Search results for: stormwater monitoring
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3179

Search results for: stormwater monitoring

2849 Real Time Monitoring and Control of Proton Exchange Membrane Fuel Cell in Cognitive Radio Environment

Authors: Prakash Thapa, Gye Choon Park, Sung Gi Kwon, Jin Lee

Abstract:

The generation of electric power from a proton exchange membrane (PEM) fuel cell is influenced by temperature, pressure, humidity, flow rate of reactant gaseous and partial flooding of membrane electrode assembly (MEA). Among these factors, temperature and cathode flooding are the most affecting parameters on the performance of fuel cell. This paper describes the detail design and effect of these parameters on PEM fuel cell. Performance of all parameters was monitored, analyzed and controlled by using 5KWatt PEM fuel cell. In the real-time data communication for remote monitoring and control of PEM fuel cell, a normalized least mean square algorithm in cognitive radio environment is used. By the use of this method, probability of energy signal detection will be maximum which solved the frequency shortage problem. So the monitoring system hanging out and slow speed problem will be solved. Also from the control unit, all parameters are controlled as per the system requirement. As a result, PEM fuel cell generates maximum electricity with better performance.

Keywords: proton exchange membrane (PEM) fuel cell, pressure, temperature and humidity sensor (PTH), efficiency curve, cognitive radio network (CRN)

Procedia PDF Downloads 459
2848 Structural Health Monitoring of Buildings–Recorded Data and Wave Method

Authors: Tzong-Ying Hao, Mohammad T. Rahmani

Abstract:

This article presents the structural health monitoring (SHM) method based on changes in wave traveling times (wave method) within a layered 1-D shear beam model of structure. The wave method measures the velocity of shear wave propagating in a building from the impulse response functions (IRF) obtained from recorded data at different locations inside the building. If structural damage occurs in a structure, the velocity of wave propagation through it changes. The wave method analysis is performed on the responses of Torre Central building, a 9-story shear wall structure located in Santiago, Chile. Because events of different intensity (ambient vibrations, weak and strong earthquake motions) have been recorded at this building, therefore it can serve as a full-scale benchmark to validate the structural health monitoring method utilized. The analysis of inter-story drifts and the Fourier spectra for the EW and NS motions during 2010 Chile earthquake are presented. The results for the NS motions suggest the coupling of translation and torsion responses. The system frequencies (estimated from the relative displacement response of the 8th-floor with respect to the basement from recorded data) were detected initially decreasing approximately 24% in the EW motion. Near the end of shaking, an increase of about 17% was detected. These analysis and results serve as baseline indicators of the occurrence of structural damage. The detected changes in wave velocities of the shear beam model are consistent with the observed damage. However, the 1-D shear beam model is not sufficient to simulate the coupling of translation and torsion responses in the NS motion. The wave method is proven for actual implementation in structural health monitoring systems based on carefully assessing the resolution and accuracy of the model for its effectiveness on post-earthquake damage detection in buildings.

Keywords: Chile earthquake, damage detection, earthquake response, impulse response function, shear beam model, shear wave velocity, structural health monitoring, torre central building, wave method

Procedia PDF Downloads 367
2847 Local Community Participation and the Adoption of Agricultural Technology in Kayunga District, Uganda

Authors: Barbara Kyampeire, Gerald Karyeijja

Abstract:

This study investigated the influence of local community participation on the adoption of new agricultural technology in Uganda, using the case study of Smooth Cayenne Pineapples in Kayunga District, Uganda. The mechanism of adoption of new technologies is often not fully understood and this prompted the study. The study adopted a descriptive, co relational, survey design. The researcher used questionnaire survey, focus group discussion as methods of data collection. A total of 152 respondents including adopters and non-adopters of new technology for producing pineapples were selected from 8 farmer groups in Kayunga District. The results indicated that the participation of the community in the planning, implementation and the monitoring and evaluation of the adoption of the new technology for producing pineapples was low thus reducing the adoption of the new technology in the District. The researcher concluded that community participation significantly influences the adoption of new agricultural technology by members of a particular community. The study thus recommended that: first, there is need for maximum involvement of members of the community in the planning, implementation and monitoring of any new agricultural technology; secondly, there is need for continued sharing of information about new agricultural technologies being introduced; and finally, community members must be equipped with Monitoring and Evaluation (M&E) skills in order to make them monitor the progress made by the new agricultural technologies.

Keywords: adoption, community, technology, implementation

Procedia PDF Downloads 425
2846 A Method for Quantitative Assessment of the Dependencies between Input Signals and Output Indicators in Production Systems

Authors: Maciej Zaręba, Sławomir Lasota

Abstract:

Knowing the degree of dependencies between the sets of input signals and selected sets of indicators that measure a production system's effectiveness is of great importance in the industry. This paper introduces the SELM method that enables the selection of sets of input signals, which affects the most the selected subset of indicators that measures the effectiveness of a production system. For defined set of output indicators, the method quantifies the impact of input signals that are gathered in the continuous monitoring production system.

