Search results for: vision transformer
947 Automatic Furrow Detection for Precision Agriculture
Authors: Manpreet Kaur, Cheol-Hong Min
Abstract:
The increasing advancement in the robotics equipped with machine vision sensors applied to precision agriculture is a demanding solution for various problems in the agricultural farms. An important issue related with the machine vision system concerns crop row and weed detection. This paper proposes an automatic furrow detection system based on real-time processing for identifying crop rows in maize fields in the presence of weed. This vision system is designed to be installed on the farming vehicles, that is, submitted to gyros, vibration and other undesired movements. The images are captured under image perspective, being affected by above undesired effects. The goal is to identify crop rows for vehicle navigation which includes weed removal, where weeds are identified as plants outside the crop rows. The images quality is affected by different lighting conditions and gaps along the crop rows due to lack of germination and wrong plantation. The proposed image processing method consists of four different processes. First, image segmentation based on HSV (Hue, Saturation, Value) decision tree. The proposed algorithm used HSV color space to discriminate crops, weeds and soil. The region of interest is defined by filtering each of the HSV channels between maximum and minimum threshold values. Then the noises in the images were eliminated by the means of hybrid median filter. Further, mathematical morphological processes, i.e., erosion to remove smaller objects followed by dilation to gradually enlarge the boundaries of regions of foreground pixels was applied. It enhances the image contrast. To accurately detect the position of crop rows, the region of interest is defined by creating a binary mask. The edge detection and Hough transform were applied to detect lines represented in polar coordinates and furrow directions as accumulations on the angle axis in the Hough space. The experimental results show that the method is effective.Keywords: furrow detection, morphological, HSV, Hough transform
Procedia PDF Downloads 231946 Water Efficiency: Greywater Recycling
Authors: Melissa Lubitz
Abstract:
Water scarcity is one of the crucial challenges of our time. There needs to be a focus on creating a society where people and nature flourish, regardless of climatic conditions. One of the solutions we can look to is decentralized greywater recycling. The vision is simple. Every building has its own water source being greywater from the bath, shower, sink and washing machine. By treating this in the home, you can save 25-45% of potable water use and wastewater production, a reduction in energy consumption and CO2 emissions. This reusable water is clean, and safe to be used for toilet flushing, washing machine, and outdoor irrigation. Companies like Hydraloop have been committed to the greywater recycle-ready building concept for years. This means that drinking water conservation and water reuse are included as standards in the design of all new buildings. Sustainability and renewal go hand in hand. This vision includes not only optimizing water savings and waste reduction but also forging strong partnerships that bring this ambition to life. Together with regulators, municipalities and builders, a sustainable and water-conscious future is pursued. This is an opportunity to be part of a movement that is making a difference. By pushing this initiative forward, we become part of a growing community that resists dehydration, believes in sustainability, and is committed to a living environment at the forefront of change: sustainable living, where saving water is the norm and where we shape the future together.Keywords: greywater, wastewater treatment, water conservation, circular water society
Procedia PDF Downloads 62945 Choosing Local Organic Food: Consumer Motivations and Ethical Spaces
Authors: Artur Saraiva, Moritz von Schwedler, Emília Fernandes
Abstract:
In recent years, the organic sector has increased significantly. However, with the ‘conventionalization’ of these products, it has been questioned whether these products have been losing their original vision. Accordingly, this research based on 31 phenomenological interviews with committed organic consumers in urban and rural areas of Portugal, aims to analyse how ethical motivations and ecological awareness are related to organic food consumption. The content thematic analysis highlights aspects related to society and environmental concerns. On an individual level, the importance of internal coherence, peace of mind and balance that these consumers find in the consumption of local organic products was stressed. For these consumers, local organic products consumption made for significant changes in their lives, aiding in the establishment of a green identity, and involves a certain philosophy of life. This vision of an organic lifestyle is grounded in a political and ecological perspective, beyond the usual organic definition, as a ‘post-organic era’. The paper contributes to better understand how an ideological environmental discourse allows highlighting the relationship between consumers’ environmental concerns and the politics of food, resulting in a possible transition to new sustainable consumption practices.Keywords: organic consumption, localism, content thematic analysis, pro-environmental discourse, political consumption, Portugal
Procedia PDF Downloads 212944 Interrogating the Theoretical Basis of the Freedom Charter in South Africa
Authors: Sibonginkosi Mazibuko
Abstract:
The “adoption” of the Freedom Charter in 1955 at Kliptown south of Johannesburg, South Africa represented a desire to create a society that is based on common citizenship, and democracy. The architects of the Charter had a vision of a society that lived in peace with itself. Today, the Charter is still promoted as the best thing that ever happened to a society ravaged by racism, dispossession, oppression and exploitation – a society divided in all aspects of its life. This paper moves from the understanding that land is fundamental to all life. It interrogates the Charter’s claim on land. At a time when the colonised world sought to free themselves from the chains of colonialism and Africans throughout the continent demanded Africa for the Africans, the Freedom Charter claimed South Africa for all who lived in it. To the extent that this paper problematizes the philosophical underpinnings of the Charter, it uses the methodology of dialectic materialism to understand the theoretical basis of the Freedom Charter. The paper argues that the understanding, desire and the vision of the Freedom Charter were, as they are today, irreconcilable. To that effect and in pursuit of narrow class interests, the Charter justified land dispossession and unsustainable living conditions for the dispossessed majority. The paper then concludes that, by misrepresenting the critically fundamental land question, the Charter tried to reconcile the dispossessed with their dispossession and thus reflected coloniality and whiteness long before colonialism and settler-colonialism came to an end in South Africa.Keywords: colonialism, contradictions, freedom charter, South Africa
