharon Mudutu

Abstract:

The research details the treatment of distillery waste water by making use of activated carbon prepared from orange peels as an adsorbent. Adsorption was carried out at different conditions to determine the optimum conditions that work best for the removal of color in distillery waste water using orange peel activated carbon. Adsorption was carried out at different conditions by varying contact time, adsorbent dosage, pH, testing for color intensity and Biological Oxygen Demand. A maximum percentage color removal of 88% was obtained at pH 7 at an adsorbent dosage of 1g/20ml. Maximum adsorption capacity was obtained from the Langmuir isotherm at R2=0.98.

Keywords: distillery, waste water, orange peel, activated carbon, adsorption

Procedia PDF Downloads 280
3709 Analysis of Improved Household Solid Waste Management System in Minna Metropolis, Niger State, Nigeria

Authors: M. A. Ojo, E. O. Ogbole, A. O. Ojo

Abstract:

This study analysed improved household solid waste management system in Minna metropolis, Niger state. Multi-staged sampling technique was used to administer 155 questionnaires to respondents, where Minna was divided into two income groups A and B based on the quality of the respondent’s houses. Primary data was collected with the aid of structured questionnaires and analysed using descriptive statistics to obtain results for the socioeconomic characteristics of respondents, types of waste generated and methods of disposing solid waste, the level of awareness and reliability of waste disposal methods as well as the willingness of households to pay for solid waste management in the area. The results revealed that majority of the household heads in the study area were male, 94.20% of the household heads fell between the ages of 21 and 50 and also that 96.80% of them had one form of formal education or the other. The results also revealed that 47.10% and 43.20% of the households generated food wastes and polymers respectively as a major constituent of waste disposed. The results of this study went further to reveal that 81.90% of the household heads were aware of the use of collection cans as a method of waste disposal while only 32.90% of them considered the method highly reliable. Multiple regression was used to determine the factors affecting the willingness of households to pay for waste disposal in the study area. The results showed that 76.10% of the respondents were willing to pay for solid waste management which indicates that households in Minna are concerned and willing to cater for their immediate environment. The multiple regression results revealed that age, income, environmental awareness and household expenditure have a positive and statistically significant relationship with the willingness of households to pay for waste disposal in the area while household size has a negative and statistically significant relationship with households’ willingness to pay. Based on these findings, it was recommended that more waste management services be made readily available to residents of Minna, waste collection service should be privatised to increase their effectiveness through increased competition and also that community participatory approach be used to create more environmental awareness amongst residents.

Keywords: household, solid waste, management, WTP

Procedia PDF Downloads 287
3708 Optimization of Municipal Solid Waste Management in Peshawar Using Mathematical Modelling and GIS with Focus on Incineration

Authors: Usman Jilani, Ibad Khurram, Irshad Hussain

Abstract:

Environmentally sustainable waste management is a challenging task as it involves multiple and diverse economic, environmental, technical and regulatory issues. Municipal Solid Waste Management (MSWM) is more challenging in developing countries like Pakistan due to lack of awareness, technology and human resources, insufficient funding, inefficient collection and transport mechanism resulting in the lack of a comprehensive waste management system. This work presents an overview of current MSWM practices in Peshawar, the provincial capital of Khyber Pakhtunkhwa, Pakistan and proposes a better and sustainable integrated solid waste management system with incineration (Waste to Energy) option. The diverted waste would otherwise generate revenue; minimize land fill requirement and negative impact on the environment. The proposed optimized solution utilizing scientific techniques (like mathematical modeling, optimization algorithms and GIS) as decision support tools enhances the technical & institutional efficiency leading towards a more sustainable waste management system through incorporating: - Improved collection mechanisms through optimized transportation / routing and, - Resource recovery through incineration and selection of most feasible sites for transfer stations, landfills and incineration plant. These proposed methods shift the linear waste management system towards a cyclic system and can also be used as a decision support tool by the WSSP (Water and Sanitation Services Peshawar), agency responsible for the MSWM in Peshawar.