Keywords: manufacturing operation management, signal relationship, continuous monitoring, production systems

Procedia PDF Downloads 119
2845 Motion Detection Method for Clutter Rejection in the Bio-Radar Signal Processing

Authors: Carolina Gouveia, José Vieira, Pedro Pinho

Abstract:

The cardiopulmonary signal monitoring, without the usage of contact electrodes or any type of in-body sensors, has several applications such as sleeping monitoring and continuous monitoring of vital signals in bedridden patients. This system has also applications in the vehicular environment to monitor the driver, in order to avoid any possible accident in case of cardiac failure. Thus, the bio-radar system proposed in this paper, can measure vital signals accurately by using the Doppler effect principle that relates the received signal properties with the distance change between the radar antennas and the person’s chest-wall. Once the bio-radar aim is to monitor subjects in real-time and during long periods of time, it is impossible to guarantee the patient immobilization, hence their random motion will interfere in the acquired signals. In this paper, a mathematical model of the bio-radar is presented, as well as its simulation in MATLAB. The used algorithm for breath rate extraction is explained and a method for DC offsets removal based in a motion detection system is proposed. Furthermore, experimental tests were conducted with a view to prove that the unavoidable random motion can be used to estimate the DC offsets accurately and thus remove them successfully.

Keywords: bio-signals, DC component, Doppler effect, ellipse fitting, radar, SDR

Procedia PDF Downloads 140
2844 Estimation of Energy Losses of Photovoltaic Systems in France Using Real Monitoring Data

Authors: Mohamed Amhal, Jose Sayritupac

Abstract:

Photovoltaic (PV) systems have risen as one of the modern renewable energy sources that are used in wide ranges to produce electricity and deliver it to the electrical grid. In parallel, monitoring systems have been deployed as a key element to track the energy production and to forecast the total production for the next days. The reliability of the PV energy production has become a crucial point in the analysis of PV systems. A deeper understanding of each phenomenon that causes a gain or a loss of energy is needed to better design, operate and maintain the PV systems. This work analyzes the current losses distribution in PV systems starting from the available solar energy, going through the DC side and AC side, to the delivery point. Most of the phenomena linked to energy losses and gains are considered and modeled, based on real time monitoring data and datasheets of the PV system components. An analysis of the order of magnitude of each loss is compared to the current literature and commercial software. To date, the analysis of PV systems performance based on a breakdown structure of energy losses and gains is not covered enough in the literature, except in some software where the concept is very common. The cutting-edge of the current analysis is the implementation of software tools for energy losses estimation in PV systems based on several energy losses definitions and estimation technics. The developed tools have been validated and tested on some PV plants in France, which are operating for years. Among the major findings of the current study: First, PV plants in France show very low rates of soiling and aging. Second, the distribution of other losses is comparable to the literature. Third, all losses reported are correlated to operational and environmental conditions. For future work, an extended analysis on further PV plants in France and abroad will be performed.

Keywords: energy gains, energy losses, losses distribution, monitoring, photovoltaic, photovoltaic systems

Procedia PDF Downloads 176
2843 Monitoring of the Chillon Viaducts after Rehabilitation with Ultra High Performance Fiber Reinforced Cement-Based Composite

Authors: Henar Martín-Sanz García, Eleni Chatzi, Eugen Brühwiler

Abstract:

Located on the shore of Geneva Lake, in Switzerland, the Chillon Viaducts are two parallel structures consisted of post-tensioned concrete box girders, with a total length of 2 kilometers and 100m spans. Built in 1969, the bridges currently accommodate a traffic load of 50.000 vehicles per day, thereby holding a key role both in terms of historic value as well as socio-economic significance. Although several improvements have been carried out in the past two decades, recent inspections demonstrate an Alkali-Aggregate reaction in the concrete deck and piers reducing the concrete strength. In order to prevent further expansion of this issue, a layer of 40 mm of Ultra High Performance Fiber Reinforced cement-based Composite (UHPFRC) (incorporating rebars) was casted over the slabs, acting as a waterproof membrane and providing significant increase in resistance of the bridge structure by composite UHPFRC – RC composite action in particular of the deck slab. After completing the rehabilitation works, a Structural Monitoring campaign was installed on the deck slab in one representative span, based on accelerometers, strain gauges, thermal and humidity sensors. This campaign seeks to reveal information on the behavior of UHPFRC-concrete composite systems, such as increase in stiffness, fatigue strength, durability and long-term performance. Consequently, the structural monitoring is expected to last for at least three years. A first insight of the analyzed results from the initial months of measurements is presented herein, along with future improvements or necessary changes on the deployment.