Procedia PDF Downloads 431943 Rare Diagnosis in Emergency Room: Moyamoya Disease
Authors: Ecem Deniz Kırkpantur, Ozge Ecmel Onur, Tuba Cimilli Ozturk, Ebru Unal Akoglu
Abstract:
Moyamoya disease is a unique chronic progressive cerebrovascular disease characterized by bilateral stenosis or occlusion of the arteries around the circle of Willis with prominent arterial collateral circulation. The occurrence of Moyamoya disease is related to immune, genetic and other factors. There is no curative treatment for Moyamoya disease. Secondary prevention for patients with symptomatic Moyamoya disease is largely centered on surgical revascularization techniques. We present here a 62-year old male presented with headache and vision loss for 2 days. He was previously diagnosed with hypertension and glaucoma. On physical examination, left eye movements were restricted medially, both eyes were hyperemic and their movements were painful. Other neurological and physical examination were normal. His vital signs and laboratory results were within normal limits. Computed tomography (CT) showed dilated vascular structures around both lateral ventricles and atherosclerotic changes inside the walls of internal carotid artery (ICA). Magnetic resonance imaging (MRI) and angiography (MRA) revealed dilated venous vascular structures around lateral ventricles and hyper-intense gliosis in periventricular white matter. Ischemic gliosis around the lateral ventricles were present in the Digital Subtracted Angiography (DSA). After the neurology, ophthalmology and neurosurgery consultation, the patient was diagnosed with Moyamoya disease, pulse steroid therapy was started for vision loss, and super-selective DSA was planned for further investigation. Moyamoya disease is a rare condition, but it can be an important cause of stroke in both children and adults. It generally affects anterior circulation, but posterior cerebral circulation may also be affected, as well. In the differential diagnosis of acute vision loss, occipital stroke related to Moyamoya disease should be considered. Direct and indirect surgical revascularization surgeries may be used to effectively revascularize affected brain areas, and have been shown to reduce risk of stroke.Keywords: headache, Moyamoya disease, stroke, visual loss
Procedia PDF Downloads 267942 Educational Plan and Program of the Subject: Maintenance of Electric Power Equipment
Authors: Rade M. Ciric, Sasa Mandic
Abstract:
Students of Higher Education Technical School of Professional Studies, in Novi Sad follow the subject Maintenance of electric power equipment at the Electrotechnical Department. This paper presents educational plan and program of the subject Maintenance of electric power equipment. The course deals with the problems of preventive and investing maintenance of transformer stations (TS), performing and maintenance of grounding of TS and pillars, as well as tracing and detection the location of the cables failure. There is a special elaborated subject concerning the safe work conditions for the electrician during network maintenance, as well as the basics of making and keeping technical documentation of the equipment.Keywords: educational plan and program, electric power equipment, maintenance, technical documentation, safe work
Procedia PDF Downloads 467941 Image Multi-Feature Analysis by Principal Component Analysis for Visual Surface Roughness Measurement
Authors: Wei Zhang, Yan He, Yan Wang, Yufeng Li, Chuanpeng Hao
Abstract:
Surface roughness is an important index for evaluating surface quality, needs to be accurately measured to ensure the performance of the workpiece. The roughness measurement based on machine vision involves various image features, some of which are redundant. These redundant features affect the accuracy and speed of the visual approach. Previous research used correlation analysis methods to select the appropriate features. However, this feature analysis is independent and cannot fully utilize the information of data. Besides, blindly reducing features lose a lot of useful information, resulting in unreliable results. Therefore, the focus of this paper is on providing a redundant feature removal approach for visual roughness measurement. In this paper, the statistical methods and gray-level co-occurrence matrix(GLCM) are employed to extract the texture features of machined images effectively. Then, the principal component analysis(PCA) is used to fuse all extracted features into a new one, which reduces the feature dimension and maintains the integrity of the original information. Finally, the relationship between new features and roughness is established by the support vector machine(SVM). The experimental results show that the approach can effectively solve multi-feature information redundancy of machined surface images and provides a new idea for the visual evaluation of surface roughness.Keywords: feature analysis, machine vision, PCA, surface roughness, SVM
Procedia PDF Downloads 212940 Examining the Design of a Scaled Audio Tactile Model for Enhancing Interpretation of Visually Impaired Visitors in Heritage Sites
Authors: A. Kavita Murugkar, B. Anurag Kashyap
Abstract:
With the Rights for Persons with Disabilities Act (RPWD Act) 2016, the Indian government has made it mandatory for all establishments, including Heritage Sites, to be accessible for People with Disabilities. However, recent access audit surveys done under the Accessible India Campaign by Ministry of Culture indicate that there are very few accessibility measures provided in the Heritage sites for people with disabilities. Though there are some measures for the mobility impaired, surveys brought out that there are almost no provisions for people with vision impairment (PwVI) in heritage sites thus depriving them of a reasonable physical & intellectual access that facilitates an enjoyable experience and enriching interpretation of the Heritage Site. There is a growing need to develop multisensory interpretative tools that can help the PwVI in perceiving heritage sites in the absence of vision. The purpose of this research was to examine the usability of an audio-tactile model as a haptic and sound-based strategy for augmenting the perception and experience of PwVI in a heritage site. The first phase of the project was a multi-stage phenomenological experimental study with visually impaired users to investigate the design parameters for developing an audio-tactile model for PwVI. The findings from this phase included user preferences related to the physical design of the model such as the size, scale, materials, details, etc., and the information that it will carry such as braille, audio output, tactile text, etc. This was followed by the second phase in which a working prototype of an audio-tactile model is designed and developed for a heritage site based on the findings from the first phase of the study. A nationally listed heritage site from the author’s city was selected for making the model. The model was lastly tested by visually impaired users for final refinements and validation. The prototype developed empowers People with Vision Impairment to navigate independently in heritage sites. Such a model if installed in every heritage site, can serve as a technological guide for the Person with Vision Impairment, giving information of the architecture, details, planning & scale of the buildings, the entrances, location of important features, lifts, staircases, and available, accessible facilities. The model was constructed using 3D modeling and digital printing technology. Though designed for the Indian context, this assistive technology for the blind can be explored for wider applications across the globe. Such an accessible solution can change the otherwise “incomplete’’ perception of the disabled visitor, in this case, a visually impaired visitor and augment the quality of their experience in heritage sites.Keywords: accessibility, architectural perception, audio tactile model , inclusive heritage, multi-sensory perception, visual impairment, visitor experience
Procedia PDF Downloads 106939 Traffic Analysis and Prediction Using Closed-Circuit Television Systems
Authors: Aragorn Joaquin Pineda Dela Cruz
Abstract:
Road traffic congestion is continually deteriorating in Hong Kong. The largest contributing factor is the increase in vehicle fleet size, resulting in higher competition over the utilisation of road space. This study proposes a project that can process closed-circuit television images and videos to provide real-time traffic detection and prediction capabilities. Specifically, a deep-learning model involving computer vision techniques for video and image-based vehicle counting, then a separate model to detect and predict traffic congestion levels based on said data. State-of-the-art object detection models such as You Only Look Once and Faster Region-based Convolutional Neural Networks are tested and compared on closed-circuit television data from various major roads in Hong Kong. It is then used for training in long short-term memory networks to be able to predict traffic conditions in the near future, in an effort to provide more precise and quicker overviews of current and future traffic conditions relative to current solutions such as navigation apps.Keywords: intelligent transportation system, vehicle detection, traffic analysis, deep learning, machine learning, computer vision, traffic prediction
Procedia PDF Downloads 102938 The Relationship between Knowledge Management Processes and Strategic Thinking at the Organization Level
Authors: Bahman Ghaderi, Hedayat Hosseini, Parviz Kafche
Abstract:
The role of knowledge management processes in achieving the strategic goals of organizations is crucial. To this end, understanding the relationship between knowledge management processes and different aspects of strategic thinking (followed by long-term organizational planning) should be considered. This research examines the relationship between each of the five knowledge management processes (creation, storage, transfer, audit, and deployment) with each dimension of strategic thinking (vision, creativity, thinking, communication and analysis) in one of the major sectors of the food industry in Iran. In this research, knowledge management and its dimensions (knowledge acquisition, knowledge storage, knowledge transfer, knowledge auditing, and finally knowledge utilization) as independent variables and strategic thinking and its dimensions (creativity, systematic thinking, vision, strategic analysis, and strategic communication) are considered as the dependent variable. The statistical population of this study consisted of 245 managers and employees of Minoo Food Industrial Group in Tehran. In this study, a simple random sampling method was used, and data were collected by a questionnaire designed by the research team. Data were analyzed using SPSS 21 software. LISERL software is also used for calculating and drawing models and graphs. Among the factors investigated in the present study, knowledge storage with 0.78 had the most effect, and knowledge transfer with 0.62 had the least effect on knowledge management and thus on strategic thinking.Keywords: knowledge management, strategic thinking, knowledge management processes, food industry
Procedia PDF Downloads 170937 A Double PWM Source Inverter Technique with Reduced Leakage Current for Application on Standalone Systems
Authors: Md.Noman Habib Khan, M. S. Tajul Islam, T. S. Gunawan, M. Hasanuzzaman
Abstract:
The photovoltaic (PV) panel with no galvanic isolation system is well-known technique in the world which is effective and deliver power with enhanced efficiency. The PV generation presented here is for stand-alone system installed in remote areas when as the resulting power gets connected to electronic load installation instead of being tied to the grid. Though very small, even then transformer-less topology is shown to be with leakage in pico-ampere range. By using PWM technique PWM, leakage current in different situations is shown. The results that are demonstrated in this paper show how the pico-ampere current is reduced to femto-ampere through use of inductors and capacitors of suitable values of inductor and capacitors with the load.Keywords: photovoltaic (PV) panel, duty cycle, pulse duration modulation (PDM), leakage current
Procedia PDF Downloads 534936 Autonomous Kuka Youbot Navigation Based on Machine Learning and Path Planning
Authors: Carlos Gordon, Patricio Encalada, Henry Lema, Diego Leon, Dennis Chicaiza
Abstract:
The following work presents a proposal of autonomous navigation of mobile robots implemented in an omnidirectional robot Kuka Youbot. We have been able to perform the integration of robotic operative system (ROS) and machine learning algorithms. ROS mainly provides two distributions; ROS hydro and ROS Kinect. ROS hydro allows managing the nodes of odometry, kinematics, and path planning with statistical and probabilistic, global and local algorithms based on Adaptive Monte Carlo Localization (AMCL) and Dijkstra. Meanwhile, ROS Kinect is responsible for the detection block of dynamic objects which can be in the points of the planned trajectory obstructing the path of Kuka Youbot. The detection is managed by artificial vision module under a trained neural network based on the single shot multibox detector system (SSD), where the main dynamic objects for detection are human beings and domestic animals among other objects. When the objects are detected, the system modifies the trajectory or wait for the decision of the dynamic obstacle. Finally, the obstacles are skipped from the planned trajectory, and the Kuka Youbot can reach its goal thanks to the machine learning algorithms.Keywords: autonomous navigation, machine learning, path planning, robotic operative system, open source computer vision library
Procedia PDF Downloads 177935 Automatic Detection of Sugarcane Diseases: A Computer Vision-Based Approach
Authors: Himanshu Sharma, Karthik Kumar, Harish Kumar
Abstract:
The major problem in crop cultivation is the occurrence of multiple crop diseases. During the growth stage, timely identification of crop diseases is paramount to ensure the high yield of crops, lower production costs, and minimize pesticide usage. In most cases, crop diseases produce observable characteristics and symptoms. The Surveyors usually diagnose crop diseases when they walk through the fields. However, surveyor inspections tend to be biased and error-prone due to the nature of the monotonous task and the subjectivity of individuals. In addition, visual inspection of each leaf or plant is costly, time-consuming, and labour-intensive. Furthermore, the plant pathologists and experts who can often identify the disease within the plant according to their symptoms in early stages are not readily available in remote regions. Therefore, this study specifically addressed early detection of leaf scald, red rot, and eyespot types of diseases within sugarcane plants. The study proposes a computer vision-based approach using a convolutional neural network (CNN) for automatic identification of crop diseases. To facilitate this, firstly, images of sugarcane diseases were taken from google without modifying the scene, background, or controlling the illumination to build the training dataset. Then, the testing dataset was developed based on the real-time collected images from the sugarcane field from India. Then, the image dataset is pre-processed for feature extraction and selection. Finally, the CNN-based Visual Geometry Group (VGG) model was deployed on the training and testing dataset to classify the images into diseased and healthy sugarcane plants and measure the model's performance using various parameters, i.e., accuracy, sensitivity, specificity, and F1-score. The promising result of the proposed model lays the groundwork for the automatic early detection of sugarcane disease. The proposed research directly sustains an increase in crop yield.Keywords: automatic classification, computer vision, convolutional neural network, image processing, sugarcane disease, visual geometry group
Procedia PDF Downloads 116934 Integrated Risk Management as a Framework for Organisational Success
Authors: Olakunle Felix Adekunle
Abstract:
Risk management is recognised as an essential tool to tackle the inevitable uncertainty associated with business and projects at all levels. But it frequently fails to meet expectations, with projects continuing to run late, over budget or under performing, and business is not gaining the expected benefits. The evident disconnect which often occurs between strategic vision and tactical project delivery typically arises from poorly defined project objectives and inadequate attention to the proactive management of risks that could affect those objectives. One of the main failings in the traditional approach to risk management arises from a narrow focus on the downside, restricted to the technical or operational field, addressing tactical threats to processes, performance or people. This shortcoming can be overcome by widening the scope of risk management to encompass both strategic risks and upside opportunities, creating an integrated approach which can bridge the gap between strategy and tactics. Integrated risk management addresses risk across a variety of levels in the organisation, including strategy and tactics, and covering both opportunity and threat. Effective implementation of integrated risk management can produce a number of benefits to the organisation which are not available from the typical limited-scope risk process. This paper explores how to expand risk management to deliver strategic advantage while retaining its use as a tactical tool.Keywords: risk management, success, organization, strategy, project, tactis, vision
Procedia PDF Downloads 397933 Design and Development of Multi-Functional Intelligent Robot Arm Gripper
Authors: W. T. Asheber, L. Chyi-Yeu
Abstract:
An intelligent robot arm is expected to recognize the desired object, grasp it with appropriate force without dropping or damaging it, and also manipulate and deliver the object to the desired destination safely. This paper presents an intelligent multi-finger robot arm gripper design along with vision, proximity, and tactile sensor for efficient grasping and manipulation tasks. The generic design of the gripper makes it convenient for improved parts manipulation, multi-tasking and ease for components assembly. The proposed design emulates the human’s hand fingers structure using linkages and direct drive through power screw like transmission. The actuation and transmission mechanism is designed in such a way that it has non-back-drivable capability, which makes the fingers hold their position when even unpowered. The structural elements are optimized for a finest performance in motion and force transmissivity of the gripper fingers. The actuation mechanisms is designed specially to drive each finger and also rotate two of the fingers about the palm to form appropriate configuration to grasp various size and shape objects. The gripper has an automatic tool set fixture incorporated into its palm, which will reduce time wastage and do assembling in one go. It is equipped with camera-in-hand integrated into its palm; subsequently an image based visual-servoing control scheme is employed.Keywords: gripper, intelligent gripper, transmissivity, vision sensor