Keywords: municipal solid waste management, incineration, mathematical modeling, optimization, GIS, Peshawar

Procedia PDF Downloads 363
3707 Treatment of Rice Industry Waste Water by Flotation-Flocculation Method

Authors: J. K. Kapoor, Shagufta Jabin, H. S. Bhatia

Abstract:

Polyamine flocculants were synthesized by poly-condensation of diphenylamine and epichlorohydrin using 1, 2-diaminoethane as modifying agent. The polyelectrolytes were prepared by taking epichlohydrin-diphenylamine in a molar ratio of 1:1, 1.5:1, 2:1, and 2.5:1. The flocculation performance of these polyelectrolytes was evaluated with rice industry waste water. The polyelectrolytes have been used in conjunction with alum for coagulation- flocculation process. Prior to the coagulation- flocculation process, air flotation technique was used with the aim to remove oil and grease content from waste water. Significant improvement was observed in the removal of oil and grease content after the air flotation technique. It has been able to remove 91.7% oil and grease from rice industry waste water. After coagulation-flocculation method, it has been observed that polyelectrolyte with epichlohydrin-diphenylamine molar ratio of 1.5:1 showed best results for the removal of pollutants from rice industry waste water. The highest efficiency of turbidity and TSS removal with polyelectrolyte has been found to be 97.5% and 98.2%, respectively. Results of these evaluations also reveal 86.8% removal of COD and 87.5% removal of BOD from rice industry waste water. Thus, we demonstrate optimization of coagulation–flocculation technique which is appropriate for waste water treatment.

Keywords: coagulation, flocculation, air flotation technique, polyelectrolyte, turbidity

Procedia PDF Downloads 463
3706 Investigation of Water Transport Dynamics in Polymer Electrolyte Membrane Fuel Cells Based on a Gas Diffusion Media Layers

Authors: Saad S. Alrwashdeh, Henning Markötter, Handri Ammari, Jan Haußmann, Tobias Arlt, Joachim Scholta, Ingo Manke

Abstract:

In this investigation, synchrotron X-ray imaging is used to study water transport inside polymer electrolyte membrane fuel cells. Two measurement techniques are used, namely in-situ radiography and quasi-in-situ tomography combining together in order to reveal the relationship between the structures of the microporous layers (MPLs) and the gas diffusion layers (GDLs), the operation temperature and the water flow. The developed cell is equipped with a thick GDL and a high back pressure MPL. It is found that these modifications strongly influence the overall water transport in the whole adjacent GDM.

Keywords: polymer electrolyte membrane fuel cell, microporous layer, water transport, radiography, tomography

Procedia PDF Downloads 165
3705 Flexural Behavior of Heat-Damaged Concrete Beams Reinforced with Fiber Reinforced Polymer (FRP) Bars

Authors: Mohammad R. Irshidat, Rami H. Haddad, Hanadi Al-Mahmoud

Abstract:

Reinforced concrete (RC) is the most common used material for construction in the world. In the past decades, fiber reinforced polymer (FRP) bars had been widely used to substitute the steel bars due to their high resistance to corrosion, high tensile capacity, and low weight in comparison with steel. Experimental studies on the behavior of FRP bar reinforced concrete beams had been carried out worldwide for a few decades. While the research on such structural members under elevated temperatures is still very limited. In this research, the flexural behavior of heat-damaged concrete beams reinforced with FRP bars is studied. Two types of FRP rebar namely, carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP), are used. The beams are subjected to four levels of temperature before tested to monitor their flexural behavior. The results are compared with other concrete beams reinforced with regular steel bars. The results show that the beams reinforced with CFRP bars and GFRP bars had higher flexural capacity than the beams reinforced with steel bars even if heated up to 400°C and 300°C, respectively. After that the beams reinforced with steel bars had the superiority.