Keywords: composite materials, rehabilitation, structural health monitoring, UHPFRC

Procedia PDF Downloads 279
2842 IoT and Advanced Analytics Integration in Biogas Modelling

Authors: Rakesh Choudhary, Ajay Kumar, Deepak Sharma

Abstract:

The main goal of this paper is to investigate the challenges and benefits of IoT integration in biogas production. This overview explains how the inclusion of IoT can enhance biogas production efficiency. Therefore, such collected data can be explored by advanced analytics, including Artificial intelligence (AI) and Machine Learning (ML) algorithms, consequently improving bio-energy processes. To boost biogas generation efficiency, this report examines the use of IoT devices for real-time data collection on key parameters, e.g., pH, temperature, gas composition, and microbial growth. Real-time monitoring through big data has made it possible to detect diverse, complex trends in the process of producing biogas. The Informed by advanced analytics can also help in improving bio-energy production as well as optimizing operational conditions. Moreover, IoT allows remote observation, control and management, which decreases manual intervention needed whilst increasing process effectiveness. Such a paradigm shift in the incorporation of IoT technologies into biogas production systems helps to achieve higher productivity levels as well as more practical biomass quality biomethane through real-time monitoring-based proactive decision-making, thus driving continuous performance improvement.

Keywords: internet of things, biogas, renewable energy, sustainability, anaerobic digestion, real-time monitoring, optimization

Procedia PDF Downloads 20
2841 Anomaly Detection Based on System Log Data

Authors: M. Kamel, A. Hoayek, M. Batton-Hubert

Abstract:

With the increase of network virtualization and the disparity of vendors, the continuous monitoring and detection of anomalies cannot rely on static rules. An advanced analytical methodology is needed to discriminate between ordinary events and unusual anomalies. In this paper, we focus on log data (textual data), which is a crucial source of information for network performance. Then, we introduce an algorithm used as a pipeline to help with the pretreatment of such data, group it into patterns, and dynamically label each pattern as an anomaly or not. Such tools will provide users and experts with continuous real-time logs monitoring capability to detect anomalies and failures in the underlying system that can affect performance. An application of real-world data illustrates the algorithm.

Keywords: logs, anomaly detection, ML, scoring, NLP

Procedia PDF Downloads 94
2840 Video Sharing System Based On Wi-fi Camera

Authors: Qidi Lin, Jinbin Huang, Weile Liang

Abstract:

This paper introduces a video sharing platform based on WiFi, which consists of camera, mobile phone and PC server. This platform can receive wireless signal from the camera and show the live video on the mobile phone captured by camera. In addition that, it is able to send commands to camera and control the camera’s holder to rotate. The platform can be applied to interactive teaching and dangerous area’s monitoring and so on. Testing results show that the platform can share the live video of mobile phone. Furthermore, if the system’s PC sever and the camera and many mobile phones are connected together, it can transfer photos concurrently.

Keywords: Wifi Camera, socket mobile, platform video monitoring, remote control

Procedia PDF Downloads 336
2839 Residual Life Prediction for a System Subject to Condition Monitoring and Two Failure Modes

Authors: Akram Khaleghei, Ghosheh Balagh, Viliam Makis

Abstract:

In this paper, we investigate the residual life prediction problem for a partially observable system subject to two failure modes, namely a catastrophic failure and a failure due to the system degradation. The system is subject to condition monitoring and the degradation process is described by a hidden Markov model with unknown parameters. The parameter estimation procedure based on an EM algorithm is developed and the formulas for the conditional reliability function and the mean residual life are derived, illustrated by a numerical example.

Keywords: partially observable system, hidden Markov model, competing risks, residual life prediction

Procedia PDF Downloads 415
2838 Role of Baseline Measurements in Assessing Air Quality Impact of Shale Gas Operations

Authors: Paula Costa, Ana Picado, Filomena Pinto, Justina Catarino

Abstract:

Environmental impact associated with large scale shale gas development is of major concern to the public, policy makers and other stakeholders. To assess this impact on the atmosphere, it is important to monitoring ambient air quality prior to and during all shale gas operation stages. Baseline observations can provide a standard of the pre-shale gas development state of the environment. The lack of baseline concentrations was identified as an important knowledge gap to assess the impact of emissions to the air due to shale gas operations. In fact baseline monitoring of air quality are missing in several regions, where there is a strong possibility of future shale gas exploration. This makes it difficult to properly identify, quantify and characterize environmental impacts that may be associated with shale gas development. The implementation of a baseline air monitoring program is imperative to be able to assess the total emissions related with shale gas operations. In fact, any monitoring programme should be designed to provide indicative information on background levels. A baseline air monitoring program should identify and characterize targeted air pollutants, most frequently described from monitoring and emission measurements, as well as those expected from hydraulic fracturing activities, and establish ambient air conditions prior to start-up of potential emission sources from shale gas operations. This program has to be planned for at least one year accounting for ambient variations. In the literature, in addition to GHG emissions of CH4, CO2 and nitrogen oxides (NOx), fugitive emissions from shale gas production can release volatile organic compounds (VOCs), aldehydes (formaldehyde, acetaldehyde) and hazardous air pollutants (HAPs). The VOCs include a.o., benzene, toluene, ethyl benzene, xylenes, hexanes, 2,2,4-trimethylpentane, styrene. The concentrations of six air pollutants (ozone, particulate matter (PM), carbon monoxide (CO), nitrogen oxides (NOx), sulphur oxides (SOx), and lead) whose regional ambient air levels are regulated by the Environmental Protection Agency (EPA), are often discussed. However, the main concern in the emissions to air associated to shale gas operations, seems to be the leakage of methane. Methane is identified as a compound of major concern due to its strong global warming potential. The identification of methane leakage from shale gas activities is complex due to the existence of several other CH4 sources (e.g. landfill, agricultural activity or gas pipeline/compressor station). An integrated monitoring study of methane emissions may be a suitable mean of distinguishing the contribution of different sources of methane to ambient levels. All data analysis needs to be carefully interpreted taking, also, into account the meteorological conditions of the site. This may require the implementation of a more intensive monitoring programme. So, it is essential the development of a low-cost sampling strategy, suitable for establishing pre-operations baseline data as well as an integrated monitoring program to assess the emissions from shale gas operation sites. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 640715.