Procedia PDF Downloads 355932 Automatic Identification and Monitoring of Wildlife via Computer Vision and IoT
Authors: Bilal Arshad, Johan Barthelemy, Elliott Pilton, Pascal Perez
Abstract:
Getting reliable, informative, and up-to-date information about the location, mobility, and behavioural patterns of animals will enhance our ability to research and preserve biodiversity. The fusion of infra-red sensors and camera traps offers an inexpensive way to collect wildlife data in the form of images. However, extracting useful data from these images, such as the identification and counting of animals remains a manual, time-consuming, and costly process. In this paper, we demonstrate that such information can be automatically retrieved by using state-of-the-art deep learning methods. Another major challenge that ecologists are facing is the recounting of one single animal multiple times due to that animal reappearing in other images taken by the same or other camera traps. Nonetheless, such information can be extremely useful for tracking wildlife and understanding its behaviour. To tackle the multiple count problem, we have designed a meshed network of camera traps, so they can share the captured images along with timestamps, cumulative counts, and dimensions of the animal. The proposed method takes leverage of edge computing to support real-time tracking and monitoring of wildlife. This method has been validated in the field and can be easily extended to other applications focusing on wildlife monitoring and management, where the traditional way of monitoring is expensive and time-consuming.Keywords: computer vision, ecology, internet of things, invasive species management, wildlife management
Procedia PDF Downloads 138931 Analysis and Design of Single Switch Mosfet Dimmer for AC Driven Lamp
Authors: S.Pandeeswari, Raju Padma
Abstract:
In this paper a new solution to implement and control single-stage electronic ballast based on the integration of a buck-boost power factor correction stage and a half bridge resonant inverter is presented. The control signals are obtained using the inverter resonant current by means of a saturable transformer. Core saturation is used to control the required dead time between the control pulses on both switches. The turn-on time of one of the inverter switches is controlled to provide proper cathode preheating during the lamp ignition process. No special integrated circuits are required to control the ballast and the total number of components is minimized. Analysis and basic design of phase cut dimmer.Keywords: MOSFET dimmer, PIC 16F877A, voltage regulator, bridge rectifier
Procedia PDF Downloads 379930 Synchronous Generator in Case Voltage Sags for Different Loads
Authors: Benalia Nadia, Bensiali Nadia, Zezouri Noura
Abstract:
This paper studies the effects of voltage sags, both symmetrical and unsymmetrical, on the three-phase Synchronous Machine (SM) when powering an isolate load or infinite bus bar. The vast majority of the electrical power generation systems in the world is consist of synchronous generators coupled to the electrical network though a transformer. Voltage sags on SM cause speed variations, current and torque peaks and hence may cause tripping and equipment damage. The consequences of voltage sags in the machine behavior depends on different factors such as its magnitude (or depth), duration , the parameters of the machine and also the size of load. In this study, we consider the machine feeds an infinite bus bar in the first and the isolate load using symmetric and asymmetric defaults to see the behavior of the machine in both case the simulation have been used on SIMULINK MATLAB.Keywords: power quality, voltage sag, synchronous generator, infinite system
Procedia PDF Downloads 679929 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping
Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting
Abstract:
Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.Keywords: deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator
Procedia PDF Downloads 250928 Floodnet: Classification for Post Flood Scene with a High-Resolution Aerial Imaginary Dataset
Authors: Molakala Mourya Vardhan Reddy, Kandimala Revanth, Koduru Sumanth, Beena B. M.
Abstract:
Emergency response and recovery operations are severely hampered by natural catastrophes, especially floods. Understanding post-flood scenarios is essential to disaster management because it facilitates quick evaluation and decision-making. To this end, we introduce FloodNet, a brand-new high-resolution aerial picture collection created especially for comprehending post-flood scenes. A varied collection of excellent aerial photos taken during and after flood occurrences make up FloodNet, which offers comprehensive representations of flooded landscapes, damaged infrastructure, and changed topographies. The dataset provides a thorough resource for training and assessing computer vision models designed to handle the complexity of post-flood scenarios, including a variety of environmental conditions and geographic regions. Pixel-level semantic segmentation masks are used to label the pictures in FloodNet, allowing for a more detailed examination of flood-related characteristics, including debris, water bodies, and damaged structures. Furthermore, temporal and positional metadata improve the dataset's usefulness for longitudinal research and spatiotemporal analysis. For activities like flood extent mapping, damage assessment, and infrastructure recovery projection, we provide baseline standards and evaluation metrics to promote research and development in the field of post-flood scene comprehension. By integrating FloodNet into machine learning pipelines, it will be easier to create reliable algorithms that will help politicians, urban planners, and first responders make choices both before and after floods. The goal of the FloodNet dataset is to support advances in computer vision, remote sensing, and disaster response technologies by providing a useful resource for researchers. FloodNet helps to create creative solutions for boosting communities' resilience in the face of natural catastrophes by tackling the particular problems presented by post-flood situations.Keywords: image classification, segmentation, computer vision, nature disaster, unmanned arial vehicle(UAV), machine learning.