Keywords: concrete beams, FRP rebar, flexural behavior, heat-damaged

Procedia PDF Downloads 433
3704 Biobutanol Production from Date Palm Waste by Clostridium acetobutylicum

Authors: Diya Alsafadi, Fawwaz Khalili, Mohammad W. Amer

Abstract:

Butanol is an important industrial solvent and potentially a better liquid transportation biofuel than ethanol. The cost of feedstock is one key problem associated with the biobutanol production. Date palm is sugar-rich fruit and highly abundant. Thousands of tons of date wastes that generated from date processing industries are thrown away each year and imposing serious environmental problems. To exploit the utilization of renewable biomass feedstock, date palm waste was utilized for butanol production by Clostridium acetobutylicum DSM 1731. Fermentation conditions were optimized by investigating several parameters that affect the production of butanol such as temperature, substrate concentration and pH. The highest butanol yield (1.0 g/L) and acetone, butanol, and ethanol (ABE) content (1.3 g/L) were achieved at 20 g/L date waste, pH 5.0 and 37 °C. These results suggest that date palm waste can be used for biobutanol production.

Keywords: biofuel, acetone-butanol-ethanol fermentation, date palm waste, Clostridium acetobutylicum

Procedia PDF Downloads 337
3703 An Analysis of The Philippines' Legal Transition from Open Dumpsites to Solid Waste Management Facilities

Authors: Mary Elenor Adagio, John Roben Ambas, Ramilyn Bertolano, Julie Ann Garcia

Abstract:

Ecological Solid Waste Management has been a long-time concern in both national and international spheres. The exponential growth of waste generation is not properly matched with a waste management system that is cost-effective. As a result, governments and their communities within inevitably resort to the old ways of opening dumpsites to serve as a giant garbage bin. However, due to the environmental and public health problems these unmanaged dumpsites caused, countries like the Philippines mandated the closure of these dumpsites and converted them into or opened new sanitary landfills. This study aims to determine how the transition from open dumpsites to Solid Waste Management Facilities improve the implementation of the Solid Waste Management Framework of the government pursuant to Republic Act 9003. To test the hypothesis that the mandatory closure of dumpsites is better in the management of wastes in local government units, a review of related literature on analysis reports, news, and case studies was conducted. The results suggest that advocating for the transition of dumpsites to sanitary landfills would not only prevent environmental risks caused by pollution but also reduce problems regarding public health. Although this transition can be effective, data also show that with a lack of funding and resources, many local government units still find it difficult to provide their solid waste management plans and to adapt to the transition to sanitary landfills.

Keywords: solid waste management, environmental law, solid waste management facilities, open dumpsites

Procedia PDF Downloads 144
3702 Conceptual Model of a Residential Waste Collection System Using ARENA Software

Authors: Bruce G. Wilson

Abstract:

The collection of municipal solid waste at the curbside is a complex operation that is repeated daily under varying circumstances around the world. There have been several attempts to develop Monte Carlo simulation models of the waste collection process dating back almost 50 years. Despite this long history, the use of simulation modeling as a planning or optimization tool for waste collection is still extremely limited in practice. Historically, simulation modeling of waste collection systems has been hampered by the limitations of computer hardware and software and by the availability of representative input data. This paper outlines the development of a Monte Carlo simulation model that overcomes many of the limitations contained in previous models. The model uses a general purpose simulation software program that is easily capable of modeling an entire waste collection network. The model treats the stops on a waste collection route as a queue of work to be processed by a collection vehicle (or server). Input data can be collected from a variety of sources including municipal geographic information systems, global positioning system recorders on collection vehicles, and weigh scales at transfer stations or treatment facilities. The result is a flexible model that is sufficiently robust that it can model the collection activities in a large municipality, while providing the flexibility to adapt to changing conditions on the collection route.