Keywords: air emissions, baseline, green house gases, shale gas

Procedia PDF Downloads 330
2837 Solar Power Monitoring and Control System using Internet of Things

Authors: Oladapo Tolulope Ibitoye

Abstract:

It has become imperative to harmonize energy poverty alleviation and carbon footprint reduction. This is geared towards embracing independent power generation at local levels to reduce the popular ambiguity in the transmission of generated power. Also, it will contribute towards the total adoption of electric vehicles and direct current (DC) appliances that are currently flooding the global market. Solar power system is gaining momentum as it is now an affordable and less complex alternative to fossil fuel-based power generation. Although, there are many issues associated with solar power system, which resulted in deprivation of optimum working capacity. One of the key problems is inadequate monitoring of the energy pool from solar irradiance, which can then serve as a foundation for informed energy usage decisions and appropriate solar system control for effective energy pooling. The proposed technique utilized Internet of Things (IoT) in developing a system to automate solar irradiance pooling by controlling solar photovoltaic panels autonomously for optimal usage. The technique is potent with better solar irradiance exposure which results into 30% voltage pooling capacity than a system with static solar panels. The evaluation of the system show that the developed system possesses higher voltage pooling capacity than a system of static positioning of solar panel.

Keywords: solar system, internet of things, renewable energy, power monitoring

Procedia PDF Downloads 83
2836 An Ensemble System of Classifiers for Computer-Aided Volcano Monitoring

Authors: Flavio Cannavo

Abstract:

Continuous evaluation of the status of potentially hazardous volcanos plays a key role for civil protection purposes. The importance of monitoring volcanic activity, especially for energetic paroxysms that usually come with tephra emissions, is crucial not only for exposures to the local population but also for airline traffic. Presently, real-time surveillance of most volcanoes worldwide is essentially delegated to one or more human experts in volcanology, who interpret data coming from different kind of monitoring networks. Unfavorably, the high nonlinearity of the complex and coupled volcanic dynamics leads to a large variety of different volcanic behaviors. Moreover, continuously measured parameters (e.g. seismic, deformation, infrasonic and geochemical signals) are often not able to fully explain the ongoing phenomenon, thus making the fast volcano state assessment a very puzzling task for the personnel on duty at the control rooms. With the aim of aiding the personnel on duty in volcano surveillance, here we introduce a system based on an ensemble of data-driven classifiers to infer automatically the ongoing volcano status from all the available different kind of measurements. The system consists of a heterogeneous set of independent classifiers, each one built with its own data and algorithm. Each classifier gives an output about the volcanic status. The ensemble technique allows weighting the single classifier output to combine all the classifications into a single status that maximizes the performance. We tested the model on the Mt. Etna (Italy) case study by considering a long record of multivariate data from 2011 to 2015 and cross-validated it. Results indicate that the proposed model is effective and of great power for decision-making purposes.

Keywords: Bayesian networks, expert system, mount Etna, volcano monitoring

Procedia PDF Downloads 246
2835 The Cracks Propagation Monitoring of a Cantilever Beam Using Modal Analysis

Authors: Morteza Raki, Abolghasem Zabihollah, Omid Askari

Abstract:

Cantilever beam is a simplified sample of a lot of mechanical components used in a wide range of applications, including many industries such as gas turbine blade. Due to the nature of the operating conditions, beams are subject to variety of damages especially crack propagates. Crack propagation may lead to catastrophic failure during operation. Therefore, online detection of crack presence and its propagation is very important and may reduce possible significant cost of the whole system failure. This paper aims to investigate the effect of cracks presence and crack propagation on one end fixed beam`s vibration. A finite element model will be developed for the blade in which the modal response of the structure with and without crack will be studied. 