Procedia PDF Downloads 78927 Analyzing the Causes of Amblyopia among Patients in Tertiary Care Center: Retrospective Study in King Faisal Specialist Hospital and Research Center
Authors: Hebah M. Musalem, Jeylan El-Mansoury, Lin M. Tuleimat, Selwa Alhazza, Abdul-Aziz A. Al Zoba
Abstract:
Background: Amblyopia is a condition that affects the visual system triggering a decrease in visual acuity without a known underlying pathology. It is due to abnormal vision development in childhood or infancy. Most importantly, vision loss is preventable or reversible with the right kind of intervention in most of the cases. Strabismus, sensory defects, and anisometropia are all well-known causes of amblyopia. However, ocular misalignment in Strabismus is considered the most common form of amblyopia worldwide. The risk of developing amblyopia increases in premature children, developmentally delayed or children who had brain lesions affecting the visual pathway. The prevalence of amblyopia varies between 2 to 5 % in the world according to the literature. Objective: To determine the different causes of Amblyopia in pediatric patients seen in ophthalmology clinic of a tertiary care center, i.e. King Faisal Specialist Hospital and Research Center (KFSH&RC). Methods: This is a hospital based, random retrospective, based on reviewing patient’s files in the Ophthalmology Department of KFSH&RC in Riyadh city, Kingdom of Saudi Arabia. Inclusion criteria: amblyopic pediatric patients who attended the clinic from 2015 to 2016, who are between 6 months and 18 years old. Exclusion Criteria: patients above 18 years of age and any patient who is uncooperative to obtain an accurate vision or a proper refraction. Detailed ocular and medical history are recorded. The examination protocol includes a full ocular exam, full cycloplegic refraction, visual acuity measurement, ocular motility and strabismus evaluation. All data were organized in tables and graphs and analyzed by statistician. Results: Our preliminary results will be discussed on spot by our corresponding author. Conclusions: We focused on this study on utilizing various examination techniques which enhanced our results and highlighted a distinguished correlation between amblyopia and its’ causes. This paper recommendation emphasizes on critical testing protocols to be followed among amblyopic patient, especially in tertiary care centers.Keywords: amblyopia, amblyopia causes, amblyopia diagnostic criterion, amblyopia prevalence, Saudi Arabia
Procedia PDF Downloads 159926 Design of Single Phase Smart Energy Meter and Grid Tied Inverter for Smart Grid
Authors: Hamza Arif, Haroon Javaid
Abstract:
Based on hybrid energy concept of smart grid to synchronize and monitor power being generated at the user end. The ATMEGA328p controller of arduino is used as a processor unit that sends wireless data between user and power utility through NRF24L01 wireless modules. Current and potential transformer circuit are designed to sense the voltage and current at the utility and power being generated at the user end through solar panel. They are designed to interface with the arduino. The approach is used to demonstrate the concept of smart grid and to facilitate for further advancements in the field of smart grid technology. A PWM (Pulse Width Modulation) technique is used to synchronize the user output power with the utility supplier.Keywords: smart grid, hybrid energy, grid tied inverter, PWM
Procedia PDF Downloads 21925 Machine Learning and Deep Learning Approach for People Recognition and Tracking in Crowd for Safety Monitoring
Authors: A. Degale Desta, Cheng Jian
Abstract:
Deep learning application in computer vision is rapidly advancing, giving it the ability to monitor the public and quickly identify potentially anomalous behaviour from crowd scenes. Therefore, the purpose of the current work is to improve the performance of safety of people in crowd events from panic behaviour through introducing the innovative idea of Aggregation of Ensembles (AOE), which makes use of the pre-trained ConvNets and a pool of classifiers to find anomalies in video data with packed scenes. According to the theory of algorithms that applied K-means, KNN, CNN, SVD, and Faster-CNN, YOLOv5 architectures learn different levels of semantic representation from crowd videos; the proposed approach leverages an ensemble of various fine-tuned convolutional neural networks (CNN), allowing for the extraction of enriched feature sets. In addition to the above algorithms, a long short-term memory neural network to forecast future feature values and a handmade feature that takes into consideration the peculiarities of the crowd to understand human behavior. On well-known datasets of panic situations, experiments are run to assess the effectiveness and precision of the suggested method. Results reveal that, compared to state-of-the-art methodologies, the system produces better and more promising results in terms of accuracy and processing speed.Keywords: action recognition, computer vision, crowd detecting and tracking, deep learning
Procedia PDF Downloads 161924 Surface to the Deeper: A Universal Entity Alignment Approach Focusing on Surface Information
Authors: Zheng Baichuan, Li Shenghui, Li Bingqian, Zhang Ning, Chen Kai
Abstract:
Entity alignment (EA) tasks in knowledge graphs often play a pivotal role in the integration of knowledge graphs, where structural differences often exist between the source and target graphs, such as the presence or absence of attribute information and the types of attribute information (text, timestamps, images, etc.). However, most current research efforts are focused on improving alignment accuracy, often along with an increased reliance on specific structures -a dependency that inevitably diminishes their practical value and causes difficulties when facing knowledge graph alignment tasks with varying structures. Therefore, we propose a universal knowledge graph alignment approach that only utilizes the common basic structures shared by knowledge graphs. We have demonstrated through experiments that our method achieves state-of-the-art performance in fair comparisons.Keywords: knowledge graph, entity alignment, transformer, deep learning
Procedia PDF Downloads 45923 EQMamba - Method Suggestion for Earthquake Detection and Phase Picking
Authors: Noga Bregman
Abstract:
Accurate and efficient earthquake detection and phase picking are crucial for seismic hazard assessment and emergency response. This study introduces EQMamba, a deep-learning method that combines the strengths of the Earthquake Transformer and the Mamba model for simultaneous earthquake detection and phase picking. EQMamba leverages the computational efficiency of Mamba layers to process longer seismic sequences while maintaining a manageable model size. The proposed architecture integrates convolutional neural networks (CNNs), bidirectional long short-term memory (BiLSTM) networks, and Mamba blocks. The model employs an encoder composed of convolutional layers and max pooling operations, followed by residual CNN blocks for feature extraction. Mamba blocks are applied to the outputs of BiLSTM blocks, efficiently capturing long-range dependencies in seismic data. Separate decoders are used for earthquake detection, P-wave picking, and S-wave picking. We trained and evaluated EQMamba using a subset of the STEAD dataset, a comprehensive collection of labeled seismic waveforms. The model was trained using a weighted combination of binary cross-entropy loss functions for each task, with the Adam optimizer and a scheduled learning rate. Data augmentation techniques were employed to enhance the model's robustness. Performance comparisons were conducted between EQMamba and the EQTransformer over 20 epochs on this modest-sized STEAD subset. Results demonstrate that EQMamba achieves superior performance, with higher F1 scores and faster convergence compared to EQTransformer. EQMamba reached F1 scores of 0.8 by epoch 5 and maintained higher scores throughout training. The model also exhibited more stable validation performance, indicating good generalization capabilities. While both models showed lower accuracy in phase-picking tasks compared to detection, EQMamba's overall performance suggests significant potential for improving seismic data analysis. The rapid convergence and superior F1 scores of EQMamba, even on a modest-sized dataset, indicate promising scalability for larger datasets. This study contributes to the field of earthquake engineering by presenting a computationally efficient and accurate method for simultaneous earthquake detection and phase picking. Future work will focus on incorporating Mamba layers into the P and S pickers and further optimizing the architecture for seismic data specifics. The EQMamba method holds the potential for enhancing real-time earthquake monitoring systems and improving our understanding of seismic events.Keywords: earthquake, detection, phase picking, s waves, p waves, transformer, deep learning, seismic waves
Procedia PDF Downloads 52922 Refined Edge Detection Network
Authors: Omar Elharrouss, Youssef Hmamouche, Assia Kamal Idrissi, Btissam El Khamlichi, Amal El Fallah-Seghrouchni
Abstract:
Edge detection is represented as one of the most challenging tasks in computer vision, due to the complexity of detecting the edges or boundaries in real-world images that contains objects of different types and scales like trees, building as well as various backgrounds. Edge detection is represented also as a key task for many computer vision applications. Using a set of backbones as well as attention modules, deep-learning-based methods improved the detection of edges compared with the traditional methods like Sobel and Canny. However, images of complex scenes still represent a challenge for these methods. Also, the detected edges using the existing approaches suffer from non-refined results while the image output contains many erroneous edges. To overcome this, n this paper, by using the mechanism of residual learning, a refined edge detection network is proposed (RED-Net). By maintaining the high resolution of edges during the training process, and conserving the resolution of the edge image during the network stage, we make the pooling outputs at each stage connected with the output of the previous layer. Also, after each layer, we use an affined batch normalization layer as an erosion operation for the homogeneous region in the image. The proposed methods are evaluated using the most challenging datasets including BSDS500, NYUD, and Multicue. The obtained results outperform the designed edge detection networks in terms of performance metrics and quality of output images.Keywords: edge detection, convolutional neural networks, deep learning, scale-representation, backbone
Procedia PDF Downloads 102921 Understanding the Impact of Spatial Light Distribution on Object Identification in Low Vision: A Pilot Psychophysical Study
Authors: Alexandre Faure, Yoko Mizokami, éRic Dinet
Abstract:
These recent years, the potential of light in assisting visually impaired people in their indoor mobility has been demonstrated by different studies. Implementing smart lighting systems for selective visual enhancement, especially designed for low-vision people, is an approach that breaks with the existing visual aids. The appearance of the surface of an object is significantly influenced by the lighting conditions and the constituent materials of the objects. Appearance of objects may appear to be different from expectation. Therefore, lighting conditions lead to an important part of accurate material recognition. The main objective of this work was to investigate the effect of the spatial distribution of light on object identification in the context of low vision. The purpose was to determine whether and what specific lighting approaches should be preferred for visually impaired people. A psychophysical experiment was designed to study the ability of individuals to identify the smallest cube of a pair under different lighting diffusion conditions. Participants were divided into two distinct groups: a reference group of observers with normal or corrected-to-normal visual acuity and a test group, in which observers were required to wear visual impairment simulation glasses. All participants were presented with pairs of cubes in a "miniature room" and were instructed to estimate the relative size of the two cubes. The miniature room replicates real-life settings, adorned with decorations and separated from external light sources by black curtains. The correlated color temperature was set to 6000 K, and the horizontal illuminance at the object level at approximately 240 lux. The objects presented for comparison consisted of 11 white