Keywords: modeling, queues, residential waste collection, Monte Carlo simulation

Procedia PDF Downloads 391
3701 Study on the Application of Lime to Improve the Rheological Properties of Polymer Modified Bitumen

Authors: A. Chegenizadeh, M. Keramatikerman, H. Nikraz

Abstract:

Bitumen is one of the most applicable materials in pavement engineering. It is a binding material with unique viscoelastic properties, especially when it mixes with polymer. In this study, to figure out the viscoelastic behaviour of the polymer modified with bitumen (PMB), a series of dynamic shearing rheological (DSR) tests were conducted. Four percentages of lime (i.e. 1%, 2%, 4% and 5%) were mixed with PMB and tested under four different temperatures including 64ºC, 70ºC, 76ºC and 82ºC. The results indicated that complex shearing modulus (G*) increased by increasing the frequency due to raised resistance against deformation. The phase angle (δ) showed a decreasing trend by incrementing the frequency. The addition of lime percentages increased the complex modulus value and declined phase angle parameter. Increasing the temperature decreased the complex modulus and increased the phase angle until 70ºC. The decreasing trend of rutting factor with increasing temperature revealed that rutting factor improved by the addition of the lime to the PMB.

Keywords: rheological properties, DSR test, polymer mixed with bitumen (PMB), complex modulus, lime

Procedia PDF Downloads 177
3700 The Feasibility of Using Milled Glass Wastes in Concrete to Resist Freezing-Thawing Action

Authors: Raed Abendeh, Mousa Bani Baker, Zaydoun Abu Salem, Hesham Ahmad

Abstract:

The using of waste materials in the construction industry can reduce the dependence on the natural aggregates which are going at the end to deplete. The glass waste is generated in a huge amount which can make one of its disposal in concrete industry effective not only as a green solution but also as an advantage to enhance the performance of mechanical properties and durability of concrete. This article reports the performance of concrete specimens containing different percentages of milled glass waste as a partial replacement of cement (Powder), when they are subject to cycles of freezing and thawing. The tests were conducted on 75-mm cubes and 75 x 75 x 300-mm prisms. Compressive strength based on laboratory testing and non-destructive ultrasonic pulse velocity test were performed during the action of freezing-thawing cycles (F/T). The results revealed that the incorporation of glass waste in concrete mixtures is not only feasible but also showed generally better strength and durability performance than control concrete mixture. It may be said that the recycling of waste glass in concrete mixes is not only a disposal way, but also it can be an exploitation in concrete industry.

Keywords: durability, glass waste, freeze-thaw cycles, non-destructive test

Procedia PDF Downloads 363
3699 Seasonal Influence on Environmental Indicators of Beach Waste

Authors: Marcus C. Garcia, Giselle C. Guimarães, Luciana H. Yamane, Renato R. Siman

Abstract:

The environmental indicators and the classification of beach waste are essential tools to diagnose the current situation and to indicate ways to improve the quality of this environment. The purpose of this paper was to perform a quali-quantitative analysis of the beach waste on the Curva da Jurema Beach (Espírito Santo - Brazil). Three transects were used with equidistant positioning over the total length of the beach for the solid waste collection. Solid wastes were later classified according to their use and primary raw material from the low and high summer season. During the low season, average values of 7.10 items.m-1, 18.22 g.m-1 and 0.91 g.m-2 were found for the whole beach, and transect 3 contributed the most waste, with the total sum of items equal to 999 (49%), a total mass of 5.62 kg and a total volume of 21.31 L. During the high summer season, average values of 8.22 items.m-1, 54.40 g.m-1 and 2.72 g.m-2 were found, with transect 2 contributing the most to the total sum with 1,212 items (53%), a total mass of 10.76 kg and a total volume of 51.99 L. Of the total collected, plastic materials represented 51.4% of the total number of items, 35.9% of the total mass and 68% of the total volume. The implementation of reactive and proactive measures is necessary so that the management of the solid wastes on Curva da Jurema Beach is in accordance with principles of sustainability.