Keywords: blade, crack propagation, health monitoring, modal analysis

Procedia PDF Downloads 344
2834 Internet of Health Things as a Win-Win Solution for Mitigating the Paradigm Shift inside Senior Patient-Physician Shared Health Management

Authors: Marilena Ianculescu, Adriana Alexandru

Abstract:

Internet of Health Things (IoHT) has already proved to be a persuasive means to support a proper assessment of the living conditions by collecting a huge variety of data. For a customized health management of a senior patient, IoHT provides the capacity to build a dynamic solution for sustaining the shift inside the patient-physician relationship by allowing a real-time and continuous remote monitoring of the health status, well-being, safety and activities of the senior, especially in a non-clinical environment. Thus, is created a win-win solution in which both the patient and the physician enhance their involvement and shared decision-making, with significant outcomes. Health monitoring systems in smart environments are becoming a viable alternative to traditional healthcare solutions. The ongoing “Non-invasive monitoring and health assessment of the elderly in a smart environment (RO-SmartAgeing)” project aims to demonstrate that the existence of complete and accurate information is critical for assessing the health condition of the seniors, improving wellbeing and quality of life in relation to health. The researches performed inside the project aim to highlight how the management of IoHT devices connected to the RO-SmartAgeing platform in a secure way by using a role-based access control system, can allow the physicians to provide health services at a high level of efficiency and accessibility, which were previously only available in hospitals. The project aims to identify deficient aspects in the provision of health services tailored to a senior patient’s specificity and to offer a more comprehensive perspective of proactive and preventive medical acts.

Keywords: health management, internet of health things, remote monitoring, senior patient

Procedia PDF Downloads 100
2833 A Non-Invasive Blood Glucose Monitoring System Using near-Infrared Spectroscopy with Remote Data Logging

Authors: Bodhayan Nandi, Shubhajit Roy Chowdhury

Abstract:

This paper presents the development of a portable blood glucose monitoring device based on Near-Infrared Spectroscopy. The system supports Internet connectivity through WiFi and uploads the time series data of glucose concentration of patients to a server. In addition, the server is given sufficient intelligence to predict the future pathophysiological state of a patient given the current and past pathophysiological data. This will enable to prognosticate the approaching critical condition of the patient much before the critical condition actually occurs.The server hosts web applications to allow authorized users to monitor the data remotely.

Keywords: non invasive, blood glucose concentration, microcontroller, IoT, application server, database server

Procedia PDF Downloads 217
2832 Performance Evaluation of Construction Projects by Earned Value Management Method, Using Primavera P6 – A Case Study in Istanbul, Turkey

Authors: Mohammad Lemar Zalmai, Osman Hurol Turkakin, Cemil Akcay, Ekrem Manisali

Abstract:

Most of the construction projects are exposed to time and cost overruns due to various factors and this is a major problem. As a solution to this, the Earned Value Management (EVM) method is considered. EVM is a powerful and well-known method used in monitoring and controlling the project. EVM is a technique that project managers use to track the performance of their project against project baselines. EVM gives an early indication that either project is delayed or not, and the project is either over budget or under budget at any particular day by tracking it. Thus, it helps to improve the management control system of a construction project, to detect and control the problems in potential risk areas and to suggest the importance and purpose of monitoring the construction work. This paper explains the main parameters of the EVM system involved in the calculation of time and cost for construction projects. In this study, the project management software Primavera P6 is used to deals with the project monitoring process of a seven-storeyed (G+6) faculty building whose construction is in progress at Istanbul, Turkey. A comparison between the planned progress of construction activities and actual progress is performed, and the analysis results are interpreted. This case study justifies the benefits of using EVM for project cash flow analysis and forecasting.

Keywords: earned value management (EVM), construction cost management, construction planning, primavera P6, project management, project scheduling

Procedia PDF Downloads 242
2831 Cavitas Sensors into Human Cavities: Soft-Contact Lens and Mouthguard Sensors

Authors: Kohji Mitsubayashi, Takahiro Arakawa, Kohji Mitsubayashi

Abstract:

‘Cavitas sensors’ attached to human body cavities such as a contact lens type and a mouthguard (‘no implantable', ‘no wearable’) attracted attention as self-detachable devices for daily medicine. In this contribution, the soft contact lens glucose sensor for tear sugar monitoring will be introduced. And the mouthguard sensor with dental materials integrated with Bluetooth low energy (BLE) wireless module for real-time monitoring of saliva glucose would also be demonstrated. In the near future, those self-detachable cavitas sensors are expected to improve quality of life in view of the aging of society.