cubes and 11 black cubes of different sizes manufactured with a 3D printer. Participants were seated 60 cm away from the objects. Two different levels of light diffuseness were implemented. After receiving instructions, participants were asked to judge whether the two presented cubes were the same size or if one was smaller. They provided one of five possible answers: "Left one is smaller," "Left one is smaller but unsure," "Same size," "Right one is smaller," or "Right one is smaller but unsure.". The method of constant stimuli was used, presenting stimulus pairs in a random order to prevent learning and expectation biases. Each pair consisted of a comparison stimulus and a reference cube. A psychometric function was constructed to link stimulus value with the frequency of correct detection, aiming to determine the 50% correct detection threshold. Collected data were analyzed through graphs illustrating participants' responses to stimuli, with accuracy increasing as the size difference between cubes grew. Statistical analyses, including 2-way ANOVA tests, showed that light diffuseness had no significant impact on the difference threshold, whereas object color had a significant influence in low vision scenarios. The first results and trends derived from this pilot experiment clearly and strongly suggest that future investigations could explore extreme diffusion conditions to comprehensively assess the impact of diffusion on object identification. For example, the first findings related to light diffuseness may be attributed to the range of manipulation, emphasizing the need to explore how other lighting-related factors interact with diffuseness.Keywords: Lighting, Low Vision, Visual Aid, Object Identification, Psychophysical Experiment
Procedia PDF Downloads 64920 Machine Learning Strategies for Data Extraction from Unstructured Documents in Financial Services
Authors: Delphine Vendryes, Dushyanth Sekhar, Baojia Tong, Matthew Theisen, Chester Curme
Abstract:
Much of the data that inform the decisions of governments, corporations and individuals are harvested from unstructured documents. Data extraction is defined here as a process that turns non-machine-readable information into a machine-readable format that can be stored, for instance, in a database. In financial services, introducing more automation in data extraction pipelines is a major challenge. Information sought by financial data consumers is often buried within vast bodies of unstructured documents, which have historically required thorough manual extraction. Automated solutions provide faster access to non-machine-readable datasets, in a context where untimely information quickly becomes irrelevant. Data quality standards cannot be compromised, so automation requires high data integrity. This multifaceted task is broken down into smaller steps: ingestion, table parsing (detection and structure recognition), text analysis (entity detection and disambiguation), schema-based record extraction, user feedback incorporation. Selected intermediary steps are phrased as machine learning problems. Solutions leveraging cutting-edge approaches from the fields of computer vision (e.g. table detection) and natural language processing (e.g. entity detection and disambiguation) are proposed.Keywords: computer vision, entity recognition, finance, information retrieval, machine learning, natural language processing
Procedia PDF Downloads 111919 Design Considerations on Cathodic Protection for X65 Steel Tank Containing Fresh Water
Authors: A. M. Al-Sabagh, M. A. Deyab, M. N. Kroush
Abstract:
The present study focused on critical and detailed approach for using aluminum electrode as impressed current anode for cathodic protection of X65 steel tank containing fresh water. The impressed current design calculation showed 0.6 A of current demand and voltage of 0.33 V required to adequately protect the X65 steel tank with internal surface area of 421 m². We used here one transformer rectifier with current and voltage output of 25 A and 25 V, respectively. The data showed that the potentials ranged from -0.474 to -0.509 V (vs. Cu/CuSO₄), prior to the application of cathodic protection. When the potential was measured 1 h after the application of cathodic protection, the potential values showed considerable shift within protection range (-0.950 V vs. Cu/CuSO₄). The results confirmed that aluminum anode can be used in freshwater applications with high efficiency (current capacity) and low consumption rate.Keywords: cathodic protection, aluminum, steel, fresh water
Procedia PDF Downloads 154918 Innovative Technology to Sustain Food Security in Qatar
Authors: Sana Abusin
Abstract:
Food security in Qatar is a research priority of Qatar University (2021-2025) and all national strategies, including the Qatar National Vision 2030 and food security strategy (2018-2023). Achieving food security requires three actions: 1) transforming surplus food to those who are insecure; 2) reducing food loss and waste by recycling food into valuable resources such as compost (“green fertilizer”) that can be used in growing food; and, finally, 3) establishing strong enforcement agencies to protect consumers from outdated food and promote healthy food. Currently, these objectives are approached separately and not in a sustainable fashion. Food security in Qatar is a research priority of Qatar University (2021-2025) and all national strategies, including the Qatar National Vision 2030 and food security strategy (2018-2023). The study aims to develop an innovative mobile application that supports a sustainable solution to food insecurity and food waste in Qatar. The application will provide a common solution for many different users. For producers, it will facilitate easy disposal of excess food. For charities, it will notify them about surplus food ready for redistribution. The application will also benefit the second layer of end-users in the form of food recycling companies, who will receive information about available food waste that is unable to be consumed. We will use self-exoplanetary diagrams and digital pictures to show all the steps to the final stage. The aim is to motivate the young generation toward innovation and creation, and to encourage public-private collaboration in this sector.Keywords: food security, innovative technology, sustainability, food waste, Qatar
Procedia PDF Downloads 122