Keywords: beach solid waste, environmental indicators, quali-quantitative analysis, waste management

Procedia PDF Downloads 296
3698 Organic Waste Valorization for Biodiesel Production: Chemical and Biological Approach

Authors: Meha Alouini, Wissem Mnif, Yasmine Souissi

Abstract:

This work will be conducted within the framework of the environmental sustainable development. It involves waste recovering into biodiesel fuel. Low cost feedstocks such as waste of frying oil and animal fats have been utilized to replace refined vegetable oil for biodiesel production. Biodiesel which refers to fatty acid methyl esters (FAME) was carried out by both chemical and enzymatic reaction of transesterification. In order to compare the two studied reactions the obtained biodiesel was characterized by determining its esters content and its fuel properties according to the European standard EN 14214. It was noted that the chemical method gave the product with the best physical property. But the biological one was found more effective for obtaining important ester content. Thus it would be interesting to optimize the enzymatic pathway of production of biodiesel to obtain a better property of biodiesel.

Keywords: biodiesel, fatty acid methyl esters, transesterification, waste frying oil, waste beef fat

Procedia PDF Downloads 487
3697 Comparison of Dose Rate and Energy Dependence of Soft Tissue Equivalence Dosimeter with Electron and Photon Beams Using Magnetic Resonance Imaging

Authors: Bakhtiar Azadbakht, Karim Adinehvand, Amin Sahebnasagh

Abstract:

The purpose of this study was to evaluate dependence of PAGAT polymer gel dosimeter 1/T2 on different electron and photon energies as well as on different mean dose rates for a standard clinically used Co-60 therapy unit and an ELECTA linear accelerator. A multi echo sequence with 32 equidistant echoes was used for the evaluation of irradiated polymer gel dosimeters. The optimal post-manufacture irradiation and post imaging times were both determined to be one day. The sensitivity of PAGAT polymer gel dosimeter with irradiation of photon and electron beams was represented by the slope of calibration curve in the linear region measured for each modality. The response of PAGAT gel with photon and electron beams is very similar in the lower dose region. The R2-dose response was linear up to 30Gy. In electron beams the R2-dose response for doses less than 3Gy is not exact, but in photon beams the R2-dose response for doses less than 2Gy is not exact. Dosimeter energy dependence was studied for electron energies of 4, 12 and 18MeV and photon energies of 1.25, 4, 6 and 18MV. Dose rate dependence was studied in 6MeV electron beam and 6MV photon beam with the use of dose rates 80, 160, 240, 320, 400, and 480cGy/min. Evaluation of dosimeters were performed on Siemens Symphony, Germany 1.5T Scanner in the head coil. In this study no trend in polymer-gel dosimeter 1/T2 dependence was found on mean dose rate and energy for electron and photon beams.

Keywords: polymer gels, PAGAT gel, electron and photon beams, MRI

Procedia PDF Downloads 464
3696 Characteristic Study of Polymer Sand as a Potential Substitute for Natural River Sand in Construction Industry

Authors: Abhishek Khupsare, Ajay Parmar, Ajay Agarwal, Swapnil Wanjari

Abstract:

The extreme demand for aggregate leads to the exploitation of river-bed for fine aggregates, affecting the environment adversely. Therefore, a suitable alternative to natural river sand is essentially required. This study focuses on preventing environmental impact by developing polymer sand to replace natural river sand (NRS). Development of polymer sand by mixing high volume fly ash, bottom ash, cement, natural river sand, and locally purchased high solid content polycarboxylate ether-based superplasticizer (HS-PCE). All the physical and chemical properties of polymer sand (P-Sand) were observed and satisfied the requirement of the Indian Standard code. P-Sand yields good specific gravity of 2.31 and is classified as zone-I sand with a satisfactory friction angle (37˚) compared to natural river sand (NRS) and Geopolymer fly ash sand (GFS). Though the water absorption (6.83%) and pH (12.18) are slightly more than those of GFS and NRS, the alkali silica reaction and soundness are well within the permissible limit as per Indian Standards. The chemical analysis by X-Ray fluorescence showed the presence of high amounts of SiO2 and Al2O3 with magnitudes of 58.879% 325 and 26.77%, respectively. Finally, the compressive strength of M-25 grade concrete using P-sand and Geopolymer sand (GFS) was observed to be 87.51% and 83.82% with respect to natural river sand (NRS) after 28 days, respectively. The results of this study indicate that P-sand can be a good alternative to NRS for construction work as it not only reduces the environmental effect due to sand mining but also focuses on utilising fly ash and bottom ash.