Keywords: cavitas sensor, biosensor, contact lens, mouthguard

Procedia PDF Downloads 287
2830 Monitoring Blood Pressure Using Regression Techniques

Authors: Qasem Qananwah, Ahmad Dagamseh, Hiam AlQuran, Khalid Shaker Ibrahim

Abstract:

Blood pressure helps the physicians greatly to have a deep insight into the cardiovascular system. The determination of individual blood pressure is a standard clinical procedure considered for cardiovascular system problems. The conventional techniques to measure blood pressure (e.g. cuff method) allows a limited number of readings for a certain period (e.g. every 5-10 minutes). Additionally, these systems cause turbulence to blood flow; impeding continuous blood pressure monitoring, especially in emergency cases or critically ill persons. In this paper, the most important statistical features in the photoplethysmogram (PPG) signals were extracted to estimate the blood pressure noninvasively. PPG signals from more than 40 subjects were measured and analyzed and 12 features were extracted. The features were fed to principal component analysis (PCA) to find the most important independent features that have the highest correlation with blood pressure. The results show that the stiffness index means and standard deviation for the beat-to-beat heart rate were the most important features. A model representing both features for Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP) was obtained using a statistical regression technique. Surface fitting is used to best fit the series of data and the results show that the error value in estimating the SBP is 4.95% and in estimating the DBP is 3.99%.

Keywords: blood pressure, noninvasive optical system, principal component analysis, PCA, continuous monitoring

Procedia PDF Downloads 161
2829 The Rail Traffic Management with Usage of C-OTDR Monitoring Systems

Authors: Andrey V. Timofeev, Dmitry V. Egorov

Abstract:

This paper presents development results of usage of C-OTDR monitoring systems for rail traffic management. The C-OTDR method is based on vibrosensitive properties of optical fibers. Analysis of Rayleigh backscattering radiation parameters changes which take place due to microscopic seismoacoustic impacts on the optical fiber allows to determine seismoacoustic emission source positions and to identify their types. This approach proved successful for rail traffic management (moving block system, weigh- in-motion system etc).

Keywords: C-OTDR systems, moving block-sections, rail traffic management, Rayleigh backscattering, weigh-in-motion

Procedia PDF Downloads 584
2828 Application of Remote Sensing and In-Situ Measurements for Discharge Monitoring in Large Rivers: Case of Pool Malebo in the Congo River Basin

Authors: Kechnit Djamel, Ammarri Abdelhadi, Raphael Tshimang, Mark Trrig

Abstract:

One of the most important aspects of monitoring rivers is navigation. The variation of discharge in the river generally produces a change in available draft for a vessel, particularly in the low flow season, which can impact the navigable water path, especially when the water depth is less than the normal one, which allows safe navigation for boats. The water depth is related to the bathymetry of the channel as well as the discharge. For a seasonal update of the navigation maps, a daily discharge value is required. Many novel approaches based on earth observation and remote sensing have been investigated for large rivers. However, it should be noted that most of these approaches are not currently able to directly estimate river discharge. This paper discusses the application of remote sensing tools using the analysis of the reflectance value of MODIS imagery and is combined with field measurements for the estimation of discharge. This approach is applied in the lower reach of the Congo River (Pool Malebo) for the period between 2019 and 2021. The correlation obtained between the observed discharge observed in the gauging station and the reflectance ratio time series is 0.81. In this context, a Discharge Reflectance Model (DRM) was developed to express discharge as a function of reflectance. This model introduces a non-contact method that allows discharge monitoring using earth observation. DRM was validated by field measurements using ADCP, in different sections on the Pool Malebo, over two different periods (dry and wet seasons), as well as by the observed discharge in the gauging station. The observed error between the estimated and measured discharge values ranges from 1 to 8% for the ADCP and from (1% to 11%) for the gauging station. The study of the uncertainties will give us the possibility to judge the robustness of the DRM.

Keywords: discharge monitoring, navigation, MODIS, empiric, ADCP, Congo River

Procedia PDF Downloads 90
2827 The Management of Care by People with Type 2 Diabetes versus the Professional Care at Primary Health Care in Brazil

Authors: Nunila Ferreira de Oliveira, Silvana Martins Mishima

Abstract:

Diabetes mellitus type 2 (DM2) prevalence, is increasing on the world, in Brazil is considered a public health problem. Treatment focuses on glycemic control depending primarily of lifestyle changes - not drug treatment (NDT), may involve drug therapy (DT) and requires continuous health monitoring. In Brazil this monitoring is performed by the Unified Health System (SUS) through Primary Health Care (PHC), which stimulate people with DM2 empowerment for care management. SUS was approved in 1988 and the PHC operationalization was strengthened with the creation of the Family Health Strategy (FHS) in 1994. Our aim was to analyze the people with DM2 participation in front of the care management health monitoring in the FHS. Qualitative research was carried out through non-participant observation of attendance of 25 people with DM2 in the FHS and interviewed at home. Ethical guidelines were followed. It was found that people with DM2 only follow professionals’ recommendations that make sense according to their own conceptions of health/disease; most of them emphasize the importance of (DT) with little emphasis on the NDT, was found great difficulty in the NDT and lack of knowledge about the disease and care. As regards monitoring the FHS, were observed therapeutic practices based on the bio medical model, although the APS search for another care perspective; NDT is not systematically accompanied by the health team and takes place a few educational activities on the DM2 in the FHS, with low user adoption. The work of the FHS is done by multidisciplinary teams, but we see the need for greater participation of nurses in clinical-care follow-up of this population and may also act in adapting to the NDT. Finally we emphasize the need for professional practices that consider the difficulties to care management by people with DM2, especially because of the NDT. It is noticed that the measures recommended by the FHS professionals are not always developed by people with DM2. We must seek the empowerment of people with DM2 to manage the form of care associated with the FHS team, seeking to reduce the incidence of complications and higher quality of life.

Keywords: diabetes mellitus, primary health care, nursing, management of care

Procedia PDF Downloads 456
2826 Blockchain for Transport: Performance Simulations of Blockchain Network for Emission Monitoring Scenario

Authors: Dermot O'Brien, Vasileios Christaras, Georgios Fontaras, Igor Nai Fovino, Ioannis Kounelis

Abstract:

With the rise of the Internet of Things (IoT), 5G, and blockchain (BC) technologies, vehicles are becoming ever increasingly connected and are already transmitting substantial amounts of data to the original equipment manufacturers (OEMs) servers. This data could be used to help detect mileage fraud and enable more accurate vehicle emissions monitoring. This would not only help regulators but could enable applications such as permitting efficient drivers to pay less tax, geofencing for air quality improvement, as well as pollution tolling and trading platforms for transport-related businesses and EU citizens. Other applications could include traffic management and shared mobility systems. BC enables the transmission of data with additional security and removes single points of failure while maintaining data provenance, identity ownership, and the possibility to retain varying levels of privacy depending on the requirements of the applied use case. This research performs simulations of vehicles interacting with European member state authorities and European Commission BC nodes that are running hyperleger fabric and explores whether the technology is currently feasible for transport applications such as the emission monitoring use-case.

Keywords: future transportation systems, technological innovations, policy approaches for transportation future, economic and regulatory trends, blockchain

Procedia PDF Downloads 176
2825 Current-Based Multiple Faults Detection in Electrical Motors

Authors: Moftah BinHasan

Abstract:

Induction motors (IM) are vital components in industrial processes whose failure may yield to an unexpected interruption at the industrial plant, with highly incurred consequences in costs, product quality, and safety. Among different detection approaches proposed in the literature, that based on stator current monitoring termed as Motor Current Signature Analysis (MCSA) is the most preferred. MCSA is advantageous due to its non-invasive properties. The popularity of motor current signature analysis comes from being that the current consists of motor harmonics, around the supply frequency, which show some properties related to different situations of healthy and faulty conditions. One of the techniques used with machine line current resorts to spectrum analysis. Besides discussing the fundamentals of MCSA and its applications in the condition monitoring arena, this paper shows a summary of the most frequent faults and their consequence signatures on the stator current spectrum of an induction motor. In addition, this article presents different case studies of induction motor fault diagnosis. These faults were seeded in the machine which was run for more than an hour for each test before the results were recorded for the faulty situations. These results are then compared with those for the healthy cases that were recorded earlier.

Keywords: induction motor, condition monitoring, fault diagnosis, MCSA, rotor, stator, bearing, eccentricity

Procedia PDF Downloads 458
2824 Machine Learning Based Smart Beehive Monitoring System Without Internet

Authors: Esra Ece Var

Abstract:

Beekeeping plays essential role both in terms of agricultural yields and agricultural economy; they produce honey, wax, royal jelly, apitoxin, pollen, and propolis. Nowadays, these natural products become more importantly suitable and preferable for nutrition, food supplement, medicine, and industry. However, to produce organic honey, majority of the apiaries are located in remote or distant rural areas where utilities such as electricity and Internet network are not available. Additionally, due to colony failures, world honey production decreases year by year despite the increase in the number of beehives. The objective of this paper is to develop a smart beehive monitoring system for apiaries including those that do not have access to Internet network. In this context, temperature and humidity inside the beehive, and ambient temperature were measured with RFID sensors. Control center, where all sensor data was sent and stored at, has a GSM module used to warn the beekeeper via SMS when an anomaly is detected. Simultaneously, using the collected data, an unsupervised machine learning algorithm is used for detecting anomalies and calibrating the warning system. The results show that the smart beehive monitoring system can detect fatal anomalies up to 4 weeks prior to colony loss.