Keywords: polymer sand, fly ash, bottom ash, HSPCE plasticizer, river sand mining

Procedia PDF Downloads 61
3695 Effect of Ethyl Cellulose and Hydroxy Propyl Methyl Cellulose Polymer on the Release Profile of Diltiazem Hydrochloride Sustained Release Pellets

Authors: Shahana Sharmin

Abstract:

In the present study, the effect of cellulose polymers Ethyl Cellulose and Hydroxy Propyl Methyl Cellulose was evaluated on the release profile of drug from sustained release pellet. Diltiazem Hydrochloride, an antihypertensive, cardio-protective agent and slow channel blocker were used as a model drug to evaluate its release characteristics from different pellets formulations. Diltiazem Hydrochloride sustained release pellets were prepared by drug loading (drug binder suspension) on neutral pellets followed by different percentages of spraying, i.e. 2%,4%, 6%, 8% and 10% coating suspension using ethyl cellulose and hydroxy-propyl methyl cellulose polymer in a fixed 85:15 ratios respectively. The in vitro dissolution studies of Diltiazem Hydrochloride from these sustained release pellets were carried out in pH 7.2 phosphate buffer for 1, 2, 3, 4, 5, 6, 7, and 8 hrs using USP-I method. Statistically, significant differences were found among the drug release profile from different formulations. Polymer content with the highest concentration of Ethyl cellulose on the pellets shows the highest release retarding rate of the drug. The retarding capacity decreases with the decreased concentration of ethyl cellulose. The release mechanism was explored and explained with zero order, first order, Higuchi and Korsmeyer’s equations. Finally, the study showed that the profile and kinetics of drug release were functions of polymer type, polymer concentration & the physico-chemical properties of the drug.

Keywords: diltiazem hydrochloride, ethyl cellulose, hydroxy propyl methyl cellulose, release kinetics, sustained release pellets

Procedia PDF Downloads 398
3694 Identify the Risks Factors and Problems of Waste Management in Developing Countries as Hurdles

Authors: Zubair Ahmad

Abstract:

The aim of this study is to analyze the risks factors and issues with waste management in developing nations as barriers. Depending on their content and categorization, wastes are managed differently. Waste management strategies differ for liquid, solid, and organic wastes. The final stage of trash disposal entails procedures like burning, interment, recycling, and treatment. Due to the rising creation of solid waste, the growing urban population has a magnified impact on the environment and public health. All regions, but especially informal urban neighborhoods, tribal villages, and official rural settlements have a protracted backlog in waste services. Another significant impediment seen in the developing world is a lack of education and awareness of effective waste-management practices. Unauthorized dumpsites pose a serious risk to the environment since they could contain dangerous elements like radioactive, infectious, and toxic waste. Wealthier individuals are more inclined to think that their actions will have an impact on environmental problems and to act to address them. Waste managers need to take action to make sure the public is given information that is consistent with what they currently know. The results of the data analysis conducted with the aid of the various methodologies discussed in the preceding chapter are presented in this chapter by the researcher. Descriptive analysis has been used in research to determine whether or not there are relationships between variables and to determine the importance of the variables. According to a survey, there are no efforts being made to lessen the odor that garbage dump sites emit (in terms of treating or recycling the material placed at dumpsite) This might be the case since respondents only commented on the waste management conditions in their immediate surroundings and may not have fully understood the steps taken to resolve this issue.