Keywords: beekeeping, smart systems, machine learning, anomaly detection, apiculture

Procedia PDF Downloads 239
2823 Comparative Study of Conventional and Satellite Based Agriculture Information System

Authors: Rafia Hassan, Ali Rizwan, Sadaf Farhan, Bushra Sabir

Abstract:

The purpose of this study is to compare the conventional crop monitoring system with the satellite based crop monitoring system in Pakistan. This study is conducted for SUPARCO (Space and Upper Atmosphere Research Commission). The study focused on the wheat crop, as it is the main cash crop of Pakistan and province of Punjab. This study will answer the following: Which system is better in terms of cost, time and man power? The man power calculated for Punjab CRS is: 1,418 personnel and for SUPARCO: 26 personnel. The total cost calculated for SUPARCO is almost 13.35 million and CRS is 47.705 million. The man hours calculated for CRS (Crop Reporting Service) are 1,543,200 hrs (136 days) and man hours for SUPARCO are 8, 320hrs (40 days). It means that SUPARCO workers finish their work 96 days earlier than CRS workers. The results show that the satellite based crop monitoring system is efficient in terms of manpower, cost and time as compared to the conventional system, and also generates early crop forecasts and estimations. The research instruments used included: Interviews, physical visits, group discussions, questionnaires, study of reports and work flows. A total of 93 employees were selected using Yamane’s formula for data collection, which is done with the help questionnaires and interviews. Comparative graphing is used for the analysis of data to formulate the results of the research. The research findings also demonstrate that although conventional methods have a strong impact still in Pakistan (for crop monitoring) but it is the time to bring a change through technology, so that our agriculture will also be developed along modern lines.

Keywords: area frame, crop reporting service, CRS, sample frame, SRS/GIS, satellite remote sensing/ geographic information system

Procedia PDF Downloads 291
2822 Investigation of Optical Requirements for Power System Assets Monitoring with Unmanned Aerial Vehicles

Authors: Ioana Pisica, Dimitrios Gkritzapis

Abstract:

The significance of UAS in scientific applications has been amply demonstrated in recent years. The combinations of portability and quasi-static positioning by means of flying in close loop path make them versatile and efficient in the inspection of power systems infrastructure. In this paper, we critically assess several platforms and sensor capabilities to identify their pros and cons in relation to the power systems assets to be monitored. In this respect, it is paramount the flights to be conducted by using UAS which bear certain suitable features, such as responsive and easy control, video capturing in real time, autonomous routing of pre-planned flight programming with differentiating payloads. The outcome of this research is a set of optimal requirements for power system assets monitoring with UAS.

Keywords: platforms, power system, sensors, UAVs

Procedia PDF Downloads 285
2821 Performance Analysis of Domotics System as Real-Time Non-Intrusive Load Monitoring

Authors: Dauda A. Oladosu, Kamorudeen A Olaiya, Abdurahman Bello

Abstract:

The deployment of smart meters by utility providers to gather fine grained spatiotemporal consumption data has grossly influenced the consumers’ emotion and behavior towards energy utilization. The quest for reduction in power consumption is now a subject of concern and one the methods adopted by the consumers to achieve this is Non-intrusive Load (appliance) Monitoring. Hence, this work presents performance Analysis of Domotics System as a tool for load monitoring when integrated with Consumer Control Unit of residential building. The system was developed with basic elements which enhance remote sensing, DTMF (Dual Tone Multi-frequency) recognition and cryptic messaging when specific task was performed. To demonstrate its applicability and suitability, this prototype was used consistently for six months at different load demands and the utilities consumed were documented. The results obtained shows good response when phone dialed, and the packet delivery of feedback SMS was quite satisfactory, making the implemented system to be of good quality with affordable cost and performs the desired functions. Besides, comparative analysis showed notable reduction in energy consumption and invariably lessened electrical bill of the consumer.

Keywords: automation, domotics, energy, load, remote, schedule

Procedia PDF Downloads 317
2820 Bioelectronic System for Continuous Monitoring of Cardiac Activity of Benthic Invertebrates for the Assessment of a Surface Water Quality

Authors: Sergey Kholodkevich, Tatiana Kuznetsova

Abstract:

The objective assessment of ecological state of water ecosystems is impossible without the use of biological methods of the environmental monitoring capable in the integrated look to reveal negative for biota changes of quality of water as habitats. Considerable interest for the development of such methods of environmental quality control represents biomarker approach. Measuring systems, by means of which register cardiac activity characteristics, received the name of bioelectronic. Bioelectronic systems are information and measuring systems in which animals (namely, benthic invertebrates) are directly included in structure of primary converters, being an integral part of electronic system of registration of these or those physiological or behavioural biomarkers. As physiological biomarkers various characteristics of cardiac activity of selected invertebrates have been used in bioelectronic system.lChanges in cardiac activity are considered as integrative measures of the physiological condition of organisms, which reflect the state of the environment of their dwelling. Greatest successes in the development of tools of biological methods and technologies of an assessment of surface water quality in real time. Essential advantage of bioindication of water quality by such tool is a possibility of an integrated assessment of biological effects of pollution on biota and also the expressness of such method and used approaches. In the report the practical experience of authors in biomonitoring and bioindication of an ecological condition of sea, brackish- and freshwater areas is discussed. Authors note that the method of non-invasive cardiac activity monitoring of selected invertebrates can be used not only for the advancement of biomonitoring, but also is useful in decision of general problems of comparative physiology of the invertebrates.

Keywords: benthic invertebrates, physiological state, heart rate monitoring, water quality assessment

Procedia PDF Downloads 716