Keywords: risk factor of waste material, lack of awareness, developing countries struggles, waste management

Procedia PDF Downloads 61
3693 Characterization of Bio-Inspired Thermoelastoplastic Composites Filled with Modified Cellulose Fibers

Authors: S. Cichosz, A. Masek

Abstract:

A new cellulose hybrid modification approach, which is undoubtedly a scientific novelty, is introduced. The study reports the properties of cellulose (Arbocel UFC100 – Ultra Fine Cellulose) and characterizes cellulose filled polymer composites based on an ethylene-norbornene copolymer (TOPAS Elastomer E-140). Moreover, the approach of physicochemical two-stage cellulose treatment is introduced: solvent exchange (to ethanol or hexane) and further chemical modification with maleic anhydride (MA). Furthermore, the impact of the drying process on cellulose properties was investigated. Suitable measurements were carried out to characterize cellulose fibers: spectroscopic investigation (Fourier Transform Infrared Spektrofotometer-FTIR, Near InfraRed spectroscopy-NIR), thermal analysis (Differential scanning calorimetry, Thermal gravimetric analysis ) and Karl Fischer titration. It should be emphasized that for all UFC100 treatments carried out, a decrease in moisture content was evidenced. FT-IR reveals a drop in absorption band intensity at 3334 cm-1, the peak is associated with both –OH moieties and water. Similar results were obtained with Karl Fischer titration. Based on the results obtained, it may be claimed that the employment of ethanol contributes greatly to the lowering of cellulose water absorption ability (decrease of moisture content to approximately 1.65%). Additionally, regarding polymer composite properties, crucial data has been obtained from the mechanical and thermal analysis. The highest material performance was noted in the case of the composite sample that contained cellulose modified with MA after a solvent exchange with ethanol. This specimen exhibited sufficient tensile strength, which is almost the same as that of the neat polymer matrix – in the region of 40 MPa. Moreover, both the Payne effect and filler efficiency factor, calculated based on dynamic mechanical analysis (DMA), reveal the possibility of the filler having a reinforcing nature. What is also interesting is that, according to the Payne effect results, fibers dried before the further chemical modification are assumed to allow more regular filler structure development in the polymer matrix (Payne effect maximum at 1.60 MPa), compared with those not dried (Payne effect in the range 0.84-1.26 MPa). Furthermore, taking into consideration the data gathered from DSC and TGA, higher thermal stability is obtained in case of the materials filled with fibers that were dried before the carried out treatments (degradation activation energy in the region of 195 kJ/mol) in comparison with the polymer composite samples filled with unmodified cellulose (degradation activation energy of approximately 180 kJ/mol). To author’s best knowledge this work results in the introduction of a novel, new filler hybrid treatment approach. Moreover, valuable data regarding the properties of composites filled with cellulose fibers of various moisture contents have been provided. It should be emphasized that plant fiber-based polymer bio-materials described in this research might contribute significantly to polymer waste minimization because they are more readily degraded.

Keywords: cellulose fibers, solvent exchange, moisture content, ethylene-norbornene copolymer

Procedia PDF Downloads 105
3692 Impact of Sociocultural Factors on Management and Utilization of Solid Waste in Ibadan Metropolis, Nigeria

Authors: Olufunmilayo Folaranmi

Abstract:

This research was carried out to examine the impact of socio-cultural factors on the management and utilization of solid waste in Ibadan Metropolis. A descriptive survey research design was adopted for the study while a systematic and stratified random sampling technique was used to select 300 respondents which were categorized into high, middle and low-density areas. Four hypothesis were tested using chi-square test on variables of unavailability of waste disposal facilities and waste management, negligence of contractors to liaise with community members, lack of adequate environmental education and waste management and utilization, low level of motivation of sanitation workers with solid wastes management, lack of community full participation with solid waste management and utilization. Results showed that significant effect of waste disposal facilities on solid waste management and utilization (X2 +16.6, P < .05). Also, there is a significant relationship between negligence of the contractors to liaise with community elites with improper disposal (X2 = 87.5, P < .05). The motivation of sanitation workers is significantly related to solid waste management (X2 = 70.4, P < .05). Adequate environmental education and awareness influenced solid waste management. There was also a significant relationship between lack of community participation with waste management disposal and improper waste disposal. Based on the findings from the study it was recommended that the quality of life in urban centers should be improved, social welfare of the populace enhanced and environment should be adequately attended to. Poverty alleviation programmes should be intensified and made to live beyond the life of a particular administration, micro-credit facilities should be available to community members to promote their welfare. Lastly, sustained environmental education programmes for citizens at all levels of education, formal and informal through the use of agencies like Ethical and Attitudinal Reorientation Commission (EARCOM) and the National Orientation Agency (NOA).

Keywords: management, social welfare, socio-cultural factors, solid waste

Procedia PDF Downloads 216
3691 Development of a Sustainable Municipal Solid Waste Management for an Urban Area: Case Study from a Developing Country

Authors: Anil Kumar Gupta, Dronadula Venkata Sai Praneeth, Brajesh Dubey, Arundhuti Devi, Suravi Kalita, Khanindra Sharma

Abstract:

Increase in urbanization and industrialization have led to improve in the standard of living. However, at the same time, the challenges due to improper solid waste management are also increasing. Municipal Solid Waste management is considered as a vital step in the development of urban infrastructure. The present study focuses on developing a solid waste management plan for an urban area in a developing country. The current scenario of solid waste management practices at various urban bodies in India is summarized. Guwahati city in the northeastern part of the country and is also one of the targeted smart cities (under the governments Smart Cities program) was chosen as case study to develop and implement the solid waste management plan. The whole city was divided into various divisions and waste samples were collected according to American Society for Testing and Materials (ASTM) - D5231-92 - 2016 for each division in the city and a composite sample prepared to represent the waste from the entire city. The solid waste characterization in terms of physical and chemical which includes mainly proximate and ultimate analysis were carried out. Existing primary and secondary collection systems were studied and possibilities of enhancing the collection systems were discussed. The composition of solid waste for the overall city was found to be as: organic matters 38%, plastic 27%, paper + cardboard 15%, Textile 9%, inert 7% and others 4%. During the conference presentation, further characterization results in terms of Thermal gravimetric analysis (TGA), pH and water holding capacity will be discussed. The waste management options optimizing activities such as recycling, recovery, reuse and reduce will be presented and discussed.

Keywords: proximate, recycling, thermal gravimetric analysis (TGA), solid waste management

Procedia PDF Downloads 176
3690 Enablers and Inhibitors of Effective Waste Management Measures in Informal Settlements in South Africa: A Case of Alaska

Authors: Lynda C. Mbadugha, Bankole Awuzie, Kwanda Khumalo, Lindokuhle Matsebula, Masenoke Kgaditsi

Abstract:

Inadequate waste management remains a fundamental issue in the majority of cities around the globe, but it becomes a threat when it concerns informal settlements. Although studies have evaluated the performance of waste management measures, only a few have addressed that with a focus on South African informal settlements and the reasons for their apparent ineffectiveness in such locations. However, there may be evidence of variations in the extant problems due to the uniqueness of each location and the factors influencing the performance. Thus, there is a knowledge deficit regarding implementing waste management measures in South African informal settlements. This study seeks to evaluate the efficacy of waste management measures in the Alaska informal settlement in South Africa to assess the previously collected data of other areas using the degree of correlation. The research investigated a real-world scenario in the specified location using a case study approach and multiple data sources. The findings described various waste management practices used in Alaska's informal settlements; however, a correlation was found between the performance of these measures and those already used. The observed differences are primarily attributable to the physical characteristics of the locations, the lack of understanding of the environmental and health consequences of careless waste disposal, and the negative attitudes of the residents toward waste management practices. This study elucidates waste management implementation in informal settlements. It contributes to the relevant bodies of knowledge by describing these practices in South Africa. This paper's practical value emphasizes the general waste management characteristics of South Africa's informal settlements to facilitate the planning and provision of necessary interventions. The study concludes that the enablers and inhibitors are mainly political, behavioral, and environmental concerns.

Keywords: factors, informal settlement, performance, waste management

Procedia PDF Downloads 70